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8.4.2 Representation on the Poincaré sphere . . . . . . . . . . . . . . . . . 107

8.4.3 Intrinsic angular momentum . . . . . . . . . . . . . . . . . . . . . . 110

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.A Interchangeability of detected and projected states . . . . . . . . . . . . . . . 111

9 Quantum-trajectory description of laser noise with pump depletion 113

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Optical Bloch equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2.1 Laser model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2.2 The fraction of atoms needed for lasing . . . . . . . . . . . . . . . . 116

9.2.3 Spectrum of intensity fluctuations . . . . . . . . . . . . . . . . . . . 117

9.3 Quantum trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3.2 Statistics of cycle trajectories . . . . . . . . . . . . . . . . . . . . . . 118

v



Contents

9.3.3 Cycle time of the gain trajectory . . . . . . . . . . . . . . . . . . . . 120

9.3.4 Dynamics of a laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3.5 Intensity fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Semi-classical rate equations . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.4.1 Steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.4.2 Intensity fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.A Mandel Q parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography 131

Samenvatting 137

List of publications 145

Curriculum vitae 147

Nawoord 149

vi



CHAPTER 1

Introduction

Before the derivation of the Maxwell equations light was already well-understood. Accord-

ing to Huygens’ principle (1678), every point of a wave front of light can be considered as a

point source, from which spherical waves emanate. The envelope of all these spherical waves

is then the wave front at a later instant. In this way reflection and refraction can be under-

stood. Fresnel postulated that the spherical waves from these point sources interfere. This

construction, which is now known as the Huygens-Fresnel principle, explains diffraction and

interference very well.

For a monochromatic light beam propagating in the positive z direction, the field in the

transverse plane z = z′ is described by the profile function u(x′,y′,z′). According to the

Huygens-Fresnel principle, each point in this plane can be considered as a point source,

of which the strength and phase is described by u(x′,y′,z′). The light field at the position

~r = (x,y,z) is then given by

u(x,y,z) ∝

∫
dx′
∫

dy′
exp(ik ‖~r−~r′ ‖)

‖~r−~r′ ‖ u(x′,y′,z′) , (1.1)

where~r′ = (x′,y′,z′) and where k is the wavenumber. The flaw in the Huygens-Fresnel princi-

ple is that the spherical waves emanating from the point sources have no preferred direction,

so that the light beam described by u(x,y,z) has no well-defined direction. This problem is

solved by the inclination factor in the Fresnel-Kirchhoff diffraction theory, which appears

inside the integrals in Eq. (1.1) and favours those parts of the spherical waves that propagate

in the forward direction [1].

It follows from the Maxwell equations that the electric field in vacuum satisfies the wave

equation. For light beams the propagation direction is well-defined and it is allowed to apply

the paraxial approximation, which gives rise to the paraxial wave equation for the profile

u(x,y,z) of a monochromatic light beam. When the light beam propagates in the positive z

1



1. Introduction

direction the paraxial wave equation is given by

(
∂ 2

∂x2
+

∂ 2

∂y2
+2ik

∂

∂ z

)
u(x,y,z) = 0 . (1.2)

When the profile of the light beam in the plane z = z′ is given by u(x′,y′,z′), the profile at the

position~r = (x,y,z) is given by

u(x,y,z) =
2πk

i(z− z′)

∫
dx′
∫

dy′ exp

{
ik

2(z− z′)

[(
x− x′

)2
+
(
y− y′

)2
]}

u(x′,y′,z′) . (1.3)

It can be checked that this is a solution by inserting the expression for u(x,y,z) into the

paraxial wave equation in Eq. (1.2).

In a paraxial description of the spherical waves that emanate from the point sources in the

Huygens-Fresnel picture, only those parts of the spherical waves are taken into account that

propagate almost parallel to the light beam, in the positive z direction. This means that in Eq.

(1.1) only the values z > z′ are used and that the following approximation is valid:

‖~r−~r′ ‖=
√

(x− x′)2 +(y− y′)2 +(z− z′)2 ≈ (z− z′)+
(x− x′)2 +(y− y′)2

2(z− z′)
. (1.4)

This approximation is used for the term ‖~r−~r′ ‖ that appears in the rapidly-oscillating ex-

ponential term in Eq. (1.1), while ‖~r−~r′ ‖ is replaced by (z− z′) in the numerator. Then

the integral solution of the paraxial wave equation (1.3) is recovered. Besides this relation

with the Huygens-Fresnel principle, the paraxial wave equation is also identical in form to

the Schrödinger equation for a free particle in two spatial dimensions. This demonstrates the

strong analogy between optics and quantum mechanics.

The paraxial wave equation is central in most of this thesis. The paraxial wave equation

is considered from a quantum-mechanical perspective, where the propagation of a light beam

is described by applying an operator to the ”state” of the light beam. Still, the description

of the light beam is completely classical. The advantage of this operator description of light

beams becomes evident in the following Chapters:

• In Chapter 2 an operator description is developed for the propagation of a light beam

through a Gaussian optical system. By defining ladder operators a basis of eigenstates

of the optical system is obtained. The result is applied to describe geometric modes in

degenerate resonators.

• In Chapter 3 the spectrum of a two-mirror resonator is obtained in the presence of

the spherical aberration of the mirrors. The spherical aberration is treated by using

perturbation theory as in quantum mechanics.

• In Chapter 4 the operator description is used to obtain basis sets of modes of free

space, where astigmatic beams are included. The orbital angular momentum of the

modes, which arises due to the astigmatism of the beam and due to the presence of

phase singularities, is calculated.

2



• In Chapter 5 the vortices, or phase singularities, which appear naturally in the modes of

free space derived in Chapter 4 are studied. By imposing vortices on Gaussian beams,

the propagation of and interaction between vortices is studied.

The paraxial wave equation also plays an important role in the description of experiments with

twin photons, since in these experiments twins are selected of which the photons have well-

defined directions of propagation. Because these experiments are in the single-photon regime,

a description is required that is both quantum mechanical and paraxial. In the following

Chapters we obtain such a description and apply it to study twin photons:

• In Chapter 6 we define paraxial creation and annihilation operators of photons in parax-

ial modes. The electric-field operator is written in terms of these operators and the

paraxial approximation is applied. It is shown how to use the results in a description of

twin-photon experiments.

• In Chapter 7 the similarity between the temporal and spatial entanglement of the pho-

tons of a twin is discussed using the paraxial creation and annihilation operators.

• In Chapter 8 the polarisation entanglement of twin photons is studied, where the sym-

metry of the non-linear crystal in which the twins are created is important.

Finally, in the last Chapter an operator method is employed to describe the dynamics of a

laser system:

• In Chapter 9 a quantum-trajectory description is used to understand the dynamics of a

single atom in the gain medium of a laser. The intensity fluctuations of the laser are

studied in the depleted-pump regime.

With the exception of Chapter 5, all the Chapters are independent and can be read sep-

arately. As a consequence, there is some overlap between Chapters. Although within a

Chapter each physical quantity has a unique symbol, some symbols are used for different

physical quantities in different Chapters.

3
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CHAPTER 2

Wave description of geometric modes of a resonator

By using both an operator and a geometric argument we obtain a wave description of

geometric modes of a degenerate optical resonator. This is done by considering the

propagation of a displaced Gaussian beam inside the resonator. The round-trip Gouy

phase, which is independent of the wavelength of the light, determines the properties of

the Gaussian eigenmode. The extra freedom in the case of degeneracy allows for the

existence of geometric modes.

J. Visser, N. J. Zelders, and G. Nienhuis, accepted for publication in J. Opt. Soc. Am. A..
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2. Wave description of geometric modes of a resonator

2.1 Introduction

The propagation of light waves is described by the wave equation, which can be derived

from the Maxwell equations. If the propagation direction of a light wave is well determined,

which is the case for light beams, the paraxial approximation can be applied, giving rise to

the paraxial wave equation [2], which is similar in form to the Schrödinger equation for a free

particle in two dimensions. This suggests that an operator method can be used to describe the

propagation of a light beam and obtain the modes of free space [3] (see also Chapter 4). Also,

the propagation through other Gaussian optical elements, such as a lens, can be incorporated

into the operator description [4–6].

By unfolding a stable resonator into a lens guide, the operator formalism can also be used

to study the eigenmodes of a resonator. It is well-known that the eigenvalues of the round-trip

ABCD matrix of the resonator, which describes the change in the position and slope of a ray

after a round trip, determine the round-trip Gouy phase of the Gaussian eigenmode of the

resonator [7]. When the Gouy phase is 2πK/N, where K and N are integers with no common

divisor, the resonator is N-fold degenerate, and any ray retraces itself after N round trips. This

defines a geometric mode [8]. Also, any Gaussian beam transforms into itself after N round

trips, which follows from the ABCD law [9]. This indicates that a displaced Gaussian beam

transforms into itself after N round trips, where the centre of the Gaussian beam follows the

trajectory of a ray. By using both an operator and a geometric argument, we obtain a wave

description of geometric modes by considering the propagation of a displaced Gaussian beam

inside an N-fold degenerate resonator. The advantage of our description is that there is a clear

physical picture, which is lacking in the description of geometric modes by Chen et al., who

use an analogy with spin-coherent states [10].

In Section 2.2 we develop the operator method for the description of light beams propa-

gating inside an optical system. We introduce the displacement operator, which shifts and tilts

a beam, and show that the centre of the displaced beam follows the trajectory of a ray. In Sec-

tion 2.3 we define ladder operators that generate the fundamental and higher-order Gaussian

eigenmodes of the optical system. The evolution of these ladder operators is also governed

by the ABCD matrix of the optical system, from which the ABCD law follows immediately.

In Section 2.4 we apply the operator method to obtain the eigenmodes of a two-mirror res-

onator and consider the case of degeneracy. In Section 2.5 we obtain a wave description of

geometric modes by using a simple geometric argument. In Section 2.6 we briefly discuss

some peculiar resonator configurations, such as the symmetric confocal resonator.

2.2 Operator description for optical systems

The real electric field of a monochromatic light beam that propagates in the positive z direc-

tion is taken as Re [~ε E(R,z, t)], where R = (x,y) is the transverse coordinate vector. In this

expression~ε is the normalised polarisation vector, and E the complex electric field, which is

related to the normalised beam profile u(R,z) by

E(R,z, t) = E0u(R,z)exp(ikz− iωt) , (2.1)

6



where E0 is the complex amplitude of the field. The polarisation will be assumed uniform

throughout this Chapter, and polarisation effects are not considered. Equation (2.1) is inserted

into the scalar wave equation, and it is assumed that |∂u/∂ z| � ku, which means that the

profile u(R,z) varies only slowly with z. Then the profile u(R,z) satisfies the paraxial wave

equation [2]: (
∂ 2

∂R2
+2ik

∂

∂ z

)
u(R,z) = 0 , (2.2)

where ∂ 2/∂R2 = ∂ 2/∂x2 + ∂ 2/∂y2. The paraxial wave equation is identical in form to the

Schrödinger equation for a free particle in two dimensions, where time plays the role of the

longitudinal coordinate z. This similarity is the starting point for an operator description of the

propagation of a monochromatic light beam through an optical system containing Gaussian

optical elements that are lossless and non-astigmatic [4–6]. Examples of optical elements are

the propagation through vacuum, lenses and mirrors.

The transverse profile u(R,z) = 〈R|u(z)〉 of the light beam corresponds to the time-depen-

dent wave function in quantum mechanics, and |u(z)〉 is the ”state” of the light beam in the

transverse plane z. The propagation through vacuum is described by

|u(z)〉 = Û f (z)|u(0)〉 , Û f (z) = exp

(
− iz

2k
P̂2

)
, (2.3)

where P̂2 = p̂2
x + p̂2

y . The transverse-momentum operator P̂ takes the form −i∂/∂R in the

coordinate representation. When passing through a parabolic lens, the transverse profile of

the light beam acquires a phase shift that depends quadratically on the transverse coordinate.

It is assumed that the lens is thin, so that the transverse beam profile is constant inside the

lens. Then the effect of the lens is described by multiplying the transverse beam profile by a

parabolic phase factor. We consider only cases where the optical axis of the lens coincides

with the z axis. When the lens is located in the transverse plane z, the state of the light beam

|u(z+)〉 after the lens is expressed in terms of the state |u(z−)〉 before the lens by

|u(z+)〉 = Ûl( f )|u(z−)〉 , Ûl( f ) = exp

(
− ik

2 f
R̂2

)
, (2.4)

where f is the focal distance of the lens. We mention that Eq. (2.4) also holds for spherical

lenses as long as the approximation of the spherical shape by a parabola is accurate enough

within the spot size of the light beam on the lens (which is usually the case for thin lenses).

Under this condition the spherical lens can be considered a Gaussian optical element. Now

the change of the state of the light beam when going from the input plane to the output plane

of the optical system is described by the unitary operator Û , which is a product of multiples

of Û f and Ûl in the proper order, according to the arrangement of the lenses in the optical

system. For instance, the optical system in Fig. 2.1, which begins at z = 0 and ends at z = 2L,

has a lens with focal distance f1 at z = 0 and a lens with focal distance f2 at z = L. The

evolution operator Û for this optical system is equal to

Û = Û f (L)Ûl( f2)Û f (L)Ûl( f1) . (2.5)

We define the displacement operator by

D̂(a,q) = exp
(
iqTR̂− iaTP̂

)
, (2.6)
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2. Wave description of geometric modes of a resonator

Figure 2.1: Optical system stretching from z = 0 to z = 2L. The lenses have focal

distances f1 and f2 and are located in the planes z = 0 and z = L, respectively.

where a is a position vector in the transverse plane, q is a transverse momentum vector, and

qTR̂ indicates the inner product of q with the transverse coordinate operator R̂ = (x̂, ŷ). The

significance of the displacement operator becomes clear from its properties:

D̂†(a,q)R̂D̂(a,q) = R̂+a , D̂†(a,q)P̂D̂(a,q) = P̂+q . (2.7)

It follows that when the displacement operator is applied to an arbitrary state |u〉, it displaces

the average transverse position (or, in quantum-mechanical language, the expectation value

of the transverse coordinate operator) by the vector a and the average transverse momentum

(or the expectation value of the transverse momentum operator) by the vector q. We require

that upon propagation through an optical system the displacement operator evolves in such a

way that in the input plane z0 and output plane z1 of the optical system we have

|v(z0)〉 = D̂(a(z0),q(z0))|u(z0)〉 , |v(z1)〉 = D̂(a(z1),q(z1))|u(z1)〉 , (2.8)

where |v〉 is the displaced state obtained when D̂ is applied to |u〉. Since

|v(z1)〉 = Û |v(z0)〉 , |u(z1)〉 = Û |u(z0)〉 , (2.9)

it follows that the displacement operators in the input and output planes are related by

D̂(a(z1),q(z1)) = ÛD̂(a(z0),q(z0))Û
† . (2.10)

Since the optical elements are Gaussian, the displacement operator at the output plane of the

optical system still has the general form (2.6), with different coefficients a and q. In order to

determine how a and q change when going from the input to the output plane of the optical

system, we use the following properties:

Û f (L)R̂Û
†
f (L) = R̂− L

k
P̂ , Ûl( f )P̂Û

†
l ( f ) = P̂+

k

f
R̂ , (2.11)

where Û f and Ûl are given in Eqs. (2.3) and (2.4), respectively. The values of a and q after

propagation over a distance L in vacuum, for which we write a(L) and q(L), are expressed in

terms of their initial values a(0) and q(0) by

(
a(L)

q(L)/k

)
=

(
1 L

0 1

)(
a(0)

q(0)/k

)
. (2.12)
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For passage through a lens in the transverse plane z, the values of a(z+) and q(z+) immedi-

ately after the lens are expressed in terms of their incoming values a(z−) and q(z−) by
(

a(z+)
q(z+)/k

)
=

(
1 0

−1/ f 1

)(
a(z−)

q(z−)/k

)
. (2.13)

We see that these matrices correspond to the ABCD matrices for the description of the change

in position and slope of a light ray propagating over a distance L and passing through a

lens with focal distance f , as discussed by Siegman [7]. In the paraxial approximation the

value q/k, which is the transverse momentum divided by the total momentum, can indeed

be interpreted as a slope. It follows that, upon propagation through the optical system, a

and q/k transform in the same way as the position and slope of a light ray, respectively. For

a general Gaussian optical system, the ABCD matrix is a 4× 4 matrix, but since the optical

systems that we consider are cylindrical, it is sufficient to use 2×2 matrices, since for the two

components of the transverse vectors a and q the transformation is identical. For a Gaussian

optical system, the ABCD matrix, which describes the propagation from the input plane z0 to

the output plane z1, completely determines the corresponding evolution operator Û within a

phase factor, and vice versa. In general we have
(

a(z1)
q(z1)/k

)
=

(
A B

C D

)(
a(z0)

q(z0)/k

)
. (2.14)

As a consequence, complete knowledge of a Gaussian optical system can be obtained by

probing it with two light rays, for which either the position or the slope is zero in the input

plane. Then the matrix elements of the ABCD matrix are determined by the positions and

slopes of the two rays at the output plane of the optical system.

2.3 Propagation of Gaussian beams

Well-known solutions of the paraxial wave equation are the Hermite-Gaussian (HG) beams,

which are also eigenmodes of a two-mirror resonator. They resemble the eigenfunctions of

the two-dimensional quantum harmonic oscillator [11], which can be explained by using an

operator method involving ladder operators, as we will briefly discuss. We saw that upon

propagation through a Gaussian optical system, the displacement operator retains the form

(2.6), where the propagation is contained in the variation of the coefficients a and q. The

transformation rules (2.11) show that linear combinations of R̂ and P̂ remain linear combi-

nations upon propagation through an optical system. The propagation is contained in coef-

ficients κ and β , which behave in a similar fashion as q and a. These coefficients define a

vector Â of two lowering operators âx and ây in an arbitrary transverse plane by

Â =
1√
2

(
κR̂+ iβ P̂

)
, (2.15)

where the coefficients κ and β are complex numbers. The corresponding vector Â† of raising

operators â†
x and â†

y is given by

Â† =
1√
2

(
κ∗R̂− iβ ∗P̂

)
. (2.16)
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2. Wave description of geometric modes of a resonator

The ladder operators must satisfy the usual bosonic commutation rules:

[
âx, â

†
x

]
=
[
ây, â

†
y

]
= 1 , [âx, ây] =

[
âx, â

†
y

]
= 0 . (2.17)

These commutation rules are satisfied when

Re(κβ ∗) = 1 . (2.18)

We require that the ladder operators transform solutions of the paraxial wave equation

into other solutions. When the state |u(z0)〉 in the input plane gives the state |u(z1)〉 in the

output plane of the optical system, this implies that an input state Â(z0)|u(z0)〉 leads to the

output state Â(z1)|u(z1)〉. This gives

Â(z1) = ÛÂ(z0)Û
† , (2.19)

which is identical to the transformation property of the displacement operator in Eq. (2.10).

It follows that the coefficients β and iκ/k transform in the same way as a and q/k in Eq.

(2.14), so that (
β (z1)

iκ(z1)/k

)
=

(
A B

C D

)(
β (z0)

iκ(z0)/k

)
. (2.20)

By using the ladder operators, we obtain a complete set of Gaussian beam profiles. In an

arbitrary transverse plane, the lowest-order Gaussian beam profile u00(R) = 〈R|u00〉 is defined

by

Â|u00〉 = 0 . (2.21)

It follows that

u00(R) =
1

β
√

π
exp

(
− κ

2β
R2

)
, (2.22)

which is normalised to unity, as can be checked by using Eq. (2.18). Because of the propa-

gation property of Â in Eq. (2.19), this expression is valid in both the input and output planes

of the optical system, as long as the values for κ and β that they acquire in the plane under

consideration are taken.

We verify that in a region of free propagation, with the proper values of κ and β , Eq.

(2.22) satisfies the paraxial wave equation (2.2). From the ABCD matrix for free propagation,

as specified in Eq. (2.12), it follows with Eq. (2.20) that κ is independent of z and that

dβ/dz = iκ/k. This shows that the lowest-order Gaussian beam u00(R,z) indeed satisfies the

paraxial wave equation. It is customary to introduce for each transverse plane the complex

parameter Q, defined by [7, 9]
1

Q
=

iκ

kβ
=

1

S
+ i

1

kγ2
, (2.23)

where S is the radius of curvature of the wavefront and γ is the spot size. It follows from

Eq. (2.20) that the evolution of Q from the input plane z0 to the output plane z1 of the optical

system is simply expressed by

Q(z1) =
AQ(z0)+B

CQ(z0)+D
, (2.24)
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which is known as the ABCD law [9]. Using Eq. (2.18), we find that γ = |β |. Moreover,

Eq. (2.23) demonstrates that the exponential in the fundamental mode profile (2.22) separates

into a curvature factor exp(ikR2/2S) and a real Gaussian exp(−R2/2γ2) = exp(−R2/2|β |2).
We now wish to apply the raising operators to obtain the higher-order Gaussian beam

profiles. We use the following property:

exp

(
ik

2S
R̂2

)
P̂exp

(
− ik

2S
R̂2

)
= P̂− k

S
R̂ , (2.25)

where S is the radius of curvature defined in Eq. (2.23). With this property the vector of

raising operators in Eq. (2.16) can be written as

Â† =

√
β ∗

β
exp

(
ik

2S
R̂2

)
B̂† exp

(
− ik

2S
R̂2

)
, (2.26)

where B̂† is a vector of real raising operators, defined by

B̂† =
1√
2

(
1

|β | R̂− i|β |P̂
)

. (2.27)

This can be checked by using Eq. (2.23) and the relation γ = |β |. The higher-order Gaussian

beam profiles are obtained in the standard way by repeated application of the raising operators

expressed as in Eq. (2.26). We have

|unm〉 =
1√

n!m!

(
â†

x

)n (
â†

y

)m |u00〉 , n,m = 0,1,2, ... . (2.28)

The operator B̂† in (2.27) has the form that is familiar from the quantum-mechanical

description of the 2D harmonic oscillator, and it produces the higher-order eigenfunctions

when acting on the real Gaussian ground state ∝ exp(−R2/2|β |2). The higher-order Gaussian

beam profiles unm(R) = 〈R|unm〉 are the familiar HG beam profiles

unm(R) =
1

|β |
√

n!m!2n+mπ

(
β ∗

β

) 1
2 (n+m+1)

Hn

(
x

|β |

)
Hm

(
y

|β |

)
exp

(
− κ

2β
R2

)
, (2.29)

where

Hn(ξ ) = exp
(
ξ 2/2

)(
ξ − ∂

∂ξ

)n

exp
(
−ξ 2/2

)
, n = 0,1,2, ... , (2.30)

are the Hermite polynomials. Again, the propagation property of Â in Eq. (2.19) guarantees

that, with the appropriate values of κ and β , this expression is valid in both the input and

output planes of the optical system.

2.4 The modes of an optical resonator

2.4.1 Resonance condition

As we will demonstrate in this Section, by using the operator method developed in Section 2.3

we can obtain the frequency spectrum and the eigenmodes of a cylindrical optical resonator.
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2. Wave description of geometric modes of a resonator

We consider an optical resonator of length L, with end mirrors with focal distances f1 and f2,

located at z = 0 and z = L. When we unfold the resonator into an equivalent lens guide, we

obtain the system displayed in Fig. 2.1, with length 2L. The corresponding evolution operator

(2.5) represents the round-trip operator of the resonator, with the input plane of mirror 1 as

reference plane. An eigenmode of the resonator must reproduce itself after a round trip,

which implies that the corresponding field in the input plane of the lens guide is an eigenstate

of the operator (2.5). When the transverse profile of the field propagating to the right in the

lens guide is described by the function u(R,z), with 0 ≤ z ≤ 2L, then the complex electric

field in the resonator is

E(R,z, t) = E0

{
u(R,z)exp(ikz)−u(R,2L− z)exp [ik(2L− z)]

}
exp(−iωt) , (2.31)

for 0 ≤ z ≤ L. The real electric field vanishes on the end mirrors at z = 0 and z = L.

The eigenstates of the operator (2.5) can be found from the ABCD matrix M for the lens

guide, which is identical to the ABCD matrix for the round trip in the resonator, starting in the

input plane of mirror 1. A resonator is stable when the eigenvalues of M have unit absolute

values [7]. Since M is a real matrix with unit determinant, one of the eigenvalues is then the

complex conjugate of the other and one eigenvector is the complex conjugate of the other.

The special case where the eigenvalues are identical, and therefore real, will be considered in

Section 2.6. For complex eigenvectors of M there exists no ray that transforms into itself after

one round trip, since rays are described by the real position and slope. We saw in Section 2.3

that the evolution of the parameters κ and β , which determine the ladder operators, is also

governed by M, as expressed by Eq. (2.20). It is possible to find values κ0 and β0 for which

M

(
β0

iκ0/k

)
= exp(iχ)

(
β0

iκ0/k

)
, (2.32)

where exp(iχ) is one of the eigenvalues of M and where κ0 and β0 satisfy Eq. (2.18). Apart

from a phase factor this defines in a unique way the lowering operator Â0, which transforms

into itself after a round trip [12]. By introducing

Â0 =
1√
2

(
κ0R̂+ iβ0P̂

)
, (2.33)

we find from Eq. (2.20) that

ÛÂ0Û† = exp(iχ)Â0 , (2.34)

where Û is the evolution operator for the round trip. The corresponding raising operator Â
†
0 is

determined by the other eigenvector of M. The Hermitian conjugate of (2.34) expresses the

round-trip evolution of Â
†
0. We see that although the round-trip matrix M has two eigenvec-

tors, there is only one Gaussian fundamental mode, since only one of the eigenvectors can

correspond to a lowering operator.

With the values κ0 and β0, the HG profiles in (2.29), which we will designate by

unm(R;κ0,β0), transform into themselves after a round trip up to a phase factor. It follows

that unm(R;κ0,β0) are the transverse profiles u(R) of the eigenmodes of the resonator in the

input plane of mirror 1. To find the profiles in a different transverse plane we must obtain the

ABCD matrix for the propagation in the allowed direction to this plane. Then the values that
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κ and β acquire in that plane are obtained from Eq. (2.20), and the mode profiles are found

by using Eq. (2.29).

After a round trip β0 picks up a phase factor exp(iχ). We see then from Eq. (2.22) that

after a round trip the fundamental mode profile acquires a phase factor exp(−iχ), which is

the round-trip Gouy phase. This Gouy phase is completely determined by the characteristics

of the resonator, since it is an eigenvalue of the round-trip ABCD matrix. It follows from Eq.

(2.29) that

Û |unm(κ0,β0)〉 = exp [−i(n+m+1)χ]|unm(κ0,β0)〉 . (2.35)

Without loss of generality we have left out the overall phase of Û in this expression. Taking

into account the phase due to the plane-wave part of the electric field in Eq. (2.1), we obtain

the well-known resonance condition [7]:

2kL = (n+m+1)χ +2πl , (2.36)

where l is an integer and 2L is the length of the lens guide. The integer l has the significance

of the longitudinal mode number, which determines the number l + 1 of transverse nodal

planes.

2.4.2 Degeneracy

It is clear from Eq. (2.36) that the eigenmodes with mode numbers n and m for which n+m

attains the same value are degenerate. Any linear combination of eigenmodes with the same

value of n+m is also an eigenmode of the resonator. These can be Laguerre-Gaussian (LG)

modes or modes that are between LG and HG modes [13–16].

When the Gouy phase takes the value

Nχ = 2πK , (2.37)

where N and K are integers, it follows from Eq. (2.36) that eigenmodes with mode numbers

n and m for which n+m differs by a multiple of N are degenerate. When n+m is increased

by N and l is decreased by K, the resonance condition is satisfied for the same wavenumber

k. Without loss of generality we can assume that N and K have no common divisor. In that

case there are no other modes with the same wavenumber. When the condition of degeneracy

(2.37) is satisfied, we have MN = 1 and, equivalently, ÛN = 1, where a possible overall phase

of Û is left out for simplicity. Then the eigenvalues of the unitary operator Û belong to the

finite set of N values exp(−2πis/N), with s = 0,1, ...,N −1.

It is illuminating to identify N projection operators V̂s on the subspaces of transverse

eigenmodes with eigenvalue exp(−2πis/N). These operators can be expressed as

V̂s =
1

N

N−1

∑
r=0

exp

(
2πirs

N

)
Û r , s = 0,1, ...,N −1 . (2.38)

From direct substitution it follows that

ÛV̂s = exp

(
−2πis

N

)
V̂s , (2.39)
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2. Wave description of geometric modes of a resonator

which shows that for an arbitrary state |u〉 the state V̂s|u〉 is an eigenstate of the round-trip

operator Û , with eigenvalue exp(−2πis/N). Moreover, the set of operators V̂s with s =
0,1, ...,N − 1 is complete, in the sense that the operators add up to the unit operator. From

Eqs. (2.35) and (2.37) one checks that V̂s|unm(κ0,β0)〉 = |unm(κ0,β0)〉, provided that

exp [−2πi(n+m+1)K/N] = exp(−2πis/N). This implies that

K(n+m+1) = pN + s , (2.40)

with p an integer. The corresponding values of n + m differ by a multiple of N and define

modes with wavenumbers specified by the resonance condition

2kL = 2πl′ +2πs/N , (2.41)

with l′ = l + p. The resonant wavenumbers (2.41) form an equidistant mesh with separation

determined by L∆k = π/N, which is 1/N times the free spectral range of the resonator with

length L.

2.5 Geometric modes

2.5.1 Geometric picture

The structure of the projection operators (2.38) can be understood directly from a geometric

picture of modes in the resonator. We consider the lens guide in Fig. 2.2, which consists of

a sequence of N times the unfolded resonator of Fig. 2.1 and thus stretches from z = 0 to

z = 2NL. In the case of degeneracy the round-trip ABCD matrix for the resonator satisfies

MN = 1. It follows that for the N-fold lens guide the ABCD matrix is the unit matrix and

also that the unitary operator that describes the propagation from the plane z = 0 to the plane

z = 2NL is the unit operator. Therefore any transverse beam profile u(R,0) at the plane

z = 0 transforms into itself after propagation to the plane z = 2NL. We write u(R,z) for

the z-dependent profile, where 0 ≤ z ≤ 2NL. It follows that u(R,2NL) = u(R,0). The same

periodicity holds for the traveling wave exp(ikz)u(R,z), provided that the wavenumber k

obeys the requirement

2kNL = 2πs′ , (2.42)

with s′ an integer. When this resonance condition holds, the N-fold lens guide can be folded

into the resonator of length L, with the complex electric field

E(R,z, t) = E0

N−1

∑
p=0

u(R,2pL+ z)exp [ik(2pL+ z)]exp(−iωt)

−E0

N−1

∑
p=0

u(R,2(p+1)L− z)exp [ik(2(p+1)L− z)]exp(−iωt) ,

(2.43)

where now 0 ≤ z ≤ L. The terms on the first and second line describe the field propagating

to the right and the left, respectively. When we compare the requirement (2.42) with the

resonance condition for degeneracy in Eq. (2.41), we see that s′ = s + Nl′. When a value
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Figure 2.2: Lens guide that is a sequence of N times the unfolded resonator.

of s′ is chosen, the value of s, which determines the round-trip Gouy phase by Eq. (2.39),

is given by s′ modN. Note that the transverse profile u(R,0) in the input plane of the lens

guide can be freely chosen, within the validity range of the paraxial approximation. The field

in the reference plane of the resonator, i.e., the input plane of mirror 1, is specified by the

second line in Eq. (2.43), with z = 0. The resulting expression is equivalent to the action of

the projection operator V̂s, as defined by Eq. (2.38), on the input field. This proves that the

total field in the reference plane of the resonator is an eigenstate of the round-trip operator Û ,

with eigenvalue exp(−2πis/N).

2.5.2 Displaced state

We consider the evolution of the displacement operator in the N-fold lens guide in Fig. 2.2.

As discussed in Section 2.2, the displacement operator, as defined in Eq. (2.6), shifts the

average transverse position and momentum by a and q, respectively. During propagation

through the lens guide, a and q/k transform in the same way as the position and slope of a

ray. We write a(z) and q(z) for their values in the plane z. If for an arbitrary state |v(z)〉
the average position and momentum vanish in a plane z0, that is, if 〈v(z0)|R̂|v(z0)〉 = 0 and

〈v(z0)|P̂|v(z0)〉 = 0, then the average transverse position and momentum vanish in any other

transverse plane as well. This is because the transformation rules (2.11) of R̂ and P̂ are linear

and homogeneous. It follows that the centre of the beam described by the state

|u(z)〉 = D̂(a(z),q(z))|v(z)〉 , (2.44)

follows the trajectory of a ray inside the N-fold lens guide. In the case of N-fold degeneracy,

we have |v(2NL)〉 = |v(0)〉, a(2NL) = a(0) and q(2NL) = q(0). We fold the N-fold lens

guide into a resonator. Then the electric field inside the resonator is described by Eq. (2.43).

The electric field is a linear combination of 2N displaced beams, of which N propagate to

the right and N to the left. When following one of the displaced beams during N round trips,

the displaced beam transforms into another displaced beam after each round trip, finally to

transform into itself after N round trips. The centre of the displaced beam follows a closed

trajectory, which means that the mode is a geometric mode.

2.5.3 Electric field of geometric modes

In order to find an expression for the electric field of a geometric mode, it is necessary to

obtain an expression for the transverse profile of a displaced state. In an arbitrary plane the

displaced state |u〉 is defined in terms of the arbitrary state |v〉 by

|u〉 = D̂(a,q)|v〉 . (2.45)

15



2. Wave description of geometric modes of a resonator

In the case in which the commutator of two operators Â and B̂ commutes with both Â and B̂,

the following relation holds:

exp
(
Â+ B̂

)
= exp

(
−1

2
[Â, B̂]

)
exp(Â)exp(B̂) . (2.46)

We use this to express the displacement operator in Eq. (2.6) as

D̂(a,q) = exp
(
−iqTa/2

)
exp
(
iqTR̂

)
exp
(
−iaTP̂

)
. (2.47)

Using this expression, we find that

〈R|D̂|R′〉 = exp
(
−iqTa/2

)
exp
(
iqTR

)
δ
(
R−R′−a

)
. (2.48)

It follows that

u(R) = exp
(
−iqTa/2

)
exp
(
iqTR

)
v(R−a) . (2.49)

Equation (2.49) expresses the transverse profile u(R) of the displaced state |u〉 in terms of the

profile v(R) of the state |v〉.
As an example we consider geometric modes consisting of displaced beams that are ob-

tained by displacing the Gaussian fundamental mode of the resonator u00(R;κ0,β0). Then

the displaced beams all have the waist in the middle of the resonator. The energy density

of a mode is calculated by averaging the square of the real part of the complex electric field

over time and over a range of z of several times the wavelength that is still small enough for

the beam profile to be considered constant. Then the energy density is simply the sum of the

squared absolute values of the right- and left-propagating parts of the beam profile. It follows

that only beams that propagate in the same direction can give rise to interference fringes in

the energy density profile. The energy density profiles of two geometric modes are depicted

in Fig. 2.3 for three-fold degeneracy. The focal distances of the mirrors are equal to the

length of the resonator. The values k f1 = k f2 = kL = 3π × 104 are used, which correspond

to a zero round-trip Gouy phase, as follows from Eq. (2.42) and the discussion below. In

the vertical, or transverse, direction, the pictures are magnified by a factor of 4 compared to

the horizontal direction, which is parallel to the optical axis. Interference fringes occur at the

crossings of beams that propagate in the same direction.

Our expressions for the displaced beams differ from those used by Chen et al. [10]. In-

spired by the expressions for spin-coherent states, these authors use a finite expansion of HG

modes with indices that differ by multiples of the degeneracy number. The weights are bi-

nomial and contain arbitrarily chosen parameters. We find expressions for the eigenmodes in

which the significance of the parameters is fully specified by the requirement that the beams

be displaced Gaussian fundamental modes.

2.6 Special limiting cases

In this Section we consider resonators for which the eigenvalues of the round-trip ABCD

matrix M are ±1, so that the Gouy phase χ is a multiple of π . Since M has unit determinant,

the eigenvalues must be identical. In order to find the ladder operators that determine the
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Figure 2.3: Energy density profiles of two geometric modes for three-fold degeneracy.

The focal distances of both mirrors are equal to the resonator length. In both pictures

the transverse or vertical direction is magnified by a factor of 4 compared with the

horizontal direction, which is parallel to the optical axis of the resonator. In (a) the

geometric mode contains a horizontal beam, while in (b) the beam retraces itself.

eigenmodes of the resonator, we must find the values of κ0 and β0 that satisfy Eq. (2.32).

When M is ±1 times the unit matrix, Eq. (2.32) is satisfied for all values of κ0 and β0.

Still, not all values are allowed, since the requirement in Eq. (2.18) must be fulfilled, which

follows from the commutation rules for the ladder operators. When M is not ±1 times the

unit matrix, it has only one eigenvector. Since M is a real matrix, this eigenvector must be

real. For the eigenvector in Eq. (2.32) to be real, κ0 must be purely imaginary and β0 must be

real. It follows that no ladder operators can be defined, since the requirement Re(κ0β ∗
0 ) = 1

in Eq. (2.18) cannot be satisfied. Therefore, when M has real eigenvalues and is not equal to

±1 times the unit matrix, the resonator has no Gaussian eigenmodes. Also, there exists no

value of N for which MN = 1. Still, the resonator has one eigenray.

These cases can be illustrated for a symmetric resonator. Then it is sufficient to consider

the ABCD matrix for only half the round trip, which corresponds to propagation from the

plane z = 0 to the plane z = L in the lens guide of Fig. 2.1. We write f for the focal distance

of both mirrors. The ABCD matrix Mh for half the round trip is found by multiplying the lens

matrix in Eq. (2.13) on the left by the matrix for free propagation in Eq. (2.12). We find that

Mh(g) =

(
2g−1 L

−2(1−g)/L 1

)
, (2.50)

where g = 1−L/2 f is the g parameter of the resonator [7]. For stable resonators the eigen-

values g± i
√

1−g2 of Mh(g) must have unit absolute values, which means that −1 ≤ g ≤ 1.

The eigenvalues of the full round-trip ABCD matrix M = M2
h(g) are real when g takes the

values 1,−1, and 0.

When g = 1, both mirrors of the resonator are flat and the full round-trip ABCD matrix

M = M2
h(1) is given by

M =

(
1 2L

0 1

)
. (2.51)

The real vector (1,0) is the only eigenvector of this matrix, with eigenvalue 1, and evidently

corresponds to the only eigenray of this resonator, which is a horizontal ray with no slope. As
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2. Wave description of geometric modes of a resonator

discussed above in the first paragraph of this Section, this resonator does not sustain Gaussian

modes, since the eigenvector is real. It follows then that there are also no geometric modes

possible. For the round-trip ABCD matrix M in Eq. (2.51), there is indeed no value of N > 0

for which MN = 1.

In a concentric resonator, for which g = −1, the surfaces of the spherical mirrors lie on

the surface of a sphere. The full round-trip ABCD matrix M = M2
h(−1) is given by

M =

(
5 −2L

8/L −3

)
, (2.52)

for which (L/2,1) is the only eigenvector, with eigenvalue 1. The corresponding eigenray

originates from the centre of the sphere on which the mirror surfaces lie. Again, no appro-

priate values of κ0 and β0 exist, so that a concentric resonator also does not have Gaussian

eigenmodes and hence has no geometric modes.

In a symmetric confocal resonator, for which g = 0, the focal points of the mirror coincide,

and the full round-trip ABCD matrix is M = M2
h(0) = −1. Every ray is then an eigenray for

a single round trip, with eigenvalue −1. Also, all values of κ0 and β0 satisfying (2.18) can

be used to define ladder operators. As a consequence, every Gaussian beam is an eigenmode

of the symmetric confocal resonator. This means that the focal planes of the right- and left-

propagating beams do not have to coincide and that, when they do, the waist does not have to

be in the middle of the resonator [17]. Because of the two-fold degeneracy, every transverse

profile transforms into itself after two round trips, which means that the symmetric confocal

resonator does have geometric modes. It follows from Eq. (2.35) that the two eigenspaces of

the round-trip evolution operator for eigenvalues ±1 are spanned by the HG eigenstates for

which n+m+1 is even and odd, respectively [12].

