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5.5 Pendellősung oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Time-dependent coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1



i

i

i

i

i

i

i

i

2 CONTENTS

6 Resonances for coupled Bose-Einstein Condensates 59

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 BEC in a double potential well . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Quantum states in two wells . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Evolution in limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Periodic modulation of energy difference . . . . . . . . . . . . . . . . . . . 66

6.6 Generalization to an optical lattice . . . . . . . . . . . . . . . . . . . . . . . 69

6.7 Periodic modulation of coupling . . . . . . . . . . . . . . . . . . . . . . . . 71

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Phase dynamics of a multimode Bose condensate controlled by decay 75

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Quantum states of two boson modes . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Decay and detection statistics of two boson modes . . . . . . . . . . . . . . . 79

7.4 Detection statistics of two coupled boson modes . . . . . . . . . . . . . . . . 85

7.5 Linear and circular chains of modes . . . . . . . . . . . . . . . . . . . . . . 90

7.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY 96

Samenvatting 101

Summary 105

Curriculum Vitae 111

Acknowledgements 113

Publications 115



i

i

i

i

i

i

i

i

Chapter 1

Introduction

The fundamental issue of interaction between light and matter arises in several phenom-

ena related to the manipulation of quantum matter. This is a widely studied topic, especially

in recent years, triggered by the successful attempts of neutral atom cooling and trapping

in light fields [1–3]. While interacting with light fields, an atom exchanges momentum and

energy with the light field and experiences light forces which may confine the atom spatially

and diminish the thermal component of the atomic dynamics. The recent advances in cool-

ing and trapping techniques allow such low temperatures that the quantum features of the

atomic dynamics become crucial. Besides, the light fields serve as the main tool allowing a

high-quality control on properties of quantum matter such as neutral atoms. This has been

implemented in several applications. The most important among them remain atomic clocks

and atomic interferometers [4, 5]. Cold atoms seem to be very promising candidates to build

interferometers with a sensitivity that can not be achieved by conventional, purely optical in-

terferometric schemes. Another practical implementation of cold atoms and especially cold

ions is related to their implementation in various schemes of quantum computation [6, 7].

The next step in the direction of making neutral atoms ”more quantum-mechanical”has

been done in 1995 after the first experimental demonstration of a Bose-Einstein Condensate

(BEC) [8, 9]. Employing the technique of evaporative cooling one can access such low tem-

peratures that most of the trapped atoms populate the one-particle ground state, giving rise

to macroscopic population of a single quantum energy level. Thus, now the quantum prop-

erties of the matter are amplified and can be probed on a macroscopic level. Whereas most

theories describing a sample of cold atoms neglect correlations between atoms forming the

sample, one must take into account interparticle interactions between atoms forming the con-

densate and consider BEC as a truly multiparticle system. The early theoretical work on a

single-mode condensate was based on the Gross-Pitaevskii-Bogoliubov theory, which treats

the system semiclassically. This is based on analogies with the theory of superfluidity, which

suggests to observe, for instance, vortices for BEC [10, 11]. In the mean time, a BEC can

exhibit quantum features not covered by the semiclassical theory. Such features have been

predicted [12] and observed for a multimode BEC, such as a BEC trapped in an optical lattice,

in the limit where interparticle interactions are strong [13, 14]. The existence of a multimode

condensate raises the important question of the relative phase between modes [15, 16].

In this thesis, we consider some examples and physical situations where light fields are

employed to manipulate cold atomic samples or BECs with high degree of precision. We start

with a consideration of single atoms, and then extend the discussion to multiparticle systems

such as BECs.
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4

In Chapter 2 we consider the possibilities for state preparation and state control of a single

trapped atom in a tilted periodic optical potential. Normally, a periodic optical potential is

formed as a result of interference between counterpropagating travelling waves. Here, in ad-

dition to the periodic potential, a uniform force is applied having arbitrary time dependence.

We describe the full dynamics of the atom in such a potential on the basis of an exactly

solvable model.

In the mean time, one can consider the interaction of a single two-level atom with a pulsed

periodic optical potential or a single atom diffracting on a standing wave. This is described

in Chapter 3. One can control the dynamics of the diffracted atoms by applying a succeeding

travelling wave and appropriately choosing the interaction periods. It is also shown that the

amount of momentum, that the photons transfer between the atomic internal energy levels

during the interaction with a travelling wave, may be larger than the photon momentum ~k.
Whereas the interaction of an atom with counterpropagating travelling waves is accom-

panied by an exchange of linear momentum between the light field and the atom, interaction

with a pair of Laguerre-Gaussian (LG) beams with opposite helicity leads to a large exchange

of angular momentum. The LG beams are known to carry orbital angular momentum. The

LG beams with opposite helicity form a circular lattice configuration, which has some prin-

cipal advantages in comparison with a linear one. This suggests a novel scheme for atom

interferometry without mirror pulses. We discuss it in Chapter 4.

Starting from Chapter 5 we consider multimode BECs. As a model problem, we take a

particular physical realization in the form of a BEC trapped in a potential having a two-well

geometry. Such a potential is a simple example of a two-mode system. We compare the dy-

namics of a BEC in such a trap with the dynamics of atoms diffracting from a standing light

wave. The corresponding Hamiltonians have an identical appearance, but with a different set

of commutation rules. Some well-known diffraction phenomena are shown to have analo-

gies in the two-well case. They represent a collective exchange of a fixed number of atoms

between the wells.

Then, in Chapter 6 we continue studying properties of double-well condensates. A sen-

sitive way to probe their properties in the limit of with strong interatomic interactions is to

look for resonant behavior when an external periodic perturbation acts on the system. The

response of the system may be expected to be very sensitive to the value of the modulation

frequency in the neighborhood of a resonance. The periodic perturbation can be implemented

by modulating the form of the trapping potential. From a practical viewpoint, one can con-

trol the average number of particles in the wells by varying the parameters of the periodic

perturbation.

In Chapter 7 we consider the relative phase build-up between the modes of a multimode

BECs while observing the decay product from the modes in interference. We discuss exactly

solvable models for this process in cases where competing observation channels drive the

phases to different sets of values. We treat the case of two modes which both emit into the

input ports of two beam splitters, and of a linear or circular chain of modes.

The chapters of this thesis have been written as separate papers. In order to allow a reader

to read the chapters independently, some overlap between the chapters is unavoidable.
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Chapter 2

Coherent control of atom dynamics in an optical
lattice

On the basis of a simple exactly solvable model we discuss the possibilities for state

preparation and state control of atoms in a periodic optical potential. In addition to

the periodic potential a uniform force with an arbitrary time dependence is applied. The

method is based on a formal expression for the full evolution operator in the tight-binding

limit. This allows us to describe the dynamics in terms of operator algebra, rather than

in analytical expansions.

2.1 Introduction

The energy eigenvalues of a quantum particle moving in a periodic potential form energy

bands (the Bloch bands) that are separated by band gaps. The eigenstate within a band is

characterized by the quasimomentum, which determines the phase difference between two

points separated by a period. An initially localized wave packet typically propagates through

space, leading to unbounded motion. When an additional uniform force is applied, the Bloch

bands break up into a ladder of equally spaced energy levels called the Wannier-Stark lad-

der. In this case, a wave packet of the particle extending over several periods can exhibit

bounded oscillatory motion, termed Bloch oscillation, at a frequency determined by the level

separation in the ladder. These early results of the quantum theory of electrons in solid crys-

tals [17–20] have regained interest recently due to the advent of optical lattices for atoms.

These lattices are formed when cold atoms are trapped in the periodic potential created by

the superposition of a number of traveling light waves [21–24]. In contrast to the case of

electrons in crystal lattices, these optical lattice fields have virtually no defects, they can be

switched on and off at will, and dissipative effects can be largely controlled. The phenomenon

of Bloch oscillations was first observed for cesium atoms in optical lattices [25, 26]. The

uniform external force is mimicked by a linear variation of the frequency of one of the coun-

terpropagating traveling waves, thereby creating an accelerated standing wave. By applying

a modulation on the standing-wave position, Rabi oscillations between Bloch bands, as well

as the level structure of the Wannier-Stark ladder have been observed for sodium atoms in

an optical lattice [27–29]. Theoretical studies of transitions between ladders have also been

presented [30, 31]. Bloch oscillations have also been demonstrated for a light beam propa-

gating in an array of waveguides, with a linear variation of the refractive index imposed by a

temperature gradient [32].

5
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6 Chapter 2

When the applied uniform force is oscillating in time, the motion of a particle in a peri-

odic potential is usually unbounded. However, it has been predicted that the motion remains

bounded for specific values of the ratio of the modulation frequency and the strength of the

force [33,34]. Similar effects of dynamical localization, including routes to chaos, have been

studied experimentally for optical lattices, including both amplitude and phase modulation of

the uniform force [35]. Phase transitions have been predicted for atoms in two incompatible

periodic optical potentials imposed by bichromatic standing light waves [36].

In the present paper we discuss the Wannier-Stark system with a time-dependent force,

as a means of preparing the state of particles in a periodic potential. We derive an exact

expression for the evolution operator of the particle, with an arbitrary time-dependent force.

This allows one to apply the combination of delocalizing dynamics in the absence of the

uniform force with the periodic dynamics induced by a uniform force for coherent control

of the state of the particles. Exact solutions in the case of a constant uniform force have

been obtained before by analytical techniques [37, 38]. The operator method allows an exact

and unified scheme to describe phenomena induced by an oscillating force. Examples are

dynamical localization and fractional Wannier-Stark ladders.