2.7 Conclusions

We used an operator method to study the modes of a resonator. The Gaussian eigenmodes of

the resonator were generated by introducing ladder operators. The round-trip Gouy phase of

the resonator, which is completely determined by the geometry of the resonator, and there-

fore independent of the wavelength of the light, determines the properties of the Gaussian

eigenmode. The displacement operator was used to create displaced beams, with a centre

that follows the trajectory of a ray. For the case of N-fold degeneracy, N projection operators

were defined that project onto modes of the resonator, each with a different Gouy phase. The

geometric argument to obtain modes of the resonator in the case of degeneracy consists of

folding a light beam propagating through a sequence of N times the lens guide of the unfolded

resonator back into a resonator. This geometric argument was shown to be equivalent to the

operation of one of the projection operators. The beam parameters, such as shape and size of

spot and curvature, can be freely chosen in one transverse plane. In the case of degeneracy,

when a displaced beam in the sequence of lens guides is folded into a resonator, it gives rise

to a geometric mode, which consists of beams that follow a closed trajectory.
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CHAPTER 3

The spectrum of a resonator with spherical aberration

By using an operator description we derive the spectrum of a symmetric two-mirror res-

onator in the presence of spherical aberration.

J. Visser and G. Nienhuis, accepted for publication in J. Opt. Soc. Am. A..
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3. The spectrum of a resonator with spherical aberration

3.1 Introduction

As we saw in Chapter 2, it is convenient to use an operator description to obtain the spectrum

of a resonator. It is then necessary that the optical elements in the lens guide of the un-

folded resonator are Gaussian. The surface of a mirror in the resonator is then described by

a parabola. Due to the production process the surface of the mirrors is usually not parabolic,

and there are aberrations. As a consequence, the spectrum of a resonator with aberrated mir-

rors does not have the full degeneracy that is expected with aberration-free mirrors [7]. The

lifting of the degeneracy due to astigmatism is simple to derive, since the astigmatic aberra-

tion is Gaussian as well. On the other hand, the spherical aberration does not have a Gaussian

nature, and therefore it seems that the operator method cannot be used to derive the spectrum

in the presence of spherical aberration. In this Chapter we show that the spherical aberration

can still be treated with the operator description by using degenerate perturbation theory as it

is used in quantum mechanics [18].

In Section 3.2 we introduce the operator description of a light field inside a lens guide.

The propagation through free space and the passage through a lens is described by a Gaussian

operator acting on the state of the light beam. In Section 3.3 we discuss the ABCD-matrix

representation of these Gaussian operators. When a Gaussian beam propagates through a

lens guide, its spot size, radius of curvature of the wavefronts, and Gouy phase change. As

discussed in Section 3.4, the Iwasawa decomposition expresses this behaviour in an elegant

operator form, with parameters expressed in terms of the matrix elements of the ABCD ma-

trix of the lens guide. The Iwasawa decomposition is used in Section 3.5 to derive the Hamil-

tonian for half a round trip in an aberration-free two-mirror resonator, which determines the

spectrum. In Section 3.6 spherical aberration is introduced. By using degenerate perturbation

theory, we obtain the spectrum of the resonator in the presence of spherical aberration.

The standard theory of aberrations of optical systems considers its effect on the imag-

ing properties [1, 19], but does not typically consider resonators. Laabs and Friberg studied

the effect of non-paraxial propagation on the spectrum and eigenmodes of a resonator nu-

merically [20]. The change of the spectrum of a resonator due to aberrations was studied

experimentally by Klaassen et al. [21].

3.2 Operator description for Gaussian wave optics

The electric field of a monochromatic light beam with frequency ω that propagates in the

positive z direction, is taken as Re [~ε E(x,y,z, t)], where x and y are the transverse coordinates.

In this expression ~ε is the normalised polarisation vector, and E the complex electric field,

which is related to the normalised beam profile u(x,y,z) by

E(x,y,z, t) = E0u(x,y,z)exp(ikz− iωt) , (3.1)

with E0 the complex amplitude of the field. The polarisation will be assumed uniform

throughout this Chapter, and polarisation effects are not considered. Equation (3.1) is in-

serted into the scalar wave equation, and it is assumed that |∂u/∂ z| � ku, which means that

the profile u(x,y,z) varies only slowly with z. Then the profile u(x,y,z) satisfies the paraxial
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wave equation [2]: (
∂ 2

∂x2
+

∂ 2

∂y2
+2ik

∂

∂ z

)
u(x,y,z) = 0 . (3.2)

The paraxial wave equation is identical in form to the Schrödinger equation for a free particle

in two dimensions, where the time plays the role of the longitudinal coordinate z. This simi-

larity is the starting point for an operator description of the propagation of a monochromatic

light beam inside a lens guide [4–6].

To simplify the notation we first consider only one transverse dimension. The transverse

profile u(x,z) = 〈x|u(z)〉 of the light beam corresponds to the time-dependent wave function

in quantum mechanics, and |u(z)〉 is the ”state” of the light beam in the transverse plane z.

The propagation through vacuum is described by

|u(z)〉 = Û f (z)|u(0)〉 , Û f (z) = exp

(
− iz

2k
p̂2

x

)
. (3.3)

In the coordinate representation the transverse-momentum operator p̂x takes the form

−i∂/∂x. When passing through a lens the transverse profile of the light beam acquires a

phase shift which depends on the optical thickness of the lens, which varies over the lens. For

a lens without aberrations the phase shift depends quadratically on the transverse coordinate.

It is assumed that the lens is thin, so that the transverse beam profile is constant inside the

lens. Then the effect of the lens is described by multiplying the transverse beam profile by a

parabolic phase factor. We consider only cases where the optical axes of the lenses coincide

with the z axis, and where the lenses are non-astigmatic. When the lens is located in the

transverse plane z, the state of the light beam |u(z+)〉 after the lens is expressed in terms of

the state |u(z−)〉 before the lens, by

|u(z+)〉 = Ûl( f )|u(z−)〉 , Ûl( f ) = exp

(
− ik

2 f
x̂2

)
, (3.4)

where f is the focal distance of the lens. Now the change of the state of the light beam when

going from the input plane to the output plane of a lens guide, is described by the unitary

operator Û , which is a repeated product of Û f and Ûl in the proper order, according to the

arrangement of the lenses in the lens guide.

The operators Û f and Ûl are Gaussian operators, that is, exponential functions quadratic

in x̂ and p̂x. An operator that is quadratic in x̂ and p̂x can be written as a linear combination

of the Hermitian operators T̂m, which are defined by

T̂1 =
1

4
(x̂ p̂x + p̂xx̂) , T̂2 =

1

4

(
1

γ2
x̂2 − γ2 p̂2

x

)
, T̂3 =

1

4

(
1

γ2
x̂2 + γ2 p̂2

x

)
, (3.5)

where γ is a free scaling parameter [22]. The commutators between the quadratic operators

T̂m are again quadratic, which follows from the commutation rule [x̂, p̂x] = i. Therefore, the

operators T̂m are closed under taking the commutator. They satisfy commutation rules that

are similar to the commutation rules for the components of the angular-momentum operator,

the difference being that one sign is different [23]. We have

[T̂1, T̂2] = −iT̂3 , [T̂2, T̂3] = iT̂1 , [T̂3, T̂1] = iT̂2 . (3.6)
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3. The spectrum of a resonator with spherical aberration

Since the unitary operator Û is a product of Gaussian operators, it can in general be written

as

Û = exp
[
−i
(
β1T̂1 +β2T̂2 +β3T̂3

)]
, (3.7)

where the real coefficients βm are determined by the order of the Gaussian operators and their

parameters.

3.3 Matrix representation and ray optics

In order to obtain the coefficients βm in Eq. (3.7), it is necessary to write the evolution op-

erator Û of the lens guide, which is a product of Gaussian operators, as a single exponential

operator. It is then convenient to make use of a matrix representation of the Gaussian opera-

tors. For free space propagation over distance z we have

Û
†
f (z)

(
x̂

p̂x/k

)
Û f (z) = M f (z)

(
x̂

p̂x/k

)
, M f (z) =

(
1 z

0 1

)
, (3.8)

while for passage through a lens we have

Û
†
l ( f )

(
x̂

p̂x/k

)
Ûl( f ) = Ml( f )

(
x̂

p̂x/k

)
, Ml( f ) =

(
1 0

−1/ f 1

)
, (3.9)

which follows from the commutation rule [x̂, p̂x] = i. We see that M f (z) and Ml( f ) are sim-

ply the ABCD matrices for free space propagation and passage through a lens, respectively,

describing the change in position and slope of a ray. Notice that the existence of this matrix

representation relies on the fact that the operators are Gaussian, that is, exponential functions

quadratic in x̂ and p̂x. As a consequence, linear combinations of x̂ and p̂x remain linear com-

binations, and the transformation can be described by multiplication of the vector with the

components x̂ and p̂x/k by a matrix. It follows that the evolution operator Û of the lens guide

is represented by the ABCD matrix of the lens guide M, which is a repeated product in the

right order of the ABCD matrices for free space propagation and lenses. This leads to the

general result for a lens guide,

Û†

(
x̂

p̂x/k

)
Û = M

(
x̂

p̂x/k

)
. (3.10)

An explicit form of the ABCD matrix M corresponding to the operator (3.7), is also

obtained from the matrix representation of the operators T̂m in Eq. (3.5). We introduce the

matrices Jm, so that

[
T̂m,

(
x̂

p̂x/k

)]
= −Jm

(
x̂

p̂x/k

)
, m = 1,2,3 , (3.11)

with

J1 =
i

2

(
1 0

0 −1

)
, J2 = − i

2

(
0 b

1/b 0

)
, J3 =

i

2

(
0 b

−1/b 0

)
, (3.12)
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where b = kγ2. For a Gaussian beam with waist γ , the length b is the Rayleigh range. The

matrices Jm satisfy the same commutation rules as the operators T̂m, for which the commuta-

tion rules are given in Eq. (3.6). Thus the operators T̂m are represented by the corresponding

matrices in Eq. (3.12). By replacing the operator Û by the ABCD matrix M of the lens guide,

and the T̂m operators by the corresponding Jm matrices, Eq. (3.7) gives the matrix equality

M = exp [−i(β1J1 +β2J2 +β3J3)] . (3.13)

This equality relates the coefficients βm to the matrix elements of the ABCD matrix of the

lens guide M. In general it is difficult to evaluate the matrix on the right-hand side of (3.13),

since it is an exponential function of a matrix. For some matrices, though, it is simple to

obtain the exponential function of the matrix, as is used in the Iwasawa decomposition.

3.4 Iwasawa decomposition

It is well-known that when a Gaussian beam propagates through a lens guide, the spot size

and the curvature of the wavefronts of the Gaussian beam change, and the beam picks up a

phase factor, the Gouy phase. This behaviour is described in an elegant way by an operator

identity: the Iwasawa decomposition [22]. The Iwasawa decomposition expresses the unitary

operator Û of the lens guide as a product of three unitary operators, in the form

Û = exp
[
−iα

(
T̂2 + T̂3

)]
exp
(
−iξ T̂1

)
exp
(
−iθ T̂3

)
. (3.14)

The operators T̂m are given in Eq. (3.5), and the parameters θ , ξ and α are to be determined.

For an arbitrary lens guide, the parameters θ , ξ and α in the Iwasawa decomposition

(3.14) are obtained by using the matrix representation of the unitary operators appearing in

the decomposition. The unitary operator Û of the lens guide corresponds to the ABCD matrix

of the lens guide M. This matrix is also obtained when the operators T̂m on the right-hand

side of (3.14) are replaced by their corresponding matrices Jm given in Eq. (3.12). We find

that

M ≡
(

A B

C D

)
= exp [−iα (J2 + J3)]exp(−iξ J1)exp(−iθJ3) . (3.15)

This matrix equality gives rise to relations between the parameters θ , ξ and α , and the ele-

ments of the ABCD matrix of the lens guide. The exponential functions of the matrices on

the right-hand side can simply be evaluated. Expressing the parameters θ , ξ and α in terms

of the elements of the ABCD matrix gives the explicit expressions

cos

(
θ

2

)
=

bA√
b2A2 +B2

,

exp(ξ ) = A2 +
B2

b2
, (3.16)

α = −b
b2AC +BD

b2A2 +B2
.

Since det(M) = AD−BC = 1, the matrix elements A and B can not vanish both. Therefore,

the numerators in these expression are always non-zero, and the parameters are well-defined.
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3. The spectrum of a resonator with spherical aberration

As a check of consistency we consider the Iwasawa decomposition for the unitary oper-

ator that describes the passage through a lens in Eq. (3.4). In the ABCD matrix in (3.9) we

have A = D = 1, B = 0 and C = −1/ f . Using (3.16) we find that θ = ξ = 0 and α = b/ f .

Inserting these values in (3.14), and using (3.5), we find agreement with (3.4).

The Iwasawa decomposition for free space propagation over a distance z is obtained by

inserting the values A = D = 1, B = z and C = 0, as given by (3.8). We find that

tan

[
θ(z)

2

]
=

z

b
, exp [ξ (z)] = 1+

z2

b2
, α(z) = − bz

b2 + z2
. (3.17)

When the Iwasawa decomposition of Û is applied to the state of a Gaussian beam at the waist,

where b is the Rayleigh range, there is a clear physical interpretation of these parameters. The

last unitary operator on the right-hand side of Eq. (3.14) contains the operator T̂3, which has

the shape of the harmonic oscillator Hamiltonian, where the free parameter γ determines the

scale of the oscillator. This term operates on the harmonic oscillator ground state and is

responsible for the Gouy phase θ(z)/2 of the beam. The unitary operator containing T̂1 is a

squeezing operator, which follows from the property

exp
(
iξ T̂1

)
x̂ exp

(
−iξ T̂1

)
= exp(ξ/2)x̂ . (3.18)

It describes the spot size of the beam, which is given by γ exp [ξ (z)/2]. The first unitary

operator on the right-hand side of Eq. (3.14), which can be written as exp(−iα x̂2/2γ2), is

responsible for the curvature of the wavefronts of the light beam, and the radius of curvature

is −b/α(z).
The Iwasawa decomposition for free space propagation can also be obtained by using

the method of invariants of Lewis and Riesenfeld [24]. A method for checking the Iwasawa

decomposition for free space propagation, different from a matrix representation, is a brute-

force method for combining exponential operators [25].

3.5 Spectrum of a resonator without aberrations

3.5.1 Lens guide

We determine the spectrum of a symmetric two-mirror resonator, as depicted in Fig. 3.1(a),

by using an operator method. The radius of curvature of the spherical mirrors is R and the

distance between the mirrors is L. When a light beam is reflected by a mirror, the transverse

profile acquires a phase shift that depends on the transverse coordinate, which is due to the

curvature of the mirror. For a concave spherical mirror with radius of curvature R located in

the plane z1, the mirror surface is described by z = z1 +
√

R2 − x2 − y2 −R. The optical path

length for reflection by the mirror is then given by

d(x,y) = 2k
(√

R2 − x2 − y2 −R
)

, (3.19)

where the on-axis optical path length is set to vanish. When the size of the beam is small

compared to the radius of curvature of the mirror, it is justified to make a Taylor expansion of
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Figure 3.1: Symmetric two-mirror resonator for which the distance between the mirrors

is L and the radius of curvature of the spherical mirrors is R. In (a) the resonator

configuration is depicted, and in (b) the corresponding lens guide, which is obtained by

unfolding the resonator. The input plane of the lens guide is the plane in the middle of

the resonator.

d(x,y) in x2 + y2 and retain only the lowest-order term −k(x2 + y2)/R, which approximates

the spherical surface of the mirror by a parabola. The unitary operator for the reflection by

a mirror is then given by the unitary operator for a lens in Eq. (3.4), with a focal distance

f = R/2.

The resonator is unfolded into a lens guide, where the plane in the middle of the resonator

is the input plane of the lens guide. The mirrors with radius of curvature R are replaced by

lenses with focal distance f = R/2. The lens guide is depicted in Fig. 3.1(b). Because the

resonator is symmetric, the lens guide consists of two identical parts, both corresponding to

half a round trip in the resonator. The unitary operator Û that describes the evolution of a

light beam inside the resonator during half a round trip, is expressed in terms of the unitary

operators for free space propagation and passage through a lens in Eqs. (3.3) and (3.4),

respectively, by

Û = Û f (L/2)Ûl(R/2)Û f (L/2) . (3.20)

3.5.2 Hamiltonian for half a round trip

In order to determine the eigenmodes and spectrum of the resonator, the exponential operators

in the expression for Û in Eq. (3.20) are combined into a single exponential operator, for

which we write

Û = exp(−iĤ) , (3.21)

where Ĥ is a Hermitian operator, which can be interpreted as the Hamiltonian for half a

round trip in the resonator. The eigenfunctions of Ĥ are then the eigenmodes of the resonator

and the corresponding eigenvalues determine the spectrum of the resonator. The operator Ĥ is

obtained by using the Iwasawa decomposition for Û , which is found by calculating the ABCD

matrix M for half a round trip. The parameters θ , ξ and α of the Iwasawa decomposition

in Eq. (3.14) are related to the elements of M by Eq. (3.16). For the symmetric two-mirror

resonator in Fig. 3.1(a) the waist of the Gaussian eigenmode lies in general in the plane in

the middle of the resonator, which corresponds both to the input and output plane of the lens

guide for half a round trip. Then the unitary operator Û describes the propagation of the beam
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3. The spectrum of a resonator with spherical aberration

over half a round trip from waist to waist. At the waist of the beam the wavefronts are flat.

Therefore, the wavefronts must be flat again after half a round trip, so that the parameter α in

the Iwasawa decomposition (3.14), which determines the curvature of the wavefronts, must

vanish. This requirement is satisfied when the parameter b = kγ2 in Eq. (3.16), which is the

Rayleigh range of the Gaussian beam, satisfies

b2 = −BD

AC
, (3.22)

which fixes the spot size γ of the Gaussian beam at the waist. In Eq. (3.22) we assume that

all the matrix elements of M are non-zero and that the right-hand side is positive.

With this value of b it follows that

cos

(
θ

2

)
= sign(A)

√
AD , exp(ξ ) =

A

D
, (3.23)

where we used that det(M) = AD−BC = 1. The ABCD matrix for half a round trip is given

by

M = M f (L/2)Ml(R/2)M f (L/2) =

(
g L

2
(1+g)

− 2
L
(1−g) g

)
, (3.24)

where g = 1−L/R is the g parameter of the resonator. For a stable resonator 0 ≤ g2 < 1 [7].

When g = 0 and g = ±1, Eq. (3.22) does not apply, since then not all the matrix elements

of M are non-zero. For a confocal resonator we have g = 0, which means that A = D = 0. It

follows from (3.16) that α = 0 for all values of b. This means that the waists of the beams

propagating to the right and the left inside the resonator do not coincide (see Section 2.6).

For g = ±1 there is no positive value of b for which α = 0.

By using Eqs. (3.22) and (3.24) it follows that the Rayleigh range of the Gaussian eigen-

mode is given by

b = kγ2 =
L

2

√
1+g

1−g
, (3.25)

which is in agreement with the result by Siegman [7]. By using (3.23) we find that for the

parameters of the Iwasawa decomposition we have ξ = α = 0 and cos(θ/2) = g. It follows

that, by using the Iwasawa decomposition (3.14), the unitary operator Û can be written as

a single exponential operator, which is written as in Eq. (3.21). Taking into account both

transverse dimensions again, the Hamiltonian for half a round trip Ĥ is given by

Ĥ =
1

2
arccos(g)

[
γ2
(

p̂2
x + p̂2

y

)
+

1

γ2

(
x̂2 + ŷ2

)]
, (3.26)

which is the Hamiltonian of the two-dimensional isotropic quantum harmonic oscillator.

When applied to the state of the Gaussian beam with Rayleigh range b at the waist, the

only effect of Û is a phase factor, which is the Gouy phase for half a round trip.
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3.5.3 Spectrum and degeneracy

When considering the quantum harmonic oscillator, it is customary to introduce the ladder

operators

âx =
1√
2

(
x̂

γ
+ iγ p̂x

)
, â†

x =
1√
2

(
x̂

γ
− iγ p̂x

)
,

ây =
1√
2

(
ŷ

γ
+ iγ p̂y

)
, â†

y =
1√
2

(
ŷ

γ
− iγ p̂y

)
, (3.27)

which satisfy the boson commutation rules. In terms of these ladder operators Eq. (3.26) is

given by

Ĥ = arccos(g)(n̂x + n̂y +1) , (3.28)

where n̂x = â†
x âx and n̂y = â†

y ây. The eigenstates of Ĥ are the Hermite-Gaussian (HG) states

|unm〉. We have

Ĥ|unm〉 = arccos(g)(n+m+1) |unm〉 . (3.29)

In order for a light beam to be an eigenmode of a resonator it is necessary that the electric

field (3.1) of the light beam transforms into ± itself after half a round trip. Besides the Gouy

phase, the electric field acquires a phase kL after half a round trip due to the plane-wave

part of the field. These phases must add up to a multiple of π , which defines the resonance

condition:

kL = arccos(g)(n+m+1)+πq , (3.30)

where n and m are the mode numbers of the HG eigenmodes, and q is the longitudinal mode

number. From this resonance condition the spectrum of allowed frequencies ω = ck of the

light beam follows [7].

The z component of the angular-momentum operator, defined by

l̂z = x̂ p̂y − ŷ p̂x , (3.31)

commutes with Ĥ. It follows that there is a basis of eigenstates of Ĥ, in which l̂z is diagonal

as well. This basis is generated by the circular ladder operators [18]

â± =
1√
2

(âx ∓ iây) , â
†
± =

1√
2

(
â†

x ± iâ†
y

)
. (3.32)

In terms of these circular ladder operators

Ĥ = arccos(g)(n̂+ + n̂− +1) , l̂z = n̂+ − n̂− , (3.33)

where n̂+ = â
†
+â+ and n̂− = â

†
−â−. Eigenstates of both Ĥ and l̂z are the Laguerre-Gaussian

(LG) states |un+n−〉, where n+ and n− are the mode numbers. The more familiar mode num-

bers l and p are expressed in terms of n+ and n− by l = n+−n− and p = min(n+,n−) [26]. In

terms of the mode numbers of the LG eigenstates the spectrum is given by Eq. (3.30), where

n+m is replaced by n+ +n−. The HG states with different mode numbers with a fixed sum

n + m = N are degenerate. These modes form an N + 1-dimensional degenerate subspace.

This space is also spanned by the LG states with n+ + n− = N, or eigenbases intermediate

between the HG and LG bases [13].
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3. The spectrum of a resonator with spherical aberration

3.6 Spectrum in the presence of aberrations

3.6.1 Spherical aberration

We determine the spectrum of the resonator in Fig. 3.1 in the presence of spherical aberration

by using perturbation theory as it is known in quantum mechanics. In the expression for the

optical path length in Eq. (3.19) the surface of the mirror was approximated by a parabola.

We take into account the next term in the expansion. We write

d(x,y) = −k
(
x2 + y2

)

R
− k

(
x2 + y2

)2

4R3
+ ... . (3.34)

In terms of the g parameter of the resonator and the spot size γ of the Gaussian eigenmode of

the resonator in Eq. (3.25), this is written as

d(x,y) = −1

2

√
1−g2

(
x2 + y2

γ2

)
− ε

16

(
1−g2

)(x2 + y2

γ2

)2

+O(ε2) , (3.35)

where ε = 1/kR is a small number for optical wavelengths and typical mirror radii. It is

allowed to neglect terms of order ε2 as long as x2 + y2 � R2.

By using that Û2
l (R) = Ûl(R/2), the unitary operator for a mirror with radius of curvature

R with aberrations, can in general be written in a symmetric form as

Ûl(R)exp [−iεV (x̂, ŷ)]Ûl(R) , (3.36)

where V (x,y) describes the aberrations of the mirror, which in our case is spherical aberration,

for which from Eq. (3.35) we have

V (x,y) =
1

16

(
1−g2

)(x2 + y2

γ2

)2

. (3.37)

In this way the mirror with aberrations is represented in the lens guide by two lenses with focal

distance R, in between which there is a phase plate that introduces a small phase εV (x,y),
all of which lie in the plane of the mirror. In Fig. 3.2 the lens guide for half a round trip is

given for the case of a mirror with aberrations. For the unitary operator for half a round trip

we write

Û = Û2 exp [−iεV (x̂, ŷ)]Û1 , (3.38)

where

Û1 = Ûl(R)Û f (L/2) , Û2 = Û f (L/2)Ûl(R) . (3.39)

3.6.2 Perturbation Hamiltonian due to aberrations

In order to determine the spectrum in the presence of aberrations, we write the expression

for the unitary operator for half a round trip in Eq. (3.38) in terms of a single exponential

operator. For the unitary operator Û f (L/2) that appears in the expression for Û1 in Eq. (3.39),

we use the Iwasawa decomposition for free space propagation in Eq. (3.17) with z = L/2,
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Figure 3.2: When a mirror with radius of curvature R has aberrations, it can be repre-

sented in the lens guide by two lenses with focal distance R in between which there is a

phase plate that introduces the aberrations εV (x,y) of the mirror. Both lenses and the

phase plate lie in the plane of the mirror.

where γ is determined by Eq. (3.25). Then the term in the Iwasawa decomposition that

introduces the curvature of the wavefronts exactly cancels the lens term Ûl(R), since the

mirror surface matches the wavefronts when the Rayleigh range satisfies (3.25). We have

Û1 = exp
[
−iξ (L/2)T̂1

]
exp
[
−iθ(L/2)T̂3

]
. (3.40)

For Û2 we use that Û f (z) = Û
†
f (−z), so that the exponential operators in the Iwasawa decom-

position (3.14) are reversed in order. We use that θ(z) and α(z) are odd, and ξ (z) is even in

z, which follows from Eq. (3.17). Then we find that, as for Û1, the term that introduces the

curvature of the wavefronts cancels the lens term Ûl(R), and that

Û2 = exp
[
−iθ(L/2)T̂3

]
exp
[
iξ (L/2)T̂1

]
. (3.41)

When the expressions for Û1 and Û2 in Eq. (3.40) and (3.41), respectively, are inserted in

the expression for Û in Eq. (3.38) we see that the exponential operator that contains the

aberration, is sandwiched between the squeeze operators that introduces the scaling of the

beam in the Iwasawa decomposition. It follows from Eqs. (3.18) and (3.25) that

exp
[
iξ (L/2)T̂1

]
x̂ exp

[
−iξ (L/2)T̂1

]
=

√
2

1+g
x̂ . (3.42)

All the results above hold also for the y transverse coordinate. Taking into account both

transverse dimensions again, we conclude that the unitary operator for half a round trip in the

presence of aberrations in Eq. (3.38) can be written as

Û = exp

(
− i

2
Ĥ

)
exp
(
−iεV̂

)
exp

(
− i

2
Ĥ

)
, (3.43)

with Ĥ given by (3.26), and

V̂ = V

(√
2

1+g
x̂,

√
2

1+g
ŷ

)
=

1−g

4(1+g)

(
x̂2 + ŷ2

γ2

)2

. (3.44)
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3. The spectrum of a resonator with spherical aberration

We see that in the absence of aberrations, in which case ε = 0, Eq. (3.21) is recovered. For

combining the exponential operators we use the Campbell-Baker-Hausdorff formula, which

is given by

exp(Â)exp(B̂) = exp

(
Â+ B̂+

1

2
[Â, B̂]+

1

12
[Â, [Â, B̂]]+

1

12
[B̂, [B̂, Â]]+ ...

)
. (3.45)

We find that

Û = exp
[
−iĤ − iε∆Ĥ +O(ε2)

]
, (3.46)

with

∆Ĥ = V̂ − 1

6
[Ĥ, [Ĥ,V̂ ]]+ ... , (3.47)

where the dots refer to terms consisting of nested commutators of Ĥ with V̂ , with V̂ appearing

only once. We see that the aberrations of the mirror introduce the perturbation term ∆Ĥ to

the unperturbed Hamiltonian Ĥ.

3.6.3 Spectrum in the presence of spherical aberration

The perturbation ∆Ĥ to the unperturbed Hamiltonian Ĥ can be treated by degenerate quan-

tum-mechanical perturbation theory. The perturbation matrix is obtained by determining the

matrix elements of ∆Ĥ between the degenerate eigenstates of Ĥ. In the matrix elements, all

the commutators of Ĥ with V̂ in (3.47) vanish, because the operator Ĥ can be replaced by its

eigenvalue, since it operates immediately on an eigenstate. Notice that it is essential for this

argument that V̂ appears only once in all these nested commutators. In the terms of order ε 2

the operator V̂ appears twice and can prevent Ĥ from operating on an eigenstate immediately.

It is convenient to use a basis for the degenerate space in which the perturbation Hamil-

tonian is as diagonal as possible within the degenerate subspace. We know that a spherical

mirror has cylindrical symmetry about the optical axis. Therefore it is convenient to use as

a basis the eigenbasis of the angular-momentum operator l̂z in (3.31), which commutes with

V̂ in Eq. (3.44), and also with all the other corrections to the parabolic approximation to the

spherical surface of the mirror. The eigenbasis of l̂z consists of the LG eigenstates |un+n−〉.
In terms of the circular ladder operators, defined in Eq. (3.32), we have

x̂2 + ŷ2

γ2
= n̂+ + n̂− +1+ â+â− + â

†
+â

†
− . (3.48)

In this expression we see that the terms on the right-hand side that change n+ and n−, do not

conserve the sum n+ + n−. For V̂ , which is proportional to the square of (3.48), the same

holds. Therefore, in the basis of the LG eigenstates of the resonator the perturbation matrix

of the operator V̂ is diagonal. The diagonal elements are given by

∆H(n+,n−) = 〈un+n− |V̂ |un+n−〉

=
1−g

4(1+g)
[(n+ +n− +2)(n+ +n− +1)+2n+n−] . (3.49)
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When the g parameter of the resonator approaches −1, the diagonal elements ∆H(n+,n−)
become large. The case g = −1 corresponds to a concentric resonator configuration, and

when this configuration is approached, the Gaussian eigenmode tends to fill the mirror and

feels a lot of the spherical aberration, giving rise to a large ∆H(n+,n−). When g = −1 is

approached, the spot size at the waist of the Gaussian eigenmode vanishes, as follows from

Eq. (3.25), and the propagation is not paraxial anymore. Laabs and Friberg studied the effect

of non-paraxial propagation on the spectra and eigenmodes of stable resonators close to the

concentric configuration [20]. When approaching g = 1 (R→∞), ∆H(n+,n−) vanishes, since

g = 1 corresponds to a plano-plano configuration, which has no spherical aberration.

The spectrum of the resonator with spherical aberration is then determined by the reso-

nance condition

kL = arccos(g)(n+ +n− +1)+ ε∆H(n+,n−)+πq , (3.50)

where ε = 1/kR is a small number. The LG eigenstates for which n++n− = N, are degenerate

in the absence of aberrations. Since ∆H(n+,n−) is not a function of n++n− it follows that the

degeneracy is lifted partially. Only a two-fold degeneracy remains between states with n+ and

n− interchanged. A reflection in a plane that contains the optical axis, leaves the aberration

function V (x,y) in (3.37) invariant, and interchanges n+ and n−. Due to the aberration, for

even N, the manifolds of N + 1 degenerate states split up in N/2 two-fold degenerate states

and a single non-degenerate eigenstate with mode numbers n+ = n− = N/2. For odd N, there

are (N +1)/2 two-fold degenerate states. The mirror surface is invariant under the reflection

in a plane containing the optical axis, and therefore the remaining two-fold degeneracy is

not lifted when higher-order terms in the expression for d(x,y) in Eq. (3.34) are taken into

account. The degeneracy is completely lifted only when the reflection symmetry is broken,

which occurs for astigmatic aberration.

As discussed below Eq. (3.35), the higher-order corrections to the spectrum can be ne-

glected when x2 + y2 � R2. This means that the spot size of the mode on the mirror must

be much smaller than the radius of the mirror. It follows from Eq. (3.48) that for the LG

modes with mode numbers n+ and n− the expectation value of x̂2 + ŷ2 on the mirror is

2γ2(n+ +n− +1)/(1+g), where it is used that γ
√

2/(1+g) is the spot size of the Gaussian

eigenmode on the mirror, which is expressed by Eq. (3.42). The requirement x2 +y2 � R2 is

then satisfied when √
1−g

1+g
(n+ +n− +1) � kR . (3.51)

Thus the higher-order corrections to the spectrum cannot be neglected only for very large

mode numbers and when the concentric resonator configuration (g =−1), as discussed below

Eq. (3.49), is approached.

3.7 Conclusions

We used an operator description to obtain the spectrum and the modes of a symmetric two-

mirror resonator. First we considered the case where the mirrors have no aberrations. The

Hamiltonian for half a round trip was shown to have the form of the two-dimensional quantum
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3. The spectrum of a resonator with spherical aberration

harmonic oscillator. We obtained the spectrum of the resonator from the eigenvalues of the

Hamiltonian. The HG eigenfunctions of the Hamiltonian are the eigenmodes of the resonator.

The HG modes with mode numbers with a fixed sum n+m = N are degenerate. An alternative

basis for this degenerate subspace is formed by the LG modes having mode numbers n+ +n−
= N.

The spherical aberration of the mirrors gives rise to a perturbation term in the Hamiltonian

for half a round trip. By using degenerate perturbation theory we obtained the first-order

correction to the unperturbed eigenvalues due to the spherical aberration. The spectrum in

the presence of spherical aberration is given by Eq. (3.50). The N + 1-fold degeneracy is

almost completely lifted. There is only a two-fold degeneracy left of LG modes which have

mode numbers n+ and n− that are interchanged. This operation corresponds to the reflection

in a plane through the optical axis of the resonator. When this reflection symmetry is broken,

which occurs for astigmatic aberration, the degeneracy is completely lifted. The higher-order

corrections to the spectrum can be neglected when the requirement (3.51) is satisfied.
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CHAPTER 4

Orbital angular momentum of general astigmatic modes

We present an operator method to obtain complete sets of astigmatic Gaussian solutions

of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity

and phase distributions of the fundamental mode differ in orientation. As a consequence,

the fundamental mode has a non-zero orbital angular momentum, which is not due to

phase singularities. Analogous to the operator method for the quantum harmonic oscilla-

tor, the corresponding astigmatic higher-order modes are obtained by repeated applica-

tion of raising operators on the fundamental mode. The nature of the higher-order modes

is characterised by a point on a sphere, in analogy with the representation of polarisa-

tion on the Poincaré sphere. The north and south poles represent astigmatic Laguerre-

Gaussian modes, similar to circular polarisation on the Poincaré sphere, while astigmatic

Hermite-Gaussian modes are associated with points on the equator, analogous to linear

polarisation. We discuss the propagation properties of the modes and their orbital an-

gular momentum, which depends on the degree of astigmatism and on the location of the

point on the sphere.

J. Visser and G. Nienhuis, Phys. Rev. A 70, 013809 (2004).
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4. Orbital angular momentum of general astigmatic modes

4.1 Introduction

Optical vortices play an important role in the field of quantum information because they

can be used to create higher-dimensional entangled states [27]. The advantage of higher-

dimensional entanglement is that more information can be stored and that there is less sen-

sitivity to decoherence [28]. A light beam containing optical vortices can be used to create

twin photons in a non-linear crystal. By changing the distribution of the vortices in the pump

beam, the entangled state of the twin photons can be manipulated, such that it can be used

for quantum communication protocols in higher dimensions [29]. Optical vortices in light

beams can be created by using holograms [30], or spiral phase plates [31]. Upon propagation

in free space, the vortices in a light beam display interesting behaviour [32]. Vortices can be

created and annihilated in pairs of opposite topological charge, and isolated vortices have a

certain stability under propagation [33]. An important feature of an optical vortex is that it

carries a density of orbital angular momentum (OAM). An example is the central vortex in a

Laguerre-Gaussian (LG) mode. The value of the OAM per photon is lh̄, with l the topologi-

cal charge of the vortex [34]. The value of the OAM of a light beam can be modified when

the beam is passed through astigmatic lenses [35]. An example of a beam without vortices

that carries OAM, is an astigmatic Gaussian beam, where the orientations of the astigmatic

intensity and phase distributions are different [36]. This is called general astigmatism [37].

The OAM of astigmatic LG beams has also been discussed in simple cases [38, 39].

The paraxial wave equation, which describes the propagation of light beams, is identical

in form to the two-dimensional Schrödinger equation for a free particle. It is therefore conve-

nient to use the operator language for the description of the propagation of a light beam. The

”state” of the light beam in an arbitrary transverse plane z can then be obtained by applying

the propagation operator to the state in the plane z = 0, like it is done for the Schrödinger

evolution. In a Heisenberg-like picture, a linear combination of the coordinate operator R̂ and

the momentum operator P̂ will remain a linear combination of R̂ and P̂, since the propaga-

tion operator is Gaussian in the momentum operator P̂. Also the propagation through optical

elements, like thin lenses, can be described in terms of Gaussian operators in R̂ and P̂. This

forms the basis of the operator method for the description of optical systems [4–6,35]. Nien-

huis and Allen [3] define ladder operators that are linear combinations of R̂ and P̂, where the

coefficients depend on the transverse plane z. Complete sets of solutions of the paraxial wave

equation are obtained by repeated action of raising operators on the fundamental mode, in

analogy to the operator method for the eigenstates of the quantum harmonic oscillator. This

similarity is the reason that the familiar Hermite-Gaussian (HG) solutions of the paraxial

wave equation are analogous to the eigenfunctions of the harmonic oscillator [11]. A similar

operator method is discussed by Wünsche [40].

In this paper we generalise the operator method of Nienhuis and Allen [3] to include

astigmatism. We derive complete sets of solutions of the paraxial wave equation that have

OAM, both due to the presence of phase singularities, and due to the difference in the ori-

entations of the astigmatic intensity and phase distributions. In Section 4.2 we discuss the

properties of an astigmatic Gaussian beam. We distinguish between simple astigmatism and

general astigmatism. For simple astigmatism, both the intensity and phase distributions are

astigmatic, but with the same orientation, while for general astigmatism the orientations are

different. Simple astigmatism also covers the case for which either the intensity or the phase
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distribution is astigmatic. In the case of general astigmatism the Gaussian beam has OAM.

In Section 4.3 we obtain complete sets of higher-order modes by operating on the state of the

Gaussian beam. In Section 4.4 we discuss some properties of the modes, and characterise the

nature of the basis sets of the modes by a point on a sphere, in analogy to the Poincaré-sphere

representation of polarisation. This gives a natural way to describe modes that are interme-

diate between LG and HG modes. In Section 4.5 we evaluate the OAM of the modes. The

OAM is composed of three contributions, each with a distinct physical significance.

4.2 The fundamental mode

4.2.1 Gaussian beam

We consider a Gaussian beam that propagates in the positive z direction. When the Gaussian

beam has circular symmetry its transverse profile can be described completely by a complex

number α , which depends on z. The real part of α determines the width of the mode, while

the radius of curvature of its wavefronts is determined by the imaginary part. When there

is no circular symmetry the Gaussian beam is astigmatic. In its simplest form an astigmatic

Gaussian beam is described by two complex numbers, one for each transverse dimension, and

an angle which determines the orientation of the astigmatism. The real parts of these complex

numbers determine the shape of the intensity distribution of the beam, while their imaginary

parts determine the shape of the curves of constant phase. The two complex numbers evolve

independently upon propagation, so that the orientation of the astigmatism does not vary

with z. For astigmatism in its most general form the orientations of the intensity and the

phase distributions of the beam differ. Upon propagation the orientations of both the phase

and the intensity distributions change and the beam tumbles [36, 39].