The model is described in one dimension (1D). However, this is no real restriction. Under

the assumption of nearest-neighbor interaction, the corresponding 2D or 3D problem exactly

factorizes into a product of 1D solutions.

2.2 Model system

2.2.1 Periodic potential

The quantum-mechanical motion of atoms in a periodic optical potential V (x) with period a
is described by the Hamiltonian

H0 =
P 2

2M
+ V (x). (2.1)

We assume that the atoms are sufficiently cooled, so that only the lowest energy band is

populated. The ground state in well n located at x = na is indicated as |n〉. These states

play the role of the basis of localized Wannier states. For simplicity we take the tight-binding

limit, where only the ground levels in neighboring wells are coupled. When we choose the

zero of energy at the ground level in a well, the Hamiltonian (2.1) projected on these ground

levels is defined by

H0 =
1

2
~Ω(B+ +B−), B±|n〉 = |n± 1〉. (2.2)

The raising and lowering operators B+ and B− are each other’s Hermitian conjugates, and

each one of them is unitary. The frequency Ω measures the coupling between neighboring

wells, due to tunneling through the barriers. We shall allow the coupling to depend on time.

The eigenstates of H0 are directly found by diagonalizing the corresponding matrix. These

states are the Bloch states |k〉, with energy E(k) = ~Ωcos(ka). Their expansion in the
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Coherent control of atom dynamics in an optical lattice 7

Wannier states and the inverse relations can be expressed as

|k〉 =
√

a

2π

∑

n

einka|n〉, |n〉 =
√

a

2π

∫
dk e−inka|k〉. (2.3)

Obviously, the states |k〉 are periodic with period 2π/a, and the quasimomentum k can be

chosen from the Brillouin zone [−π/a, π/a]. The integration in Eq. (2.3) extends over this

Brillouin zone. From the translation property 〈x|n〉 = 〈x + a|n + 1〉 of the Wannier wave

functions it follows that the states (2.3) do indeed obey the Bloch condition 〈x + a|k〉 =
exp(ika)〈x|a〉. When the states |n〉 are normalized as 〈n|m〉 = δnm, the Bloch states obey

the continuous normalization relation 〈k|k′〉 = δ(k − k′).

2.2.2 Uniform force

An additional uniform force is described by adding to the Hamiltonian the term

H1 =
~x∆

a
, (2.4)

where the (possibly time-dependent) force of size ~∆(t)/a is in the negative direction. On

the basis of the Wannier states, this term is diagonal, and it is represented as

H1 = ~∆B0, B0|n〉 = n|n〉. (2.5)

Hence the evolution of a particle occurs under the influence of the total Hamiltonian

H = H0 +H1, (2.6)

with H0 and H1 defined by eqs. (2.2) and (2.5), in terms of the operators B± and B0. We

shall also need expressions for the operators B± and B0 acting on a Bloch state. These can

be found from the definition of the operators and the expansions (2.3). One easily finds that

B±|k〉 = e∓ika|k〉, e−iβB0 |k〉 = |k − β/a〉. (2.7)

In Bloch representation the operators have the significance B± = exp(∓ika) and B0 =
(i/a)(d/dk), which is confirmed by the commutation rules (2.8). The Wannier states may

be viewed as discrete position eigenstates, with B0 the corresponding position operator. The

Bloch states play the role of momentum eigenstates, and the finite range of their eigenvalues

within the Brillouin zone reflects the discreteness of the position eigenvalues.

2.2.3 Operator algebra

The basic operators B± and B0 obey the commutation rules

[B0, B±] = ±B±, [B+, B−] = 0. (2.8)

In order to derive exact expressions for the evolution operator corresponding to the Hamil-

tonian (2.6), we need several operator identities involving these operators B0 and B±. The

identities

eiβB0B±e
−iβB0 = e±iβB± (2.9)
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8 Chapter 2

directly follow from the commutation rules (2.8), and they lead the transformation rules

eiβB0 exp
(
− i1

2
α(B+ +B−)

)
e−iβB0 = exp

(
− i1

2
α(eiβB+ + e−iβB−)

)
(2.10)

for arbitrary values of α and β. We shall also need the equalities

exp
( i
2
αB±

)
B0 exp

(
− i

2
αB±

)
= B0 ∓

i

2
αB±, (2.11)

which are verified after differentiation with respect to α, while using the commutation rules

(2.8).

2.3 Operator description of evolution

2.3.1 Evolution operator

In this section we derive expressions for the evolution operator U(t, 0), which transforms an

arbitrary initial state |Ψ(0)〉 as |Ψ(t)〉 = U(t, 0)|Ψ(0)〉. The results are valid for any time-

dependence of the uniform force and the coupling between neighboring wells, as specified by

∆(t) and Ω(t). A time-dependent coupling represents the case that the intensity of the lattice

beams is varied. We express the evolution operator in the factorized form

U(t, 0) = U1(t, 0)U0(t, 0), (2.12)

where U1(t, 0) = exp[−iφ(t)B0] gives the evolution corresponding to the Hamiltonian H1
alone, in terms of the phase shift

φ(t) =

∫ t

0

dt′ ∆(t′). (2.13)

From the evolution equation for U with the Hamiltonian (2.6) while using the transformation

(2.9) we find the evolution equation

dU0
dt

= − iΩ(t)
2

(
eiφ(t)B+ + e−iφ(t)B−

)
U0(t). (2.14)

Since this equation contains only the commuting operators B+ and B−, it can easily be

integrated. In fact, the solution is given by eq. (2.10) with the time-dependent values of the

real parameters α and β defined by the relations

α(t)eiβ(t) =

∫ t

0

dt′Ω(t′)eiφ(t
′). (2.15)

Combining this solution with the definition of U1 leads to a closed expression for the evolu-

tion operator U(t, 0) for an arbitrary time dependence of the uniform force, in terms of the

parameters α, β and φ defined in eq. (2.13) and (2.15). The result is U(t, 0) ≡ R(α, β, φ),
with R defined by

R(α, β, φ) = ei(β−φ)B0 exp
(
− i1

2
α(B+ +B−)

)
e−iβB0 . (2.16)
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Coherent control of atom dynamics in an optical lattice 9

This defines the unitary operator R as a function of the three parameters α, β and φ. The

result is valid for an arbitrary time dependence of the force and the coupling, described by

∆(t) and Ω(t). The characteristics of the evolution of an arbitrary initial state are determined

by the properties of the operators R as a function of α, β and φ. Mathematically, these

operators form a three-parameter group, which is generated by the three operators B± and

B0.
On the basis of the Wannier states, the contribution of the operator B0 in eq. (2.16) is

trivial, whereas the effect of the exponent containing B± can be evaluated by first expand-

ing a Wannier state in Bloch states, for which the action of this exponent is simple. Then,

reexpressing the Bloch states in Wannier states, we find

exp
(
− i1

2
α(B+ +B−)

)
|m〉 =

∑

n

i−n+mJn−m(α)|n〉, (2.17)

where we used the defining expansion exp(iξ sinφ) =
∑

n exp(inφ)Jn(ξ) of the ordinary

Bessel functions. Hence the matrix elements of the operator (2.16) between Wannier states

are

〈n|R(α, β, φ)|m〉 = (ie−iβ)−n+me−inφJn−m(α). (2.18)

For the evolution operator (2.16) in Bloch representation we can just use the form of the

operators B± and B0, as given in Sec. 2.2.2. This leads to the result

R(α, β, φ)|k〉 = e−iα cos(ka−β)|k − φ/a〉. (2.19)

This shows that the quasimomentum as a function of time varies as k(t) = k(0) − φ(t)/a,

with φ(t) given in eq. (2.13). The parameter φ determines the shift of the quasimomentum

during the evolution. The expressions (2.18) and (2.19) clarify the significance of the three

parameters α, β, and φ that specify the evolution operator.

2.3.2 Heisenberg picture

The transport properties of any initial state are conveniently described by the evolution of the

operators in the Heisenberg picture. Since any evolution operator can be written in the form of

R(α, β, φ) for the appropriate values of the parameters, we can viewR†BR as the Heisenberg

operator corresponding to any operator B. The Heisenberg operators corresponding to B±
can be expressed as

R†(α, β, φ)B±R(α, β, φ) = e±iφB±, (2.20)

which is directly shown by using eq. (2.9). Since B± = exp(∓ika) in Bloch representation,

this confirms the significance of φ as the shift of the value of the quasimomentum.

After using the transformation property (2.11), one finds the Heisenberg operator corre-

sponding to the position operator B0 as

R†(α, β, φ)B0R(α, β, φ) = B0 +
iα

2
(e−iβB− − eiβB+). (2.21)
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10 Chapter 2

This implies that the expectation value of the position after evolution is determined by

〈n〉 = 〈B0〉+
iα

2
(e−iβ〈B−〉 − eiβ〈B+〉), (2.22)

where the averages in the right-hand side should be taken with respect to the inital state.

Hence no displacement of a wave packet can occur whenever 〈B+〉 = 〈B−〉∗ = 0. This

is true whenever the initial state is diagonal in the Wannier states |n〉. Conversely, average

motion of a wave packet can occur only in the presence of initial phase coherence between

neigboring Wannier states. The width of a wave packet is determined by the expectation

value of the square of the Heisenberg position operator (2.21). This gives the expression

〈n2〉= 〈B20〉+
α2

4
(2− e−2iβ〈B2−〉 − e2iβ〈B2+〉)

+
iα

2
(e−iβ〈B0B− +B−B0〉 − eiβ〈B0B+ +B+B0〉). (2.23)

2.4 Localized initial states

2.4.1 Arbitrary wave packets

A fairly localized initial state |Ψ(0)〉 = ∑
n cn|n〉 with a reasonably well-defined quasimo-

mentum can be modeled by assuming that neighboring states have a fixed phase difference θ,

so that

c∗ncn+1 = |cncn+1|eiθ. (2.24)

Thus, the quasimomentum is initially centered around the value k0 = θ/a. For simplicity, we

assume moreover that the distribution over Wannier states is even in n, so that |cn| = |c−n|.
The initial average position of the particle is located at n = 0. In order to evaluate the time-

dependent average position and spreading of the packet, we can apply eqs. (2.22) and (2.23).