In general, the Gaussian beam is determined by a complex symmetric 2×2 matrix α . We

use Greek letters for 2×2 matrices, unless stated otherwise. We write α = α0 − iα1, where

α0 and α1 are real and symmetric matrices. The normalised mode profile of the Gaussian

beam in the transverse plane z = 0 is written as

u00(R,0) =
1√
π

[detα0]
1/4

exp(−RαR/2) , (4.1)

where R is the two-dimensional transverse coordinate vector. For notational convenience

we write RαR ≡ RT ·α ·R, where the dot is a matrix multiplication. For Gaussian beams

with circular symmetry, α is a complex number times the unit matrix. When considering

astigmatism in its simplest form, where the astigmatic intensity and phase distributions of the

beam have the same orientation, the matrices α0 and α1 commute. For general astigmatism

α0 and α1 do not commute.

The matrix α0 determines the intensity distribution of the beam. The eigenvalues of α0

are positive, so that the intensity distribution can be normalised. As a consequence, curves

of constant intensity have an elliptic shape. The ellipticity or degree of astigmatism is de-

termined by the ratio of the eigenvalues of α0. On the other hand, there is no constraint on

the determinant of the matrix α1, which determines the phase distribution of the beam. For

a positive determinant, curves of constant phase have an elliptic shape, while for a negative
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4. Orbital angular momentum of general astigmatic modes

determinant, these curves are hyperbolas. The degree of astigmatism for the phase is deter-

mined by the ratio of the eigenvalues of α1. For non-astigmatic Gaussian beams, α1 vanishes

in the focal plane. In the case of an astigmatic phase distribution the eigenvalues of α1 are

different and there are two focal planes. In a focal plane, one of the eigenvalues vanishes and

the curves of constant phase are parallel lines.

4.2.2 Propagation

The electric field of a monochromatic light beam with frequency ω that propagates in the

positive z direction is written as

E (~r, t) = E0 Re [u(R,z)exp(ikz− iωt)] , (4.2)

where~r = (R,z) is the position vector in three dimensions and u(R,z) is the normalised trans-

verse profile of the beam. When |∂u/∂ z| � ku, the transverse profile varies only slowly with

z, and the propagation of the light beam is well described by the paraxial wave equation

(
∂ 2

∂R2
+2ik

∂

∂ z

)
u(R,z) = 0 , (4.3)

where ∂ 2/∂R2 = ∂ 2/∂x2 +∂ 2/∂y2. Well-known solutions of the paraxial wave equation are

the HG modes, which form a complete set of solutions. The lowest-order of the HG modes

is a Gaussian beam with circular symmetry. The HG modes resemble the eigenfunctions

of the two-dimensional harmonic oscillator. As discussed in standard quantum mechanics

textbooks, the excited eigenstates of the harmonic oscillator can be found by the repeated

application of the raising operator on the ground state [18]. Nienhuis and Allen [3] derived

complete sets of solutions of the paraxial wave equation by a similar method. We generalise

this operator method by including astigmatism. For the two-dimensional harmonic oscillator

a lowering and a raising operator is obtained for each dimension. These operators satisfy

the boson commutation rules. The general form of the mode profile u00(R,0) of a Gaussian

beam in Eq. (4.1) corresponds to the ground-state wave function of the harmonic oscillator.

Operating on this function with each of the lowering operators â1 and â2 separately must give

zero. We write â1 and â2 in the form of the two-dimensional vector Â and find from Eq. (4.1)

that Âu00(R,0) = 0 is satisfied when

Â =
1√
2

β
(
αR̂+ iP̂

)
, (4.4)

where β is a proportionality matrix and P̂ is the momentum operator, which takes the form

P̂ = −i∂/∂R in the coordinate representation. The corresponding vector of raising operators

â
†
1 and â

†
2 is

Â† =
1√
2

β ∗ (α∗R̂− iP̂
)

. (4.5)

The complex 2×2 matrix β must be chosen so that the lowering and raising operators satisfy

the boson commutation rules. This will be discussed in Section 4.3.1.
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The paraxial wave equation is identical in form to the two-dimensional Schrödinger equa-

tion for a free particle where the coordinate z replaces time. This suggests that the Dirac nota-

tion is convenient to use. For a general beam profile in the plane z we write u(R,z) = 〈R|u(z)〉,
which is the mode function in the coordinate representation of the state of the beam |u(z)〉 in

the plane z. In operator form the paraxial wave equation is given by

(
P̂2 −2ik

∂

∂ z

)
|u(z)〉 = 0 , (4.6)

where P̂2 = p̂2
x + p̂2

y . Similar to the solution of the Schrödinger equation for a free particle

we have

|u(z)〉 = Û(z)|u(0)〉 , (4.7)

with

Û(z) = exp

(
− iz

2k
P̂2

)
. (4.8)

For the lowering operator at z = 0 we write Â(0), and the Gaussian fundamental mode profile

in the plane z = 0 is determined by

Â(0)|u00(0)〉 = 0 . (4.9)

For arbitrary plane z, the fundamental mode profile obeys

Â(z)|u00(z)〉 = 0 . (4.10)

It follows that the lowering operator in a plane with arbitrary z is related to the lowering

operator in the plane z = 0 by

Â(z) = Û(z)Â(0)Û(z)† . (4.11)

We use the operator identity

Û(z) R̂ Û†(z) = R̂− z

k
P̂ , (4.12)

and write Â(0) as in Eq. (4.4). We find that the z-dependent lowering operator has the form

Â(z) =
1√
2

β (z)
(
α(z)R̂+ iP̂

)
, (4.13)

with z-dependent matrices α and β ,

α(z) =

(
1+

iz

k
α(0)

)−1

α(0) , β (z) = β (0)

(
1+

iz

k
α(0)

)
. (4.14)

The solution of (4.10) is a Gaussian determined by α(z). By taking the real and imaginary

parts of α(z) we find the expressions for α0(z) and α1(z), which determine how the intensity

and phase distributions of the beam profile change upon propagation.
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4. Orbital angular momentum of general astigmatic modes

4.2.3 Gouy phase

The z-dependent lowering operator Â(z) determines the expression for the fundamental mode

profile in different planes within a phase factor exp(−iχ(z)). This factor χ(z) is a generalised

form of the Gouy phase. The condition (4.10) does not determine the z-dependent phase

χ(z). However, one may check that the solution of the paraxial wave equation (4.3), with the

boundary condition (4.1), is

u00(R,z) =
1√
π

[detα0(0)]1/4

√
detα(z)

detα(0)
exp

[
−1

2
Rα(z)R

]
. (4.15)

Here α(z) = α0(z)− iα1(z) is given in Eq. (4.14). This check requires the differentiation of

detα(z) with respect to z. For this we use the identity for a matrix M that depends on the

parameter z:
1

detM(z)

d

dz
detM(z) = Tr

1

M(z)

dM

dz
. (4.16)

This follows after taking the determinant of M(z+dz) = M(z)[1+dz(1/M(z))(dM/dz)], and

linearising in dz. From the expression for α(z) in Eq. (4.14) we find dα(z)/dz = α 2(z)/ik,

so that
d

dz
detα(z) =

1

ik
detα(z)Tr [α(z)] . (4.17)

Using this, it is straightforward to check that Eq. (4.15) is indeed a solution of the paraxial

wave equation. The phase χ(z), which is an astigmatic generalisation of the Gouy phase, is

then given by

χ(z) = −arg

(√
detα(z)

detα(0)

)
=

1

2
arg

[
det

(
1+

iz

k
α(0)

)]
. (4.18)

Just as in the non-astigmatic case, χ increases by π between z = −∞ and z = ∞.

4.2.4 Orbital angular momentum

When both the intensity and phase distributions of a Gaussian beam are astigmatic with dif-

ferent orientations, the beam carries OAM [36, 39]. The beam tumbles upon propagation,

and with this tumbling OAM is associated. The origin of the tumbling of the beam can be

understood when the transverse-momentum density is considered. For a normalised beam

profile u(R) the transverse-momentum density per photon is given by [34]

P(R) =
h̄

2i

(
u∗(R)

∂

∂R
u(R)−u(R)

∂

∂R
u∗(R)

)
, (4.19)

which is in the direction of the transverse gradient of the phase of the beam. The OAM per

photon in the propagation direction is then given by

L =
∫

dR‖R×P(R)‖ . (4.20)
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Figure 4.1: Two ellipses of constant intensity and phase of a Gaussian mode with gen-

eral astigmatism. On the solid ellipse the intensity is constant; on the dashed ellipse the

phase is constant. The ellipse of constant intensity is rotated over an angle ψ with re-

spect to the ellipse of constant phase. On four points on the ellipse of constant intensity

the direction of the transverse-momentum density is represented by arrows. These ar-

rows point in the direction of the gradient of the phase, which is chosen outwards in this

case. They represent the direction in which the intensity will move. Because the ellipses

of constant intensity and phase are oriented differently, it can be seen from the arrows

that upon propagation the beam will tumble, giving rise to orbital angular momentum.

In Fig. 4.1 two ellipses of constant intensity and phase of a Gaussian mode with general

astigmatism are depicted. On four points the direction of the transverse-momentum density

is represented by arrows. That the beam has OAM can be understood from the expression for

the OAM in Eq. (4.20) and the fact that the arrows have arms. In Fig. 4.1 the direction of the

gradient of the phase is chosen to be outwards, corresponding to a situation where the beam

has passed the two focal planes. We see that upon propagation the intensity ellipse will try

to disalign with the phase ellipse. In case that the gradient of the phase is directed inwards,

corresponding to a situation before the focal planes, the intensity ellipse tries to align with

the phase ellipse.

By inserting the general expression for the fundamental mode in Eq. (4.15) in Eq. (4.20)

we obtain the OAM of the fundamental mode. We find that

L00 =
h̄

4
(α1s −α1l)

(
1

α0l

− 1

α0s

)
sin(2ψ) , (4.21)

where α0l and α0s are the eigenvalues of α0, and where α1l and α1s are the eigenvalues of

α1. The angle ψ (this Greek letter is not a matrix) is the difference in orientation of the

astigmatic phase and intensity distributions. For non-zero OAM it is necessary that indeed

both the intensity and the phase distributions are astigmatic, since the eigenvalues of both α0

and α1 must be different. Furthermore, it is also necessary that the astigmatic intensity and

phase distributions differ in orientation, because the angle ψ must be different from 0 or π/2.
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4. Orbital angular momentum of general astigmatic modes

This corresponds to the case of general astigmatism, for which α0 and α1 do not commute.

In Section 4.5 we derive the following matrix expression for the OAM of the fundamental

mode:

L00 =
h̄

2
Tr
(
εα1α−1

0

)
, (4.22)

where

ε =

(
0 +1

−1 0

)
(4.23)

is the two-dimensional anti-symmetric tensor. This expression is equivalent to (4.21). We

will also see that the OAM is conserved indeed, which is not evident from Eq. (4.21), since

α is z dependent.

4.3 Operator method

4.3.1 Coordinate picture

Recall that the excited states of the quantum harmonic oscillator are obtained by the repeated

application of the raising operator on the ground state. In a similar fashion, we obtain astig-

matic higher-order modes by operating on the state |u00〉 of the astigmatic fundamental mode.

This generalises the operator method of Nienhuis and Allen [3]. In an arbitrary transverse

plane z we define ladder operators that are linear combinations of the coordinate operator

R̂ = (x̂, ŷ) and the momentum operator P̂ = (p̂x, p̂y). In Eqs. (4.4) and (4.5), the vector Â(z)
of lowering operators â1(z) and â2(z), and the corresponding vector Â†(z) of raising oper-

ators, are given, where the z-dependent matrices α(z) and β (z) are given in Eq. (4.14). It

follows from Eq. (4.11), that, when â1(z), â2(z), â
†
1(z) or â

†
2(z) is applied to a solution |u(z)〉

of the paraxial wave equation, another solution is obtained. The ladder operators must satisfy

the boson commutation rules

[
â1(z), â

†
1(z)

]
=
[
â2(z), â

†
2(z)

]
= 1 ,

[
â1(z), â2(z)

]
=
[
â1(z), â

†
2(z)

]
= 0 . (4.24)

The higher-order modes are obtained by operating with the raising operators â
†
1(z) and â

†
2(z)

on the state of the fundamental mode |u00(z)〉. We have

|unm(z)〉 =
1√

n!m!

(
â

†
1(z)

)n(
â

†
2(z)

)m|u00(z)〉 , (4.25)

where |unm(z)〉 is the state of the higher-order mode with mode numbers n,m = 0,1,2, ... .

The normalised profile of a higher-order mode is given by the wave function in the coordinate

representation of its state 〈R|unm(z)〉. It follows from the commutation rules (4.24) and from

Eq. (4.11), that the higher-order modes together with the fundamental mode constitute a

complete set of solutions of the paraxial wave equation.

The commutation rules (4.24) are satisfied for all values of z as soon as they are satisfied

for a single value of z, as follows from Eq. (4.11). From the commutation rules [x̂, p̂x] =
[ŷ, p̂y] = i for R̂ and P̂, one finds that the commutation rules (4.24) require that

βα0β † = 1 . (4.26)
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It follows, for all values of z, that β †β = α−1
0 , and that β is invertible. Since α0 is real,

symmetric and positive definite, it uniquely defines a real, symmetric and positive-definite

matrix γ , so that

γ2 = α−1
0 = β †β . (4.27)

The real eigenvalues of γ are the two widths of the elliptic spot size of the intensity distribu-

tion of the fundamental mode profile u00(R). The requirement (4.27) is satisfied by writing

β = σγ , (4.28)

where σ is a unitary matrix. The z dependence of the matrices γ , α1 and σ can be obtained

by using Eq. (4.14). The fundamental mode is determined by choosing α , or, equivalently, γ
and α1, in one transverse plane. Higher-order modes are determined by the additional choice

of the unitary matrix σ for one plane z.

4.3.2 Momentum picture

The ladder operators are linear combinations of the coordinate operator R̂ and the momentum

operator P̂, which play a similar role. In the coordinate picture we focus on solutions u(R,z)
of the paraxial wave equation. The momentum picture of the solution is given by ũ(P,z),
which is the Fourier transform of u(R,z). The vector (4.4) of lowering operators is rewritten

as

Â =
1√
2

κ
(
R̂+ iµP̂

)
, (4.29)

and we see that

κ = βα , µ = α−1 . (4.30)

We write µ = µ0 + iµ1, where µ0 and µ1 are real and symmetric matrices. Moreover, µ0 is

positive definite. The commutation rules for the ladder operators are satisfied when κµ0κ† =
1, from which it follows that κ†κ = µ−1

0 , so that κ is invertible. In full analogy to the

decomposition (4.28) of β in a unitary and a real symmetric matrix, we write

κ = τδ , (4.31)

with τ unitary, and δ real, symmetric and positive definite, so that δ 2 = µ−1
0 . The real

eigenvalues of the matrix δ are the two widths of the elliptic momentum distribution. In the

momentum picture the fundamental mode is determined by µ , or, equivalently, by δ and µ1,

while the higher-order modes also require τ .

For later use we want to express the matrices γ , α1 and σ of the coordinate picture in their

momentum-picture analogues δ , µ1 and τ . The two pictures are related by Eq. (4.30), from

which it follows that

β = κµ , (4.32)

and

α1µ0 = α0µ1 , µ0α1 = µ1α0 . (4.33)

Because γ2 = α−1
0 and δ 2 = µ−1

0 , we find from (4.33) that

γ2α1 = µ1δ 2 . (4.34)
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4. Orbital angular momentum of general astigmatic modes

We use Eqs. (4.27), (4.32) and (4.31), to find that

γ2 = µ†δ 2µ . (4.35)

From Eqs. (4.28), (4.32) and (4.31), we find that

σ = τδ µγ−1 . (4.36)

4.4 Properties of modes

4.4.1 Propagation of the fundamental mode

In the coordinate picture it is convenient to write the fundamental mode profile as

u00(R,z) =
1√

π detβ
exp

(
−1

2
RαR

)
. (4.37)

From Eqs. (4.14) and (4.28), we see that this expression differs from Eq. (4.15) only by a

constant phase factor
√

detσ(0). The fundamental mode profile in the momentum picture is

the Fourier transform of (4.37)

ũ00(P,z) =
1√

π detκ
exp

(
−1

2
PµP

)
. (4.38)

From the relation between the coordinate and the momentum picture in Eq. (4.30), together

with (4.14), the z dependence of µ is found as

µ(z) = µ(0)+
iz

k
, (4.39)

or, equivalently,

δ (z) = δ (0) , µ1(z) = µ1(0)+
z

k
. (4.40)

The fundamental mode is characterised by selecting δ and µ1 in one transverse plane. Now

we use Eqs. (4.35) and (4.34) to express γ(z) and α1(z) in terms of δ (0) and µ1(0). We find

that

γ2(z) = δ−2 +
(

µ1(0)+
z

k

)
δ 2
(

µ1(0)+
z

k

)
, (4.41)

γ2(z)α1(z) =
(

µ1(0)+
z

k

)
δ 2 , (4.42)

where we write δ for δ (0) since δ is independent of z. In each transverse plane the matrix

γ determines the intensity distribution, while α1 determines the phase distribution of the

fundamental mode. In the limit of large z we find that

γ2(z) → z2

k2
δ 2 , α1(z) →

k

z
. (4.43)
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The first identity is a generalisation of the Fourier relation between the near field and the

far field. The phase distribution, as determined by α1, becomes circular for large z. This is

understandable, because in the far field the beam profile in the focal region can be considered

a point source, which produces circular phase fronts.

The propagation properties of the fundamental mode in the coordinate picture are deter-

mined by γ(z) and α1(z). In general, the fundamental mode has two focal planes, which

are defined by the requirement that the determinant of α1 vanishes. Then the curvature of

the phase fronts vanishes in one transverse direction, and the curves of constant phase are

parallel lines. When the determinant of α1 vanishes, so does the determinant of µ1, which

follows from Eq. (4.33). It follows from Eq. (4.40), that det µ1(z) = 0 for the two values of

z that coincide with an eigenvalue of µ1(0) times −k. We consider the evolution of ellipses

of constant intensity during propagation. The ellipses are the curves of constant Rα0R. Since

α0 = γ−2, the orientation and ellipticity of the ellipses are determined by the eigenvectors

and eigenvalues of γ2. We take the x and y axis to coincide with the eigenvectors of µ1, and

redefine z such that the plane z = 0 is exactly in between the two focal planes. Then

µ1(0) =

(
m1 0

0 −m1

)
, (4.44)

with m1 real. The focal planes are then the planes z = ±km1.

In the case of simple astigmatism, δ commutes with µ1(0), so that it is diagonal. The ma-

trix γ2(z) in Eq. (4.41) is then diagonal for all z, and the diagonal elements have a hyperbolic

dependence on z. In a focal plane, one of the hyperbolas attains its minimum value. When

the diagonal elements of δ are different, the slopes of the asymptotes of the hyperbolas differ,

so that for two values of z the intensity distribution is circular. Equation (4.43) shows that the

ellipses of constant intensity at z →±∞ are identical. When m1 vanishes, there is only one

focal plane, and we see from Eq. (4.41) that γ2(z) = γ2(−z). This symmetry is not present

when m1 6= 0.

For general astigmatism δ is not diagonal. By using that α−1
0 = γ2 and µ−1

0 = δ 2 it

follows from (4.33) that [γ2,α1] = [µ1,δ
2]. From Eq. (4.40) it follows that when δ 2 and µ1

do not commute in one transverse plane, then they do not commute in any other plane. This

proves that for general astigmatism the curves of constant intensity are never circular. When

propagating from the plane z = −∞ to z = ∞, the long axis of the ellipse rotates over 180◦,

and from Eq. (4.43) it follows that the ellipticity in the limits z → ±∞ is identical. As an

example, we assume that the basis in which δ is diagonal, is rotated over 45◦ with respect to

the x and y direction, so that the orientations of δ and µ1 are maximally different. Then also

the general astigmatism is maximal. We parametrise without loss of generality,

δ =
1

2

(
d+ +d− d+ −d−
d+ −d− d+ +d−

)
, (4.45)

where d+ > d− > 0 are the eigenvalues of δ . For the case d+ =
√

3d− an ellipse of constant

intensity is shown in Fig. 4.2 for different transverse planes. When propagating from z =−∞
to z = 0, the long axis of the ellipse rotates over 90◦, and the ellipticity in the plane z = 0 is

the same as for z → ±∞. This is confirmed by substituting (4.44) and (4.45) in Eq. (4.41),

from which we find after explicit calculation that

γ2(0) = δ−2 + µ1(0)δ 2µ1(0) = (1+ s2)δ−2 , s = m1d+d− . (4.46)
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4. Orbital angular momentum of general astigmatic modes

Figure 4.2: Ellipse of constant intensity of the fundamental mode in different planes z

for the case that the general astigmatism is maximal. The ellipses in different planes

are not to scale.

From Eq. (4.43) it then follows that γ2(±∞) ∝ γ−2(0). The inversion of γ corresponds to

a rotation of the ellipse over 90◦, where the ellipticity remains the same. We can see from

Eqs. (4.41), (4.44) and (4.45) that replacing z by −z is identical to interchanging the diagonal

elements of γ2. As a consequence, the ellipse in an arbitrary plane z is the image of the ellipse

in the plane −z as obtained by a reflection in the line x = y.

The curves of constant phase are defined by Rα1R constant. In a focal plane one of the

eigenvalues of α1 is zero, and the curves of constant phase are lines parallel to the corre-

sponding eigenvector. In the first and the second focal plane µ1 takes the form

µ1 =

(
0 0

0 −2m1

)
, µ1 =

(
2m1 0

0 0

)
, (4.47)

respectively. Writing ~ex and ~ey for the x and y direction, respectively, it follows from Eq.

(4.33) that in the first focal plane α1µ0~ex = 0, while in the second focal plane α1µ0~ey = 0.

Therefore, µ0~ex and µ0~ey determine the direction of the parallel lines of constant phase in the

first and the second focal plane, respectively. For simple astigmatism δ 2 = µ−1
0 is diagonal,

so that the angle between the column vectors is 90◦. Then the parallel lines of constant phase

in one focal plane are orthogonal to the parallel lines in the other focal plane. When δ is

given by Eq. (4.45) we find that the angle ψ0 between the lines in the two focal planes is

given by

cosψ0 =
d4

+ −d4
−

d4
+ +d4

−
, (4.48)

and we see that for maximal astigmatism the lines in the two focal planes are not orthogonal.

In the plane z = 0, we can calculate α1(0) by using (4.42) and (4.46), with the result

α1(0) =
d2

+d2
−

1+ s2
µ1(0) . (4.49)

In this plane, the lines of constant phase are hyperbolas, with orthogonal asymptotes.

4.4.2 Higher-order modes in one transverse plane

The higher-order modes are obtained by operating with the raising operator on the fundamen-

tal mode. The lowering operator in Eq. (4.4) is written in a more transparent way by using
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the operator identity

exp

(
i

2
R̂α1R̂

)
P̂ exp

(
− i

2
R̂α1R̂

)
= P̂−α1R̂ . (4.50)

In the coordinate picture we write

Â = exp

(
i

2
R̂α1R̂

)
σ B̂exp

(
− i

2
R̂α1R̂

)
, (4.51)

where the real operators b̂x and b̂y that compose the vector

B̂ =
1√
2

(
1

γ
R̂+ iγP̂

)
(4.52)

have the familiar form of the lowering operator of a quantum-mechanical harmonic oscillator.

The corresponding expression for the raising operator is

Â† = exp

(
i

2
R̂α1R̂

)
σ∗B̂† exp

(
− i

2
R̂α1R̂

)
. (4.53)

We consider the operation of the raising operator on the fundamental mode in the coordi-

nate representation in an arbitrary transverse plane. We see that first the phase distribution

exp(iRα1R/2) in the expression for the fundamental mode in Eq. (4.1) is removed, so that

the real operator B̂† operates on a real function. Finally the same phase factor exp(iRα1R/2)
is reinserted again, so that all the modes have this phase factor in common.

The unitary matrix σ expresses the freedom in the choice of the ladder operators. For

non-astigmatic modes, σ determines whether the higher-order modes are HG or LG, or inter-

mediate modes. In characterising σ we point out an analogy with polarisation. It is intuitively

obvious that the HG and LG modes are analogous to linear and circular polarisation, respec-

tively, while the intermediate modes are analogous to elliptic polarisation. It is customary

to represent a normalised polarisation vector ~e in the xy plane by a point on the unit sphere,

which specifies a real unit vector,

~u = (cosφ sinθ ,sinφ sinθ ,cosθ) ≡ (u1,u2,u3) , (4.54)

where θ and φ are the spherical angles of the point on the sphere (thus the Greek letters

θ and φ are not used for matrices). The vector ~u is the normalised Stokes vector [1], with

components

u1 = e∗xex − e∗yey , u2 = e∗xey + exe∗y , u3 = −ie∗xey + iexe∗y . (4.55)

The first two components are the degrees of linear polarisation parallel to the x and the y axis,

and under 45◦, and u3 is the degree of circular polarisation. Each point on the sphere uniquely

represents a polarisation apart from its overall phase. The sphere is called the Poincaré sphere.

A point on the equator of the sphere (θ = π/2) represents linear polarisation, which is ori-

ented in a direction that makes an angle φ/2 with the x axis. The poles of the sphere (θ = 0,
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4. Orbital angular momentum of general astigmatic modes

and θ = π) represent circular polarisation~e =~e± = (~ex ± i~ey)
√

2. For arbitrary values of the

angles θ and φ , the point on the sphere represents the elliptic polarisation,

~e1(θ ,φ) = v~e+ +w~e− , (4.56)

with v = cos(θ/2)exp(−iφ/2) and w = sin(θ/2)exp(iφ/2). The polarisation

~e2(θ ,φ) = −w∗~e+ + v∗~e− , (4.57)

which is orthogonal to~e1, corresponds to the antipodal position on the Poincaré sphere.

In a similar way we can characterise the possible choices of a basis of transverse modes

as a point on the sphere, which we will call the Hermite-Laguerre sphere. For this we have

to specify the matrix σ for each value of θ and φ . Equation (4.53) gives the two raising

operators â
†
1 and â

†
2 as linear combinations of the operators b̂†

x and b̂†
y , when we write the real

operator (4.52) in terms of its components as B̂ = (b̂x, b̂y). When we likewise decompose σ B̂

as (b̂1, b̂2), we simply require that the raising operators b̂
†
1 and b̂

†
2 are related to b̂†

x and b̂†
y by

the same linear transformation that relates~e1 and~e2 to~ex and~ey, apart from an overall phase

factor. Because σ is unitary, it is sufficient to specify only the first row of σ , which defines

â1 as

â1 = exp

(
i

2
R̂α1R̂

)(
σ1xb̂x +σ1yb̂y

)
exp

(
− i

2
R̂α1R̂

)
. (4.58)

In analogy to Eq. (4.56), this corresponds to the point on the Hermite-Laguerre sphere spec-

ified by

cosφ sinθ = σ1xσ∗
1x −σ1yσ∗

1y ,

sinφ sinθ = σ1xσ∗
1y +σ∗

1xσ1y , (4.59)

cosθ = −iσ1xσ∗
1y + iσ∗

1xσ1y .

Then the operator â2 corresponds automatically to the antipodal point on the sphere. Hence,

strictly speaking, it is sufficient to consider only the matrices σ that correspond to points on

the northern hemisphere. Since the phase constants of the modes are unimportant, the phases

of the rows of σ are not relevant.

Choices of σ corresponding to a point on the equator of the Hermite-Laguerre sphere,

give rise to HG-like modes, while the poles correspond to LG-like modes. For simplicity we

take the x and y direction along the eigenvectors of γ . The diagonal elements of γ are γx and

γy. For σ we take the unit matrix, for which θ = π/2 and φ = 0, which is on the equator. This

means that the excitation directions of the higher-order HG modes have the same orientation

as the elliptic intensity distribution determined by γ . By using Eqs. (4.25) and (4.1) we find

that the normalised higher-order mode functions 〈R|unm〉 are given by

〈R|unm〉 =
1√

n!m!π2n+mγxγy

Hn

(
x

γx

)
Hm

(
y

γy

)
exp

(
−1

2
RαR

)
, (4.60)

where R = (x,y) and

Hn(ξ ) = exp(ξ 2/2)

(
ξ − ∂

∂ξ

)n

exp(−ξ 2/2) , n = 0,1,2, ... , (4.61)

46



Figure 4.3: Intensity profiles of Hermite-Gaussian modes with mode numbers (n,m).
In (a) the modes are non-astigmatic (γx = γy), while in (b) the modes are astigmatic

with γx/γy =
√

3.

are the Hermite polynomials. In Fig. 4.3(a) the intensity profiles of the lowest-order modes

are given in the non-astigmatic case, for which γx = γy. These are the familiar HG modes. In

the astigmatic case γx 6= γy, and the x and y direction are scaled differently compared with the

non-astigmatic modes, as can seen in Fig. 4.3(b).

Now we assume that σ corresponds to the point on the equator with φ = π/2. Then

the orientation of the excitation directions of the higher-order HG modes differs from the

orientation of the elliptic intensity distribution by an angle of π/4. In Fig. 4.4(a) the intensity

profiles of the modes are given for the non-astigmatic case. We see that the modes can

be obtained from Fig. 4.3(a) by a rotation over an angle of π/4. The astigmatic case is

given in Fig. 4.4(b). We see that again the x and the y direction are scaled differently, but

compared with Fig. 4.3(b), the orientation of astigmatism is different from the orientation of

the excitation directions of the modes.

Now we consider the north pole (θ = 0), which gives rise to LG-like modes. When we

compare the non-astigmatic case in Fig. 4.5(a) with the astigmatic case in Fig. 4.5(b), we

see that the x and the y direction are scaled differently. The non-astigmatic LG modes have

circular symmetry, so that their orientation before rescaling is immaterial.

As an example of modes that are intermediate between the HG and LG modes we consider

the modes where the point on the Hermite-Laguerre sphere is between the equator and the

pole at azimuthal angle φ = 0. For simplicity we only consider the non-astigmatic case,

for which γ is isotropic. The mode profiles of the modes contain phase singularities for

each point between the pole and the equator, except at the equator itself. When the pole

is approached, the phase singularities combine at the origin and give rise to the familiar

azimuthal angle dependence exp [i(n−m)φ ] in the mode profiles of the LG modes, which

are OAM eigenfunctions with eigenvalues h̄(n−m). Starting from a HG mode with n 6= m

at θ = π/2, the intensity distribution becomes less anisotropic until at the north pole it is

a LG mode, with circular symmetry. In Fig. 4.6 the intensity profiles of four modes are
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4. Orbital angular momentum of general astigmatic modes

Figure 4.4: Intensity profiles of Hermite-Gaussian modes with mode numbers (n,m).
In (a) the modes are non-astigmatic, while in (b) the modes are astigmatic, where the

orientation of astigmatism differs from the orientation of the excitation directions by an

angle of π/4. In (b) we have γx/γy =
√

3.

Figure 4.5: Intensity profiles of Laguerre-Gaussian modes with mode numbers (n,m).
In (a) the modes are non-astigmatic, while in (b) the modes are astigmatic with γx/γy =√

3

48



Figure 4.6: Intensity profiles of non-astigmatic modes with mode numbers n and m,

and which are represented by the point between the equator and the north pole with

θ = π/6 and φ = 0.

given at the polar angle θ = π/6. We see that indeed the modes in Fig. 4.6 are intermediate

between the HG and LG modes in Figs. 4.3(a) and 4.5(a), respectively. The profiles of the

(1,0) and (0,1) mode contain a phase singularity at the origin, while the (1,1) mode has four

phase singularities, which are located in the holes of the intensity distribution. Modes that

are intermediate between HG and LG modes have also been discussed elsewhere [14, 15].

4.4.3 Propagation of the higher-order modes

The z dependence of the higher-order modes is determined by the matrix σ(z), in addition to

the matrices γ(z) and α1(z) discussed in Section 4.4.1. In Section 4.4.2 we demonstrated that

the matrix σ can be represented by two opposite points on the Hermite-Laguerre sphere. A

description of the propagation of the higher-order modes requires the specification of these

points on the sphere as a function of z. We obtain the z dependence of σ by using Eqs. (4.36)

and (4.40). From Eqs. (4.30) and (4.14), it follows that κ is independent of z. Then it follows

from Eqs. (4.31) and (4.40), that the matrix τ , which determines the nature of the higher-

order modes in the momentum picture, is independent of z. We find that the z dependence of

σ is given by

σ(z) = τδ

(
δ−2 + iµ1(0)+

iz

k

)
γ−1(z) . (4.62)

We see that upon propagation the nature of the higher-order modes changes. From Eq. (4.43)

it follows that for z → ±∞ we have σ(z) →±iτ . The factor i represents the far-field Gouy

phase. The representation of σ(z) on the Hermite-Laguerre sphere is a trajectory~u(z) of unit

vectors. The limits ~u(±∞) correspond to the Hermite-Laguerre representation of the unitary

matrix τ . The choice of τ determines the nature of the higher-order modes in the far field.

Alternatively, we may choose σ for a single value of z. We specify σ by the angles

θ = π/2 and φ = 0, at the plane z = 0, which is halfway between the focal planes. Then σ
is basically the unit matrix in this plane. We consider the evolution of σ in the case that the

angle of orientation between δ and µ1(0) is maximally different, and write µ1(0) and δ as
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4. Orbital angular momentum of general astigmatic modes

Figure 4.7: The trajectory of the point on the Hermite-Laguerre sphere that represents

the matrix σ . Between the focal planes at z = 0, and at z = ±∞, the point is located at

θ = π/2 and φ = 0.

in Eqs. (4.44) and (4.45), respectively. In Fig. 4.7 the trajectory of the point on the sphere

is given for the case that s = m1d+d− = 4
√

3 and d+ =
√

3d−. For z = 0 the point is on the

equator, while for negative and positive values of z the point is on the southern and northern

hemisphere, respectively. For z → ±∞ the point approaches the equator. This implies that,

except for z = 0 and z =±∞, the modes contain phase singularities, as we discussed in Section

4.4.2.

Now we express the point on the Hermite-Laguerre sphere describing σ at z = ±∞ in

terms of the point representing σ at z = 0, for the case that the angles of orientation of µ1(0)
and δ are maximally different. Using (4.46) and the expressions for µ1(0) and δ in Eqs.

(4.44) and (4.45), respectively, we find that

σ(0) =
τ√

1+ s2

(
1+ is 0

0 1− is

)
, (4.63)

where s = m1d+d−. Since σ(±∞) = ±iτ , this equation gives a relation between σ(0) and

σ(±∞). The point on the sphere can be given in terms of its Cartesian components as ~u =
(u1,u2,u3), as in Eq. (4.54). Writing ~u(0) and ~u(∞) for the coordinates of the point on the

sphere at z = 0 and z = ±∞, respectively, we find that

u1(∞) = u1(0) ,

u2(∞) =
1− s2

1+ s2
u2(0)+

2s

1+ s2
u3(0) , (4.64)

u3(∞) =
1− s2

1+ s2
u3(0)− 2s

1+ s2
u2(0) .

The point at z = ±∞ is obtained from the point at z = 0 by a rotation about the 1 axis over

an angle 2arctan(s). We see that only when θ(0) = π/2 and φ(0) = 0, as in Fig. 4.7, the

location of the point on the sphere is the same for z = 0 as for z = ±∞.

When, for s = 1, the point is on the north pole at z = 0, it approaches the equator at

φ = π/2 for z →±∞. In the present case, when the point is on the equator with φ = 0, the
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excitation directions of the higher-order modes have the same orientation as the elliptic phase

distribution determined by µ1, while for φ = π/2 the angles of orientation differ by π/4. The

angles of orientation of the elliptic momentum and phase distribution, as determined by δ and

µ1, respectively, differ also by π/4 in the present case. Therefore, the orientation associated

with σ(±∞) is the same as the orientation of δ , and also of γ(0), which follows from Eq.

(4.46). This means that at z = 0 the modes are like the astigmatic LG modes in Fig. 4.5(b),

while for z →±∞ they become like the astigmatic HG modes in Fig. 4.3(b).

4.5 Orbital angular momentum of the higher-order modes

4.5.1 Orbital angular momentum of astigmatic modes

We calculate the OAM per photon of a higher-order general astigmatic beam with mode

numbers (n,m). As indicated in Eqs. (4.19) and (4.20), the OAM is easily expressed by

employing the OAM operator, given by

l̂ = h̄(x̂ p̂y − ŷ p̂x) = h̄R̂εP̂ , (4.65)

where the anti-symmetric matrix ε is given in Eq. (4.23). We express R̂ and P̂ in terms of

Â and Â†. We multiply Eq. (4.4) from the left by β † and Eq. (4.5) by β T. We add these

expressions, and use Eq. (4.27) to find that

R̂ =
1√
2

(
β †Â+β TÂ†

)
. (4.66)

Similarly, using Eq. (4.29), we find that

P̂ =
1

i
√

2

(
κ†Â−κTÂ†

)
. (4.67)

According to Eq. (4.20) the OAM is then found as

Lnm = 〈unm| l̂ |unm〉

=
h̄

4i

[
(n+m+2)Tr(κεβ †)+(n−m)Tr(κεβ †η)

]

+
h̄

4i

[
(n+m)Tr(βεκ†)+(n−m)Tr(βεκ†η)

]
,

(4.68)

where

η =

(
1 0

0 −1

)
. (4.69)

We now use the momentum picture, and we express the expectation value in terms of the

matrices δ , µ1 and τ . By using the results in Section 4.3.2, we find

Tr(κεβ †) = Tr(βεκ†) = iTr(εδ 2µ1) , (4.70)

and

κεβ † +βεκ† = τ(δεδ−1 +δ−1εδ )τ† + iτδ [µ1,ε]δτ† . (4.71)
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4. Orbital angular momentum of general astigmatic modes

By using that δ is symmetric, we can show that

δεδ−1 +δ−1εδ = ε Tr(δ 2)/det(δ ) ≡ 2r+ε . (4.72)

The parameter r+, defined in Eq. (4.72), is a measure of the ellipticity of the momentum

distribution. For an isotropic distribution corresponding to two equal eigenvalues of δ , r+

attains the minimum value 1. After substitution of the quantities (4.70)-(4.72) in (4.68), we

arrive at the general expression for the OAM

Lnm =
h̄

2
(n+m+1)Tr(εδ 2µ1)+

h̄

2i
(n−m)r+ Tr(τετ†η)

+
h̄

4
(n−m)Tr

(
τδ [µ1,ε]δτ†η

)
.

(4.73)

We see that the OAM in a higher-order astigmatic mode is separated in three contributions.

Among the different matrices occurring in Eq. (4.73), only µ1 depends on z, as is expressed

by Eq. (4.40). It is easy to verify that this z dependence does not survive the trace, and we

conclude that each of the three terms in (4.73) is invariant under free-space propagation.

The OAM in the mode |unm〉 can also be described in the coordinate picture, in terms

of the matrices γ , α1 and σ . By using (4.28) and (4.30) to express β and κ in these three

matrices, we obtain from Eq. (4.68)

Lnm =
h̄

2
(n+m+1)Tr(εα1γ2)+

h̄

2i
(n−m)q+ Tr(σεσ †η)

− h̄

4
(n−m)Tr

(
σγ [α1,ε]γσ †η

)
,

(4.74)

with q+ = Tr(γ2)/2det(γ). The expression for the angular momentum operator in (4.65)

takes the same form in the momentum and coordinate picture. Therefore, the expressions for

the OAM in the momentum and coordinate picture in Eqs. (4.73) and (4.74), respectively,

have the same structure, and the qualitative statements about the origin of the OAM are valid

in both pictures. The first term on the right-hand side of (4.73) is identical to the one in (4.74),

as follows from (4.34), and both terms are independent of z. However, the last two terms in

(4.74) vary with z, although their sum is constant. Therefore, despite the similarity in form,

these last two terms in (4.74) are not identical to the last two terms in (4.73).

By substituting n = m = 0 in (4.74), the expression for L00 in Eq. (4.22) is recovered, as

can be checked by recalling that γ2 = α−1
0 . Only when γ and α1 do not commute, the OAM

of the fundamental mode is non-zero. This corresponds indeed to the case of general astig-

matism, where the phase and intensity distributions are astigmatic with different orientations.

The value of the OAM per photon can be many units of h̄ [36]. Notice that the OAM of the

fundamental mode is independent of σ , as expected.