The symmetry of the distribution implies that 〈B0〉 = 0, while 〈B20〉 = σ20 is the initial

variance of the position. When we introduce the quantities

∑

n

|cn+1cn| ≡ b1,
∑

n

|cn+2cn| ≡ b2, (2.25)

we obtain the simple identities

〈B+〉 = b1e
−iθ, 〈B2+〉 = b2e

−2iθ, 〈B0B+〉 = −〈B+B0〉 =
1

2
b1e

−iθ. (2.26)

The last identity is proved by using the fact that the quantity f2n+1 ≡ |cn+1cn| is even in

its index (which takes only odd values). Therefore,
∑

l lfl = 0, which is equivalent to the

statement that 2〈B+B0〉+ 〈B+〉 = 0. The other expectation values occurring in eqs. (2.22)

and (2.23) are found by taking the complex conjugates of the identities (2.26). This leads to

the simple exact results

〈n〉 = αb1 sin(β − θ) 〈n2〉 = σ20 +
α2

2

(
1− b2 cos 2(β − θ)

)
, (2.27)
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so that the variance of the position is found as

σ2 ≡ 〈n2〉 − 〈n〉2 = σ20 +
α2

2

(
1− b21 − (b2 − b21) cos 2(β − θ)

)
. (2.28)

Notice that the parameters b1 and b2 are real numbers between 0 and 1. In the limit of

a wide initial wave packet, determined by coefficients cn whose absolute values vary slowly

with n, the parameters b1 and b2 will both approach 1, and the width σ will not vary during

the evolution. In the opposite special case that the initial state is the single Wannier state |0〉,
one finds that b1 = b2 = 0, so that the width σ = α/

√
2.

In the special case that the particle is initially localized in the single Wannier state at

x = 0, so that |Ψ(0)〉 = |0〉, the parameters b1, b2, and σ0 vanish, so that

〈n〉 = 0, σ2 = 〈n2〉 = α2/2. (2.29)

This shows that the average position of the wave packet does not change, and that its width

is determined by the parameter α alone. This is in line with the fact that the population

distribution over the Wannier states after the evolution is pn = |〈n|R|0〉|2 = J2n(α), as

follows from Eq. (2.18). Hence the (time-dependent) value of α determines the spreading of

an initially localized particle.

2.4.2 Gaussian wave packet

When the initial distribution over the sites is Gaussian with a large width, we can evaluate the

full wave packet after evolution. Suppose that the initial state is specified by the coefficients

cn =
1√

σ0
√
2π
einθ exp

(
− n2

4σ20

)
, (2.30)

which obey the condition eq. (2.24). This state is properly normalized provided that σ0 À 1.

When the evolution operator is expressed as in (2.16), the time-dependent state is expanded

as |Ψ(t)〉 = R|Ψ(0)〉 = ∑
n fn exp[in(θ − φ)]|n〉. Summation expressions for the coeffi-

cients fn are directly obtained by using the expression (2.18) of R in Wannier representation.

We use similar techniques to those applied in Ref. [39] in the context of the diffraction of

a Gaussian momentum distribution of atoms by a standing light wave. The technique is

based on differentation of the expression for fn with respect to n, while using the property

α[Jn+1(α)+Jn−1(α)] = 2nJn(α) of Bessel functions. When the width is sufficiently large,

so that the difference fn+1 − fn can be approximated by the derivative, this leads to the

differential equation

2σ20
dfn
dn
≈
(
α sin(β − θ)− n

)
fn + iα cos(β − θ)dfn

dn
. (2.31)

By solving this equation, we arrive at the closed expression

fn =
1

N exp
(−n2/2 + αn sin(β − θ)

2σ20 − iα cos(β − θ)
)
, (2.32)
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with the normalization constant determined by

N 4 = π
(
2σ20 +

α2 cos2(β − θ)
2σ20

)
. (2.33)

We find that the distribution is Gaussian at all times, with a time-varying average position

and variance. These are given by the expressions

〈n〉 = α sin(β − θ), σ2 = σ20 +
α2

8σ20

(
1 + cos 2(β − θ)

)
. (2.34)

These results are in accordance with eqs. (2.27) and (2.28), as one checks by using the

approximate expressions bl = exp(−l2/8σ20) ≈ 1− l2/8σ20 , while neglecting terms of order

(1/σ0)
4 and higher. The width of the packet never gets smaller than its initial value. The

phase difference between neighboring sites is mainly determined by θ − φ. This shows that

a phase difference can be created or modified in a controlled way, simply by imposing a

time-dependent force that gives rise to the right value of φ. Notice that in these expressions

(2.34) θ and β enter in an equivalent fashion. The position and the width of the Gaussian

distribution can be controlled at will by adapting the force to the desired value of β.

We recall that the results of this section are valid for an arbitrary time-dependent force

∆(t), which determines the time-dependent values of the parameters α, β and φ as specified

in eqs. (2.13) and (2.15). In the subsequent sections, we specialize these expressions for

constant or oscillating values of the uniform force.

2.5 Constant uniform force and Bloch oscillations

2.5.1 Wannier-Stark ladder of states

The case of a constant force is the standard situation where Bloch oscillations occur. When

∆ and Ω are constant, the Hamiltonian is time independent, and then it is convenient to

introduce the normalized eigenstates |ψm〉 of H . When we expand these eigenstates in the

Wannier states as |ψm〉 =
∑

n |n〉c
(m)
n , the eigenvalue relation H|ψm〉 = Em|ψm〉 with

Em = ~ωm leads to the recurrence relations for the coefficients

1

2
Ω
(
c
(m)
n−1 + c

(m)
n+1

)
+∆nc(m)n = ωmc

m
n . (2.35)

We introduce the generating function

Zm(k) =

√
a

2π

∑

n

c(m)n e−inka, (2.36)

which is normalized for integration over the first Brillouin zone. In fact, from the expression

(2.3) of the Bloch state, one notices that the generating function Zm(k) = 〈k|ψm〉 is equal

to the Bloch representation of the eigenstate |ψm〉. The relations (2.35) are found to be

equivalent to the differential equation

Ωcos(ka)Zm(k)− ∆

ia

d

dk
Zm(k) = ωmZm(k), (2.37)
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with the obvious normalized solution

Zm(k) =

√
a

2π
exp

( i
∆
[Ω sin(ka)− akωm]

)
. (2.38)

Since the functions Zm(k) as defined by (2.36) are periodic in k with period 2π/a, the same

must be true for the expressions (2.38). Hence, the frequency eigenvalues must be an integer

multiple of ∆, so that we can choose ωm = m∆, with integer m. For these values of the

eigenfrequencies, the coefficients c
(m)
n follow from the Fourier expansion of Zm, with the

result

c(m)n ≡ 〈n|ψm〉 = Jm−n(Ω/∆). (2.39)

We find that the total Hamiltonian H has the same eigenvalues as H1. Apparently, the

energy shifts due to the coupling between the Wannier states as expressed by H0 cancel

each other. Since the energy eigenvalues are integer multiples of ∆, each solution of the

Schrödinger equation is periodic in time with period 2π/∆, and the same is true for the

evolution operator U(t) given in eq. (2.16). This also implies that an initial localized state

remains localized at all times, due to the addition of the uniform external force. The eigen-

states |ψm〉 are the Wannier-Stark ladder of states [27–29]. They form a discrete orthonormal

basis of the first energy band, and they are intermediate between the Wannier and the Bloch

bases of states.

2.5.2 Oscillations of localized states

The definitions (2.13) and (2.15) show that

α = (2Ω/∆) sin(∆t/2), β = ∆t/2, φ = ∆t. (2.40)

In the Wannier representation, the matrix elements of U are found from eq. (2.16) as

〈n|U(t, 0)|m〉 = i−n+me−i∆t(n+m)/2Jn−m(
2Ω

∆
sin

∆t

2
), (2.41)

which represents the transition amplitude from an initial state |m〉 to the final state |n〉. For

the initial Wannier state |Ψ(0)〉 = |0〉, the time-dependent state is |Ψ(t)〉 = ∑
n fn(t)|n〉

with

fn(t) = i−ne−i∆tn/2Jn(
2Ω

∆
sin

∆t

2
). (2.42)

This is in accordance with Eq. (50) of ref. [37], which was obtained by a rather elaborate an-

alytical method, rather than an algebraic one. Equation (2.29) shows that the time-dependent

average position 〈n〉 of the wave packet remains zero at all times, whereas the mean-square

displacement σ = |α|/
√
2 displays a breathing behavior, and returns to zero after the Bloch

period 2π/∆. Moreover, according to eq. (2.42), the phase difference between neighboring

sites varies continuously with time.
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This is already quite different when only two Wannier states are populated initially. Con-

sider the initial state

|Ψ(0)〉 = 1√
2
(|0〉+ eiθ|1〉). (2.43)

Then the average position can be evaluated from eq. (2.22), for the values of α and β given

in eq. (2.40). The result is

〈n〉 = 1

2
+

Ω

2∆

(
cos θ − cos(∆t− θ)

)
, (2.44)

which shows that the packet displays a harmonically oscillating behavior. The amplitude

of the oscillation is governed by the ratio Ω/∆, which is one-half the maximum amplitude

for Bloch oscillations of a wave packet with a large width (see Sec. 2.5.3). This amplitude

must be appreciable in order that interband coupling induced by the uniform force remains

negligible, as we have assumed throughout this paper.