4.5.2 Simple expression for the orbital angular momentum

When the intensity and phase distributions of the fundamental mode in the coordinate picture,

as determined by γ and α1, respectively, are astigmatic with different orientations this gives

rise to a tumbling of the intensity distribution upon propagation. This gives rise to OAM, as
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we saw in Section 4.2.4. Also the higher-order modes have an orientation, which is deter-

mined by the azimuthal angle of the point on the Hermite-Laguerre sphere representing σ .

The interplay of these three orientations gives rise to the complicated structure of the expres-

sion for the OAM in the coordinate picture in (4.74). It is then more convenient to use the

momentum picture since in this picture these orientations do not change upon propagation.

In order to gain more insight we express the OAM in (4.73) in terms of the matrix ele-

ments of the matrices δ , µ1 and τ of the momentum picture. In the expression for the OAM

in Eq. (4.73), the third term on the right-hand side contains the matrix δ twice, but µ1 only

once. Therefore, it is convenient to use a basis for the transverse coordinates in which δ is

diagonal. We write

δ =

(
d+ 0

0 d−

)
, (4.75)

where d+ ≥ d− > 0. The angle between the orientations of the astigmatic phase and momen-

tum distributions, as determined by µ1 and δ , respectively, is 0 ≤ ψ < π . We take z = 0 as

the plane exactly in between the focal planes. The matrix µ1(0) can then be written as

µ1(0) = m1

(
cos2ψ sin2ψ
sin2ψ −cos2ψ

)
, (4.76)

where 2km1 is the distance between the focal planes. For ψ = 0 Eq. (4.44) is recovered. For

the matrix τ we can write

τ =

(
τ1x τ1y

−τ∗1y τ∗1x

)
, (4.77)

with detτ = |τ1x|2 + |τ1y|2 = 1. The unit determinant can be assumed without loss of gener-

ality. The matrix τ of the momentum picture can be represented by a point on the Hermite-

Laguerre sphere in the same way as the matrix σ of the coordinate picture. Since τ is in-

dependent of z, the point on the sphere is fixed. It is convenient to specify the point on the

Hermite-Laguerre sphere by the unit vector ~v = (v1,v2,v3). The vector ~v is related to the

matrix elements of τ by replacing σ by τ in Eq. (4.59). The left-hand sides of the three equa-

tions in (4.59) correspond to the components v1, v2 and v3 in the same order. When the point

on the Hermite-Laguerre sphere that represents τ is on the equator (v3 = 0), the modes are

called momentum HG modes. The modes represented by the poles of the sphere (v3 = ±1)

are called momentum LG modes. In the absence of astigmatism, the momentum HG and LG

modes coincide with the standard definition. In the case of astigmatism, the HG-LG nature

of the modes in the coordinate picture varies with z.

By inserting the expressions (4.75)-(4.77) for the matrices in the expression for the OAM

per photon in (4.73), we find that

Lnm = (n+m+1)L0 +(n−m)~v ·~L , (4.78)

with

L0 = h̄sr− sin(2ψ) (4.79)

the OAM of the fundamental mode and~L = (L1,L2,L3) given by

L1 = −h̄sr+ sin(2ψ) , L2 = h̄scos(2ψ) , L3 = h̄r+ , (4.80)

where s = m1d+d− and r± = (d2
+ ±d2

−)/2d+d−.
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4. Orbital angular momentum of general astigmatic modes

4.5.3 Significance of the contributions to the orbital angular momentum

The OAM of the fundamental mode in (4.79) is independent of the position~v on the Hermite-

Laguerre sphere, as expected. Interestingly, the OAM of the higher-order modes with mode

numbers n = m is also independent of the point on the sphere, as follows from Eq. (4.78).

For the higher-order modes with n 6= m there is a contribution to the OAM that depends on

the position~v on the Hermite-Laguerre sphere. This contribution is determined by the angle

between~v and the vector~L, and by the length of~L, which is determined by the properties of

the fundamental mode in Eq. (4.80).

When there is no astigmatism, we have s = 0 and r+ = 1 (r− = 0). Then the matrix σ
of the coordinate picture is represented by the same point on the Hermite-Laguerre sphere

as the matrix τ of the momentum picture, and therefore the momentum HG and LG modes

are identical to the HG and LG modes of the coordinate picture. The only non-vanishing

component of~L is L3, and the OAM is given by

Lnm = h̄(n−m)cosθ , (4.81)

where θ is the angle of the vector~v with~L, which is the polar angle of the point on the sphere

in this case. The mode indices n and m correspond to opposite points on the sphere, and give

an opposite contribution to the OAM. For LG modes we have θ = 0, and the well-known

expression for the OAM is recovered [34]. When θ > 0, the point moves away from the

pole of the sphere, and the modes are intermediate between LG and HG modes. The unit of

angular momentum is reduced by a factor cosθ . The HG modes are represented by points on

the equator, for which~v and~L are perpendicular, and the OAM vanishes. If n−m =±1, there

is a similarity of OAM with the angular momentum due to the photon polarisation, which is

h̄cosθ per photon, where θ is the polar angle of the position on the Poincaré sphere.

For simple astigmatism we distinguish three cases. In the first case µ1 is anisotropic,

while δ is isotropic. In the second case δ is anisotropic, while µ1 is isotropic. In the third

case both µ1 and δ are anisotropic, but with coinciding axes. In the first case we have r+ = 1

(r− = 0), while s 6= 0. The momentum distribution is circular, while the phase distribution, as

determined by µ1, is astigmatic. The vector~L has a length h̄
√

1+ s2. The OAM is given by

Lnm = h̄(n−m) [v3 + sv2 cos(2ψ)− sv1 sin(2ψ)] . (4.82)

The first term on the right-hand side is the same as in the absence of astigmatism. The angle

of orientation ψ of the phase distribution appears as a double angle, for the same reason why

the azimuthal angle on the Poincaré sphere for polarisation is twice the angle of orientation

of the polarisation ellipse. For the momentum HG modes (v3 = 0) the OAM is given by

h̄(n−m)ssin(φ −2ψ), where φ is the azimuthal angle of the point on the equator. The angle

with the x axis of the direction of the excitations of the momentum HG modes with mode

numbers n > 0 and m = 0 is then given by φ/2. The OAM of the momentum HG modes

vanishes when the excitation directions are aligned with the elliptic phase distribution, and is

maximal when the difference in angle of orientation is π/4.

In the second case of simple astigmatism we have s = 0, while r+ > 1. In this case it is

the momentum distribution that is astigmatic. The expression for the OAM simplifies to

Lnm = h̄(n−m)r+v3 . (4.83)
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This expression is similar to the expression (4.81) in the absence of astigmatism, the differ-

ence being that due to the elliptic momentum distribution the unit of angular momentum has

increased by a factor r+ > 1.

In the third case of simple astigmatism we have ψ = 0, while s 6= 0 and r+ > 1. In

this case the astigmatic momentum and phase distributions have the same orientations. The

component L1 of the vector~L vanishes. The OAM is given by

Lnm = h̄(n−m)(sv2 + r+v3) . (4.84)

The OAM of the momentum HG modes vanishes when their orientation is the same as the

orientation of the momentum and phase distributions, since then v1 = 1, so that ~v is per-

pendicular to the vector ~L. The OAM of the momentum HG modes is maximal when the

orientation of the excitation directions is at an angle of π/4 with the orientation of the elliptic

momentum and phase distributions, for which v2 = 1.

For given values of s 6= 0, r+ > 1 and r− > 0, the length of the vector~L attains its largest

value h̄r+

√
1+ s2 for maximal astigmatism, for which ψ = π/4. For maximal astigmatism

the OAM is given by

Lnm = h̄(n+m+1)sr− + h̄(n−m)r+(−sv1 + v3) . (4.85)

For s > 0 and n > m the OAM takes its maximum value when~v is in the same direction as~L,

which is the case when

v1 = −s/
√

1+ s2 , v2 = 0 , v3 = 1/
√

1+ s2 . (4.86)

For this point on the sphere we determine the spherical angles of the point on the sphere that

represents the matrix σ(0) of the coordinate picture. Equation (4.46) still holds, as can be

checked by using Eqs. (4.75) and (4.76) with ψ = π/4. The matrix σ(0), which is found by

using (4.62), is then given by

σ(0) =
δ√

1+ s2

(
1 is

is 1

)
, (4.87)

which differs from (4.63) since we chose a different basis for the transverse coordinates.

Equations (4.87) and (4.59) are used to express the spherical angles of the point on the sphere

that represents σ(0) in terms of the unit vector in Eq. (4.86) representing τ . We find that

tanθ = s and φ = 0. The maximal astigmatic modes with maximum OAM are in between the

LG modes and the HG modes of which the excitation directions have the same orientation as

the elliptic intensity distribution, which is determined by γ . When the distance between the

focal planes, as determined by s, is increased, the modes with maximum OAM get more HG

nature, since the point on the sphere moves towards the equator.

4.6 Conclusions and discussion

We presented an operator method to characterise in a systematic way the possible complete

orthonormal sets of astigmatic Gaussian modes. The fundamental mode is specified by a

55



4. Orbital angular momentum of general astigmatic modes

Gaussian function in terms of a complex symmetric 2× 2 matrix α . The real part of the

matrix specifies the elliptic intensity distribution, and the imaginary part defines the phase

distribution. The behaviour of the mode under propagation, as determined by the paraxial

wave equation, is given by Eqs. (4.15) and (4.14), in terms of a simple z dependence of the

matrix.

A general Gaussian function is also characterised by the requirement that it vanishes when

a lowering operator is applied. In two dimensions, this defines two independent lowering op-

erators. Higher-order modes can be constructed by repeated application of the corresponding

raising operators â
†
1 and â

†
2, as expressed in Eq. (4.25). Since there are two independent

raising operators, the choice of â
†
1 and â

†
2 as linear combinations of the basis set is an inherent

degree of freedom, which determines the nature of the set of higher-order modes for a given

fundamental mode. This freedom is used by selecting the unitary matrix σ , in one transverse

plane. When the linear combinations are basically real, σ is equivalent to a rotation in two

dimensions, and the set of modes has the nature of HG modes, which is reminiscent of linear

polarisation. In general the choice of the higher-order modes for a given fundamental mode

can be represented by a point on the unit sphere. This Hermite-Laguerre sphere is analo-

gous to the Poincaré sphere that represents polarisation. The power of this description is that

the astigmatism and the Hermite-Laguerre nature of the modes as a function of the transverse

plane is automatically accounted for. The z dependence of the symmetric matrix α (determin-

ing the astigmatism) and the unitary matrix σ (which describes the nature of the modes) are

studied in Section 4.4. The OAM of the various sets of modes is analysed in Section 4.5. It

can be separated in a term that depends only on the astigmatism and terms that depend also on

the selection of the nature of the modes, as determined by the point on the Hermite-Laguerre

sphere. In general, astigmatism has a tendency to enhance the OAM.

Simple astigmatism is naturally imposed on a non-astigmatic beam by sending it through

an astigmatic lens (or, equivalently, by reflecting it by an astigmatic mirror). Simple astig-

matism can be converted into general astigmatism by a second astigmatic lens, with an ori-

entation different from the first. An astigmatic lens can be specified by a two-dimensional

real symmetric matrix ζ , with eigenvalues 1/ f1 and 1/ f2 the inverse focal lengths, and with

eigenvectors in the corresponding directions in the transverse plane. The effect of the lens

is simply a multiplication of the mode by the factor exp(−ikRζ R/2). This is equivalent to

a change of the matrix α that determines the astigmatism. The effect of the lens is that α is

replaced by α + ikζ after the lens, which implies that α1 is replaced by α1 − kζ . The matrix

σ remains unaffected by the lens. Combined with the effect of free propagation, which is

expressed in the simplest way by Eq. (4.39), this information is sufficient to evaluate the

variation of all sets of modes as they propagate through a given lens system.

The paraxial wave equation is identical in form to the two-dimensional Schrödinger equa-

tion for a free particle. As a consequence, the complete sets of solutions that we derived in

this paper are also complete sets of solutions of the Schrödinger equation for a free particle.

The fundamental mode corresponds to a wave packet that tumbles upon propagation, and

therefore has OAM. Also, the wave packet has a minimal size at two instants of time, corre-

sponding to the two focal planes. In general, when the point on the Hermite-Laguerre sphere

is not on the equator, the higher-order modes contain vortices, and the corresponding wave

packets do as well. The operator method can easily be extended to three dimensions, so that

solutions of the three-dimensional Schrödinger equation for a free particle are found.
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CHAPTER 5

Vortices in Gaussian light beams

The dynamics of vortices in light beams is complicated in general. Still, it is possible

to derive some general properties of vortices in Gaussian beams. We study the vortices

that occur naturally in higher-order astigmatic Gaussian beams, and derive a general

expression for the positions of the vortex centres. By imposing mathematical vortices

on a Gaussian beam, more general statements about the propagation properties of the

vortices are obtained. In non-astigmatic Gaussian beams, the trajectory of a canonical

vortex represents a dark ray. In a degenerate resonator a vortex mode is obtained in

which a dark ray forms a closed trajectory, similar to a light ray in a geometric mode.

Partially based on J. Visser and G. Nienhuis, Proc. of SPIE 5736, 126 (2005) and

G. Nienhuis and J. Visser, J. Opt. A: Pure Appl. Opt. 6, S248 (2004).
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5. Vortices in Gaussian light beams

5.1 Introduction

The dynamics of vortices in light beams attracts a lot of attention. Vortices that occur nat-

urally in Gaussian beams are studied in the literature both experimentally and theoretically.

The trajectory of the vortex centre can be very complicated [41], and the sign of the vortex

charge can change [32] under free space propagation. By imposing mathematical vortices on

Gaussian beams, some general propagation properties of vortices and their interaction can be

obtained [33].

In Section 5.2 we study the vortices that occur naturally in light beams that are in higher-

order transverse modes. The vortex centres in astigmatic beams follow a complicated tra-

jectory upon propagation. The morphology of a simple vortex can be represented by a point

on the morphology sphere [42]. We discuss the relation between the point on the Hermite-

Laguerre sphere that characterises the nature of the higher-order modes, and the point on the

morphology sphere that represents the morphology of the vortices in the modes.

In Section 5.3 we consider the properties of vortices that are imposed on astigmatic

Gaussian beams propagating through free space. We obtain the trajectory of the vortex cen-

tre, and show that the charge of a vortex can change sign. We derive conditions under which

vortices imposed on a Gaussian beam do not interact.

In Section 5.4 we consider the trajectory of the centre of a canonical vortex imposed on

a non-astigmatic Gaussian beam that propagates through a lens guide. In between the lenses

the trajectory of the centre of the vortex is a straight line, while at the lenses the direction of

propagation changes. Since the intensity of the light beam at the vortex centre vanishes, it

represents a dark ray. Inside a degenerate resonator these dark rays form a closed trajectory,

in the same way as the light rays of a geometric mode.

5.2 Vortices in general astigmatic beams

5.2.1 Beam profile

We study the vortices that occur naturally in the (astigmatic) Gaussian beams that were dis-

cussed in Chapter 4. In order to obtain the positions and morphologies of the vortices in these

beams, an analytical expression for the mode profiles is necessary. When one of the mode

numbers is equal to zero, an analytical expression can be obtained and the vortices in these

modes can be studied. We consider the beam profiles of the higher-order modes for the case

that (n,m) = (n,0). For an arbitrary transverse plane these higher-order modes are obtained

by repeated application of the raising operator â
†
1 on the fundamental mode profile. From Eq.

(4.58) it follows that

â
†
1 = exp

(
i

2
R̂α1R̂

)(
σ∗

1xb̂†
x +σ∗

1yb̂†
y

)
exp

(
− i

2
R̂α1R̂

)
. (5.1)

The vector B̂† of real raising operators b̂†
x and b̂†

y is obtained by taking the Hermitian conjugate

of Eq. (4.52). It is convenient to define a dimensionless transverse coordinate vector R′ =
(x′,y′), such that

R′ =
1

γ
R . (5.2)
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Figure 5.1: Graphical representation of the dimensionless basis discussed in the text.

Lines of constant x′ and y′ are depicted for different orientations of the ellipses of con-

stant intensity of the fundamental mode, where the ellipticity is fixed. The eigenvalues

of γ , which determine the ellipticity, are γx = 3γy. The angle ψ of the orientation of γ
determines the angle between x axis and the long axes of the ellipses. In (a) and (b) we

have ψ = 0 and ψ = π/2, respectively, which gives rise to orthogonal coordinates with

different units. In (c) we have ψ = π/4 and the coordinates are non-orthogonal.

Then we have

B̂† =
1√
2

(
R̂′− iP̂′) , (5.3)

where in the coordinate representation P̂′ = −i∂/∂R′.
The new dimensionless basis (5.2) of transverse coordinates depends on γ and is not

orthogonal in general. The matrix γ determines the orientation and ellipticity of the ellipses

of constant intensity of the fundamental mode profile. In Fig. 5.1 lines of constant x′ and y′

are depicted for different orientations of the ellipses of constant intensity of the fundamental

mode, where the ellipticity is fixed. The angle ψ is the angle between the x axis and the

long axes of the ellipses. For ψ = 0 and ψ = π/2, the ellipses are oriented along the x and y

axes, and the dimensionless coordinates x′ and y′ are orthogonal, but with different units. For

ψ = π/4 the dimensionless coordinates are non-orthogonal.

The state of the light beam is given by

|un0〉 =
1√
n!

(â†
1)

n|u00〉 , (5.4)

which follows from (4.25) with m = 0. By using the mode profile u00(R) in Eq. (4.1) it

follows that the higher-order mode profiles are given by

un0(R) =
1√

n!π2n detγ
exp

(
−1

2
RαR

)

×
n

∑
k=0

n!

k!(n− k)!
(σ∗

1x)
k
(
σ∗

1y

)n−k
Hk

(
x′
)

Hn−k

(
y′
)

,

(5.5)
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5. Vortices in Gaussian light beams

where Hn(x) are the Hermite polynomials defined in Eq. (4.61), and where the dimensionless

coordinates x′ and y′ are given by (5.2). The matrix elements σ1x and σ1y of the matrix σ
are expressed in terms of the spherical angles θ and φ of the point on the Hermite-Laguerre

sphere. We write

σ1x =
1√
2

[exp(iφ/2)cos(θ/2)+ exp(−iφ/2)sin(θ/2)] ,

σ1y =
1

i
√

2
[exp(iφ/2)cos(θ/2)− exp(−iφ/2)sin(θ/2)] .

(5.6)

It can be checked that the expressions in Eq. (5.6) satisfy Eq. (4.59). The expression for the

higher-order mode profiles can be written in terms of a single Hermite polynomial by using

a special case of the summation theorem for Hermite polynomials, which reads [43]

n

∑
k=0

n!

k!(n− k)!
(dx)

k (dy)
n−k

Hk(x)Hn−k(y) =
(
d2

x +d2
y

)n/2
Hn


 dxx+dyy√

d2
x +d2

y


 , (5.7)

where dx and dy are (complex) numbers. Using this relation we find that

un0(R) =
(sinθ)n/2

√
n!π2n detγ

Hn

(
1√

2sinθ
f (x′,y′)

)
exp

(
−1

2
RαR

)
, (5.8)

where

f (x′,y′) = exp(−iφ/2)cos(θ/2)
(
x′ + iy′

)
+ exp(iφ/2)sin(θ/2)

(
x′− iy′

)
. (5.9)

Astigmatic Hermite-Gaussian (HG) modes are characterised by a point on the equator of

the Hermite-Laguerre sphere, for which we have θ = π/2. The mode profiles are then given

by

un0(R) =
1√

n!π2n detγ
Hn

(
x′ cos(φ/2)+ y′ sin(φ/2)

)
exp

(
−1

2
RαR

)
, (5.10)

which is a rotated version of the astigmatic HG modes in Eq. (4.60) with m = 0. The astig-

matic Laguerre-Gaussian (LG) modes are characterised by a point on the north or south pole

of the Hermite-Laguerre sphere, for which we have θ = 0 and θ = π , respectively. When

approaching one of the poles, only the highest-order term of the Hermite polynomial in the

expression (5.8) for the mode profiles survives. By using that limx→∞ x−nHn(x) = 2n, we find

that the mode profiles are given by

un0(R) =
1√

n!π detγ
exp(∓inφ/2)

(
x′± iy′

)n
exp

(
−1

2
RαR

)
, (5.11)

where the plus and minus signs apply to the north and south pole, respectively. The phase

factor exp(∓inφ/2), which expresses from which longitude on the sphere the pole is ap-

proached, is a geometric, or Berry phase [44]. When γ is isotropic, Eq. (5.11) is identical

to the profiles of the familiar non-astigmatic LG modes with mode numbers l = ±n and

p = 0 [26].
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5.2.2 Position of the vortices

The centres of the vortices, or phase singularities, are located at positions in the transverse

plane at which both the real and imaginary parts of the complex mode profile vanish. The

mode profile in Eq. (5.8) can only vanish when the Hermite polynomial vanishes. The

Hermite polynomial Hn has n zeroes, which occur at the n real values c j. It follows that the

mode profile vanishes at the positions determined by

f (x′,y′) = c j

√
2sinθ , j = 1,2, ..,n , (5.12)

where f (x′,y′) is given in Eq. (5.9). The real part of (5.12) defines the n lines

x′ cos(φ/2)+ y′ sin(φ/2) = c j

√
2sinθ

1+ sinθ
j = 1,2, ..,n , (5.13)

where we used that cos(θ/2) + sin(θ/2) =
√

1+ sinθ . On the equator of the Hermite-

Laguerre sphere (θ = π/2) the function f (x′,y′) is real and the n lines in Eq. (5.13) are edge

dislocation lines [45]. This also follows immediately from Eq. (5.10). Off the equator the

imaginary part of f (x′,y′) vanishes at the line

y′ cos(φ/2) = x′ sin(φ/2) , (5.14)

which is a line through the centre of the beam. On this line there are n vortex centres, which

are located at the n crossings with the lines in Eq. (5.13). The orientation of this line is

determined by the azimuthal angle φ of the point on the Hermite-Laguerre sphere and by the

orientation and ellipticity of the intensity distribution, as determined by γ . The transverse

coordinate vectors R j of the centres of the vortices are given by

R j = c j

√
2sinθ

1+ sinθ
γ

(
cos(φ/2)
sin(φ/2)

)
, j = 1,2, ..,n , (5.15)

where we used (5.2). In case that θ = 0, all the vortex centres coincide on the optical axis,

which is expected for astigmatic LG modes, and can be seen immediately from Eq. (5.11).

When the beam propagates through free space the positions of the vortex centres change.

In each transverse plane z the positions of the vortex centres are given by Eq. (5.15) where

for θ , φ and γ the values in the plane z must be taken. In general the vortex centres follow a

complicated trajectory upon propagation. The expression for the positions of the vortex cen-

tres in Eq. (5.15) is a generalisation of a result by Bekshaev et al. [41] to general astigmatic

modes. For non-astigmatic modes the point on the Hermite-Laguerre sphere is independent

of z. As a consequence, the vortex centres lie on a fixed line through the centre of the beam,

and the distance to the centre scales with the spot size γ of the beam. The angle of this line

with the x axis is then simply half the azimuthal angle of the point on the Hermite-Laguerre

sphere.

5.2.3 Charge and morphology

Besides the position of the centre, other properties of a vortex are its charge and morphology.

For a vortex with topological charge q, the phase change around the vortex centre in the
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5. Vortices in Gaussian light beams

anti-clockwise direction is given by 2πq. The morphology expresses how the phase changes

around the vortex centre. When the increase of the phase around the vortex centre is constant,

the vortex is called canonical. For a canonical vortex of charge ±1 located on the optical axis,

the beam profile in the vicinity of the vortex is ∝ x± iy =
√

x2 + y2 exp(±iφ), where φ is the

azimuthal angle. When the lowest-order term in the expansion of the mode profile around the

vortex centre is a linear term, the vortex has a unit charge. This linear term can be written as

ξ (x+ iy− x0 − iy0)+ζ (x− iy− x0 + iy0) , (5.16)

where ξ and ζ are the parameters which determine the morphology. The morphology of the

vortex can then be represented by a point on a sphere, the morphology sphere [42], in the

same way as the nature of the higher-order modes is represented by a point on the Hermite-

Laguerre sphere. The spherical angles of the point on the sphere are defined by

cos(θm) =
|ξ |2 −|ζ |2
|ξ |2 + |ζ |2 ,

exp(iφm) =
ξ ∗ζ

|ξ ||ζ | .

(5.17)

On the northern hemisphere |ξ |> |ζ |, and the term x+ iy dominates so that the charge is +1,

while on the southern hemisphere the term x− iy dominates and the charge is −1. On the

equator the terms balance, and there is an edge dislocation line. The north pole and south

pole, for which θm = 0 and θm = π , respectively, represent the cases for which the vortex is

canonical, because then only one of both terms is present.

Since the zeroes of the Hermite polynomials are all different, the lowest-order term in the

expansion around a zero is always a linear term. Since the function f (x′,y′) in (5.9) is first

order in x′ and y′, the vortices in the modes un0(R) in Eq. (5.8) have a charge ±1, where

the sign depends on which hemisphere the point on the morphology sphere is. The function

f (x′,y′) determines the morphology and it follows that the morphology of all the vortices

is the same. We determine the morphology for the special case that the modes are non-

astigmatic. In that case the dimensionless coordinates in (5.2) are simply given by x′ = x/γ
and y′ = y/γ , where γ is the spot size. By using (5.9) and (5.17) we find that

θm = θ , φm = φ . (5.18)

Thus for non-astigmatic modes the point on the Hermite-Laguerre sphere has the same lo-

cation as the point on the morphology sphere, which characterises the morphology of the

vortices in the modes.

5.3 Vortices imposed on Gaussian beams

5.3.1 Position of the vortex

We consider the evolution of a vortex that is imposed on an astigmatic Gaussian beam

propagating through free space. A vortex of unit charge of which the centre is located at

R0 = (x0,y0) is imposed by multiplying the beam profile with the function E0(R−R0), where
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R is the transverse coordinate vector, and E0 is a row vector, which determines the morphol-

ogy of the vortex [33]. For a canonical vortex with charge ±1 we have E0 = (1,±i). In

operator form the vortex is imposed by application of the operator E0(R̂−R0). When the

vortex is imposed in the plane z = 0, the resulting (un-normalised) state is given by

|u(0)〉 = E0(R̂−R0)|u00(0)〉 . (5.19)

The state in the transverse plane z is found by applying the propagation operator Û(z) in Eq.

(4.8) to the state |u(0)〉. This gives

|u(z)〉 = E0

(
Û(z)R̂Û†(z)−R0

)
|u00(z)〉 = E0

(
R̂− z

k
P̂−R0

)
|u00(z)〉 . (5.20)

The mode profile in the coordinate representation is found by using that the operator P̂ =
−i∂/∂R gives iα(z)R when acting on the mode function (4.37). Since the z dependence of

α(z) is complicated, it is more convenient to use an expression in terms of µ(z) in Eq. (4.39).

By using that α = µ−1 we find that

u(R,z) = E0

(
µ−1(z)µ(0)R−R0

)
u00(R,z) . (5.21)

The position of the vortex centre is found by the requirement that u(R,z) vanishes, which is

satisfied when

E0µ−1(z)µ(0)R = E0R0 . (5.22)

We consider the case of a canonical vortex of charge +1 that is imposed on a non-

astigmatic Gaussian beam, with the plane z = 0 as the focal plane. Then µ(z) is a complex

number (b+ iz)/k times the unit matrix, with b the Rayleigh range. It follows from Eq. (5.22)

that the position of the vortex centre in the plane z is given by

x+ iy =
b+ iz

b
(x0 + iy0) . (5.23)

We find that the position of the vortex centre is given by

x = x0 −
z

b
y0 , y = y0 +

z

b
x0 . (5.24)

It follows that the vortex remains canonical, and moves on a straight line [33]. It traces a path

in the transverse plane that is directed normal to the position R0 in the focal plane, where the

distance from the optical axis is smallest. The variation of the azimuthal angle of the vortex

position is identical to the variation of the Gouy phase. When going from focus to infinity,

this azimuthal angle varies over π/2.

When a vortex is imposed on an astigmatic Gaussian beam, the trajectory of the vortex

centre is no longer a straight line, and the morphology of the vortex changes, except for a

special case. When E0 is an eigenvector of µ(0), it is also and eigenvector of µ(z), since

µ(z) = µ(0)+ iz/k. Then the matrices µ(z) and µ(0) in Eq. (5.22) can be replaced by their

eigenvalues, which gives rise to a vortex with a constant morphology of which the centre

moves on a straight line. This is remarkable since the intensity distribution of the astigmatic

Gaussian beam tumbles upon propagation.
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5. Vortices in Gaussian light beams

5.3.2 Change of the vortex charge

We want to demonstrate that in the case of astigmatism, the charge of the vortex can change

sign during propagation. For large values of z, for which µ(z) → iz/k, it follows from Eq.

(5.21) that the mode profile is given by

u(R,z) =
k

iz
E0

(
µ(0)R− iz

k
R0

)
u00(R,z) . (5.25)

We consider the case that a canonical vortex of charge +1 is imposed on a simple astigmatic

Gaussian beam in the plane z = 0. We have E = (1, i), and for µ(0) = µ0 + iµ1 we use the

expressions

µ0 =

(
m0x 0

0 m0y

)
, µ1 =

(
−z0/k 0

0 −z1/k

)
, (5.26)

so that the planes z = z0 and z = z1 are the focal planes of the beam. By using these ex-

pressions it follows from Eq. (5.16) that for large values of z the morphology parameters are

given by

ξ =
1

2
(m0x +m0y)−

i(z0 + z1)

2k
, ζ =

1

2
(m0x −m0y)−

i(z0 − z1)

2k
. (5.27)

We see that the vortex is not canonical anymore for large values of z. When |ξ | > |ζ |, the

charge of the vortex is +1, while for |ξ | < |ζ |, the charge of the vortex is −1 for large values

of z. Since at z = 0 the charge of the imposed vortex is +1, it follows that in the latter case the

charge of the vortex changes sign upon propagation. In the plane where the sign of the charge

of the vortex changes, the vortex vanishes, giving rise to an edge dislocation. It follows from

the expressions for ξ and ζ in Eq. (5.27), that the charge of the imposed vortex changes sign

upon propagation when

m0xm0y +
z0z1

k2
< 0 . (5.28)

Since det µ0 = m0xm0y > 0, it follows that this requirement can only be satisfied when z0z1 <
0. Therefore, for a simple astigmatic beam the vortex charge can only change sign when the

vortex is imposed in between the focal planes of the beam.

5.3.3 Interaction between vortices

We study the interaction between vortices by imposing two vortices on an astigmatic Gauss-

ian beam. Similar to Eq. (5.20) we write

|u(z)〉 = E1

(
R̂− z

k
P̂−R1

)
E0

(
R̂− z

k
P̂−R0

)
|u00(z)〉 , (5.29)

where R0 and R1 are the positions of the vortex centres in the plane z = 0 and where E0 and

E1 determine the morphologies of the vortices. The difference with the case of the single

vortex is that the operator P̂ of the second vortex, which is a differentiation in the coordinate
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representation, does not only operate on the profile 〈R|u00〉, but also on the first vortex. As a

consequence, there is interaction between the vortices in general. We find that

u(R,z) =
[
E1

(
µ−1(z)µ(0)R−R1

)
E0

(
µ−1(z)µ(0)R−R0

)

+
iz

k
E0µ−1(z)µ(0)ET

1

]
u00(R,z) .

(5.30)

The last term between the square brackets is the interaction term, which vanishes for special

cases.

In case that the Gaussian beam on which the two vortices are imposed is non-astigmatic,

µ(z) is a complex number times the unity matrix. Then the interaction term is proportional

to the inner product E0ET
1 . We express E0 and E1 in terms of the morphology parameters

ξm0 and ζm0, and ξm1 and ζm1, respectively. The interaction term is then proportional to

ξm0ζm1 + ζm0ξm1. It follows from Eq. (5.17) that the interaction vanishes when the vortices

are represented by points on the morphology sphere which have the same latitude, but for

which the azimuthal angles differ by π . When both vortices are canonical with the same sign

of the charge, this condition is satisfied, since then both vortices are represented by points

on the north or the south pole of the morphology sphere. Without interaction the two vortex

centres follow a straight line and their morphologies are constant, just like for a single vortex.

When two canonical vortices of the same charge are imposed on an astigmatic Gaussian

beam, the interaction term vanishes only for specific choices of µ(0). Since for canonical

vortices of the same charge E0ET
1 = 0, it follows that the interaction term vanishes in the

plane z = 0 when µ(0) has E0 = E1 = (1,±i) as an eigenvector. If z = z0 and z = z1 are the

focal planes of the astigmatic Gaussian beam, the matrix µ(0) has (1,±i) as an eigenvector

when

µ(0) =

(
m0 − iz0/k ±(z0 − z1)/2k

±(z0 − z1)/2k m0 − iz1/k

)
, (5.31)

with real m0 > |z0 − z1|/2k. This corresponds to the case of maximal astigmatism. Since

µ(z) = µ(0)+ iz/k, it follows that (1,±i) is also an eigenvector of µ(z). The matrices µ(z)
and µ(0) in Eq. (5.30) can then be replaced by their eigenvalues. As a consequence, the

interaction vanishes for all values of z. Then the two vortices remain canonical and their

centres move on a straight line.

When more than two vortices are imposed on a non-astigmatic Gaussian beam, the in-

teraction terms all vanish when EiE
T
j = 0 for all the combinations of two vortices. This can

only occur when all the imposed vortices are canonical of the same charge, as represented

by a point on the north or the south pole of the morphology sphere. The vortices are then

independent and move on a straight line. When more than one vortex is imposed on a single

position, a vortex of higher charge is formed, which is stable and follows a straight line as

well, because the vortices that constitute it follow the same straight line. When more than two

canonical vortices of the same charge ±1 are imposed on the maximal astigmatic beam de-

scribed by (5.31), all the interaction terms vanish as well. Then the vortices remain canonical

and their centres move on a straight line.
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5. Vortices in Gaussian light beams

5.4 Dark rays

5.4.1 Propagation through lens guide

We consider the propagation of a non-astigmatic Gaussian beam with imposed canonical

vortices through a lens guide of non-astigmatic lenses. The waist of the beam is in the input

plane of the lens guide and the beam is located on axis. In the input plane multiple canonical

vortices of charge +1 are imposed on the beam. A canonical vortex of charge +1 is imposed

at the position (x0,y0) by operating with the operator x̂ + iŷ− x0 − iy0 on the state of the

fundamental mode. In terms of the circular ladder operators defined in Eq. (3.32) we can

write

x̂+ iŷ = γ
(

â− + â
†
+

)
, (5.32)

where γ is the spot size of the Gaussian beam at the waist. It follows that the (un-normalised)

state |u〉 with N vortices at the positions (xm,ym) is given by

|u〉 =

{
N−1

∏
m=0

[
γ
(

â− + â
†
+

)
− xm − iym

]}
|u00〉 . (5.33)

At the waist of the beam the state |u00〉 is identical to the ground state of the two-dimensional

isotropic harmonic oscillator. Therefore, the state |u〉 is a linear combination of the states

|un+n−〉 with n− = 0, since operation with the lowering operator â− on |u00〉 gives zero.

The state at the output plane of the lens guide is found by applying the Iwasawa decom-

position (3.14) for the unitary operator Û of the lens guide to the state at the input plane. The

parameters θ , ξ and α of the Iwasawa decomposition are expressed in terms of the elements

of the ABCD matrix of the lens guide in Eq. (3.16). We use the Iwasawa decomposition for

both transverse dimensions. The exponential term in the Iwasawa decomposition containing

the harmonic oscillator Hamiltonian is written in terms of the circular ladder operators as

exp

[
−i

θ

2
(n̂+ + n̂− +1)

]
, (5.34)

as is done in Eq. (3.33). Since the state |u〉 in the input plane is a linear combination of

states with n− = 0, it follows that the operation with (5.34) is, within a phase factor, identical

to the operation with exp(−iθ l̂z/2), where l̂z = n̂+ − n̂− is the angular-momentum operator

defined in Eq. (3.31). As a consequence, operation with (5.34) gives rise to a rotation of

the beam profile about the z axis over an angle θ/2 in the counter-clockwise direction. The

exponential term in the Iwasawa decomposition containing T̂1 scales the beam profile with

the factor exp(ξ/2) in both transverse dimensions. The exponential term that introduces the

curved wave fronts is not important for the study of the vortices.

It follows that the coordinate vectors of the vortex centres are rotated over the angle θ/2,

after which they are multiplied with the factor exp(ξ/2). Then the vortex located at the

transverse coordinates (x0,y0) in the input plane of the lens guide, is located in the output
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Figure 5.2: Lens guide where a lens with focal distance f is located at a distance L1

from the input plane, and a distance z from the output plane.

plane at the transverse coordinates

x = exp

(
ξ

2

)[
x0 cos

(
θ

2

)
− y0 sin

(
θ

2

)]
= Ax0 −

B

b
y0 ,

y = exp

(
ξ

2

)[
y0 cos

(
θ

2

)
+ x0 sin

(
θ

2

)]
= Ay0 +

B

b
x0 ,

(5.35)

where we used Eq. (3.16) to express θ and ξ in terms of the elements A and B of the ABCD

matrix of the lens guide. It is also clear that the vortices move independently. For a canonical

vortex with charge −1 the same results hold, but the angle θ must be replaced by −θ .

5.4.2 Change in the propagation direction of the vortex

We consider a canonical vortex of charge +1 that is imposed on a non-astigmatic Gaussian

beam at the position (x0,y0) at the waist of the beam. After propagation through free space

over a distance z, the position of the vortex centre is given by Eq. (5.35), where A and B are

the matrix elements in the first row of the ABCD matrix for free space propagation over a

distance z. From (3.8) we obtain A = 1 and B = z, and by substitution in (5.35) we recover

Eq. (5.24), which describes a straight line. It follows that the trajectory of the vortex centre

in the transverse plane is described by the line x0x+y0y = x2
0 +y2

0. The vector (x0,y0), which

is perpendicular to this line, is the coordinate vector of the vortex centre at the waist of the

beam. The action of a lens does not change the position of the vortex centre, since the beam

profile is multiplied with a parabolic phase factor, but the direction of propagation of the

vortex centre is changed due to the lens.

In order to calculate the change of the transverse propagation direction of the vortex centre

due to the lens we consider the lens guide in Fig 5.2. A lens with focal distance f is located at

a distance L1 from the input plane of the lens guide. The distance from the lens to the output

plane of the lens guide is z. The ABCD matrix M for the lens guide is given by

M = M f (z)Ml( f )M f (L1) =

(
1− z

f
L1 + z

(
1− L1

f

)

− 1
f

1− L1
f

)
, (5.36)

where M f (z) and Ml( f ) are given in Eqs. (3.8) and (3.9), respectively. In the input plane

of the lens guide at the waist of the beam the vortex is imposed at the position (x0,y0). The

expressions for A and B, which are the matrix elements in the first row of M, are substituted
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5. Vortices in Gaussian light beams

in (5.35), describing the position of the vortex in the output plane of the lens guide as a

function of z. By eliminating z we find that behind the lens the trajectory of the vortex centre

is described by the line

[(
1− L1

f

)
x0 −

b

f
y0

]
x+

[(
1− L1

f

)
y0 +

b

f
x0

]
y = x2

0 + y2
0 . (5.37)

The vector perpendicular to this line can be read off immediately. Before the lens the vector

perpendicular to the line of propagation of the vortex centre in the transverse plane is (x0,y0).
It follows that the angle between the lines before and after the lens is given by

cosαv =
f −L1√

( f −L1)
2 +b2

. (5.38)

Due to the lens the direction in the transverse plane in which the vortex centre moves, rotates

over an angle αv in the counter-clockwise direction. Notice that αv depends on the distance

between the lens and the waist of the beam, but that it is independent of the initial position of

the vortex centre. We conclude that inside the lens guide the trajectory of the vortex centre

is described by straight lines, which change direction at the lenses. Since the intensity of the

light beam vanishes at the vortex centre, the trajectory can be considered a dark ray.

5.4.3 Vortex modes of a resonator at degeneracy

We consider the symmetric two-mirror resonator in Fig. 3.1. The Rayleigh range of the

Gaussian fundamental mode is given by Eq. (3.25). We follow the centre of a canonical

vortex of charge +1 that is imposed on the Gaussian fundamental mode of the resonator. At

the mirror the transverse direction of propagation of the vortex centre rotates over the angle

αv. With the values f = R/2 and z = L1 = L/2 the lens guide in Fig. 5.2 is the lens guide

for half a round trip inside the resonator. With these values and the Rayleigh range given by

(3.25) we find that cosαv = g. We see that αv is the Gouy phase of the fundamental mode of

the resonator for half a round trip.

When 2Nαv = 2πK, where N and K are integer numbers with no common divisor, the

vortex returns to its initial position after N full round trips in the resonator. This corresponds

to the case of an N-fold degenerate resonator (see Section 2.4). We now construct a vortex

mode by imposing N canonical vortices of charge +1 on the Gaussian fundamental mode of

the N-fold degenerate resonator. When the vortex centres are spread evenly over a circle, it

immediately follows that the beam with the vortices is a mode, since the vortices exchange

positions after a round trip. The coordinates (xm,ym) of the initial positions of the vortex

centres are expressed as

xm + iym = exp

(
−2πim

N

)
(x0 + iy0) m = 0,1, ..,N −1 , (5.39)

where (x0,y0) are the initial coordinates of one of the vortex centres, which can be chosen

freely. With these coordinates of the vortex centres, the vortex state in the plane in the mid-

dle of the resonator is given by Eq. (5.33), where the Gaussian mode profile u00(R) has a
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Figure 5.3: The trajectory of the vortex centres in the vortex mode for the two cases of

three-fold degeneracy. In between the mirrors the trajectories are straight lines, while

at the mirrors the vortex centres change their directions of propagation. The circles

and the pluses indicate the positions of the vortex centres at the waist of the beam in

the middle of the resonator for the wave that propagates to the right and to the left,

respectively. In (a) we have g = 1/2 and the trajectory is a regular hexagon, while in

(b) g =−1/2 and the trajectory is an equilateral triangle, which is traversed twice after

three round trips.

Rayleigh range given by Eq. (3.25). We find that the (un-normalised) vortex state is given by

|u〉 =
γ N

√
N!

|uN0〉− (x0 + iy0)
N |u00〉 . (5.40)

The vortex mode is simply a linear combination of the fundamental mode and the LG eigen-

mode of the resonator with mode numbers l = N and p = 0. These modes have the same

round trip Gouy phase in case of N-fold degeneracy. The vortex modes are special cases of

the geometric modes discussed in Chapter 2.

In Fig. 5.3 the trajectory in the transverse plane of the vortex centres in the vortex mode

is given for the resonator configurations with g = ±1/2. In both cases we have three-fold

degeneracy, but for g = 1/2 the direction of propagation of the vortex centres rotates over the

angle π/3 after reflection by a mirror, while for g = −1/2, the angle is 2π/3. In the former

case the trajectory of the vortex centres is a regular hexahedron, while in the latter case it is a

equilateral triangle, which is traversed twice after three round trips.

When a vortex centre in the vortex mode is followed during propagation, it follows a

closed trajectory. Since the trajectory of a vortex centre is a black ray, the vortex mode

contains a black ray that retraces itself after N round trips. This is similar to a displaced

Gaussian beam, of which the centre retraces itself after N round trips (see Section 2.5). A

difference is that the vortex mode is on axis. Also, the reflection of a light ray by a mirror

only depends on the position and slope of the light ray, while for a dark ray it depends on the

properties of the Gaussian mode on which it is imposed.

We assumed that the waist of the mode is in the centre of the resonator, which is not

necessary in case of degeneracy. A more general vortex mode is obtained by unfolding the
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5. Vortices in Gaussian light beams

resonator into an N-fold lens guide (see Section 2.5). As an input we use a Gaussian beam

with an arbitrary spot size, which does not have to have a waist in this plane, on which

a canonical vortex of charge +1 is imposed. When the lens guide is folded back into a

resonator, automatically we obtain a mode. It contains a black ray which retraces itself after

N round trips. The trajectory of the vortex centre is again a polyhedron, which is in general

not regular as in Fig. 5.3.

5.5 Conclusions

We derived an expression for the positions of the vortex centres in the higher-order astigmatic

modes with mode numbers n and m, where m = 0, which is a generalisation of the result by

Bekshaev et al. [41] to general astigmatism. These modes contain n vortices of the same

charge and morphology which are located on a line through the centre of the beam. When the

point on the Hermite-Laguerre sphere characterising the higher-order modes is on the equator

the vortices vanish, giving rise to n edge dislocation lines. The morphology of the vortices is

represented by a point on the morphology sphere. For non-astigmatic beams the point on the

Hermite-Laguerre sphere that characterises the higher-order modes is the same as the point

on the morphology sphere representing the morphology of the vortices in the mode.

By imposing mathematical vortices on astigmatic Gaussian beams, the propagation prop-

erties and interaction of vortices were studied. When a vortex is imposed on an astigmatic

Gaussian beam which propagates through free space, the sign of the vortex charge can change

upon propagation. When several canonical vortices with the same sign of the charge are im-

posed on a non-astigmatic Gaussian beam, the vortex trajectories are straight lines and there

is no interaction between the vortices, which is also the case when the vortices are imposed

on a maximal astigmatic beam under certain conditions. We conclude that in general when

several vortices are imposed on a Gaussian beam and the vortex centres move on a straight

line, there is no interaction between the vortices.

When a canonical vortex is imposed on a non-astigmatic Gaussian beam that propagates

through a lens guide, the vortex centre moves on a straight line between the lenses, while

changing direction at the lenses. The intensity of the light beam at the vortex centre vanishes,

and therefore the trajectory of the vortex centre represents a dark ray. In a degenerate res-

onator a dark ray forms a closed trajectory, similar to a light ray of a geometric mode. We

derived an expression for the beam profile of such a vortex mode. When the waist of the

vortex mode is in the middle of the resonator, the trajectory of the dark ray in the transverse

plane is a regular polyhedron. At the mirrors the transverse direction of propagation rotates

over an angle which is equal to half the round trip Gouy phase of the Gaussian fundamental

mode of the resonator.
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CHAPTER 6

Using paraxial quantum operators

In many optical experiments the light fields propagate in well-defined directions. The

transverse profiles of these light beams satisfy the paraxial wave equation. For a descrip-

tion in the single-photon regime we define paraxial creation and annihilation operators

and write the expression for the electric-field operator in terms of these operators. Then

we apply the paraxial approximation and generalise the description to include the prop-

agation through an arbitrary optical system. The paraxial creation operator creates a

photon in a paraxial mode that is localised in one point in a specific transverse plane.

This allows for a very simple description of the two-photon state created by the process of

spontaneous parametric down-conversion, where the photons of a twin are created at the

same location in the crystal. As an application we study quantitatively a quantum-eraser

scheme by Zeilinger.
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6. Using paraxial quantum operators

6.1 Introduction

In a general optical experiment a light field is created by a source, after which the field

propagates through an optical system towards a detector, which detects the intensity of the

field. Inside the optical system the field propagates in well-defined directions, along the axis

of the optical system. Then it is allowed to apply the paraxial approximation to the description

of the field, which becomes much simpler than a general description in terms of solutions of

the Maxwell equations. For experiments in the single-photon regime, such as experiments

with twin photons, a quantum description is used where the electric field is quantised in terms

of plane waves. Since in these experiments the paraxial approximation is usually also valid,

it is useful to apply the paraxial approximation to the quantum description as well. Deutsch

and Garrison [46] restrict the Hilbert space to states where the photons propagate in a well-

defined direction. In this Chapter we define paraxial creation and annihilation operators, and

write the expression for the electric-field operator in terms of these operators. Then we apply

the paraxial approximation and generalise the description to include the propagation through

a general optical system.

The paraxial creation operator creates a photon in a paraxial mode that is localised in

one point in a specific transverse plane. It is not evident that such modes can exist, because

Maxwell’s equations require that in vacuum the divergence of the electric field vanishes. In

order for the divergence of the electric field to vanish, the transverse profile of a light beam

must be constant, like for a plane wave. Clearly, a mode of which the profile is localised

in one point in a specific transverse plane, does not satisfy this requirement. Lax et al. [2]

showed that in the paraxial approximation the transverse profile is allowed to vary and that the

divergence of the electric field vanishes when corrections to the paraxial solution are taken

into account.

As an application we use the paraxial creation and annihilation operators for a descrip-

tion of the creation and detection of twin photons. Twin photons are created by the process of

spontaneous parametric down-conversion (SPDC) in a non-linear crystal [47]. Since the pho-

tons of a twin are created at the same location inside the crystal, it is advantageous to write

the two-photon state in terms of paraxial creation operators that create photons in modes that

are localised in one point in the plane of the crystal. After propagation through an optical sys-

tem, the photons of a twin are detected in coincidence by two point detectors. The detection

is described by the application of annihilation operators that annihilate photons in modes that

are localised in one point in the detector plane. By using the transfer functions of the optical

systems these annihilation operators are then expressed in terms of annihilation operators of

photons in modes localised in one point in the crystal plane. This gives rise to a very simple

description of twin-photon experiments.

In Section 6.2 we define the paraxial creation and annihilation operators, express the

electric-field operator in terms of these operators and apply the paraxial approximation. In

Section 6.3 we write the two-photon state created by SPDC in terms of paraxial creation oper-

ators, and describe the detection of the twin photons by using paraxial annihilation operators.

In Section 6.4 we consider, as an example of a twin-photon experiment, a scheme that is

reminiscent of the eraser scheme of Zeilinger [48], and determine the coincidence detection

rate.
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6.2 Paraxial operators

6.2.1 Electric-field operator

The positive-frequency part of the electric-field operator in the Heisenberg picture is given

by

~̂E+(~r, t) = i

∫
d~k

√
h̄ω(k)

2ε0(2π)3
exp
[
i~k ·~r− iω(k)t

]
∑
λ

~ελ (~k)âλ (~k) , (6.1)

where âλ (~k) creates a photon with wave vector~k and polarisation vector~ελ (~k) at time t = 0.

The dispersion relation in vacuum is given by ω(k) = ck. The annihilation operator âλ (~k)
satisfies the commutation rules

[
âλ (~k), â†

λ ′(~k
′)
]

= δλλ ′δ (~k−~k′) . (6.2)

For later convenience, we separate the wave vector as~k =~κ +kz~εz, with~κ in the xy plane,

normal to ~εz. In the spirit of the description of narrow light beams, we wish to replace the

variable kz specifying the wave vector by the frequency ω . For each value of ~κ and ω , there

are still two values kz = ±
√

ω2/c2 −κ2, corresponding to a beam propagating to the right

(r) or to the left (l). We look for annihilation operators âλ s(~κ,ω), with s = r, l, obeying the

modified commutation rules

[
âλ s(~κ,ω), â†

λ ′s′(~κ
′,ω ′)

]
= δλλ ′δss′δ (~κ −~κ ′)δ (ω −ω ′) . (6.3)

Since

δ (~k−~k′) = δ (~κ −~κ ′)δ (ω −ω ′) |dkz/dω | , (6.4)

the commutation rules (6.3) require the identification

âλ (~k) = âλ s(~κ,ω)
√
|dω/dkz| , (6.5)

where s = r and s = l, for kz > 0 and kz < 0, respectively. We have

|dω/dkz| = c
√

ω2 − c2κ2/ω = c|cosθ | , (6.6)

where θ is the angle between ~k and ~εz. The positive-frequency part of the electric-field

operator in Eq. (6.1) can then be written as

~̂E+(~r, t) =i

∫
d~κ
∫ ∞

cκ
dω

√
h̄ω

2ε0c(2π)3|cosθ | exp(i~κ ·~ρ − iωt)

× exp
(

i
ωz

c
cosθ

)
∑
λ

~ελ r(~κ,ω)âλ r(~κ,ω)+(to the left) ,

(6.7)

where ’to the left’ is the left-propagating part, which is found by replacing r by l and cosθ
by −cosθ .
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6. Using paraxial quantum operators

We define the two-dimensional Fourier transform of âλ s(~κ,ω) as

âλ s(~κ,ω) =
1

2π

∫
d~ρ exp(−i~κ ·~ρ)âλ s(~ρ,ω) , (6.8)

where ~ρ lies in the xy plane. We will call âλ s(~ρ,ω) the paraxial annihilation operator. The

commutation rules follow from Eq. (6.3):
[
âλ s(~ρ,ω), â†

λ ′s′(~ρ
′,ω ′)

]
= δλλ ′δss′δ (~ρ −~ρ ′)δ (ω −ω ′) . (6.9)

Now the paraxial approximation is applied to the expression for the electric-field operator

in Eq. (6.7). Instead of applying the approximation to the operators, Deutsch and Garrison

[46] put a restriction on the Hilbert space. We define~εz as the direction of propagation. The
~k space is restricted to a cone around the direction of ~εz with a small opening angle. In the

expression for the positive-frequency part of the electric-field operator in Eq. (6.7) the left-

propagating part is left out. To simplify the notation the label r is dropped. In the restricted~k
space we have

cosθ =

√
1− c2κ2

ω2
≈ 1− c2κ2

2ω2
. (6.10)

Since cosθ varies slowly with ~κ and ω , the cosθ inside the square root in (6.7) is approxi-

mated by 1. In the integration over ω , the lower bound cκ is replaced by 0. In the restricted~k
space it is justified to choose a basis for the polarisation that is independent of ~κ and ω , and

therefore~ελ (~κ,ω) is replaced by~ελ , which lies in the xy plane. In the paraxial approximation

the positive-frequency part of the electric-field operator in Eq. (6.7) is then given by

~̂E+(~r, t) = i

∫ ∞

0
dω

√
h̄ω

4πε0c

∫
d~ρ ′ h f (~ρ,~ρ ′;z,ω)

× exp [−iω(t − z/c)]∑
λ

~ελ âλ (~ρ ′,ω) ,

(6.11)

where

h f (~ρ,~ρ ′;z,ω) =
1

(2π)2

∫
d~κ exp

[
iκ · (~ρ −~ρ ′)

]
exp

(
− iczκ2

2ω

)
. (6.12)

The function (6.12) is the transfer function for free-space propagation, which describes

the field in the plane z due to a point source with frequency ω that is located in the plane

z = 0 at the transverse coordinate ~ρ ′, within the paraxial approximation. The functions

h f (~ρ,~ρ ′;z,ω) form for each value of z and ω a complete set of paraxial modes. The co-

ordinate ~ρ ′ designates the label of the modes while ~ρ is the transverse coordinate in space. In

each transverse plane z the modes form an orthogonal basis:
∫

d~ρ h f (~ρ,~ρ ′;z,ω)h∗f (~ρ,~ρ ′′;z,ω) = δ (~ρ ′−~ρ ′′) . (6.13)

From Eq. (6.12) it follows immediately that in the plane z = 0 we have

h f (~ρ,~ρ ′;0,ω) = δ (~ρ −~ρ ′) , (6.14)

and we see that in this plane the modes are localised in one point, with transverse coordinates

~ρ ′. Equation (6.11) has the standard structure as an integration over an annihilation operator

âλ (~ρ ′,ω) multiplied by the corresponding mode function.
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6.2.2 Interpretation of the paraxial creation operator

In the expression for the electric-field operator in Eq. (6.1) the annihilation operator âλ (~k)

appears in conjunction with the plane-wave mode exp(i~k ·~r). The corresponding creation op-

erator â
†
λ (~k) creates at t = 0 a photon in the polarisation state λ in this plane-wave mode. Sim-

ilarly, by considering Eq. (6.11), we conclude that the paraxial creation operator â
†
λ (~ρ ′,ω)

creates a photon in the mode exp(iωz/c)h f (~ρ,~ρ ′;z,ω), where ~ρ ′ and ω are the labels of the

mode, and (~ρ,z) are the coordinates in space. According to Eq. (6.14), the mode function is

a δ -function in the plane z = 0, which means that in this plane the mode is localised in one

point, with transverse coordinates ~ρ ′. It is also possible to define creation operators â†
nm(ω)

that create photons in the transverse modes unm(~ρ,z) which form other complete sets of so-

lutions of the paraxial wave equation, like Hermite-Gaussian or Laguerre-Gaussian modes.

The numbers n and m are then the mode labels. The operators ânm(ω) are expressed in terms

of â(~ρ,ω), and vice versa, as

ânm(ω) =

∫
d~ρ u∗nm(~ρ,0)â(~ρ,ω) ,

â(~ρ,ω) = ∑
nm

unm(~ρ,0)ânm(ω) .
(6.15)

So far we have only considered propagation in vacuum, but it is also possible that the light

beam propagates through an optical system that contains lenses, apertures and other optical

elements. In the paraxial approximation, when the profile of a light beam in the input plane of

the optical system is given, the profile at the output plane, or in any other transverse plane is

completely determined. Therefore it is always possible to define paraxial creation operators

â
†
λ (~ρ ′,ω, in) which create photons with polarisation λ in modes that are δ -functions in the

input plane, for which we take z = 0. The mode function with the labels ~ρ ′ and ω is then the

field due to a point source with frequency ω at the transverse location ~ρ ′ in the input plane.

The mode function at the transverse coordinate ~ρ in the output plane z of the optical system

is simply given by the transfer function of the optical system hλλ ′(~ρ,~ρ ′;ω), which is allowed

to depend on the polarisation λ . In the same way we define paraxial creation operators which

create photons in modes that are δ -functions in the output plane of the optical system. Similar

to Eq. (6.15), the output operators â
†
λ (~ρ,ω,out) are expressed in terms of the input operators

â
†
λ (~ρ,ω, in) as

âλ (~ρ,ω,out) = exp(iωz/c)
∫

d~ρ ′∑
λ ′

hλλ ′(~ρ,~ρ ′;ω)âλ ′(~ρ ′,ω, in)+ f̂λ (~ρ,ω) , (6.16)

where f̂ is a noise source, which appears when the optical system is not lossless [49]. In case

that there is scattering in the optical system, the noise operator f̂ arises from coupling to the

outside world. The presence of the noise term is needed in order to conserve the commutation

rules in Eq. (6.3). As we will see, the noise term is unimportant for the paraxial photon

detection rates. In the next Section we use the paraxial creation operators for a description of

twin photons created by the process of SPDC.
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6. Using paraxial quantum operators

Figure 6.1: A monochromatic pump beam creates collinear twin photons in a non-

linear crystal. After creation the twin photons pass a beam splitter. In the two output

channels of the beam splitter are optical systems at the end of which coincidences are

detected.

6.3 Spontaneous parametric down-conversion

6.3.1 Two-photon state

In the experiments with twin photons created by the process of SPDC in a non-linear crystal,

the photons that are to be detected propagate along the lines connecting the crystal and the

detectors. Since then the propagation directions are well-defined, it is advantageous to use a

description of the two-photon state in terms of paraxial creation operators. A paraxial creation

operator creates a photon in a mode that is localised in a single point in the output plane of the

crystal, which simplifies the description greatly, because the photons are created at the same

location in the crystal. We derive an expression for the two-photon state created by SPDC in

terms of paraxial creation operators and obtain an expression for the coincidence detection

amplitude.

We consider the scheme in Fig. 6.1. A pump beam creates collinear twin photons in a non-

linear crystal, which is cut such that there is type-I phase matching for collinearly propagating

twin photons. After creation the twin photons fall on a 50% : 50% beam splitter. In the output

channels of the beam splitter are optical systems, at the end of which the photons are detected.

The optical lines between the output plane of the crystal and the detection planes of detector

1 and 2 are referred to as the detection channels 1 and 2, respectively. Only coincidence

detection counts are considered for which one photon of a twin is detected in each channel.

In order to arrive at a simple expression for the two-photon state, we apply the paraxial

approximation to the electric-field operator that appears in the Hamiltonian for SPDC. In the
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interaction picture the Hamiltonian is given by [47]

ĤI(t) =
∫

C
d~r E+

p (~r, t)Ê−(~r, t)Ê−(~r, t) , (6.17)

where E+
p is a component of the positive-frequency part of the classical electric field of the

pump beam, and where Ê− is a component of the negative-frequency part of the electric-field

operator. The integration domain ranges over the space C that is occupied by the crystal. In

Chapter 8 polarisation aspects of SPDC are discussed. With the vacuum state |0〉 as the initial

state and the evolution governed by the Hamiltonian for SPDC in Eq. (6.17), the state at time

t is, up to first order, the two-photon state

|Ψ(t)〉 ∝

∫ t

∞
dt ′ HI(t

′)|0〉 . (6.18)

The Hamiltonian (6.17) contains the positive-frequency part of the electric field of the

pump beam, and the negative-frequency part of the electric-field operator. We apply the

paraxial approximation to these fields, and take~εz as the direction of propagation of the twin

photons and the pump beam. The output plane of the crystal is located at the plane z = 0.

We consider cases for which the pump beam is monochromatic with frequency ωp, while the

photons of a twin are detected in a narrow frequency band centred around ωp/2. We assume

that the crystal is thin so that the transverse profile of the pump field is constant inside the

crystal. Then the Rayleigh range of the pump beam must be larger than the thickness of the

crystal. For the pump field inside the crystal at the transverse coordinate ~ρ in the plane z we

write

E+
p (~r, t) = G(~ρ)exp [−iωp(t −npz/c)] , (6.19)

where np is the refractive index, which is determined by the frequency ωp and the polarisation

of the pump beam. The negative-frequency part of the electric-field operator in the paraxial

approximation is given by the Hermitian conjugate of Eq. (6.11). Since the photons of a

twin are detected around the frequency ωp/2, we replace ω in the square-root term inside the

integral over ω by ωp/2, and take it out of the integral. The transverse profile is assumed to

be constant inside the crystal, so we insert z = 0 into h f (~ρ,~ρ ′;z,ω) and use Eq. (6.14). We

drop the polarisation labeling, which is justified since the photons of the twin have identical

polarisations and the optical systems are insensitive to polarisation. Instead, we introduce

a label that refers to the detection channel. The negative-frequency part of the electric-field

operator inside the crystal is then written as

Ê−(~r, t) ∝

∫ ∞

0
dω exp [iω(t −ntz/c)]

[
â

†
1(~ρ,ω)+ â

†
2(~ρ,ω)

]
, (6.20)

where nt is the refractive index for the twin photons, which is determined by the frequency

ωp/2 and the polarisation. In this expression the paraxial creation operator â
†
i (~ρ,ω) creates

a photon in detection channel i = 1,2.

We insert Eqs. (6.19) and (6.20) into Eq. (6.18). The integration over the space occupied

by the crystal gives rise to the phase-matching condition. The integration over the longitu-

dinal coordinate z yields the longitudinal phase-matching condition, which is satisfied in our

case for collinear twin photons with the frequency ωp/2. The integration over t ′ gives rise
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6. Using paraxial quantum operators

to the frequency-matching condition, allowing only states where the frequencies of the pho-

tons of the twin add up to the pump frequency. Since the pump beam is monochromatic, the

two-photon state is in principle independent of time, and we can replace in Eq. (6.18) the

upper limit of the integration over t ′ by ∞. The two-photon state is then a superposition of

all the states where the frequencies of the photons of the twin add up to ωp. Since the twin

photons are detected with frequency ωp/2 we only retain the part of the superposition where

both photons of the twin have this frequency. Since we consider only coincidence detections,

the part of the state where both photons exit the beam splitter in the same output channel is

dropped. Under these assumptions the two-photon state can be written as

|Ψ〉 ∝

∫
d~ρ G(~ρ)â†

1(~ρ, in)â†
2(~ρ, in)|0〉 , (6.21)

where â
†
i (~ρ, in) creates a photon with frequency ωp/2 in detection channel i = 1,2 in the

mode that is a δ -function at the location ~ρ in the output plane z = 0 of the crystal. By writing

the two-photon state (6.21) in this form, it becomes clear that the photons of a twin are created

at the same transverse location, but that this location itself is uncertain within the pump spot,

which means that the twin photons are spatially entangled (see Chapter 7).

6.3.2 Coincidence detection rate

After creation the photons of a twin propagate through the detection channels. The amplitude

for the detection of a photon at position ~ρ1 in the plane of detector 1, in coincidence with the

detection of a photon at position ~ρ2 in the plane of detector 2, is given by

A(~ρ1,~ρ2) = 〈0|â1(~ρ1,out)â2(~ρ2,out)|Ψ〉 . (6.22)

where âi(~ρ,out) annihilates a photon with frequency ωp/2 in a mode that is a δ -function

at the location ~ρ in the plane of detector i = 1,2. As in Eq. (6.16) the ’out’ operators are

expressed in terms of the ’in’ operators by

âi(~ρ,out) =
∫

d~ρ ′ hi(~ρ,~ρ ′)âi(~ρ
′, in)+ f̂i(~ρ) , (6.23)

where hi(~ρ,~ρ ′) is the transfer function of detection channel i = 1,2 for a light field with

frequency ωp/2. Inserting Eq. (6.23) into Eq. (6.22) gives rise to four terms, three of which

contain a noise source. The noise operator annihilates a photon in a mode of the outside

world. As a consequence, only the term that does not contain a noise source contributes

to the coincidence detection amplitude. Accordingly, for coincidence detection the noise

sources are irrelevant. It follows that

A(~ρ1,~ρ2) ∝

∫
d~ρ G(~ρ)h1(~ρ1,~ρ)h2(~ρ2,~ρ) . (6.24)

This result was also obtained and employed elsewhere [50–52]. The coincidence detection

rate is given by

I(~ρ1,~ρ2) = |A(~ρ1,~ρ2)|2 . (6.25)
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6.4 Quantum erasing

6.4.1 Scheme

The results of the previous Section are used for a quantitative description of the quantum

eraser which is discussed qualitatively by Zeilinger [48]. In Fig. 6.2(a) the scheme for the

quantum eraser is depicted. One of the photons of a twin created by SPDC passes through

a double slit, while the other photon is detected at various distances z behind a lens. When

the latter photon is detected in the plane where the lens makes an image of the double slit

(z = 2 f ), the location at which the photon is detected reveals through which slit the other

photon went, because the photons of a twin are created at the same location in the crystal.

This which-path information destroys the interference and no double-slit interference pattern

is observed behind the double slit. When the photon is detected in the focal plane of the lens

(z = f ), information about the transverse momentum of the photon is obtained, but the infor-

mation about the location at which the photon was created, is destroyed. Therefore, detecting

the photon in the focal plane erases the which-path information and a familiar double-slit

interference pattern is observed. Recently, this eraser setup has been used in an experiment

by Gatti et al. [53].

We consider a similar scheme and show the mechanism of the quantum eraser by a cal-

culation of the coincidence detection rate. The scheme is given in Fig. 6.2(b). Before the

monochromatic pump beam enters the non-linear crystal it propagates through a mask, of

which the transmission function is described by two Gaussian functions that are translated

with respect to each other. In detection channel 1 the detector is located at a distance f from

the output plane of the crystal. In detection channel 2 a lens with focal distance f is located at

a distance 2 f from the output plane of the crystal. The detector is at a variable distance z from

the lens. In front of both detectors are narrow-band frequency filters which have a centre fre-

quency that is half the pump frequency. The difference with the eraser scheme of Zeilinger is

that the double slit, which is part of detection channel 1 in the scheme of Zeilinger, is replaced

by the mask in front of the non-linear crystal. In the picture by Belinskii and Klyshko [54]

the schemes are virtually identical. In this picture the coincidence detection amplitude is the

field in the plane of detector 1 as produced by a point source in the plane of detector 2. The

field of this point source propagates through detection channel 2, is then multiplied by the

pump profile in the crystal, after which it propagates through detection channel 1 to detector

1.

We will calculate the coincidence detection rate for this scheme for the case that detector

2 is in the plane where the lens makes an image of the mask (z = 2 f ), and for the case where

detector 2 is in the focal plane of the lens (z = f ). Since our setup in Fig. 6.2(b) has in fact

only one transverse dimension, we simply write x for ~ρ . The expression for the coincidence

detection amplitude in Eq. (6.24) is written as

A(x1,x2) ∝

∫
dx G(x)h1(x1,x)h2(x2,x) , (6.26)

while, similar to Eq. (6.25), the coincidence detection rate is

I(x1,x2) = |A(x1,x2)|2 . (6.27)
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6. Using paraxial quantum operators

Figure 6.2: Similar schemes of the quantum eraser. The scheme (a) is discussed by

Zeilinger. The scheme (b) is used to show the mechanism of the quantum eraser by a

calculation of the coincidence detection amplitude. In (b) the pump beam propagates

through a transmission mask before entering the crystal. In the crystal the pump beam

creates twin photons, after which the photons of a twin are detected in coincidence by

detectors 1 and 2.

6.4.2 Transfer functions

In order to calculate the coincidence detection amplitude the transfer functions of the optical

systems must be determined. The transfer function for the propagation through free space

over a distance z of a light field with frequency ωp/2 is given by

h f (x,x
′;z) =

√
ωp

4πicz
exp

[
iωp

4cz
(x− x′)2

]
, (6.28)

which is the one-dimensional variant of (6.12). When a light beam with frequency ωp/2

propagates through a lens with focal distance f , the beam profile is multiplied with the phase

factor

hl(x) = exp

(
− iωpx2

4c f

)
. (6.29)

In detection channel 2 the propagation over a distance 2 f is followed by the passage through

a lens and the propagation over a distance z. The corresponding transfer function is given by

h2(x2,x;z) =
∫

dx′ h f (x2,x
′;z)hl(x

′)h f (x
′,x;2 f ) . (6.30)
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The transfer function for the cases that z = f and z = 2 f are calculated. We find that

h2(x2,x; f ) ∝ exp

(
− iωpx2x

2c f

)
,

h2(x2,x;2 f ) ∝ δ (x2 + x) ,

(6.31)

where the proportionality constants are phase factor independent of x, which drop out when

the absolute value of the coincidence detection amplitude is taken. For both cases the transfer

function for detection channel 1 is given by the transfer function for the propagation over a

distance f , that is,

h1(x1,x) = h f (x1,x; f ) . (6.32)

The pump profile behind the mask G(x), which resembles the transmission function of a

double slit, is given by

G(x) ∝ exp

[
− (x−d/2)2

2w2

]
+ exp

[
− (x+d/2)2

2w2

]
, (6.33)

where w is the width of the Gaussian function (or slit width), and d � w is the spacing

between the Gaussian functions (or the spacing between the slits). With this pump profile

the twins are created either in the first ’slit’ or in the second. The coincidence detection rate

is obtained by inserting the pump profile (6.33), the transfer function (6.32) for detection

channel 1 and the transfer function (6.31) for detection channel 2, either for z = 2 f or z = f ,

into the expression for the coincidence detection amplitude in Eq. (6.26), and then Eq. (6.27)

is used to obtain the coincidence detection rate.

6.4.3 The two cases

In the case that z = 2 f we find that the coincidence detection rate is given by

I(x1,x2) ∝

{
exp

[
− (x2 −d/2)2

2w2

]
+ exp

[
− (x2 +d/2)2

2w2

]}2

. (6.34)

The location at which detector 2 detects the photon completely determines the location at

which the twin was created, since it is detected in the plane in which the lens creates an

image of the crystal. Therefore, detector 1 measures the field from a point source in the

crystal plane, which explains why the intensity I(x1,x2) is independent of x1. The detection

of the photon in the image plane z = 2 f by detector 2 provides information in which ’slit’

the twin was created. Therefore, no interference pattern is measured by detector 1. On the

other hand, detection of the photon by detector 1 does not reveal any information about the

location at which the twin was created. The pattern registered by detector 2 is then simply

the image of the intensity distribution of the pump beam.

In the case that z = f we find that the coincidence detection rate is given by

I(x1,x2) ∝ exp

[
− b2

b2 + f 2

(
x1 + x2

w

)2
]

×
{

cosh

[
b2

b2 + f 2

d (x1 + x2)

w2

]
+ cos

[
b f

b2 + f 2

d (x1 + x2)

w2

]}
,

(6.35)
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6. Using paraxial quantum operators

Figure 6.3: Coincidence detection rate as a function of (x1 + x2)/w for the case that

z = f .

where

b =
ωpw2

2c
(6.36)

is the Rayleigh range corresponding to the Gaussian function in the pump beam profile. We

see that the arguments of the cosh and the cos function differ by a factor b/ f . As a conse-

quence, a high visibility of the fringes can be expected when b � f . Physically this means

that the width of the ’slits’ must be much smaller than the distance f to detector 1, so that an

interference pattern can develop.

In Fig. 6.3 the coincidence detection rate is given as a function of (x1 +x2)/w for the case

that b/ f = 0.1 and w/d = 0.1. It is similar to the double-slit interference pattern observed

in Zeilinger’s scheme. When detector 2 detects the photon in the focal plane of the lens,

information about the transverse momentum is obtained, which does not reveal information

about the location in the crystal at which the twin was created. This erases the information

in which ’slit’ the twin was created, giving rise to the double-slit-like interference pattern

measured by detector 1.

6.5 Conclusions

The paraxial wave equation describes the propagation of monochromatic light beams in free

space and can simply be expanded to describe the propagation inside a general optical system.

To obtain a description in the single-photon regime we defined paraxial creation operators

which create photons with a specific frequency ω at the transverse position ~ρ in a transverse

plane. The positive-frequency part of the electric-field operator is expressed in terms of the

paraxial annihilation operators in Eq. (6.7). After application of the paraxial approximation,

we arrived at Eq. (6.11). In this expression the paraxial annihilation operator appears together

with the corresponding paraxial mode function, which is simply the transfer function for

the propagation through free space for a light field with frequency ω . The description was
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generalised to include the propagation through a general optical system, by using the transfer

function of the optical system as the mode function.

The paraxial creation operator creates a photon in a mode that is localised in a point in

a specific transverse plane. The transfer function is then simply the paraxial field due to a

point source at this location. The paraxial annihilation operator of a photon at a point in the

output plane of an an arbitrary optical system is expressed in terms of the paraxial annihilation

operator of a photon at a point in the input plane by Eq. (6.16). By the transformation in Eq.

(6.15) paraxial creation operators are defined that create a photon in other paraxial modes,

such as Hermite-Gaussian or Laguerre-Gaussian modes.

As an application the two-photon state created by the process of SPDC is expressed in

terms of paraxial creation operators of a photon in the plane of the non-linear crystal, which

is the input plane of the optical lines to the detectors. The coincidence detection amplitude

is expressed in terms of paraxial annihilation operators of a photon in a point in the planes

of the detectors, which are the output planes of the optical lines. The ’out’ and ’in’ operators

are then simply related by Eq. (6.16). This gives rise to a very simple and elegant description

of the creation and detection of twin photons. The results are used to obtain a quantitative

description of the quantum eraser discussed by Zeilinger.
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CHAPTER 7

Interference between entangled photon states

in space and time

An interference scheme is proposed for studying the spatial entanglement of twin photons.

By Fourier transformation, phase and frequency matching takes the form of spatial and

temporal entanglement, respectively. We use a description in space and time to show the

analogy between the spatial and temporal entanglement of twin photons.

J. Visser and G. Nienhuis, Eur. Phys. J. D 29, 301 (2004).
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7. Interference between entangled photon states in space and time

7.1 Introduction

Entanglement of two separate parts of a quantum system implies that a measurement on one

subsystem affects the state vector of the other one. Twin photons are often used for the study

of entanglement. They are mostly created by the process of spontaneous parametric down-

conversion (SPDC), by a pump pulse in a non-linear crystal. Polarisation entanglement of

the photons of a twin has been studied thoroughly. In many experiments with twin photons

it was found that the Bell inequalities are violated, showing that the photons of the twins

are entangled [55]. It has recently been demonstrated that this entanglement is still present

after the two photons have been transmitted by a metal screen with a periodic pattern of

perforations, where the photons have been converted into surface plasmons [56]. In the case

of polarisation entanglement, the two subsystems have a two-dimensional state space. The

entanglement of two particles with eigenspaces larger than the two-dimensional polarisation

space has been studied only recently. Vaziri et al. have demonstrated the entanglement of

orbital angular momentum in an experiment with twin photons [57].

Twin photons can also be entangled in continuous degrees of freedom, such as frequency

or transverse wave vector. Frequency entanglement takes the form of time entanglement after

Fourier transformation to the time domain. Most theoretical descriptions of SPDC involve

summations over plane-wave modes, characterised by frequency and wave vector. However,

in many situations a description in terms of field operators that depend on time and trans-

verse space more closely follows the actual life of the two photons from their creation to their

detection. This can make the description more transparent. An example is the experiment

by Hong et al. [58], where it is shown that the two photons of a twin arriving one in each

input channel of a beam splitter at the same instant exit in the same output channel. This

shows up as a destructive interference in the coincidence rate. This experiment is described

in terms of integrals over wave vectors and frequencies of the emitted photons. The condi-

tion for interference that the two photons must arrive simultaneously at the beam splitter is

brought out more clearly by a formulation in the domain of space and time [59]. An equiva-

lent experiment, with two independent photons from two separate emitters, has been studied

recently [60]. Franson [61] proposed an experiment where the photons of a twin can both take

a short and a long path to the detector. As a consequence of temporal entanglement, there is

interference between the two amplitudes where both take the long, or both take the short path.

This cannot be understood as interference between single photons, only as an interference be-

tween two different histories of the photon pair. The proposed experiment has been realised

by Tittel et al. [62]. The same argument holds for the experiment of Pittman et al. [63], who

show that for interference to occur it is not necessary that the photons of a twin arrive at the

beam splitter at the same instant. In this experiment the two photons are created with orthog-

onal polarisation, and a polarisation-dependent delay is imposed, so that the photons do not

arrive at the beam splitter simultaneously. As a consequence of the polarisation-dependent

delay, the arrival times of the photons at the detectors generally contain information on the

polarisation. The temporal entanglement of the twin photons is then exploited to erase this

information, so that interference with 100% visibility is recovered. Viewed in the time do-

main, these experiments rely on the fact that the photons of a twin are created at the same

instant of time, but where the exact time of creation of the twin is undetermined.

We point out that, apart from temporal entanglement, the photons of a twin can also be
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spatially entangled. After Fourier transformation to the transverse space, entanglement of

the transverse wave vector takes the form of spatial entanglement. Due to the local nature of

the non-linear interaction in the crystal, the photons of a twin are created at the same instant

of time and at the same position. The two-photon state is a linear superposition of states

corresponding to different times of creation, which are undetermined within the duration of

the pump pulse. The same holds for the location in the crystal. The photons of a twin are

created at the same location in the crystal, but this location is undetermined within the pump

spot on the crystal.

In Section 7.2 we give a general expression for the two-photon state created by SPDC. In

Section 7.3 we propose an experiment for studying the spatial entanglement of twin photons.

This experiment is the spatial equivalent of an experiment by Pittman et al. [63], which

we discuss in Section 7.4. For both experiments we calculate the two-photon state and the

coincidence detection rates. We use a description in the space and time domain, which more

closely follows the life of the photons in the experiment. Another advantage is that then the

analogy between temporal and spatial entanglement is much more evident.

7.2 Two-photon state

In the process of SPDC twin photons are created by a pump beam in a non-linear crystal

at one point and one time instant. The amplitude for the creation of a twin at time t and

position~r in the crystal is proportional to the positive-frequency part of the electric field of

the classical pump beam Ep(~r, t). We assume that the pump beam and the photons of the

twin have a common direction of propagation, which we call the z direction. In the xy plane,

or transverse plane, the crystal is much larger than the pump spot. The output plane of the

crystal is located at z = 0 and we write

Ep (~r, t) |z=0 = g(t)G(~ρ) , (7.1)

where g(t) is the pulse shape, and G(~ρ) the transverse profile of the pump beam. The two-

dimensional vector ~ρ = (x,y) is the transverse coordinate.