Figure 2.1: (a) Plot of the breathing population distribution for an initial Wannier state |0〉.
(b) Plot of the oscillating population distribution, for two initial superpositions of Wannier

states |0〉 and |1〉, and two different values of the relative phase θ. Both plots are evaluated

for Ω/∆ = 6. Shaded distributions hold after one-half a Bloch period t = π/∆.

The distribution pn = |fn|2 after one-half a Bloch period, both for the initial single

Wannier state and for the inital state (2.43), is illustrated in Fig. 2.1. This demonstrates that a

strong displacement can already be induced by evolution of a superposition state of just two

neighboring Wannier states, with a specific phase difference. This displacement arises from

the interference between the transition amplitudes from the two initial states to the same final

state |n〉.

2.5.3 Bloch oscillations and breathing of a Gaussian wave packet

The evolution of a Gaussian wave packet as discussed in Sec. 2.4.2 is specialized to the

present case of a constant force after substituting the expressions (2.40) in eqs. (2.32)-(2.34).

We find for the average position 〈n〉 the identity

〈n(t)〉 = Ω

∆
[cos θ − cos(θ −∆t)]. (2.45)
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Figure 2.2: Periodic behavior of the width and the average position of a Gaussian wave

packet for various initial values of the phase difference θ between neighboring states. Initial

value of the width is σ0 = 4 and Ω/∆ = 50.

This demonstrates that the wave packet oscillates harmonically in position with frequency ∆
and with amplitude Ω/∆ in units of the lattice distance a. The velocity of the wave packet is

found from the time derivative of eq. (2.45), with the result

v(t) = −aΩsin(θ −∆t). (2.46)

It is noteworthy that this expression (2.46) coincides exactly with the expression for the

group velocity dE/~dk, with the derivative evaluated at the time-dependent value of the

quasimomentum (θ −∆t)/a, with E = ~Ωcos(ka) the dispersion relation between energy

and quasimomentum in the absence of the uniform force, as given in Sec. 2.2.1. Apparently,

the expression for the group velocity retains its validity in the presence of the uniform force

also. Of course, the concept of Bloch oscillations of the wave packet as a whole has signifi-

cance only when the amplitude Ω/∆ of the oscillation is large compared with the width σ of

the packet, which in turn must extend over many lattice sites.

The time-dependent width σ of the Gaussian packet is found from eq. (2.34) in the form

σ2 = σ20 +
Ω2

4σ20∆
2
(1− cos∆t)

(
1 + cos(∆t− 2θ)

)
. (2.47)

Hence the variance of the position deviates from its initial value by an oscillating term.

The amplitude of this oscillation is governed by the ratio (Ω/2∆σ0)
2. The initial width is

restored whenever one of the terms in brackets vanishes. This happens twice during every

Bloch period, except when θ = π/2, when these two instants coincide. This combined

breathing and oscillating behavior is illustrated in Figs. 2.2 and 2.3, for various values of

the relative phase θ. Notice that the oscillation is always harmonic with the Bloch frequency

∆. This is due to the simple form of the dispersion relation for the case of nearest-neighbor

interaction. The time dependence of the variance is a superposition of terms with frequencies

∆ and 2∆.

2.5.4 Zero external force

In the absence of an external force, we can take the limit ∆→ 0 in the results of the previous

subsections. In particular, this gives φ = β = 0, α(t) = Ωt. Then the evolution of an initial
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Figure 2.3: Bloch oscillation and corresponding breathing behavior of a Gaussian wave

packet in a constant uniform force. Values of σ0, Ω, and ∆ as in Fig. 2.2. Left part: θ = 0.

Right part: θ = π/2.

Wannier state |Ψ(0)〉 = |0〉 is given by

|Ψ(t)〉 = R|ψ(0)〉 =
∑

n

i−nJn(Ωt)|n〉, (2.48)

which shows that the free spreading of an initial Wannier state after a time t gives Wannier

populations equal to pn = |Jn(Ωt)|2 [40]. The mean-square displacement increases linearly

in time, as σ = Ωt/
√
2. This shows that the spreading is unbounded in the absence of an

external force. The self-propagator p0(t) decays to zero for large times. The phase difference

between neighboring sites is ±π/2 at all times. For only two coupled wells, the coupling

would give rise to Rabi oscillations with frequency Ω. Equation (2.48) can be viewed as the

generalization to the case of an infinite chain of wells.