For the basis of polarisation we take the eigenvectors {~εH ,~εV} as determined by the crys-

tal birefringence and the propagation direction of the pump beam. By using a pinhole twins

are selected that propagate collinearly with the pump beam. The orientation of the crystal

with respect to the propagation direction of the pump beam and polarisation of the pump

beam are chosen such that the amplitude for the photons of the twin to have orthogonal polar-

isations is much larger than the amplitude for identical polarisations: we have type-II phase

matching. Because the crystal is birefringent, the speed and direction of propagation of a

photon inside the crystal is polarisation dependent. The resulting walk-offs can be compen-

sated by using compensating crystals [55]. After compensation the two-photon state in the

interaction picture can be written as

|Ψ(t)〉 ∝

∫ t

−∞
dt ′ g(t ′)

∫
d~ρ G(~ρ)â†

H(~ρ, t ′)â†
V (~ρ, t ′)|0〉 , (7.2)

where â
†
H(~ρ, t) and â

†
V (~ρ, t) create an H-polarised and a V -polarised photon, respectively, at

time t, and transverse coordinate ~ρ . The state |0〉 is the vacuum state. The expression for the
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two-photon state is only valid when the dispersion in the crystal can be neglected. This is the

case when the spectrum of the pulse shape g(t) is narrow band, and the photons of the twins

are detected with a well-determined frequency, which is at the cost of the brightness of the

parametric down-conversion. When these conditions are relaxed, the brightness increases,

but the visibility in an interference experiment is reduced because of dispersion in the crystal

[64,65]. Since we study the entanglement of the twin photons using two-photon interference,

a large visibility is favoured over a large brightness. The operators â
†
i (~ρ, t) with i = H,V can

be assumed to satisfy the commutation relations

[
ai(~ρ, t),a†

j(~ρ
′, t ′)

]
= δi jδ (~ρ −~ρ ′)δ (t − t ′) , (7.3)

where i, j = H,V [66]. Note that we describe the process in the domain of time t and trans-

verse position ~ρ , rather than the more common picture of frequency ω and transverse wave

vector ~κ . These pictures are related by Fourier transformations as

âi(~ρ, t) =
1

(2π)3/2

∫
dω

∫
d~κ âi(~κ,ω)exp(i~κ ·~ρ − iωt) , (7.4)

where the momentum-frequency field operators âi(~κ,ω) obey the commutation relations

[
âi(~κ,ω), â†

j(~κ
′,ω ′)

]
= δi jδ (~κ −~κ ′)δ (ω −ω ′) . (7.5)

Notice that the photon state can be perfectly localised in the transverse plane [46]. With the

definitions

G̃(~κ) =
1

(2π)2

∫
d~ρ G(~ρ)exp(−i~κ ·~ρ) , g̃(ω, t) =

1

2π

∫ t

∞
dt ′ g(t ′)exp(iωt ′) , (7.6)

the two-photon state in Eq. (7.2) can be written as

|Ψ(t)〉 ∝

∫
d~κ
∫

d~κ ′ G̃(~κ +~κ ′)
∫

dω
∫

dω ′ g̃(ω +ω ′, t)â†
H(~κ,ω)â†

V (~κ ′,ω ′)|0〉 . (7.7)

In this expression we recognise the conservation of energy and transverse momentum, which

is equivalent to the fact that the two photons are created at the same location and the same

instant of time.

After propagation through an optical system, which might contain several optical ele-

ments, the photons of the twins are detected in coincidence by two detectors a and b. These

detectors detect photons behind linear polarisers, and integrate over time and over the trans-

verse location in the detector plane. A component of the positive-frequency part of the

electric-field operator at the transverse coordinate ~ρa in the detection plane of detector a

at time ta is written as Ê+
a (~ρa, ta). For detector b we write Ê+

b (~ρb, tb). These operators can be

expressed in terms of the annihilation operators âi(~ρ, t), where i = H,V . These expressions

depend on the transfer functions of the optical systems. The transverse part of the transfer

function describes the evolution of the transverse profile of a light field when it propagates

from the crystal plane to the detector plane. It is frequency dependent, but since a narrow-

band filter is used, it is justified to fix this frequency at the centre frequency of the filter. As

a consequence, the transfer function factorises in a transverse and a longitudinal, or temporal

part.
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The amplitude where detector a detects a photon at time ta and position ~ρa, and detector

b detects a photon at time tb and position ~ρb, is given by

A = 〈0|Ê+
b (~ρb, tb)Ê

+
a (~ρa, ta)|Ψ(ta)〉 , (7.8)

where tb > ta. We shall now consider separately cases where either the spatial entanglement

or the temporal entanglement is responsible for interference.

7.3 Spatial entanglement

7.3.1 Spatial interferometer

We use the interference scheme in Fig. 7.1 to study spatial entanglement. A pump beam

creates twin photons in a non-linear crystal by the process of SPDC. The orientation of the

crystal with respect to the propagation direction of the pump beam and the polarisation of

the pump beam are such, that the twin photons that propagate collinearly have orthogonal

polarisation. The walk-offs that result from the birefringence of the crystal, are compensated

by compensating crystals. For simplicity they are not shown in the picture. A pinhole is used

to select collinear twins. The crystal birefringence together with the direction of propagation

defines a unique basis for the polarisation, consisting of the unit vectors~εH and~εV . A trans-

lation ∆~sV in the transverse direction is imposed on V -polarised photons. This is done by

propagation of the beam through a tilted birefringent crystal. Then also a time difference be-

tween H- and V -polarised photons results, introducing polarisation information in the arrival

time of the photons at the detectors. This polarisation information can be erased by propaga-

tion through a compensating crystal with the appropriate thickness. The collinear twins fall

on a 50% : 50% beam splitter. In one of the output channels a translation ∆~sH is imposed in

the transverse direction on H-polarised photons. Coincidences are detected by the detectors a

and b in the output channels. In front of both detectors are narrow-band filters and linear po-

larisers set to transmit when the polarisation is at an angle of 45◦ with respect to both~εH and

~εV . The narrow-band filters have a centre frequency of half the frequency of the pump beam.

The detectors are bucket detectors that integrate both over the time and the transverse space.

In front of detector b is also a circular aperture with radius d. For this setup the coincidence

detection rate is considered as a function of the translation ∆~sH for fixed value of ∆~sV . Now

two amplitudes are relevant. The first is the amplitude that the H-polarised photon is detected

by detector a and the V -polarised photon is detected by detector b. For the second amplitude

it is the other way around. It is necessary that the polarisers are both at 45◦, because then the

information about the polarisation is completely erased, and these amplitudes can interfere.

7.3.2 The coincidence detection rate

In section 7.2 we argued that the transfer functions that describe the propagation from the

crystal to the detector, factorise in transverse and temporal parts. In the interferometer in Fig.

7.1 there are no optical elements that introduce any polarisation dependence in the temporal

properties. As a consequence, the temporal part of the problem drops out, and we can write
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Figure 7.1: Scheme of the spatial interferometer. The pump beam creates twin photons

in a non-linear crystal. Collinear twins with orthogonal polarisations are selected with

a pinhole. On V -polarised photons a transverse translation ∆~sV is imposed. Then the

beam falls on a beam splitter. In one of the output channels a transverse translation

∆~sH is imposed on H-polarised photons. The detectors a and b detect coincidences in

the two output channels. In front of both detectors is a narrow-band filter and a linear

polariser at 45◦. There is a pinhole in front of detector b.

the two-photon state in Eq. (7.2) as

|Ψ〉 ∝

∫
d~ρ G(~ρ)â†

H(~ρ)â†
V (~ρ)|0〉 , (7.9)

where â
†
H(~ρ) and â

†
V (~ρ) create a photon at the transverse position ~ρ in the crystal plane, with

H and V polarisation, respectively. For simplicity the translation ∆~sV is imposed at the output

plane of the crystal, and the translation ∆~sH is imposed immediately behind the output plane

of the beam splitter. The detectors are both at a distance z from the crystal along the optical

lines. The transfer function for free space propagation over a distance z is given by

h f (~ρ,~ρ ′;z) =
k

2πiz
exp

[
ik

2z

(
~ρ −~ρ ′)2

]
, (7.10)

where k is the wavenumber of the light. We consider as an example the transfer function for

the propagation from the output plane of the crystal to the detection plane of detector a for

a beam with H polarisation. We split up the optical line in two parts with lengths z1 and z2,

where the first part stretches from the crystal plane to the output plane of the beam splitter,

and the second from the latter plane to the detector plane. The vectors ~ρ , ~ρ ′, and ~ρa refer to

a point in the plane of the crystal, beam splitter, and detector, respectively. Then the transfer

function for the propagation from the crystal to detector a for an H-polarised beam is given

by ∫
d~ρ ′ h f (~ρa,~ρ

′ +∆~sH ;z2)h f (~ρ
′,~ρ;z1) = h f (~ρa,~ρ +∆~sH ;z) , (7.11)
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where z = z1 + z2. We have ignored that the beam splitter changes the handedness of the

basis of the transverse space. We see that for the transfer function it is not relevant in which

plane the translation ∆~sH is imposed. Now we can express the positive-frequency parts of

the electric-field operators in the detector planes in terms of the annihilation operators âH(~ρ)
and âV (~ρ), that annihilate a photon at the location ~ρ in the detector plane with H and V

polarisation, respectively. Because the polarisers in front of the detectors are at 45◦, only

photons with polarisation vector (~εH +~εV )/
√

2 are detected. Therefore we only consider the

component of the electric-field operator in the 45◦ direction. We have

Ê+
a (~ρa) =

∫
d~ρ
[
h f (~ρa,~ρ +∆~sH ;z)âH(~ρ)+h f (~ρa,~ρ +∆~sV ;z)âV (~ρ)

]
,

Ê+
b (~ρb) =

∫
d~ρ
[
h f (~ρb,~ρ;z)âH(~ρ)+h f (~ρb,~ρ +∆~sV ;z)âV (~ρ)

]
.

(7.12)

By using Eq. (7.9) and the commutation rules in Eq. (7.3) we find that the coincidence

detection amplitude in Eq. (7.8) is given by

A(~ρa,~ρb) =〈0|Ê+
a (~ρa)Ê

+
b (~ρb)|Ψ〉

=
∫

d~ρ G(~ρ)
[
h f (~ρa,~ρ +∆~sH ;z)h f (~ρb,~ρ +∆~sV ;z)

+h f (~ρa,~ρ +∆~sV ;z)h f (~ρb,~ρ;z)
]

,

(7.13)

where only the cross products ∝ âH âV from Ê+
a Ê+

b contribute. The coincidence detection

rate is given by

R =
∫

d~ρa

∫

II
d~ρb |A(~ρa,~ρb)|2 , (7.14)

where II indicates that the integration domain is over the opening of pinhole II. We perform

the integration over ~ρa and use that the transfer function for free space propagation is unitary:

∫
d~ρ h f (~ρ2,~ρ;z)h∗f (~ρ,~ρ1;z) = δ (~ρ2 −~ρ1) . (7.15)

We then find that

R =
k2d2

2πz2

∫
d~ρ |G(~ρ)|2 +2Re

∫
d~ρ G(~ρ)G∗(~ρ +∆~sV −∆~sH)

×
∫

II
d~ρb h f (~ρb,~ρ;z)h∗f (~ρb,~ρ +2∆~sV −∆~sH ;z) .

(7.16)

For the integration over ~ρb we use the property

∫

II
d~ρ ′ h f (~ρ

′,~ρ +∆~s/2;z)h∗f (~ρ
′,~ρ −∆~s/2;z) =

kd

2πz‖∆~s‖J1(kd‖∆~s‖/z)exp [ik~ρ ·∆~s/z] ,

(7.17)

where

Jn(x) =
1

2πin

∫ 2π

0
dφ exp(ixcosφ + inφ) n = 0,1,2, ... (7.18)
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7. Interference between entangled photon states in space and time

Figure 7.2: The coincidence detection rate R as a function of the x component of ∆~sH −
2∆~sV for a Gaussian pump beam tilted at 0.6◦. The intensity of the pump beam drops

off to 1/e at a distance of 3 mm from the beam axis. The wavelength of the pump beam

is 400 nm. The distance from the crystal to the detectors is 2 m. For the radius of the

pinhole in front of detector b we have d = 3 mm. The value of the x component of ∆~sV

is fixed at 0.1 mm.

are the Bessel functions of the first kind. By using this property we find that

R ∝
1

2

∫
d~ρ |G(~ρ)|2 +

z

kd‖∆~s‖J1(kd‖∆~s‖/z)

× Re

∫
d~ρ exp(ik~ρ ·∆~s/z)G(~ρ +∆~s/2)G∗(~ρ −∆~sH/2) ,

(7.19)

where ∆~s = ∆~sH −2∆~sV . To see interference fringes, the exponential factor inside the integral

must oscillate at least once over the range of the pump spot, which puts a lower bound on

‖∆~s‖. The visibility of the fringes is determined by the factor in front of the integral, which

puts an upper bound on the radius d of pinhole II. As a consequence, to see interference

fringes the spot size must in general not be smaller than the size of pinhole II.

As an example we use a Gaussian function for the pump beam profile G(~ρ). In order

to obtain interference fringes, we assume that the pump beam is slightly tilted, such that the

propagation direction is in the xz plane. Then the profile of the pump beam has a phase pat-

tern. The translations ∆~sH and ∆~sV are imposed in the x direction. In Fig. 7.2 the coincidence

detection rate is given for this case as a function of the x component of ∆~sH for fixed value of

∆~sV . We see in Fig. 7.2 that for ∆~sH = 2∆~sV the visibility is 100%. The reason for this can

be understood by considering again the two relevant amplitudes that we discussed at the end

of Section 7.3.1. We first consider the amplitude A(H → a;V → b) where the H-polarised

photon is detected by detector a, and the V -polarised photon by detector b. These photons

are translated by ∆~sH −∆~sV with respect to each other. For the amplitude A(H → b;V → a)
where the H- and the V -polarised photon are detected by detector b and a, respectively, the

photons are translated by ∆~sV with respect to each other. Since in front of the detector there is

a linear polariser at 45◦, the information about the polarisation is erased. As a consequence,

these two amplitudes are indistinguishable when the polarisation is concerned. For interfer-

ence with maximum visibility, the two amplitudes must also be indistinguishable concerning
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Figure 7.3: The two relevant amplitudes for the case that ∆~sH = 2∆~sV , where the loca-

tion of birth of the twin photons for the amplitude A(H → a;V → b) in (a) differs by ∆~sV

with respect to the location of birth for the amplitude A(H → b;V → a) in (b). The thick

lines are the optical axes of the system and the paths of the photons are dashed. We

see that for both amplitudes the location at detector a at which a photon arrives, is the

same, but that the polarisation of the photon is different. The same holds for the photon

arriving at detector b. Nevertheless, the two amplitudes are indistinguishable since the

polarisers in front of both detectors erase the information about the polarisation.

their spatial properties. This is the case when, for the two amplitudes, the vectors over which

the H- and V -polarised photon are translated with respect to each other, are identical. That

is, when ∆~sH = 2∆~sV , indeed. Under this condition there might still be another spatial prop-

erty that distinguishes the two amplitudes. For the amplitude A(H → a;V → b) one photon

is translated by ∆~sV , and the other by 2∆~sV , while for the amplitude A(H → b;V → a) the

translations are 0 and ∆~sV . The relative translation is the same for both, but the absolute

translations are different. The reason that the visibility is 100% anyway, is because of the

spatial entanglement: the photons of the twins are created at the same location in the crystal,

but this location itself is undetermined within the spot size of the pump beam on the crystal.

Therefore, when ∆~sV is small with respect to the spot size, the two amplitudes cannot be dis-

tinguished by a difference in the absolute translation mentioned above. This can be seen in

Fig. 7.3, where the location of birth of the twin photons for the amplitude A(H → a;V → b)
differs by ∆~sV with respect to the location of birth for the amplitude A(H → b;V → a). Then

the two amplitudes cannot be distinguished. The width of the envelope in Fig. 7.2 depends

on the radius of the pinhole in front of detector b. A smaller pinhole radius decreases the spa-

tial distinguishability of the detector. Because the detector is then less able to obtain spatial

information, the width of the envelope becomes larger.

By imposing the translation ∆~sH on H-polarised photons the spatial information intro-

duced by the translation ∆~sV on the V polarisation can be erased. In Fig. 7.1 we see that the

erasing is done in one of the output channels of the beam splitter. The condition for erasing

is then that there must be spatial entanglement. The information can also be erased by im-

posing a translation ∆~sH = ∆~sV on H-polarised photons before the beam splitter. Then spatial

entanglement is not necessary, because before the beam splitter the collinear twins are not

polarisation entangled. Erasing behind the beam splitter without using spatial entanglement
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7. Interference between entangled photon states in space and time

Figure 7.4: Scheme of the temporal interferometer. The pump beam creates twin pho-

tons in a non-linear crystal. A pinhole selects collinear twins with orthogonal polarisa-

tion. On V -polarised photons a delay ∆τV is imposed. Then the beam falls on a beam

splitter. In one of the output channels a delay ∆τH is imposed on H-polarised photons.

Coincidences are detected by the detectors a and b in the two output channels. In front

of both detectors is a narrow-band filter and a linear polariser at 45◦.

can be done by imposing the translation ∆~sH = ∆~sV on H-polarised photons in both output

channels of the beam splitter.

7.4 Temporal entanglement

The interference scheme that we discussed in Section 7.3 is the spatial analogue of the in-

terference scheme in an experiment of Pittman et al. [63] where delays instead of transverse

translations are imposed. For the spatial interferometer the spatial entanglement of the twin

photons is necessary, while for the temporal interferometer it is the temporal entanglement

of the twin photons. We show that the temporal interferometer of Pittman et al. is similar to

the spatial interferometer. For this we calculate the coincidence detection rate as a function

of the delays that are imposed. A simplified version of the experiment of Pittman et al. is

given in Fig. 7.4, which is almost exactly the same as Fig. 7.1, except that the translations

are replaced by delays. Twins photons are created with a plane wave pump by the process of

SPDC in a non-linear crystal. A pinhole selects collinear twins with orthogonal polarisation.

By using a birefringent crystal a delay ∆τV is imposed on V -polarised photons. The collinear

twins fall on a 50% : 50% beam splitter. In one of the output channels of the beam splitter

a delay ∆τH is imposed on H-polarised photons. Coincidences are detected by the detectors

a and b in the output channels. The detectors integrate over space and time. In front of both

detectors are narrow-band frequency filters and polarisers at an angle of 45◦ with respect to

both ~εH and ~εV . Since the basic idea of the experiment is relying on the time dependence
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of the field, we ignore the transverse-field distribution. This is justified under the assump-

tion that the transverse parts of the transfer functions are independent of the polarisation. As

a consequence, the transverse profile does not contain polarisation information. Then the

transverse part of the problem does not affect the interference, and introduces only an overall

factor in the coincidence detection rate. Therefore we simply write the two-photon state in

Eq. (7.2) as

|Ψ(t)〉 ∝

∫ t

−∞
dt ′ g(t ′)â†

H(t ′)â†
V (t ′)|0〉 , (7.20)

where â
†
H(t) and â

†
V (t) create at time t an H-polarised and a V -polarised photon, respectively.

The coincidence detection amplitude in Eq. (7.8) is then given by

A = 〈0|Ê+
b (tb)Ê

+
a (ta)|Ψ(ta)〉 , (7.21)

where tb > ta.

To find the coincidence detection amplitude we express the positive-frequency part of the

electric-field operator at the locations of the detectors a and b in terms of the annihilation

operators âH(t) and âV (t). For the positive-frequency part of the electric-field operator at the

location of detector a at time ta, and detector b at time tb, we write in the Heisenberg picture

Ê+
a (ta) and Ê+

b (tb), respectively. With free propagation in one dimension, the operator â(z, t),
which annihilates a photon at time t at the position z, differs from the operator â(0, t) ≡ â(t)
by a delay in time. This follows from

â(z, t) =
1√
2π

∫
dω â(ω)exp [−iωt + ik(ω)z]

=
1√
2π

∫
dω â(ω)exp [−iω(t − z/c)]

= â(0, t − z/c) ,

(7.22)

where â(ω) is the annihilation operator for a photon with frequency ω in the output plane of

the crystal, and where we used the dispersion relation k(ω) = ω/c. Because the polarisers

in front of the detectors are at 45◦, both detectors detect photons with the polarisation vector

~ε = (~εH +~εV )/
√

2. Therefore we only consider the component of the electric-field operator

in the 45◦ direction. The distance between the detectors and the crystal along both optical

paths is z. Apart from the delay ∆τ , the time for a photon to travel from the crystal to a

detector is z/c. Before being detected, the photon passes through the narrow-band filter. The

amplitude for the photon to reside in the filter for a duration τ is proportional to f (τ), the

memory function of the filter. We have

Ê+
a (ta) =

∫ ∞

0
dτ f (τ) [âH(ta − z/c−∆τH − τ)+ âV (ta − z/c−∆τV − τ)] ,

Ê+
b (tb) =

∫ ∞

0
dτ f (τ) [âH(tb − z/c− τ)+ âV (tb − z/c−∆τV − τ)] .

(7.23)

These expressions are similar to the expressions in Eq. (7.12) that we used for the spatial

interferometer. Then the expression for the coincidence detection amplitude is proportional
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7. Interference between entangled photon states in space and time

to

A(ta, tb) =
∫

−∞
dt g(t)

[
f (tb − z/c− t) f (ta − z/c−∆τV − t)

+ f (tb − z/c−∆τV − t) f (ta − z/c−∆τH − t)
]

.

(7.24)

The upper limit of the integration in Eq. (7.24) should be the lower one of ta and tb. The time

arguments of the filter functions in Eq. (7.24) indicate the time delay of the photons in the

filters.

We consider the case that the pump beam is monochromatic with frequency ωp, and we

write

g(t) = exp(−iωpt) . (7.25)

Then we can neglect the dispersion in the crystal and use the expression in Eq. (7.20) for the

two-photon state. The frequency filters are modeled by a Lorentzian with a bandwidth α , and

a centre frequency that is equal to half the pump frequency ωp, so that

f (τ) = exp(−ατ − iωpτ/2)Θ(τ) . (7.26)

The step function Θ(τ) makes the memory function disappear for negative τ , which reflects

causality [67]. Inserting the expressions for the pump profile and the memory function of the

filters into Eq. (7.24) gives the explicit expression

A(ta, tb) =
1

2α
exp [−iωp(ta + tb −2z/c−∆τV )/2]

×
[
exp(−α|ta − tb −∆τV |)+

exp(iωp∆τH/2)exp(−α|ta − tb +∆τV −∆τH |)
]

.

(7.27)

The first term in Eq. (7.24) or Eq. (7.27) represents the amplitude that detector a sees the

V -polarised photon, and the H-polarised photon goes to detector b. This term is maximal

when ta − tb = ∆τV . The inverse situation that detector a sees the H-polarised photon and b

the V -polarised one is expressed by the second term. This term is maximal when ta − tb =
∆τH −∆τV . We assume that the detection window is large compared with the inverse band-

width 1/α of the filters, so that the net coincidence rate R is proportional to
∫ ∞
−∞ dtb |A(ta, tb)|2,

which gives the result

R ∝ 1+(1+α|∆τH −2∆τV |)cos(ωp∆τH/2)exp(−α|∆τH −2∆τV |) . (7.28)

In Fig. 7.5 the envelope of the coincidence detection rate R is given as a function of the

dimensionless parameter α(∆τH − 2∆τV ). Here the value of ∆τV is fixed, and the value of

∆τH is varied. The envelope is filled with interference fringes with frequency ωp/2. With

this experiment Pittman et al. show that it is not necessary for the two photons of a twin to

arrive at the beam splitter at the same instant of time for interference to occur. Again two

amplitudes are of importance. The first is the amplitude A(H → a;V → b) where detector

a detects the H-polarised photon, and detector b detects the V -polarised photon. For the

second amplitude A(H → b;V → a) it is the other way around. The polarisers at 45◦ in

front of the detectors erase the information about the polarisation of the detected photon,
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Figure 7.5: Envelope of the coincidence detection rate R as a function of the dimen-

sionless parameter α(∆τH −2∆τV ) for the temporal interferometer.

so that interference between these amplitudes can occur. Polarisation information is also

contained in the difference in time between the two detection events, because the photons

of a twin are created at the same instant of time. For interference with 100% visibility to

occur it is then necessary that the difference in arrival time at the filters is the same for both

amplitudes. When ∆τH = 2∆τV this requirement is fulfilled, so that there is interference with

100% visibility, as can be seen in Fig. 7.5. On the other hand, we see that then there is

a difference of ∆τV = ∆τH/2 in the total travel time of the photons from the crystal to the

filter for the two amplitudes. This does not destroy the interference because these amplitudes

cannot be distinguished. The reason for this is, that, although the photons of a twin are created

at identical times, the absolute time at which a twin is created, is undetermined, because the

pump beam is monochromatic: there is temporal entanglement. We also notice that for one

of the amplitudes the H-polarised photon arrives at the filter before the V -polarised photon,

while it is the other way around for the other amplitude. Again the polarisers erase this

difference. The interference fringes are a consequence of the fact that the pump beam changes

phase under translation in time. The filters erase the information about the creation time of

a photon from the observed detection time. The bandwidth α determines the width of the

envelope in the coincidence detection rate when measured as a function of ∆τH . For the

spatial interferometer the interference fringes arise because the pump beam changes phase

under a translation in the transverse space, which is a consequence of the fact that the pump

beam is slightly tilted. The width of the envelope in the coincidence detection rate for the

spatial interferometer depends on the radius of the pinhole in front of detector b.

There is one striking difference between the description of the temporal and the spatial

entanglement. The detectors integrate both over time and transverse space, but in the temporal

case the ordering of the detection times of the photons is relevant, which is not the case for the

spatial variant. The coincidence detection amplitude for tb > ta is different from the one where

tb < ta, as can be seen from Eq. (7.24), because the detection of a photon puts an end to the

evolution of the two-photon state. On the other hand, this does not occur in the spatial case,

as we see in Eq. (7.13). There is no such ordering problem with the locations of detection ~ρa

and ~ρb. In order to clarify the analogy between spatial and temporal entanglement we have
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7. Interference between entangled photon states in space and time

focused on either the spatial or the temporal aspect of the interferometer under consideration.

By using the general expression for the two-photon state in Eq. (7.2) also more general

experiments can be described, where both the spatial and temporal entanglement is relevant.

7.5 Conclusions

We have proposed an interference scheme for studying the spatial entanglement of twin pho-

tons. The spatial entanglement arises from the fact that the photons of a twin are created

at the same location in the crystal, while this location itself is undetermined within the spot

size of the pump beam. Expressed in transverse momentum, this spatial entanglement takes

the form of transverse phase matching. The photons of the twin are created with opposite

polarisation and the coincidence detection signal of the two photons arises from a coherent

superposition of two amplitudes. An interference structure in the coincidence detection rate

occurs as a function of a polarisation-dependent translation in the transverse direction. It is

necessary that the photons of a twin are spatially entangled for this interference to occur.

The proposed interference scheme is the spatial analogue of the interference scheme in

an experiment by Pittman et al. [63] which relies on the temporal entanglement of the twin

photons. Besides that the photons of a twin are created at the same location in the crystal,

they are also created at the same instant of time. The exact creation time of the twin itself is

undetermined within the duration of the pump pulse. This implies that the two-photon state is

entangled in time, or, equivalently, in longitudinal position along the propagation direction.

In the experiment of Pittman et al. the interference occurs as a function of a polarisation-

dependent time delay.

We give a description of the proposed interference scheme in a form where the analogy

and the difference with its temporal counterpart is best visible. We believe that this compari-

son elucidates the role of both types of entanglement.
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CHAPTER 8

Polarisation entanglement in a crystal

with three-fold symmetry

Polarisation entanglement of twin photons created in the process of parametric down-

conversion is fully determined by the pump polarisation when the pump, signal and idler

beams are collinear with the symmetry axis of the non-linear crystal. We point out that

in this situation a three-fold rotational symmetry is needed for the process to occur. We

describe the polarisation entanglement of the twin photons in terms of correlations on the

Poincaré sphere. The inherent non-conservation of the intrinsic angular momentum of

light in this process is discussed.

J. Visser, E. R. Eliel, and G. Nienhuis, Phys. Rev. A 66, 033814 (2002).
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8. Polarisation entanglement in a crystal with three-fold symmetry

8.1 Introduction

Polarisation entanglement between pairs of photons is commonly created in the process of

spontaneous parametric down-conversion (SPDC), where one photon absorbed from a pump

beam in a non-linear crystal leads to the creation of two photons, which are called signal and

idler photons. The crystal must have a non-vanishing second-order non-linear susceptibility,

and polarisation-entangled pairs are selected by appropriate filtering of the down-converted

light.

In general, the orbital and intrinsic angular momenta of the light field are not conserved

in the SPDC process [68, 69]. In the special case that pump, signal and idler beams have

a common axis, the orbital angular momentum along this axis is conserved at the single-

photon level [70–72]. This follows basically from the overlap integral of the pump field and

the product of the signal and idler fields, which involves the integral
∫

dφ exp[iφ(lp− ls− li)],
with φ the azimuthal angle in the transverse plane, and l the azimuthal mode index, which

determines the orbital angular momentum lh̄ per photon [73–76].

In the present paper we analyse the polarisation entanglement of twin photons and the

corresponding intrinsic angular momentum in a spherical basis using the Poincaré sphere.

As an example we discuss the case of a crystal with C3v symmetry, where the propagation

directions are chosen to coincide with the symmetry axis of the crystal. As pointed out by

Bloembergen [77] in the context of second-harmonic generation, for this case a circularly-

polarised fundamental mode is converted into a harmonic with the opposite circular polar-

isation. In a similar fashion, during SPDC, a circularly-polarised pump photon creates a

signal-idler photon pair with the opposite circular polarisation. For a pump photon with an

arbitrary polarisation, a polarisation entangled photon pair is created. Obviously, the intrinsic

angular momentum is in general not conserved during this process. The change in angular

momentum of the light field is compensated by that of the crystal medium.

In Section 8.2 we discuss a representation of the two-photon polarisation state on the

Poincaré sphere and we consider the intrinsic angular momentum associated with the polar-

isation. We will show that, for the process of SPDC, the polarisation entanglement of the

photon pair is determined by the polarisation of the pump and by the non-linear susceptibil-

ity of the crystal. In Section 8.3 we derive properties of the susceptibility tensor χ (2) from

symmetry arguments. We do this in the basis of spherical unit vectors, which is unusual, but

powerful and elegant. In Section 8.4 we use the results from previous Sections to study the

polarisation entanglement and the associated intrinsic angular momentum of twins created in

a crystal with C3v symmetry. We end with conclusions in Section 8.5.

8.2 Representation of the two-photon polarisation state on

the Poincaré sphere

8.2.1 Single-photon polarisation states

The polarisation vector of a light beam with a given propagation direction can always be

expressed as a linear combination of the circular polarisation vectors~u±1. We take the propa-

gation direction parallel to the z axis, in which case the circular polarisation vectors are given
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by

~u+1 = − 1√
2

(~x+ i~y) , ~u−1 =
1√
2

(~x− i~y) , (8.1)

where~x and~y are Cartesian unit vectors. For one photon, these polarisation states are denoted

as |±〉. When the states |+〉 and |−〉 are mapped onto the states up and down of a spin 1/2,

each polarisation state is equivalent to a specific spin state. A pure state of a spin 1/2 is

uniquely determined by the expectation value 〈~S〉 of the spin vector, which always has a

length of 1/2. Therefore, such a state can be represented in a unique way as a point on

a sphere, commonly called the Bloch sphere. Because of the aforementioned mapping, a

pure polarisation state is also represented by a point on a sphere; the latter is named after

Poincaré. The spherical coordinates θ and φ of this point fully determine the polarisation

state. The poles of the Poincaré sphere correspond to opposite circular polarisations, and

points on the equator represent states of linear polarisation. The ellipticity of the polarisation

is determined by the polar angle θ , such that the cross product ~e× (~e)∗ of the polarisation

vector and its complex conjugate has the strength cosθ . The angle between the long axis of

the ellipse and the x axis is equal to (π +φ)/2, where φ is the azimuthal angle. The absolute

value of the overlap |~e∗1 ·~e2| of two polarisation states is given by cos(α/2), where α is the

angular distance between the corresponding points on the Poincaré sphere. Consequently,

opposite points on the Poincaré sphere always correspond to orthogonal polarisations. The

polarisation of a photon that corresponds to the point on the Poincaré sphere with polar angle

θ and azimuthal angle φ is then given by (see Fig. 8.1)

|θ ,φ〉 = cos(θ/2)exp(−iφ/2)|+〉 + sin(θ/2)exp(+iφ/2)|−〉 . (8.2)

8.2.2 Two-photon polarisation states

Now we use the Poincaré representation for the description of the entangled polarisation state

|Ψ〉〉 of twin photons, where the double ket is used to indicate that it is a two-photon state.

When one photon is detected in a selected polarisation state |ψ (1)〉 = |θ1,φ1〉, the state of the

remaining photon collapses into the state |ψ (2)〉= |θ2,φ2〉, which, apart from a normalisation

factor, is given by 〈ψ (1)|Ψ〉〉. The two-photon polarisation state is then represented by the

two points on the Poincaré sphere that correspond to the states |ψ (1)〉 and |ψ(2)〉.
As an example we discuss the singlet and triplet Bell states, which are given by

|ΨS〉〉 =
1√
2

(
|x〉|y〉 − |y〉|x〉

)
=

1

i
√

2

(
|+〉|−〉 − |−〉|+〉

)
, (8.3)

|ΨT 〉〉 =
1√
2

(
|x〉|y〉 + |y〉|x〉

)
=

1√
2

(
|−〉|−〉 − |+〉|+〉

)
, (8.4)

where |x〉 and |y〉 form the basis of linear polarisation. In Fig. 8.2, the singlet and triplet

Bell states are represented on the Poincaré sphere. For the singlet state (8.3), if we detect

one photon in a specific polarisation state, the other photon is projected in a state that is

orthogonal to it. As a consequence, the detected and projected states are antipodes on the

Poincaré sphere, that is

θ1 +θ2 = π , φ1 −φ2 = π mod(2π) . (8.5)
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Figure 8.1: Representation of the one-photon polarisation state on the Poincaré sphere.

If θ = π/2, we have linear polarisation in the y direction for φ = 0 and in the x direction

for φ = π . For θ = 0 and θ = π , we have right- and left-handed circular polarisations,

respectively.

For the triplet state (8.4), we find

θ1 −θ2 = 0 , φ1 +φ2 = π mod(2π) , (8.6)

and we see that the detected and projected states have the same latitude. Note that these

relations are invariant if we interchange the detected and projected states.

The states |ψ (1)〉 and |ψ(2)〉 cannot be interchanged in general. For a state |Ψ〉〉 of the

combined system, interchangeability of the detected and projected states holds, if, for each

pair of states |ψ (1)〉 and |ψ(2)〉 that are related by |ψ (2)〉 ∝ 〈ψ(1)|Ψ〉〉, the opposite relation

|ψ(1)〉 ∝ 〈ψ(2)|Ψ〉〉 is also satisfied. In the Appendix we prove that these conditions do not

hold unless the state |Ψ〉〉 is maximally entangled. The singlet and triplet Bell states discussed

above are maximally entangled states, and thus satisfy interchangeability. In general, the two-

photon polarisation state is not maximally entangled, thus the order of detected and projected

states is important.

8.2.3 Intrinsic angular momentum associated with polarisation

As basis vectors for polarisation we have taken the circular polarisation vectors of Eq. (8.1).

Then the expectation value of the intrinsic angular momentum is in the z direction. For the

total intrinsic angular momentum operator in the propagation direction Σ3, we have

Σ3 = ∑
i

σ i
3 , (8.7)
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Figure 8.2: Representation of the singlet and triplet Bell states on the Poincaré sphere.

The first photon is detected in the state with label 1. Then the second photon is projected

in the state labeled with 2S and 2T for the singlet and triplet Bell states, respectively.

where the summation runs over the photons and where σ i
3 is the third Pauli matrix for photon

i. For the third Pauli matrix we can write σ3 = |+〉〈+| − |−〉〈−|.
The expectation value of the intrinsic angular momentum, in units of h̄, for the one-photon

polarisation state (8.2) is given by cosθ , where θ is the polar angle on the Poincaré sphere.

The expectation value for both the singlet and triplet Bell states vanishes. After detection of

one photon in the state |ψ (1)〉 = |θ1,φ1〉 the two-photon polarisation state |Ψ〉〉 collapses to

the product state |ψ (1)〉|ψ(2)〉, with |ψ (2)〉 ∝ 〈ψ(1)|Ψ〉〉. For the singlet Bell state, the detected

and projected states are on opposite sides of the Poincaré sphere, so the expectation value of

the intrinsic angular momentum after the detection vanishes as well. On the other hand, for

the triplet Bell state the detected and projected states have the same latitude, so that after

detection the expectation value of the intrinsic angular momentum is 2cosθ1. We see that

the intrinsic angular momentum is not conserved. We will come back to this point in Section

8.4.3.

8.3 Symmetry properties of the susceptibility tensor

8.3.1 Invariances of the susceptibility

The most common way to create a two-photon polarisation state is by the process of SPDC.

The basic process of SPDC is the annihilation of one pump photon, and the creation of two

photons, into the signal and the idler mode. The interaction Hamiltonian arises from the non-

linear polarisation of the medium coupled to the pump field, and corresponds to three-wave
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8. Polarisation entanglement in a crystal with three-fold symmetry

mixing. The polarisation dependence of the interaction Hamiltonian is described by

HI =
∫

d~rχ(2)
... ~E~E†~E† +H.c. , (8.8)

where ~E is the positive-frequency part of the electric-field operator, and the integration ex-

tends over the volume of the medium. The three dots symbolise an inner product of the

second-order susceptibility tensor χ (2) with the electric-field vectors. The first part of the

Hamiltonian describes down-conversion, its Hermitian conjugate describes up-conversion.

The Hamiltonian can be written in the elegant form in Eq. (8.8) because we consider opera-

tion in the optical regime where χ (2) is virtually frequency independent [78].

The tensor χ (2) has rank 3, and therefore it has 27 components. For all materials with

some spatial symmetry, not all of these components are independent and non-zero. The ma-

terial transforms onto itself under the application of a covering operation of its symmetry

group. Since the tensor χ (2) is a property of the crystal material, it must be invariant un-

der any one of these covering operations. This is known as Von Neumann’s principle [78].

These operations form the symmetry group of the crystal, and each covering operation R is

represented by a Cartesian matrix O(R). The susceptibility tensor must be identical to its

transformation for each covering operation R. This gives

χ
(2)
i jk = ∑

lmn

χ
(2)
lmnO(R)liO(R)m jO(R)nk . (8.9)

All indicated indices attain the values x, y, z. In this sense, the symmetry properties of the

susceptibility reflect the symmetry of the crystal. The identities in Eq. (8.9) introduce rela-

tions between the different components of χ (2), thereby reducing the number of independent

components.

The number of independent components of χ (2) can be found by applying group the-

ory [79–81]. The independent components themselves and their relations with the other

components can be obtained by using the method of direct inspection [78, 82, 83]. The latter

method can be illustrated by considering materials that are invariant under space inversion.

The matrix elements of the transformation matrix of the inversion operation I are simply

O(I)i j = −δi j. Hence, we find from Eq. (8.9) that χ
(2)
i jk = (−1)3χ

(2)
i jk . This shows that χ (2)

vanishes for a material with inversion symmetry. Only the susceptibilities of an even rank

(i.e., χ(1), χ(3), . . . ) can be non-zero in a medium with inversion symmetry.

8.3.2 Rotations and spherical basis

Most crystalline materials that are of relevance for SPDC are invariant under a rotation over

an angle 2π/N about their symmetry axis, which we take to be the z axis. To describe the

effect of a rotation, it is efficient to replace the basis of Cartesian unit vectors ~x, ~y, and~z by

the basis of spherical unit vectors

~u+1 = − 1√
2

(~x+ i~y) , ~u−1 =
1√
2

(~x− i~y) , ~u0 =~z . (8.10)
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Note that we encountered~u±1 before in Eq. (8.1) as the basis vectors for circular polarisation.

These unit vectors transform under rotations in the same way as the spherical harmonics Ylm

with l = 1. In particular, they are eigenvectors of the rotation matrix about the symmetry axis.

When O(φ) denotes the rotation matrix for a counter-clockwise rotation about the z axis

over an angle φ , the transformation reads

O(φ) ·~uσ = exp(−iφσ)~uσ , σ = −1,0,+1 . (8.11)

This eigenvalue character makes the spherical unit vectors into the natural basis for analysing

the components of the susceptibility tensor. In particular, on this basis, it is simple to identify

the components that must vanish. The spherical components of the susceptibility are defined

by the relations

χ
(2)
ρστ = χ(2)

...~uρ~uσ~uτ , ρ,σ ,τ = −1,0,+1 . (8.12)

8.3.3 Non-vanishing spherical components of χ (2)

For a material with an N-fold rotation axis, we apply a counter-clockwise rotation about this

axis over an angle 2π/N. We will now determine the number of non-zero and independent

components of χ (2) for all values of N. With the invariance requirement (8.9), Eq. (8.11)

leads to the simple identity

χ
(2)
ρστ = exp [−(ρ +σ + τ)2πi/N]χ

(2)
ρστ , ρ,σ ,τ = −1,0,+1 , (8.13)

so that the component χ
(2)
ρστ must vanish whenever the exponential factor differs from 1. It

follows that the component χ
(2)
ρστ can only be non-zero under the condition that

ρ +σ + τ = kN , (8.14)

with k being an integer. Obviously, the sum ρ + σ + τ can acquire the values 0,±1,±2,±3

for the possible values of ρ , σ and τ .

• For each value of N, the condition (8.14) is satisfied when the sum of the indices is zero.

This is true when all indices are zero, or when they are one of the six permutations of

the three different values −1, 0, +1. The corresponding seven components can be

non-zero for any value of N, and also when the system possesses full axial symmetry.

• For N = 4 and higher, the condition (8.14) cannot be obeyed for any value of k other

than zero, so that all components other than these seven must vanish.

• For N = 3, the two components χ
(2)
+1+1+1 and χ

(2)
−1−1−1 correspond to the condition

(8.14) with k = ±1; they can be non-zero in addition to the seven components men-

tioned above.

• For N = 2, the condition (8.14) with k = ±1 is obeyed by the six components with

ρ +σ +τ =±2; here ρ,σ ,τ are permutations of +1,+1,0 or of −1,−1,0. Only these

six components can be non-zero for N = 2, in addition to the seven mentioned above.
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8. Polarisation entanglement in a crystal with three-fold symmetry

• Finally, there are 12 components for which ρ +σ + τ = ±1. These are the ones where

ρ,σ ,τ are permutations of 0,0,±1 or of ∓1,±1± 1. These components can only be

non-zero in the trivial case that N = 1. In this case without any symmetry, no restriction

is set for any one of the 27 components.

In general, materials have other symmetry operations besides an N-fold rotation axis. The re-

quirement that χ (2) is invariant under the additional operations, introduces relations between

the non-zero components found above, thereby further reducing the number of independent

components.

8.3.4 Transverse part of χ (2)

In the case that pump, signal, and idler propagate parallel to each other and to the symmetry

axis, the polarisation vectors lie in the xy plane. This we call the transverse configuration. The

only relevant part of the susceptibility in this case is the transverse susceptibility χ
(2)
T , defined

as the projection of χ (2) on this plane. Hence, χ
(2)
T contains the eight spherical components

χ
(2)
ρστ with ρ,σ ,τ = −1,+1 only. For the components of χ

(2)
T , the sum ρ + σ + τ can only

attain the values ±1,±3.

For N = 2 and N = 4 and higher, it follows from Eq. (8.14) that all components of

χ
(2)
T vanish. Hence a non-vanishing transverse susceptibility χ

(2)
T only occurs for materials

without any symmetry, or for materials with a three-fold rotation axis. In the following

Section we discuss the polarisation properties of twin photons created by SPDC in a crystal

with three-fold rotational symmetry.

8.4 SPDC in a crystal with C3v symmetry

8.4.1 Hamiltonian

We consider a crystal with C3v symmetry in the transverse configuration. It has six covering

operations, which are generated by a rotation over 2π/3 and a reflection in a vertical plane

that contains the z axis, for which we take the xz plane. The corresponding matrix O(Rv)
acting on the spherical unit vectors is represented by the transformation

O(Rv) ·~u+1 = −~u−1 , O(Rv) ·~u−1 = −~u+1 . (8.15)

For the transverse configuration we are only interested in χ
(2)
T . As shown in Section 8.3.3, it

follows from the three-fold rotation symmetry that χ
(2)
+1+1+1 and χ

(2)
−1−1−1 are the only non-

zero components of χ
(2)
T . According to Eq. (8.15), the invariance relation (8.9) applied to

reflection about the xz plane yields the relation

χ
(2)
+1+1+1 = −χ

(2)
−1−1−1 ≡ G . (8.16)

Hence, for C3v, we find that χ
(2)
T is determined by a single independent parameter G. This is in

agreement with the result obtained using the procedure by Bhagavantam and Suryanarayana

[79].
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Now we obtain the Hamiltonian in the transverse configuration for a crystal with C3v

symmetry. For the positive-frequency part of the electric-field operator, we write

~E (~r, t) ∝

∫
d~k∑

λ

√
ωλ (~k)aλ (~k)~ελ (~k)exp

[
i~k ·~r− iωλ (~k)t

]
, (8.17)

where aλ (~k) annihilates a photon with wave vector~k and polarisation vector~ελ (~k) and where

the summation over λ runs over the two basis states of polarisation. In the transverse con-

figuration, the index of refraction of the crystal does not depend on the polarisation for the

common direction of propagation. We then have~ελ (~k)→~ελ and ωλ (~k)→ ω(~k), and we find

that

~E (~r, t) ∝

∫
d~k

√
ω(~k)exp

[
i~k ·~r− iω(~k)t

]
∑
λ

aλ (~k)~ελ . (8.18)

We see that the electric-field operator is split into a polarisation part and a part concerning

the modes in k space. As a basis for polarisation we use the circular polarisation states |±〉.
Since we are only interested in the polarisation part, we write

~E ∝ a+~u+1 +a−~u−1 . (8.19)

Here a+ and a− are the annihilation operators for a photon with right- and left-handed circular

polarisations, respectively.

From Eq. (8.16) and the definition in Eq. (8.12), it follows that the transverse suscepti-

bility can be expressed in terms of the spherical unit vectors ~u±1 as

χ
(2)
T = G

(
~u∗+1~u

∗
+1~u

∗
+1 −~u∗−1~u

∗
−1~u

∗
−1

)
. (8.20)

Using the fact that the spherical basis is unitary and that

(~u+1)
∗ = −~u−1 , (8.21)

we find that

~u+1 ·~u+1 =~u−1 ·~u−1 = 0 , ~u+1 ·~u−1 = −1 . (8.22)

We substitute the expressions that we obtained above in Eq. (8.8) and, apart from an irrelevant

overall factor, the Hamiltonian in the transverse configuration is found as

HI ∝ G
(
ap+a

†
s−a

†
i−−ap−a

†
s+a

†
i+

)
+H.c. , (8.23)

where the labels p, s, and i refer to the modes in k space of the pump, signal, and idler photon,

respectively. This shows that the absorption of a left-circularly-polarised pump photon is

accompanied by the creation of a signal and an idler photon, which are both right-circularly

polarised, and vice versa.

8.4.2 Representation on the Poincaré sphere

We now use the Poincaré representation for the description of the entangled state of the two

SPDC photons for a given polarisation of the pump. We consider a pump photon in the state
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8. Polarisation entanglement in a crystal with three-fold symmetry

|θp,φp〉. The interaction Hamiltonian (8.23) in the transverse configuration applied to this

initial state yields, to first order, the two-photon state

|Ψ〉〉 = cos(θp/2)exp(−iφp/2)|−〉|−〉 − sin(θp/2)exp(+iφp/2)|+〉|+〉 . (8.24)

This expression gives the two-photon state as a linear superposition of two-photon states that

are pairwise orthogonal, so that this state is already in Schmidt-decomposed form. According

to the definition by Abouraddy et al. [84] the degree of entanglement is sinθp. For linear

polarisation (θp = π/2), the created two-photon state is maximally entangled. We find the

triplet Bell state (8.4) in the case that the direction of the linear polarisation of the pump

is parallel to the vertical reflection plane containing the x axis, so that φp = 0. The singlet

Bell state (8.3) cannot be obtained by choosing an appropriate pump polarisation since for

the state |Ψ〉〉 of Eq. (8.24), the overlap 〈〈ΨS|Ψ〉〉 with the singlet Bell state vanishes for all

pump polarisations.

When one photon is detected in the selected polarisation state |ψ (1)〉 = |θ1,φ1〉, the state

of the remaining photon collapses into the state |ψ (2)〉 = |θ2,φ2〉 ∝ 〈ψ(1)|Ψ〉〉. The spherical

angles θ2 and φ2 of |ψ(2)〉 are found to be given by the equalities

tan(θ1/2)

tan(θ2/2)
= tan(θp/2) , φ1 +φ2 +φp = π mod(2π) . (8.25)

Note that the states |ψ (1)〉 and |ψ(2)〉 cannot be interchanged, since in general the polarisa-

tion state of the two created photons is not maximally entangled, except for the case of a

linearly-polarised pump. The relation between the two polarisation states |ψ (1)〉 and |ψ(2)〉 is

illustrated in Figs. 8.3 and 8.4.

The relation between the azimuthal angles in Eq. (8.25) is invariant when all angles are

increased by an amount of 2π/3. This corresponds to a rotation in real space about the z axis,

or symmetry axis, over half this angle, that is, over π/3, as can be seen from Eqs. (8.11) and

(8.2). This is somewhat surprising, since the crystal is invariant only under a rotation over

2π/3. To check consistency, we perform a rotation of the crystal over an angle β about the z

axis. Using the transformation property under rotations in Eq. (8.11), we find that the relation

between χ
(2)
+1+1+1 and χ

(2)
−1−1−1 in Eq. (8.16) changes to

exp(−3iβ )χ
(2)
+1+1+1 = −exp(+3iβ )χ

(2)
−1−1−1 . (8.26)

Hence, a rotation over π/3 produces a sign change for χ
(2)
T as a whole, which does not change

the polarisation properties of signal and idler. The same conclusion follows by noting that a

polarisation state is basically unchanged by a rotation over ±π . Therefore, a rotation of all

polarisation vectors over π/3 is equivalent to a rotation of the polarisation states over −2π/3,

or, for that matter, a rotation of the crystal over 2π/3.

The Hermitian conjugate of the interaction Hamiltonian in Eq. (8.23) represents the non-

linear process of up-conversion. This process transforms the two-photon polarisation state

|ψ(1)〉|ψ(2)〉 into the one-photon state |θp,φp〉. The spherical angles θp and φp can then again

be obtained from Eq. (8.25), but with the labels 1 and p interchanged.
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Figure 8.3: Representation of a two-photon state created by SPDC where the projected

polarisation state 2 is found upon detection in state 1. The polarisation of the pump is

represented by the open dot and labeled with p.

Figure 8.4: Representation of the two-photon state created by SPDC with a linearly-

polarised pump. Then the polarisation states 1 and 2 have the same latitude on the

Poincaré sphere. For φp = 0, the relation between φ1 and φ2 is represented by the

dotted lines, for φp = π/2 by the broken lines, and for φp = π by the continuous line.

The double arrow below and next to the axes represents the orientation of the long axis

of the polarisation ellipse.
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8. Polarisation entanglement in a crystal with three-fold symmetry

8.4.3 Intrinsic angular momentum

For a pump photon in the state |θp,φp〉, the expectation value of the intrinsic angular momen-

tum, in units of h̄, is given by cosθp, while for the two-photon state (8.24) created by SPDC in

the crystal we find −2cosθp. We see that the intrinsic angular momentum is not conserved in

the process of SPDC, while, in the transverse configuration, the orbital angular momentum is

conserved [70–72]. In order to satisfy conservation of total angular momentum, we conclude

that there must be a transfer of angular momentum to the crystal [77]. The expectation value

of the amount of transferred angular momentum to the crystal is then 3cosθp. Like we saw

in Section 8.2.3 when discussing the triplet Bell state (8.4), the actual amount of transfer of

angular momentum to the crystal will depend on the detected polarisation state |ψ (1)〉, which

shows the highly non-local nature of the transfer.

Conservation or non-conservation of angular momentum in SPDC depends on the trans-

formation properties of the Hamiltonian under rotation. The orbital angular momentum de-

pends on the position dependence of the complex field amplitude, and its conservation results

from the fact that the Hamiltonian does not depend on position. On the other hand, the intrin-

sic angular momentum depends on the polarisation properties of the fields, which are deter-

mined by the tensor character of χ (2). The effect of a rotation about the symmetry axis in the

spherical basis is a complex phase change, since the spherical basis vectors are eigenvectors

of rotation. For C3v symmetry, the relevant elements χ
(2)
+1+1+1 and χ

(2)
−1−1−1 are only invariant

under a rotation over an angle of 2π/3 and not under a rotation over an arbitrary angle. As a

consequence, in case of a crystal with C3v symmetry, the intrinsic angular momentum is not

conserved.

8.5 Conclusions

We have discussed the use of a spherical basis for describing polarisation entanglement of

twin photons as produced in the process of spontaneous parametric down conversion. This

choice leads to a very transparent discussion regarding the conservation of intrinsic angular

momentum in SPDC. We have used the Poincaré sphere to describe arbitrary polarisation

states of pump, signal and idler. On this sphere, the singlet Bell state corresponds to a pair of

antipodes, while in the triplet Bell state, the photons have equal latitude.

We have employed the spherical basis to analyse the polarisation entanglement of signal

and idler as it arises in the process of SPDC in a crystal of C3v symmetry when all optical

beams are collinear with the symmetry axis of the crystal. We have shown that the three-

fold crystalline symmetry is a prerequisite for SPDC in this geometry. For this crystal and

geometry, we have derived simple relationships between the spherical coordinates of pump,

signal and idler photons on the Poincaré sphere; these relationships provide direct insight into

the issue of conservation of intrinsic angular momentum.

Twin photon generation in the chosen configuration cannot be phase matched; experi-

mental realisation of SPDC in the proposed geometry will therefore be non-trivial. With a

β barium borate (BBO) crystal (C3v symmetry), cut for 0◦ phase matching, having a length

equal to the coherence length (≈ 13 µm at λ = 800 nm [85]), such an experiment should be

feasible.
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8.A Interchangeability of detected and projected states

When a quantum system consisting of two subsystems 1 and 2 with the same dimension d

is in a state |Ψ〉〉, and system 1 is detected in the state |ψ (1)〉, system 2 is projected into the

state |ψ(2)〉 that is proportional to the partial inner product 〈ψ (1)|Ψ〉〉. In general, the inverse

statement is not true: detection of system 2 in |ψ (2)〉 projects system 1 in a state that is not

necessarily equal to |ψ (1)〉. In this appendix we prove that the roles of |ψ (1)〉 and |ψ(2)〉 can

be interchanged for all choices of the detected state if and only if the state |Ψ〉〉 is maximally

entangled.

Consider a state |Ψ〉〉 for which the detected state and the resulting projected state can be

interchanged. For any normalised detected state |ψ (1)〉 of system 1, the resulting normalised

projected state |ψ (2)〉 of system 2 obeys the identity

〈ψ(1)|Ψ〉〉 = c|ψ (2)〉 , (8.27)

and the normalisation constant is obviously c = 〈ψ (1)|〈ψ(2)|Ψ〉〉. Because of the assumption

of interchangeability, we can also write

〈ψ(2)|Ψ〉〉 = c|ψ (1)〉 , (8.28)

with the same normalisation constant.

We choose an orthonormal basis |ψ (1)
n 〉 of system 1. Detection of system 1 in the state

|ψ(1)
n 〉 projects system 2 in the state |ψ (2)

n 〉, defined by

〈ψ(1)
n |Ψ〉〉 = cn|ψ(2)

n 〉 . (8.29)

This allows us to express the state |Ψ〉〉 in the form

|Ψ〉〉 =
d

∑
n=1

cn|ψ(1)
n 〉|ψ(2)

n 〉 . (8.30)

Now we use the interchangeability of the detected and projected states, which gives

〈ψ(2)
n |Ψ〉〉 = cn|ψ(1)

n 〉 . (8.31)

Substituting Eq. (8.30) into Eq. (8.31) shows that the states |ψ (2)
n 〉 form an orthonormal basis

of system 2.

Finally, we apply the assumption of interchangeability for an arbitrary state |ψ (1)〉 =

∑d
n=1 an|ψ(1)

n 〉. This gives for the projected state of system 2,

c|ψ(2)〉 =
d

∑
n=1

a∗n〈ψ
(1)
n |Ψ〉〉 =

d

∑
n=1

a∗ncn|ψ(2)
n 〉 , (8.32)

where we used Eq. (8.29) in the last step. Conversely, when we first detect system 2 in the

state |ψ(2)〉, system 1 is projected into a state proportional to

〈ψ(2)|Ψ〉〉 =
1

c∗

d

∑
n=1

anc∗n〈ψ
(2)
n |Ψ〉〉 =

1

c∗

d

∑
n=1

an|cn|2|ψ(1)
n 〉 . (8.33)
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This is proportional to the original state |ψ (1)
n 〉 only when all coefficients |cn|2 are identical.

Then Eq. (8.30) can be expressed as a bi-orthogonal expansion

|Ψ〉〉 =
1√
d

d

∑
n=1

exp(iφn)|ψ(1)
n 〉|ψ(2)

n 〉 , (8.34)

in which each term has the same strength. This is a state with maximal entanglement.

On the other hand, when the state of the combined system can be expressed in the form

(8.34), one easily checks that it satisfies interchangeability.
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CHAPTER 9

Quantum-trajectory description of laser noise

with pump depletion

The intensity fluctuations of a three-level laser are known to drop below shot noise in the

presence of depletion of the ground state. We study the fluctuations of the laser output

as a function of the parameter ε , defined as the fraction of atoms needed for the laser

to operate. For a sufficiently small number of active atoms, the value of ε , and thereby

the ground-state depletion, can be appreciable even for modest pumping. This suggests

that the intensity fluctuations in the laser output would decrease below shot noise as

the number of active atoms is reduced. A microscopic approach that uses a quantum-

trajectory method and a macroscopic approach using semi-classical rate equations both

show, however, that rather than decreasing, the intensity fluctuations actually increase

with ε . We find that the fluctuations of the output are determined by the dependence of the

cycle time of the atoms on the number of photons in the laser mode.

J. Visser, G. Nienhuis, S. M. Dutra, M. P. van Exter, and J. P. Woerdman,

Phys. Rev. A 65, 063809 (2002).
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9. Quantum-trajectory description of laser noise with pump depletion

9.1 Introduction

One of the most important characteristics of laser radiation is its noise [86]. In recent years,

it has been recognised that noise properties change when the pumping is strong enough to

cause depletion of the number of atoms participating in the laser transition. The special case

of a three-level laser with pump depletion has been studied [87,88]. Strong pumping leads to

depletion of the ground state and the common assumption that the atoms in the ground state

form an independent reservoir breaks down. It was found that for a laser with an incoherent

pump, this depletion leads to an effective reduction of the pump noise, which in turn causes

the intensity fluctuations of the laser output to drop below the shot-noise limit. However, the

strong pumping needed for this mechanism to occur is far beyond experimental possibilities.

In this paper we consider a situation where depletion of the ground state is possible al-

ready with modest pumping. When the total number of atoms in the gain medium N is not

much larger than the inversion Nthr at threshold, ground-state depletion occurs already just

above threshold, and extremely strong pumping is not required. This also raises the question

whether the depletion of the ground state that occurs for atom numbers N comparable to Nthr

is also accompanied by intensity fluctuations below shot noise. If so, a Poissonian pumped

laser with a sub-Poissonian output would be experimentally realisable.

As an example of a laser with a limited number of atoms, we analyse a three-level laser

in a Λ configuration where N is allowed to be comparable to Nthr. To find the intensity

fluctuations we use a semi-classical rate equation for the number of photons in the laser

mode with a noise source added. To account for the gain medium of the laser, a term Gat

is added. An expression for Gat is obtained by using both a microscopic and a macroscopic

approach to the dynamics of the gain medium. The optical Bloch equations are the starting

point for both approaches.

The microscopic approach consists of a quantum-trajectory method to study the dynamics

of a single atom in the gain medium. This allows us to derive the statistical properties of the

stimulated emission of photons in the laser mode by a single atom. The dynamics of single

atoms in the gain medium has been studied before by Ritsch and Zoller [89], but in their

paper the atomic density matrix is calculated. A study of the intensity fluctuations in the

fluorescence that accompanies quantum jumps in a driven three-level atom has been done by

Kim and Knight [90]. From the dynamics of a single atom we derive the statistical properties

of the photons deposited in the laser mode by the entire gain medium.

On the other hand, the macroscopic approach consists of a calculation based on semi-

classical rate equations for the number of atoms in each level with noise sources added. For

both approaches an expression for Gat is found and the intensity fluctuations of the laser

output are calculated from the rate equation for the photon number. The fluctuations depend

on the parameter ε = Nthr/N, which represents the fraction of the number of atoms minimally

needed for laser action.

In Section 9.2 we discuss the rate equation for the photon number, and the optical Bloch

equations that describe the interaction between the laser mode and the gain medium. In

Section 9.3 we discuss the microscopic approach that uses quantum trajectories to describe

the evolution of a single atom in the gain medium. The macroscopic approach, for which

semi-classical rate equations for the number of atoms in each level are derived, is discussed

in Section 9.4. The conclusions are given in Section 9.5.
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Figure 9.1: The three level scheme, where the 2-1 transition is the lasing transition.

9.2 Optical Bloch equations

9.2.1 Laser model

We model a laser by a laser mode in a cavity that is resonant with the lasing transition of

the atoms in the gain medium. We use three-level atoms in the Λ configuration, as depicted

in Fig. 9.1. The lasing transition 2-1 is coherently driven by the laser mode. Spontaneous

emission occurs from state 2 to state 1, and from state 1 to state 0, and the corresponding

rates are γ2 and γ1. The lower state 0 is incoherently pumped to the upper level 2 at the rate

γ0. For the number of photons in the laser mode we use the following rate equation

ṅ = −2κn+Gat(n)+ fn , (9.1)

where κ is the cavity decay rate. The function Gat(n) models the effect the atoms in the gain

medium have on the number of photons in the laser mode. It can be obtained from a detailed

description of the interaction of the atoms in the gain medium with the photons in the laser

mode. Because n is not a continuous but an integer number, the creation and annihilation of

photons in the cavity introduces noise, which is accounted for by the noise source fn.

The evolution of the density matrix of a three-level atom coherently coupled to the laser

mode is described by the optical Bloch equations. We have

d

dt
ρ22 = −γ2ρ22 + γ0ρ00 +

i

2
Ω(ρ12 −ρ21) ,

d

dt
ρ11 = −γ1ρ11 + γ2ρ22 +

i

2
Ω(ρ21 −ρ12) ,

d

dt
ρ21 = −γ⊥ρ21 +

i

2
Ω(ρ11 −ρ22) =

d

dt
ρ∗

12 ,

d

dt
ρ00 = − d

dt
ρ22 −

d

dt
ρ11 .

(9.2)

We neglect collisional dephasing, so that the optical coherence on the lasing transition decays

at the transverse rate

γ⊥ =
1

2
(γ1 + γ2) . (9.3)
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9. Quantum-trajectory description of laser noise with pump depletion

No optical coherence involving the state 0 is created. This scheme can be expected to give

rise to laser action only when the lower state of the lasing transition decays much faster than

the upper state, so that γ1 � γ2. The coupling of the lasing transition to the laser mode is

modeled by an effective Rabi frequency Ω. Adiabatic elimination of the optical coherence

ρ21 shows that the effective rate of stimulated emission is

γst =
Ω2

2γ⊥
. (9.4)

This rate is related to the average photon number n in the laser mode by the equality γst =
γ2βn, with β being the fraction of spontaneously emitted photons on the laser transition that

go into the laser mode. This connects the Rabi frequency to the properties of the laser cavity.

9.2.2 The fraction of atoms needed for lasing

In a laser the stimulated emission rate by the whole gain medium is equal to γ2βnN2, where

N2 is the number of atoms in level 2. The absorption rate is γ2βnN1, where N1 is the number

of atoms in level 1. The decay rate of photons from the cavity is 2κn. In the steady state

above threshold we find

γ2βn
(
N2 −N1

)
= 2κn , (9.5)

where the quantities with a bar refer to the steady-state values. For the inversion we find

D = N2 −N1 =
2κ

γ2β
= Nthr . (9.6)

The number of atoms that is at least needed for the laser to operate is then equal to Nthr.We

define ε as the fraction of the total number of atoms that is at least needed for the laser to

operate, that is

ε =
Nthr

N
, (9.7)

where N is the total number of atoms in the gain medium.

In the laser we distinguish a limited number of uncorrelated sources of noise in the photon

number. We use fst for stimulated emission, fabs for absorption and fvac for the fluctuations

related to the emission of photons from the cavity. The relation between the noise term fn in

Eq. (9.1) and the uncorrelated noise terms is given by

fn = fst − fabs − fvac , (9.8)

where the signs reflect the gain and loss nature of the noise process for the variable involved.

We assume that the noise sources are Gaussian and δ -correlated random variables with zero

average. For the correlations between the noise sources we have
〈

fi(t) f j

(
t ′
)〉

= Di jδ
(
t − t ′

)
, (9.9)

where Di j are the diffusion coefficients. Since the noise sources are uncorrelated, the only

non-zero diffusion coefficients are the diagonal ones, which we indicate as Dst , Dabs and Dvac.

According to Lax [91] these diffusion terms are equal to the corresponding rate, so that

Dst = γ2βnN2 , Dabs = γ2βnN1 , Dvac = 2κn . (9.10)
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9.2.3 Spectrum of intensity fluctuations

We are interested in the spectrum V (ω) of the intensity fluctuations at the frequency ω = 0.

The spectrum V (ω) is defined as follows

〈
∆̃I(ω)∆̃I

(
ω ′)∗〉= 2κnV (ω)δ

(
ω −ω ′) , (9.11)

where

∆̃I(ω) =
1√
2π

∫ ∞

−∞
dt exp(−iωt)∆I(t) (9.12)

is the Fourier transform of the fluctuations ∆I(t) of the output intensity of the laser around

the steady-state value I = 2κn. To find ∆I(t) we linearise Eq. (9.1) around the steady state by

substituting n(t) = n+∆n(t) and neglecting terms that are second order in ∆n or higher. The

next step is to relate the internal fluctuations in the photon number to the fluctuations in the

output intensity. Therefore we use the input-output formalism of Gardiner and Collett [92].

In their paper they use the standard model of a system coupled to a heat bath. They derive a

boundary condition that relates the input and the output to the internal modes of the system.

In our case the input to the system is the vacuum state and the output is the intensity of the

laser. We find

∆I(t) = 2κ∆n(t)+ fvac(t) . (9.13)

We study the dependence of the intensity fluctuations on the parameter ε by using, respec-

tively, a microscopic and a macroscopic approach to describe the effect of the gain medium

on the number of photons in the laser mode. We determine the function Gat(n) that accounts

for the gain medium in the rate equation for n Eq. (9.1) and use the approach given above

to find an expression for the spectrum of the intensity fluctuations at frequency ω = 0 as a

function of ε . In both cases the optical Bloch equations (9.2) are the starting point.

9.3 Quantum trajectories

9.3.1 Model description

In order to determine the function Gat(n) that accounts for the photon gain in the laser mode,

we analyse in the present Section the statistical properties of the cycles performed by the

internal state of the atoms of the gain medium. This is done by the technique of quantum

trajectories, in which the density matrix of each atom is unraveled into an ensemble of pure

states [93–95]. A trajectory description of lasers without inversion has been given before [96].

Spontaneous emission and pumping constitute the incoherent transitions in this model, which

can be described by quantum jumps. The corresponding jump operators are S2 = |1〉〈2|,
S1 = |0〉〈1| and S0 = |2〉〈0|. The optical Bloch equations (9.2) correspond to the master

equation
d

dt
ρ = −i

(
Hρ −ρH†

)
+ γ2S2ρS

†
2 + γ1S1ρS

†
1 + γ0S0ρS

†
0 , (9.14)

with H the effective non-Hermitian Hamiltonian

H = −1

2

[
Ω
(

S2 +S
†
2

)
+ iγ0|0〉〈0|+ iγ1|1〉〈1|+ iγ2|2〉〈2|

]
. (9.15)
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9. Quantum-trajectory description of laser noise with pump depletion

Atoms are performing cycles 0 → 2 → 1 → 0 along their internal states, thereby deposit-

ing photons into the laser mode when stimulated emission occurs. In order to describe the

atomic contribution to the noise in the photon number, we consider the possible histories of

an atom during a cycle. The atom undergoes coherent evolution periods, described by the

effective Hamiltonian H. The coherent evolution is interrupted by instantaneous quantum

jumps, described by the jump operators Si with i = 0,1,2. Solutions of the master equation

(9.14), or, equivalently, the optical Bloch equations (9.2) are faithfully reproduced after aver-

aging these single histories over the instants of the jumps [93,94] with the proper probability

distribution. We follow the atom during one cycle 0 → 2 → 1 → 0, which is the time period

between two successive arrivals of the atom in state 0 by spontaneous emission from the state

1. After a lifetime of average duration γ−1
0 in 0, the atom is pumped to the upper state 2, as

described by S0, and the cycle ends with spontaneous decay from 1 to 0, expressed by S1. In

between these two jump instants, the atom undergoes coherent evolution within the two-state

manifold 1 and 2, and any number k of spontaneous decays from 2 to 1, as described by the

jump operator S2.

9.3.2 Statistics of cycle trajectories

We denote a period of coherent evolution starting in state i and ending in state j as (i, j). An

atom starting a coherent period in state 0 can only remain in this state, and the only possible

coherent period is (0,0). A coherent period starting in state 2 or in state 1 can end either in 2

or 1, with the corresponding periods (2,2), (2,1), (1,2) or (1,1). Therefore, the probabilities

Pi j that a coherent period starting in state i ends in state j obey the obvious sum rules

P00 = 1 , P11 +P12 = 1 , P21 +P22 = 1 . (9.16)

The average duration time of a coherent period (i, j) is indicated as Ti j.

In Fig. 9.2 the possible trajectories for cycles 0 → 2 → 1 → 0 are depicted, where the

number k indicates the number of spontaneous emissions during the cycle. Each spontaneous

emission has a small probability β to return a photon to the laser mode. Stimulated emission

into the laser mode takes place only during the coherent period (2,1). Such a period occurs

only in the first trajectory in Fig. 9.2 with k = 0. This trajectory is termed the gain trajectory,

and we will demonstrate that it becomes dominant above threshold. For non-zero values

of the number k of spontaneous decays on the laser transition, the trajectory contains k− 1

absorptions of a photon from the laser mode, each one corresponding to a coherent period

(1,2). The passage through the manifold of lasing states starts with a coherent period (2,2),
and ends with a coherent period (1,1).

The probability distribution pk over trajectories with k spontaneous emissions on the las-

ing transition can be read off from Fig. 9.2, with the result

p0 = P21 , pk = P22Pk−1
12 P11 for k ≥ 1 . (9.17)

By using the sum rules (9.16) it is easy to check that the probabilities add up to 1. Using these

probabilities the average value of interesting physical quantities, such as the average duration

of a cycle, can be calculated. The average duration Tk of a trajectory with k spontaneous

emissions is simply the sum over the average durations of the coherent periods, so that

T0 = T00 +T21 , Tk = T00 +T22 +(k−1)T12 +T11 for k ≥ 1 . (9.18)
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Figure 9.2: The different trajectories an atom can follow during one cycle, starting in

the ground state level 0. The trajectories are labeled on the left. An arc represents a

quantum jump and a straight line a coherent period. The state of the atom is given at

the beginning and the end of each coherent period. The net effect of a coherent period

or a quantum jump on the photon number is also given.

By using the sum rules (9.16), and the expressions (9.17) and (9.18) for pk and Tk, the average

duration of a cycle Tcycle = ∑k pkTk can be simplified to the form

Tcycle = T00 +P21T21 +P22 (T11 +T22)+
P22

P11
P12T12 . (9.19)

In order to evaluate the probabilities Pi j and the average durations Ti j, we notice that for

a given initial density matrix ρ0, the time-dependent density matrix

ρ̃(τ) = exp(−iHτ)ρ0 exp
(
iH†τ

)
(9.20)

constitutes the partial density matrix for the situation that no quantum jump occurred during

the time interval [0,τ]. Its trace Tr ρ̃ represents the corresponding probability that no quantum

jump occurred in [0,τ ]. We introduce the decaying transition amplitudes

ci j(τ) = 〈 j|exp(−iHτ)|i〉 , (9.21)

such that the quantity γ j|ci j(τ)|2 is the probability density that a coherent period that started

in the state i ends after a time duration τ with a jump from the state j. This leads to the

expression

Pi j = γ j

∫ ∞

0
dτ |ci j(τ)|2 (9.22)

for the probability of a coherent period (i, j) under the condition that it started in state i. We

define Li j(τ) as the normalised probability density that a coherent period (i, j) ends after a
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9. Quantum-trajectory description of laser noise with pump depletion

time duration τ and find

Li j(τ) = γ j|ci j(τ)|2/Pi j . (9.23)

For the average duration time of a coherent period (i, j) we find

Ti j =
∫ ∞

0
dτ Li j(τ)τ . (9.24)

Obviously, for the coherent period (0,0) in the lower state we recover that P00 = 1, and

T00 = γ−1
0 . For the transition amplitudes within the manifold of the laser states, we obtain the

results

c22(τ) = exp

[
−1

4
(γ1 + γ2)τ

](
cosh(Γτ)+

γ1 − γ2

4Γ
sinh(Γτ)

)
,

c11(τ) = exp

[
−1

4
(γ1 + γ2)τ

](
cosh(Γτ)− γ1 − γ2

4Γ
sinh(Γτ)

)
, (9.25)

c21(τ) = c12(τ) = i
Ω

2Γ
exp

[
−1

4
(γ1 + γ2)τ

]
sinh(Γτ) ,

where

Γ =
1

4

√
(γ1 − γ2)

2 −4Ω2 . (9.26)

These expressions (9.25) are generally valid for the coherent evolution of the states coupled

by the lasing transition. The Rabi frequency Ω is related to the photon number by

Ω2

2γ⊥
= γ2βn , (9.27)

as argued below Eq. (9.4).

9.3.3 Cycle time of the gain trajectory

As argued above, the only trajectory leading to stimulated emission is the first one in Fig. 9.2

(with k = 0). Using the results of the previous subsection, we calculate the probability p0 of

this first trajectory and find

p0 = P21 =
γ1γ2βn

γ1γ2 +(γ1 + γ2)γ2βn
. (9.28)

Far above the threshold it is known that βn � 1, and since γ1 � γ2 we see that the probability

of the gain trajectory p0 is close to 1. Therefore we assume that far above the threshold,

atoms in the gain medium of the laser follow only the gain trajectory.

During a coherent period the photon number is not known, because of the entanglement

with the states of the atom. Therefore we cannot describe the gain of the photon in the gain

trajectory as an event that takes place at a specific time t. For simplicity we assume that

the actual gain of the photon takes place at the end of the coherent period (2,1). Far above

the threshold, the atom follows the gain trajectory and we can view the atom as a source
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that emits photons in the laser mode with varying time intervals between two consecutive

emissions. We define w1(τ) as the normalised waiting-time distribution for the creation of

the next photon. Since between the emissions of two consecutive photons the atom evolves

through the coherent periods (0,0) and (2,1), we have

w1(τ) =
∫ τ

0
dt L21(τ − t)L00(t) , (9.29)

where the Li j(τ) are the normalised probability densities defined in (9.23). Because directly

after the emission of a photon it takes time for the atom to get excited again, the emission of

a single atom in the gain medium is anti-bunched as can be seen from (9.29).

We define f1 (τ1)dτ1 as the probability that there is an emission of a photon in the time

interval (τ1,τ1 +dτ1), regardless of how many photons have been emitted outside this time

interval [97]. The expectation value of the number m of emitted photons in the time interval

(0,T ) is given by

〈m〉T =
∫ T

0
dτ1 f1 (τ1) . (9.30)

If we divide 〈m〉T by the time T , we have the average intensity. In the limit of T → ∞ we

have

lim
T→∞

〈m〉T

T
= f1(∞) , (9.31)

which is the steady-state emission rate. The Laplace transform f̂ of a function f is defined as

f̂ (s) =
∫ ∞

0
dτ exp(−sτ) f (τ) . (9.32)

Using (9.32) and (9.31) we derive that

f1(∞) = lim
s→0

s f̂1(s) . (9.33)

Since a photon emitted at time τ1 can be the first, the second and so on after time 0, the re-

lation between the emission rate f1 (τ1) and the waiting-time distribution w1 (τ1) in Laplace-

transform language takes the form [98]

f̂1(s) = ŵ1(s)+ [ŵ1(s)]
2 + ... =

ŵ1(s)

1− ŵ1(s)
. (9.34)

From (9.29) we find that

ŵ1(s) = L̂21(s)L̂00(s) . (9.35)

Using (9.34) we find

1

f1(∞)
= − lim

s→0

d

ds
ŵ1(s) =

∫ ∞

0
dτ w1(τ)τ , (9.36)

which is equal to the average time between the emissions of two consecutive photons as

expected. Since the atoms follow only the gain trajectory, we may write f1(∞) = 1/T0. Using

(9.35) we find

1

f1(∞)
= T0 = − lim

s→0

d

ds
ŵ1(s) = − lim

s→0

d

ds

[
L̂21(s)L̂00(s)

]
= T00 +T21 , (9.37)
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9. Quantum-trajectory description of laser noise with pump depletion

as expected from Fig. 9.2. Using (9.37) together with the expression (9.24) for Ti j we find

for f1(∞) the following expression

1

f1(∞)
=

1

γ0
+

2

γ1 + γ2
+

γ1 + γ2

γ1γ2 +(γ1 + γ2)γ2βn
. (9.38)

9.3.4 Dynamics of a laser

In the steady state the number of photons created per second by the gain medium of N atoms

is equal to the number of photons annihilated per second by cavity decay. Far above threshold

we have

N f1(∞) = 2κn , (9.39)

where n is the steady-state number of photons. We make the following assumptions

βn � 1 , γ2βn � γ1 , (9.40)

which define a range of pump rates far above the threshold for which the number of photons

in the laser mode is proportional to the pump rate γ0. Under these assumptions we have

1

f1(∞)
= T0 =

1

γ0
+

1

γ2βn
. (9.41)

We solve for n in (9.39) and find

n =
γ0

γ2β

1− ε

ε
, (9.42)

where ε , defined in (9.7), is the fraction of atoms that is at least needed for the laser to operate.

From (9.42) we find that in general the assumptions (9.40) are satisfied for the range of pump

rates for which we have γ2 � γ0/ε � γ1.

We calculate the average cycle time of an atom far above the threshold, which is equal

to the average duration time of the gain trajectory T0 given in (9.37). Under the present

assumptions and using the steady-state value (9.42) for n, we find

T0 =
1

γ0(1− ε)
. (9.43)

We see that the cycle time increases when ε is increased. This is because for a fixed pump rate

the number of photons in the laser mode decreases if ε increases. Then the Rabi frequency

becomes smaller and it takes more time for the atoms to make the 2-1 transition. Each cycle

results in the gain of one photon in the laser mode. Thus if ε increases and thereby the cycle

time, the atoms become less productive in creating photons.

9.3.5 Intensity fluctuations

The number of atoms in the gain medium is a macroscopically large number. If we assume

that there is no correlation between the atoms, the creation of photons in the laser mode by

the gain medium as a whole, is a random process. The emission rate at time t is then given
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by N f1(∞) which is time dependent because it is a function of n(t) as we see in (9.41). So in

the rate equation (9.1) for n we substitute Gat(n) = N f1(∞) and we obtain

ṅ = −2κn+N

(
1

γ0
+

1

γ2βn

)−1

+ fn . (9.44)

As discussed in Section 9.2 we linearise around the steady state. From (9.41) we find

f1(∞) =

(
1

γ0
+

1

γ2βn

)−1

+
2κε

N
∆n+O

(
∆n2
)

, (9.45)

and Eq. (9.44) gives for the fluctuations ∆n(t) in the photon number

∆ṅ = −2κ(1− ε)∆n+ fn , (9.46)

with the solution

∆n(t) =

∫ t

−∞
dt ′ exp

[
−2κ (1− ε)

(
t − t ′

)]
fn

(
t ′
)

. (9.47)

According to (9.13) we have ∆I(t) = 2κ∆n(t) + fvac(t). The noise source fn is related to

the uncorrelated noise sources in (9.8). The corresponding diffusion coefficients are given

in (9.10). Because of the assumptions (9.40), the decay rate γ1 of the lower lasing level is

much larger than the other rates in the model. For the evaluation of the diffusion coefficients

it is, therefore, justified to neglect the number of atoms in level 1, and so that N1 = 0 and

N2 = D = Nthr. We use the Whiener-Khintchine theorem [99], that is

〈
∆̃I(ω)∆̃I

(
ω ′)∗〉= δ

(
ω −ω ′) lim

T→∞

∫ ∞

−∞
dτ exp(−iωτ)〈∆I(T + τ)∆I(T )〉 , (9.48)

and obtain the following expression for the spectrum of intensity fluctuations as defined in

(9.11):

V (ω) = 1+
8κ2ε

4κ2(1− ε)2 +ω2
. (9.49)

For the spectrum at frequency ω = 0 we have

V (0) = 1+
2ε

(1− ε)2
. (9.50)

The value V (0) = 1 corresponds to shot noise in our definition (9.11). We see that for ε = 0,

which is the case of no depletion of the ground state at all, we have shot noise. If ε is

increased, the fluctuations rise above shot noise.

We can see this also from a qualitative argument. The average cycle time of the atom is

T0 = 1/ f1(∞). If we calculate the average fraction of the total cycle time that the atom spends

in the ground state we find, using (9.43),

T00

T0
=

1

γ0T0
= 1− ε . (9.51)
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9. Quantum-trajectory description of laser noise with pump depletion

We see that for small ε the atom is in the ground state for most of the time. In that case the

cycle time is not sensitive to fluctuations in the photon number. If ε is increased, the atom

spends less time in the ground state and a fluctuation in the photon number will cause more

fluctuations in the cycle time.

In the Appendix the Mandel Q parameter [100] is calculated for the emission of a single

atom in the gain medium that follows only the gain trajectory. It is defined by Q + 1 =
∆m2/〈m〉, where m is the number of photon emissions. We have Q = 0 for a Poisson process.

Under the assumptions (9.40) and using (9.42) it is found that

Q = −2ε(1− ε) . (9.52)

We see that for ε = 0 we have Q = 0 and the emission of a single atom is Poissonian. This is

expected from the fact that for ε = 0 the atom spends (almost) all its time in the ground state

and thus the statistics of its emission are determined by the statistics of the pump, which are

Poissonian. For ε = 0 the output fluctuations are at the shot-noise level. If ε is increased, the

value of Q decreases until a minimum value of − 1
2

is reached for ε = 1
2
. We can understand

this from the fact that for ε = 1
2

we have T00 = T21, so that the cycle contains two coherent

periods with the same average duration. According to Ritsch and Zoller [89] this regular

recycling of the atom is accompanied by anti-bunching and sub-Poissonian emission. It is

surprising that for non-zero ε the emission of a single atom is sub-Poissonian, while the

output fluctuations are above shot noise.

9.4 Semi-classical rate equations

9.4.1 Steady state

In this Section we study the steady-state and noise properties of the three-level laser from a

macroscopic point of view using semi-classical rate equations. We assume that the total num-

ber of active atoms in the gain medium is constant and given by N, a macroscopically large

number. Classical Langevin rate equations for the number of atoms in the different levels N2,

N1, N0 follow from the optical Bloch equations (9.2) where we adiabatically eliminate the

atomic coherences of the lasing transition. We identify Nρii as the number of atoms Ni in

level i, which is justified for macroscopic N, and add Langevin noise terms. We find

Ṅ2 = −γ2N2 − γ2βn(N2 −N1)+ γ0N0 + f2 ,

Ṅ1 = −γ1N1 + γ2βn(N2 −N1)+ γ2N2 + f1 , (9.53)

Ṅ0 = −γ0N0 + γ1N1 + f0 ,

with n the number of photons in the laser mode and β the fraction of spontaneously emitted

photons on the laser transition that go into the laser mode, as mentioned in Section 9.2.

The fraction β is an independent parameter in this configuration. The terms γ2N2 and γ1N1

describe spontaneous emission from levels 2 and 1, respectively, and the terms γ2βnN2 and

γ2βnN1 represent stimulated emission and absorption. From this we derive the rate equation

for the number of photons in the laser mode. We assume operation in the good-cavity regime,
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by which we mean that the cavity decay rate 2κ is much smaller than the transverse relaxation

rate γ⊥ as given in (9.3). Under this assumption we find

ṅ = −2κn+ γ2β [N2(n+1)−N1n]+ fn . (9.54)

If we compare this expression with (9.1) we can identify Gat(n) as the second term on the

right. The noise sources fi with i = n,0,1,2 are Gaussian δ -correlated random variables with

zero average. They appear in the rate equations because the quantities that are involved are not

continuous numbers, but refer to an integer number such as the number of atoms for example.

In (9.54) the factor n + 1 instead of n accounts for spontaneous emission in the laser mode.

The rate equations (9.53) and (9.54) can also be derived directly from phenomenological

considerations of the dynamics of a laser. The constraint on the total number of atoms is

given by

N0(t)+N1(t)+N2(t) = N . (9.55)

The steady-state photon number n and inversion D = N2 −N1 can be found from (9.53)

and (9.54) by setting the time derivatives to zero and omitting the noise sources. If we assume

that β � 1 we find

n =
1

2β

(
M−1+

√
(M−1)2 +4

βM

1− ε

γ1

γ1 − γ2

)
,

M =
1− ε

ε

γ0

γ2

γ1 − γ2

γ1 +2γ0
, (9.56)

D = Nε
n(γ1 − γ2)

n(γ1 − γ2)+ γ1
,

where the parameter ε defined in (9.7) again has the significance of the fraction of the total

number of atoms that is at least needed for the laser to operate. Above threshold, where n� 1,

the inversion D equals Nthr. The parameter M is the pump parameter that is normalised to

1 at the threshold. In all the figures below we use the values β = 10−6 and γ2/γ1 = 10−5,

which are characteristic for a typical Nd:YVO4 laser.

In Fig. 9.3 the steady-state photon number n as a function of the pump rate is given

for different values of ε . We see that when ε is increased, the threshold moves to a higher

pump rate. This is because just above the threshold the population in the ground state is

1− ε . An increase in ε is thus an increase in the depletion of the ground state, which must

be compensated by a higher pump rate. The photon number stops increasing when the pump

rate becomes of the same order of magnitude as the decay rate γ1 of level 1. Then the 1-0

transition starts to act as a bottleneck, with the consequence that a further increase in the

pump rate increases the population in level 1 and depletes the ground state.

If we multiply the steady-state photon number n with the cavity decay rate 2κ and divide

by the total number of atoms N, we have the steady-state output intensity per atom. In Fig.

9.4 this quantity is given as a function of the pump rate for different values of ε . We see that

the atoms become less productive when ε is increased. This is understood from the discussion

below (9.43), where it was found that the cycle time of an atom increases if ε is increased.
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Figure 9.3: Steady-state photon number n as a function of the pump rate γ0 in units of

γ2. We have (i) ε = 0.01, (ii) ε = 0.3, (iii) ε = 0.9, (iv) ε = 1.

Figure 9.4: Steady-state output intensity per atom R = 2κn/N in units of γ2 as a func-

tion of the pump rate γ0 in units of γ2. We have (i) ε = 0.01, (ii) ε = 0.3, (iii) ε = 0.9,

(iv) ε = 1.

9.4.2 Intensity fluctuations

We are interested in the spectrum V (ω) of the intensity fluctuations at the frequency ω = 0,

as defined in (9.11). To obtain this spectrum at ω = 0 we start from Eqs. (9.53)-(9.55). We

neglect the spontaneous emission in the laser mode and eliminate the rate equation for N0 by

using the assumption (9.55) that the total number of atoms is constant and is given by N. We

linearise the remaining rate equations for n, N1, and N2 around the steady state by writing

n(t) = n+∆n(t) , N1(t) = N1 +∆N1(t) , N2(t) = N2 +∆N2(t) , (9.57)
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and neglecting terms that are quadratic in the fluctuations. We take the Fourier transform of

the linearised equations and solve for ∆̃n(ω), the Fourier transform of the photon-number

fluctuations ∆n(t). Because we are interested in the spectrum at zero frequency, we neglect

the Fourier transforms of the time derivatives since they are proportional to ω . We assume

that n � 1 and find

2κ∆̃n(ω) =

(
1+

1

βn
+

γ0A

γ2βn

)
f̃n(ω)+(A−1) f̃1(ω)+A f̃2(ω) , (9.58)

where f̃i(ω) is the Fourier transform of fi(t), and where

A =
γ1 − γ2

γ1 +2γ0
. (9.59)

In Section 9.2 we introduced three uncorrelated noise sources in a laser, fst for stimulated

emission, fabs for absorption, and fvac for the fluctuations related to the emission of photons

from the cavity. We distinguish three more noise sources, f 1
sp and f 2

sp for spontaneous emis-

sion in the 1-0 transition and 2-1 transition, respectively, and fpump for the pump process.

Their diffusion coefficients are given by [91]

D1
sp = γ1N1 , D2

sp = γ2N2 , Dpump = γ0N0 . (9.60)

The relation between the noise source fn and the uncorrelated noise sources has already been

given in (9.8). For the noise sources fi with i = 0,1,2 we have

f0 = f 1
sp − fpump , f1 = fst − fabs − f 1

sp + f 2
sp, f2 = − fst + fabs − f 2

sp + fpump . (9.61)

From (9.9) it directly follows that

〈
f̃i(ω) f̃ j

(
ω ′)∗〉= Di jδ

(
ω −ω ′) . (9.62)

By using (9.58) and the relation between the fluctuations in the photon number and the output

intensity (9.13) we find for the spectrum defined in (9.11) at ω = 0 the following expression:

V (0) =
γ1

γ1 − γ2

1+βn

βn

(
1+

γ2

γ1
−2A+2A2

)
+

1

βn

[
1−A+A

(
γ0A

γ2

1− ε

ε
−βn

)]

+
2

β 2n2

(
γ1 + γ2βn

γ1 − γ2

)(
1+

γ0A

γ2

)2

,

(9.63)

where A is defined in (9.59).

With n given in (9.56) this quantity is displayed in Fig. 9.5 as a function of the pump

rate for different values of ε . With our definition (9.11) the value V (0) = 1 corresponds to

shot noise. We see that for ε → 0 and γ0 fixed, which corresponds to the limit of the steady-

state photon number n to infinity, the intensity fluctuations drop below shot noise if the pump

rate becomes of the same order of magnitude as the decay rate γ1 of level 1. This result

has been obtained before [87, 89]. Hart and Kennedy [87] relate this reduction in noise to

the accompanying depletion of the ground state, which reduces the pump noise. Ritsch and
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Figure 9.5: Spectrum of intensity fluctuations at zero frequency V (0) as a function of

the pump rate γ0 in units of γ2. We have (i) ε = 0, (ii) ε = 0.1, (iii) ε = 0.3, (iv) ε = 0.5.

Zoller [89] focus on the regular recycling of the atoms in the pumping process, which leads

to anti-bunching of the emission of the individual atoms and therefore to a reduction in the

intensity noise. If ε is increased we see that the divergence in noise that accompanies the

threshold moves to higher pump rates. The noise increases for all pump rates and rises above

shot noise, also in the range of pump rates where for ε = 0 the intensity fluctuations are below

shot noise.

Finally, applying the assumptions to the expression (9.56) for the steady-state number of

photons in the laser mode, we find the same result as in Section 9.3, Eq. (9.42). For the

spectrum of intensity fluctuations at the frequency ω = 0 we find that the result from the

semi-classical rate equations is

V (0) = 1+
2ε2

(1− ε)2
. (9.64)

From the quantum-trajectory approach discussed in Section 9.3 we have Eq. (9.50)

V (0) = 1+
2ε

(1− ε)2
. (9.65)

We notice that the quantum-trajectory approach predicts more noise than the semi-classical

description. This may be due to our ignoring other trajectories than the gain trajectory (with

k = 0 in Fig. 9.2). The atom number used in (9.39) only refers to the number of atoms in the

gain trajectory. This underestimates the actual number of atoms, and therefore overestimates

the noise.
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9.5 Conclusions

We have analysed a simple three-level model of a laser, where the number of active atoms

N is a limiting factor for laser action. A crucial role is played by the parameter ε , defined

as the fraction of the total number of atoms in the gain medium that is needed for the laser

to operate. The microscopic approach in Section 9.3 focuses on the pumping cycle of an

individual atom using a quantum-trajectory picture. It is the dependence of the emission

rate f1(∞), or, equivalently, the cycle time T0, on the number of photons in the laser mode

that determines the statistics of the output of the laser. We find that far above the threshold,

for pump rates γ0 much smaller than the decay rate γ1 of the lower lasing level, the output

fluctuations increase if ε is increased. We argue that the fraction of the total cycle time the

atom spends in the ground state is 1− ε . This explains the increase in intensity fluctuations

for increasing value of ε . From the calculation of the Mandel Q parameter we find that the

emission of photons in the cavity mode by a single atom is anti-bunched and sub-Poissonian

for ε > 0. We conclude that an anti-bunched and sub-Poissonian emission of single atoms

in the gain medium does not guarantee that the statistics of the output of the laser are below

shot noise or sub-Poissonian.

From the macroscopic approach in Section 9.4 we find that if ε increases, the threshold

of the laser moves to higher pump rates and the cycle time of the individual atoms increases,

which makes the atoms less productive in creating photons. In the case that ε = 0, the atoms

on the ground state represent an infinite reservoir. In this limiting case, our results for the

intensity fluctuations are in agreement with those of Hart and Kennedy [87] and Ritsch and

Zoller [89]. For strong pumping, that is, for values of the pump rate γ0 of the same order

of magnitude as the decay rate γ1 of the lower level 1 of the lasing transition, the intensity

fluctuations are below shot noise. However, if the parameter ε is increased, the intensity

fluctuations increase for all values of the pump rate γ0. This is in agreement with the results

from the microscopic approach. Hence, this scheme does not lead to an easy method to create

sub-Poissonian laser radiation with a Poissonian pump of moderate strength.

9.A Mandel Q parameter

Fluctuations in the number m of photon emissions are commonly expressed in terms of the

Mandel Q parameter [100] defined by Q+1 = ∆m2/〈m〉, so that Q = 0 for a Poisson process.

We define f2 (τ2,τ1)dτ1dτ2 as the probability that there is an emission of a photon in both

time intervals (τ2,τ2 +dτ2) and (τ1,τ1 +dτ1), regardless of how many photons have been

emitted outside these time intervals. This function relates two events and can be interpreted

as a correlation function. Since in our case the system is completely reset after each emission

we can write

f2 (τ2,τ1) = f1 (τ2 − τ1) f1 (τ1) . (9.66)

We have [97]

1

2
〈m(m−1)〉T =

∫ T

0
dτ2

∫ τ2

0
dτ1 f2 (τ2,τ1) . (9.67)

129



9. Quantum-trajectory description of laser noise with pump depletion

The Mandel Q parameter in the steady state is then given by

Q = lim
T→∞

2
∫ T

0 dτ2

∫ τ2
0 dτ1 f1 (τ2 − τ1) f1 (τ1)−

∫ T
0 dτ2

∫ T
0 dτ1 f1 (τ2) f1 (τ1)∫ T

0 dτ1 f1 (τ1)
, (9.68)

where we used (9.30), (9.66) and (9.67). From (9.30) we see that the integrals over f1 are

divergent for T →∞. Therefore we introduce the deviation g1 (τ1) from the steady-state value

as

g1 (τ1) = f1 (τ1)− f1(∞) . (9.69)

The integrals over g1 have an upper bound for T → ∞. We can write the denominator in the

expression (9.68) for Q as

〈m〉T =
∫ T

0
dτ1 f1 (τ1) = T f1(∞)+

∫ T

0
dτ1 g1 (τ1) . (9.70)

In the numerator the terms proportional to T 2 drop out and, if we take the limit T → ∞, we

find [101]

Q = 2ĝ1(0) , (9.71)

where ĝ1(s) is the Laplace transform of g1 (τ1)

ĝ1(s) =
∫ ∞

0
dτ1 exp(−sτ1)g1 (τ1) . (9.72)

Using results from Section 9.3 we calculate Q. We apply the assumptions (9.40) and the

expression (9.42) to find

Q = −2ε(1− ε) . (9.73)

130



Bibliography

[1] M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge,

UK, 1999), 7th edition.

[2] M. Lax, W. H. Louisell, and W. B. McKnight, ‘From Maxwell to paraxial wave optics’,

Phys. Rev. A 11, 1365 (1975).

[3] G. Nienhuis and L. Allen, ‘Paraxial wave optics and harmonic oscillators’, Phys. Rev.

A 48, 656 (1993).

[4] M. Nazarathy and J. Shamir, ‘Fourier optics described by operator algebra’, J. Opt.

Soc. Am. 70, 150 (1980).

[5] H. Bacry and M. Cadilhac, ‘Metaplectic group and Fourier optics’, Phys. Rev. A 23,

2533 (1981).

[6] D. Stoler, ‘Operator methods in physical optics’, J. Opt. Soc. Am. 71, 334 (1981).

[7] A. E. Siegman, Lasers (Oxford University Press, Oxford, 1986).

[8] J. Dingjan, M. P. van Exter, and J. P. Woerdman, ‘Geometric modes in a single-

frequency Nd:YVO4 laser’, Opt. Commun. 188, 345 (2001).

[9] H. Kogelnik, ‘On the propagation of Gaussian beams of light through lens-like media

including those with a loss or gain variation’, Appl. Opt. 4, 1562 (1965).

[10] Y. F. Chen, C. H. Jiang, Y. P. Lan, and K. F. Huang, ‘Wave representation of geo-

metrical laser beam trajectories in a hemi-confocal cavity’, Phys. Rev. A 69, 053807

(2004).

[11] S. Danakas and P. K. Aravind, ‘Analogies between two optical systems (photon beam

splitters and laser beams) and two quantum systems (the two-dimensional oscillator

and the two-dimensional hydrogen atom)’, Phys. Rev. A 45, 1973 (1992).

[12] E. E. Bergmann, ‘Optical resonators with paraxial modes’, Appl. Opt. 11, 113 (1972).

[13] R. Borghi, M. Santarsiero, and R. Simon, ‘Shape invariance and a universal form for

the Gouy phase’, J. Opt. Soc. Am. A 21, 572 (2004).

[14] E. G. Abramochkin and V. G. Volostnikov, ‘Generalised Gaussian beams’, J. Opt. A:

Pure Appl. Opt. 6, S157 (2004).

131



Bibliography

[15] M. A. Bandres and J. C. Gutiérrez-Vega, ‘Ince-Gaussian beams’, Opt. Lett. 29, 144

(2004).

[16] M. A. Bandres and J. C. Gutiérrez-Vega, ‘Ince-Gaussian modes of the paraxial wave

equation and stable resonators’, J. Opt. Soc. Am. A 21, 873 (2004).

[17] J. A. Arnaud, ‘Degenerate optical cavities’, Appl. Opt. 8, 189 (1969).

[18] A. Messiah, Quantum Mechanics (North-Holland Publishing Company, Amsterdam,

1972).

[19] V. N. Mahajan, Optical Imaging and Aberrations (SPIE Press, Bellingham, USA,

2001).

[20] H. Laabs and A. T. Friberg, ‘Non-paraxial eigenmodes of stable resonators’, IEEE J.

Quantum Electron. 35, 198 (1999).

[21] T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, ‘Gouy phase of

non-paraxial eigenmodes in a folded resonator’, J. Opt. Soc. Am. A 21, 1689 (2004).

[22] R. Simon and N. Mukunda, ‘Iwasawa decomposition in first-order optics: Universal

treatment of shape-invariant propagation for coherent and partially coherent beams’, J.

Opt. Soc. Am. A 15, 2146 (1998).

[23] D. R. Truax, ‘Baker-Campbell-Hausdorff relations and unitarity of SU(2) and SU(1,1)

squeeze operators’, Phys. Rev. D 31, 1988 (1985).

[24] H. R. Lewis Jr. and W. B. Riesenfeld, ‘An exact quantum theory of the time-dependent

harmonic oscillator and of a charged particle in a time-dependent electromagnetic

field’, J. Math. Phys. 10, 1458 (1969).

[25] J. Wei and E. Norman, ‘Lie algebraic solution of linear differential equations’, J. Math.

Phys. 4, 575 (1963).

[26] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman,

‘Helical-wavefront laser beams produced with a spiral phase plate’, Opt. Commun.

112, 321 (1994).

[27] S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, ‘How

to observe high-dimensional two-photon entanglement with only two detectors’, Phys.

Rev. Lett. 92, 217901 (2004).
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Samenvatting

In deze samenvatting worden een aantal begrippen uitgelegd die in dit proefschrift voor-

komen. Aan bod komen onder meer: operator, paraxiaal, astigmatisme, baanimpulsmo-

ment, vortex, mode, Gouy-fase, resonator, spectrum, aberratie, foton, quantum en ver-

strengeling.
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Operator

Het eerste begrip in de titel van dit proefschrift is het wiskundige begrip operator. Een

operator is iets wat je ergens op kunt laten werken. Een simpel voorbeeld van operatoren zijn

de gewone getallen. Het ene getal op het andere getal laten werken, kan dan bijvoorbeeld het

optellen van de getallen betekenen, of het vermenigvuldigen. Wanneer a en b getallen zijn en

we laten a op b werken, dan geeft dat a+b in het geval van optellen, en a×b in het geval van

vermenigvuldigen. In het geval dat b op a werkt, vinden we b + a en b× a, respectievelijk.

We weten dat a + b = b + a en a×b = b×a. Dit geeft aan dat de volgorde er niet toe doet:

het maakt niet uit of a op b werkt, of b op a. In het algemeen kan de volgorde van operatoren

niet worden omgewisseld, zoals duidelijk wordt in het voorbeeld in figuur 1.

Figuur 1: Het maakt uit of een dominosteen eerst gedraaid wordt over een hoek van 90◦

met de wijzers van de klok mee (operatie D) en dan wordt gespiegeld in een horizontale

lijn door het midden van de dominosteen (operatie S), of eerst wordt gespiegeld (S) en

dan gedraaid (D).

Doordat de volgorde waarin operatoren worden toegepast van belang is, is het rekenen

met operatoren in het algemeen lastiger dan het rekenen met gewone getallen. Het voordeel

van operatoren is echter, dat we met operatoren kunnen rekenen zonder dat we hoeven te

weten waarop ze werken. De resultaten die hiermee worden bereikt zijn algemeen en niet

afhankelijk van waar de operatoren uiteindelijk op werken. Wanneer we besluiten de opera-

toren op iets anders te laten werken, dan hoeven we voor die nieuwe situatie de berekening

niet opnieuw te doen.

Lichtbundels

Een centrale rol in dit proefschrift spelen lichtbundels. Lichtbundels kunnen worden gemaakt

door bijvoorbeeld het licht van een lichtbron door een klein gat in een stuk karton te laten

schijnen, zoals weergegeven in figuur 2(a). Met behulp van een spiegel kan het licht van

een lichtbron gebundeld worden, zoals in de koplamp van een auto; zie figuur 2(b). Het

licht dat uit een laser komt is meestal ook in de vorm van een bundel. In feite bestaat een

lichtbundel uit een groot aantal lichtstralen die min of meer dezelfde richting hebben, ofwel,

een lichtbundel is paraxiaal. Wanneer in het proefschrift het begrip paraxiaal wordt gebruikt,

dan betekent dat dus dat het over lichtbundels gaat.
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Figuur 2: Twee manieren om een lichtbundel te maken. In (a) schijnt het licht van

een lichtbron door een klein gat in een stuk karton. Wanneer een stuk papier in de

lichtbundel wordt gehouden, dan is het lichtpatroon van de lichtbundel te zien. In (b)

wordt het licht van een lichtbron gebundeld door een gekromde spiegel.

Lichtbundels hebben verschillende eigenschappen waardoor ze gekarakteriseerd worden.

De belangrijkste eigenschap is welke kleuren de lichtbundel bevat. De verzameling van alle

kleuren die in de lichtbundel voorkomen wordt wel het spectrum van de lichtbundel ge-

noemd. In dit proefschrift worden alleen lichtbundels van één kleur bestudeerd. Een andere

eigenschap van een lichtbundel is het lichtpatroon. Dit lichtpatroon zien we wanneer we een

stuk papier in een lichtbundel houden, loodrecht op de richting van de lichtbundel, zoals te

zien in figuur 2(a). Dit lichtpatroon geeft de lichtsterkteverdeling van de lichtbundel weer.

Voorbeelden van lichtpatronen zijn onder meer te zien in de figuren 4.3-4.6 van hoofdstuk

4. We zien dat de lichtpatronen in figuur 4.5(a) cirkelvormig zijn, terwijl de lichtpatronen in

figuur 4.5(b) elliptisch zijn van vorm. Lichtbundels met een elliptisch lichtpatroon worden

astigmatisch genoemd.

Wanneer we het stuk papier een klein stukje verderop in de lichtbundel houden, dan zien

we dat het lichtpatroon iets is vervormd. De richting en sterkte van de vervorming wordt wel

de fasegradiënt genoemd. De lichtbundel heeft dus in iedere positie in het vlak van het papier

een lichtsterkte en een fasegradiënt. De fasegradiënt kan worden voorgesteld door een pijltje.

Een voorbeeld hiervan is weergegeven in figuur 4.1. De gekantelde ellips geeft de vorm

weer van het lichtpatroon, dat astigmatisch is in dit geval. Op vier posities is de fasegradiënt

weergegeven door een pijltje, dat aangeeft in welke richting het lichtpatroon gaat vervormen.

Door de pijltjes in beschouwing te nemen, zien we dat de ellips gaat draaien. In figuur 4.2

zien we hoe het lichtpatroon draait wanneer het stuk papier op verschillende plaatsen in de

lichtbundel wordt gehouden. Een ander voorbeeld is weergegeven in figuur 3. Aan de richting

van de pijltjes zien we dat het lichtpatroon om het middelpunt draait.

Net als een draaiend wiel, hebben draaiende lichtbundels baanimpulsmoment (in het

Engels: orbital angular momentum). Het baanimpulsmoment van astigmatische lichtbun-
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Figuur 3: Lichtpatroon en fasegradiënt van een lichtbundel. De fasegradiënt is

weergegeven door de pijltjes. Het lichtpatroon verderop in de lichtbundel is gedraaid

in de richting van de pijltjes, wat aangeeft dat het lichtpatroon draait. In het midden

bevindt zich een vortex.

dels is het onderwerp van hoofdstuk 4. We zien dat we, wanneer we de pijltjes in figuur 3

volgen, om het middelpunt van de lichtbundel lopen. Dit betekent dat zich in het middelpunt

van de bundel een vortex bevindt. Een lichtbundel met een vortex is te vergelijken met een

draaikolk in water. Hoofdstuk 5 gaat over vortices in lichtbundels.

Optische modes

Wanneer we het lichtpatroon bekijken op een stuk papier in een lichtbundel en we dat patroon

vergelijken met het lichtpatroon op een andere plaats in de bundel, dan zal in het algemeen

het lichtpatroon er anders uitzien. Voor sommige lichtbundels heeft het lichtpatroon echter

precies dezelfde vorm, ongeacht de plaats in de bundel, maar is de schaal of grootte van het

patroon wel anders. Zulke lichtbundels zullen we invariante modes noemen. In figuur 4 is het

zijaanzicht van een invariante mode weergegeven die naar rechts beweegt. De kromme lijnen

geven aan dat de bundel in het midden op z’n smalst is en links en rechts van het midden

breder. Op drie plaatsen in de lichtbundel is een verticale lijn getekend. Onder iedere lijn

staat het lichtpatroon en de fasegradiënt van de bundel op de plaats van de lijn weergegeven.

We zien inderdaad dat het een invariante mode betreft, want de lichtpatronen hebben dezelfde

vorm, hoewel het patroon in het midden kleiner is. De fasegradiënt is links in de bundel naar

binnen gericht, hetgeen betekent dat het lichtpatroon naar rechts lopend inderdaad kleiner

wordt. In het midden, waar de mode het kleinst is, is de fasegradiënt nul. Rechts van het

midden is de fasegradiënt naar buiten toe gericht, zodat de mode naar rechts toe steeds groter

wordt.

Behalve een constante vorm van het lichtpatroon hebben invariante modes een Gouy-fase.

De snelheid waarmee de Gouy-fase verandert, zegt iets over de grootte van het lichtpatroon

van de mode. De Gouy-fase is in figuur 4 weergegeven door middel van een pijltje boven

de bundel. We zien dat het pijltje draait wanneer de mode naar rechts wordt gevolgd, wat

aangeeft dat de Gouy-fase verandert. Als de mode klein is, verandert de Gouy-fase snel,
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Figuur 4: Een invariante mode is een lichtbundel waarvan de vorm van het lichtpa-

troon op ieder plaats in de bundel hetzelfde is. In dit voorbeeld is het zijaanzicht

weergegegeven van een invariante mode die naar rechts beweegt. De kromme lijnen

geven de grootte van de mode aan. Op drie plaatsen is het lichtpatroon en de fase-

gradiënt weergegeven. De pijltjes boven de mode geven de Gouy-fase van de lichtbundel

weer.

zoals te zien in de figuur. Is de mode groot, dan verandert de Gouy-fase langzamer.

Resonator

Een resonator bestaat uit twee gekromde spiegels waartussen een lichtbundel kan worden

opgesloten. In figuur 5 kaatst een lichtbundel heen en weer tussen de spiegels van een re-

sonator. Rechts van de resonator staat de fasegradiënt van de lichtbundel weergegeven vlak

voordat hij door de rechterspiegel wordt gereflecteerd en vlak erna. We zien dat vlak vóór

de spiegel de fasegradiënt naar buiten is gericht, wat betekent dat de bundel steeds groter

wordt. De spiegel zorgt ervoor dat de fasegradiënt nà reflectie juist naar binnen is gericht,

zodat de bundel weer kleiner wordt wanneer hij naar links beweegt. Op deze manier blijft de

lichtbundel heen en weer lopen tussen de spiegels zonder dat hij steeds groter wordt en buiten

de spiegels valt.

Niet alle lichtbundels passen in een resonator. Een voorwaarde is dat de lichtbundel na één

rondgang precies hetzelfde is gebleven, zowel wat betreft het lichtpatroon als de fasegradiënt.

In dat geval wordt de lichtbundel een eigenmode van de resonator genoemd. Hoofdstuk 2 gaat

over resonatoren en hun eigenmodes. In het bijzonder wordt gekeken naar geometrische

modes, die opgebouwd zijn uit meerdere, heen en weer kaatsende lichtbundels. In figuur

2.3 van hoofdstuk 2 is het zijaanzicht van twee geometrische modes te zien. In deze figuur

bevinden de spiegels van de resonator zich links en rechts van de plaatjes.
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Figuur 5: Een resonator bestaat uit twee gekromde spiegels waartussen een lichtbundel

kan worden opgesloten. Rechts van de resonator is de fasegradiënt weergegeven vlak

vóór en vlak nà reflectie door de rechterspiegel. De spiegels zorgen ervoor dat de

fasegradiënt van de lichtbundel bij reflectie naar binnen gericht wordt, zodat de bundel

bij het heen en weer kaatsen niet steeds groter wordt en ontsnapt.

Niet alle kleuren licht zijn toegestaan in een resonator. Iedere eigenmode heeft zijn eigen

toegestane kleur licht. Wanneer het over het spectrum van een resonator gaat, dan betreft

het de kleuren licht die zijn toegestaan in de resonator. In hoofdstuk 3 wordt het spectrum

en de eigenmodes van een resonator onderzocht in het geval de spiegels aberraties, ofwel

afwijkingen, hebben.

Foton

De lichtsterkte van een lichtbundel kan worden verzwakt door in de bundel een glasplaatje

te houden waar een laagje roet op zit. Wanneer steeds meer van die glasplaatjes met roet in

de lichtbundel worden gehouden, wordt de lichtsterkte steeds geringer. Het licht in een zeer

zwakke lichtbundel gedraagt zich alsof het uit pakketjes van energie bestaat. Deze pakketjes

worden fotonen genoemd. We kunnen een lichtstraal wat dat betreft vergelijken met een

straal zand. Wanneer we de straal zand steeds kleiner maken, zal de straal op een bepaald

moment bestaan uit afzonderlijk vallende zandkorrels. In een typische laserbundel, zoals

bijvoorbeeld gebruikt in een DVD-speler, komen er per seconde meer dan 1015 fotonen langs.

Fotonen planten zich voort met de snelheid van het licht (300.000 kilometer per seconde).

Volgens de speciale relativiteitstheorie van Einstein kan niets sneller bewegen dan fotonen.

Hoofdstuk 6 bestaat uit een theoretische beschrijving van de fotonen in een lichtbundel. Het

woord quantum in de titel van dat hoofdstuk verwijst ernaar dat de lichtbundel in pakketjes,

ofwel quanta, van licht is opgedeeld.

Wanneer de lichtbundel wordt verzwakt, wat gebeurt er dan met het lichtpatroon? Het

lichtpatroon van een lichtbundel kan worden vastgelegd door een fotografische plaat (zwart-

wit) een korte tijd in de lichtbundel te houden. De ontwikkelde plaat ziet er dan uit als het

lichtpatroon links in figuur 6. De grafiek rechts in de figuur is een doorsnede van het licht-

patroon langs de stippellijn. Op de verticale as staat de lichtsterkte weergegeven. Wanneer

de lichtbundel wordt verzwakt, dan blijft het lichtpatroon er hetzelfde uit zien, maar wordt

de lichtsterkte van de ontwikkelde plaat steeds minder. Wanneer de lichtbundel zo zwak is

dat er maar een paar fotonen op de plaat vallen tijdens het blootstellen van de plaat, dan is
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Figuur 6: Lichtpatroon van de onverzwakte lichtbundel. De grafiek rechts is een

doorsnede van het lichtpatroon langs de stippellijn. Op de verticale as van de grafiek

staat de lichtsterkte.

het lichtpatroon helemaal verdwenen. In plaats daarvan zijn er hele kleine lichtvlekjes te

zien op de ontwikkelde plaat. Ieder vlekje is veroorzaakt door een enkel foton. Wanneer de

fotografische plaat langer wordt blootgesteld, worden er steeds meer fotonen waargenomen.

De lichtvlekjes van al die fotonen samen vormen dan het lichtpatroon van de lichtbundel.

In figuur 7 is weergegeven hoe het lichtpatroon wordt opgebouwd uit de afzonderlijke

fotonen van de lichtbundel. De doorsnede van de lichtbundel is opgedeeld in 50 hokjes van

gelijke lengte. In ieder hokje wordt het aantal waargenomen fotonen geteld. De grafieken

in figuur 7 geven weer hoeveel fotonen er per hokje zijn waargenomen, nadat er in totaal

100, 1000 en 10.000 fotonen zijn waargenomen. We zien dat de rechtergrafiek met in totaal

10.000 waargenomen fotonen bijna precies lijkt op de doorsnede van het lichtpatroon van de

onverzwakte lichtbundel in figuur 6. Dit maakt duidelijk dat de lichtvlekjes van een groot

aantal fotonen in een lichtbundel samen het lichtpatroon van de bundel vormen.

Figuur 7: Het lichtpatroon wordt opgebouwd uit de afzonderlijke fotonen. In de

grafieken is op de vertical as het aantal waargenomen fotonen per hokje weergegeven,

nadat in totaal 100, 1000 en 10.000 fotonen zijn waargenomen.

In de linkergrafiek van figuur 7 zijn er nogal veel pieken. Dit komt omdat het aantal

getelde fotonen een geheel getal oplevert. De lijn in de grafiek moet dan steeds sprongen

maken van 1,2,3,... om de meetpunten met elkaar te verbinden, waarden ertussen zijn niet

mogelijk. Omdat het maximum aantal fotonen per hokje maar 10 is, zijn dat nogal grote

sprongen, wat de oorzaak van de pieken is. In de middelste grafiek is het maximum aantal

fotonen per hokje 80, waardoor de sprongen al veel minder opvallen. In de rechtergrafiek zijn

de pieken vrijwel verdwenen. Een lichtbundel is dus opgebouwd uit pakketjes, fotonen, die

alleen in zijn geheel kunnen worden waargenomen. Dat is de oorzaak van de piekjes, ofwel

de ruis, in de grafieken. Dit verschijnsel wordt hagelruis genoemd, omdat de hagelkorrels in
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een hagelbui zijn te vergelijken met de fotonen in een lichtbundel. In hoofdstuk 9 wordt de

hagelruis in een lichtbundel onderzocht.

We zien in de grafieken in figuur 7 ook dat er meer fotonen in het midden worden

waargenomen dan naar de randen toe. Dit betekent dat de kans om een foton waar te ne-

men in het midden groter is dan naar de randen toe. De rechtergrafiek (groot aantal fotonen)

geeft dan de kansverdeling weer om een foton waar te nemen. We hadden hierboven al gezien

dat de rechtergrafiek (groot aantal fotonen) hetzelfde is als de doorsnede van het lichtpatroon

in figuur 6. Dit betekent dat het lichtpatroon van een lichtbundel, behalve de lichtsterkte in

de bundel, ook de kansverdeling weergeeft om fotonen uit de bundel waar te nemen.

Tweelingfotonen

Wanneer een kristal in een lichtbundel wordt gehouden, dan wordt in het kristal af en toe

een foton uit de lichtbundel opgesplitst in twee nieuwe fotonen. De nieuw ontstane fotonen

worden tweelingfotonen genoemd. In figuur 8 is dit proces schematisch weergegeven.

Figuur 8: Een laserbundel valt op een kristal. Een fractie van de fotonen in de licht-

bundel wordt in het kristal opgesplitst in twee nieuwe fotonen. De twee nieuwe fotonen

planten zich voort in twee lichtbundels met een verschillende richting.

De fotonen van een tweeling zijn verstrengeld (in het Engels: entangled). Dit betekent

dat de eigenschappen van de afzonderlijke fotonen van een tweeling niet vastliggen. Zodra

echter de eigenschappen van één van de fotonen worden gemeten, liggen de eigenschappen

van het andere foton ook gelijk vast. De fotonen van een tweeling worden bijvoorbeeld op

hetzelfde moment in het kristal geboren (vandaar de naam), maar het moment waaròp is on-

bepaald. Zodra we echter het tijdstip weten waarop één van de fotonen van een tweeling is

geboren, weten we dus direct het tijdstip waarop het andere foton is geboren. Dit wordt tijd-

verstrengeling genoemd. Een ander voorbeeld van verstrengeling is ruimteverstrengeling. De

fotonen van een tweeling worden op dezelfde positie in het door de laserbundel belichte deel

van het kristal geboren, maar waar dat gebeurt is onbepaald. De reden dat de geboorteposi-

tie van een tweeling onbepaald is, is omdat een tweeling ontstaat uit één foton. We hebben

hierboven gezien dat het lichtpatroon de kansverdeling voor het waarnemen van een foton

weergeeft. De positie binnen het lichtpatroon waar het foton wordt waargenomen is dus on-

bepaald, net als de positie waarop een tweeling wordt geboren. Hoofdstuk 7 gaat over de

overeenkomsten tussen tijd- en ruimteverstrengeling. Hoofdstuk 8 tenslotte gaat over weer

een andere vorm van verstrengeling, namelijk polarisatieverstrengeling.
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