For a Gaussian wave packet with initial width σ0 and initial quasimomentum determined

by θ, expressions (2.45) and (2.47) take the form

〈n(t)〉 = −Ωt sin θ, σ2 = σ20 +
Ω2t2

8σ20
(1 + cos 2θ). (2.49)

As one would expect in the absence of a uniform force, the group velocity takes the constant

value v = −aΩsin θ, which leads to unbounded motion of the packet (except for θ = 0
or ±π). Usually, the width increases indefinitely during he propagation. However, for the

special values θ = ±π/2 the width is constant, and the packet propagates as a solitary wave.

Notice that such a phase difference between neighboring Wannier states arises spontaneously

when a single Wannier state spreads in the absence of a uniform force.

2.6 Oscillating force

Other situations of practical interest arise when the uniform force has an oscillating com-

ponent. Examples are the coupling between the states in the Wannier-Stark ladder [27–29],

and dynamical localization for special values of the amplitude-frequency ratio of the oscilla-

tion [33–35]. The situation of an oscillating force is also decribed by the operator description

of Sec. 2.3.1. We give some results below.
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2.6.1 ac force only

The situation of a harmonically oscillating uniform force can be expressed as

∆(t) = δ cos(ωt), (2.50)

so that φ = (δ/ω) sin(ωt). Then according to (2.15) the parameters α and β are specified by

the equalities

αeiβ = ΩtJ0

( δ
ω

)
+Ω

∑

n6=0

Jn

( δ
ω

) 1

inω

(
einωt − 1

)
, (2.51)

where we used the expansion defining the ordinary Bessel functions, given in Sec. 2.3.1.

The first term in eq. (2.51) increases linearly with time, whereas the summation is

bounded and periodic in time with period T = 2π/ω. The behavior of α and β as defined

by eq. (2.51) is quite complicated in general. However, for large times the value of α, and

thereby the spreading of an initial Wannier state, is the same as in the absence of the uniform

force, with Ω replaced by the reduced effective coupling ΩJ0(δ/ω). After one period T , the

values of the parameters become simple, and we find β = φ = 0, α = ΩTJ0(δ/ω). The

evolution operator U(T ) during one period T is simply given by the operatorR defined in eq.

(2.16), at these values of the parameters. The eigenstates of the evolution operatorR = U(T )
are simply the Bloch states |k〉. The eigenvalues can be expressed as exp(−iE(k)T/~), with

E(k) = ~ΩJ0

( δ
ω

)
(2.52)

the corresponding values of the quasienergy, which are strictly speaking defined only modulo

~ω. The quasienergy bandwidth is reduced by the factor J0(δ/ω), compared with the energy

bandwidth in the absence of the uniform force.

When the ratio δ/ω of the amplitude and the frequency of the oscillating force coincide

with a zero of the Bessel function J0, no unbounded spreading occurs, and an initially local-

ized state remains localized at all times, with a periodically varying mean-square displace-

ment. The quasienergy bandwidth is reduced to zero in this case. This effect of dynamical

localization has been discussed before for electrons in crystals [33, 34]. The related effect

of an effective switch-off of atom-field coupling occurs for a two-level atom in a frequency-

modulated field when the ratio of the amplitude-frequency ratio of the modulation equals a

zero of the Bessel function J0. This effect, which leads to population trapping in a two-level

atom, has recently been discussed by Agarwal and Harshawardhan [41].

2.6.2 ac and dc force

A constant uniform force creates Wannier-Stark states with equidistant energy values. An ad-

ditional oscillating force can induce transitions between these states. Therefore, we consider

the force specified by

∆(t) = ∆0 + δ cos(ωt). (2.53)
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Then the values of the parameters φ, α, and β are

φ(t) = ∆0t+(δ/ω) sin(ωt), αeiβ = Ω
∑

n

Jn

( δ
ω

) 1

i(∆0 + nω)

(
ei(∆0+nω)t−1

)
. (2.54)

In general, each term in the summation is bounded and periodic, but the different periods can

be incompatible. Moreover, whenever ∆0+nω = 0, the corresponding summand attains the

unbounded form ΩtJn(δ/ω). At such a resonant value of ∆0, the spreading of an initially lo-

calized state becomes unbounded, and the particle becomes delocalized. This delocalization

is suppressed again when the ratio δ/ω is equal to a zero of the corresponding Bessel func-

tion Jn. This is a simplified version of the phenomenon of fractional Wannier-Stark ladders,

which has recently been observed and discussed [42, 43].

The quasienergy values are again determined by the eigenstates of the evolution operator

U(T ) for one period of the oscillating force. This operator is equal to the general operator R
defined in eq. (2.16), with the parameters

α = 2Ω sin(∆0T/2)
∑

n

Jn

( δ
ω

) 1

∆0 + nω
, β(T ) = ∆0T/2, φ(T ) = ∆0T. (2.55)

These expressions are correct whenever ∆0 + nω is nonzero for all values of n. Since these

values of the parameters can be directly mapped onto the values (2.40) specifying the evolu-

tion with a constant uniform force, the eigenvectors and corresponding quasienergies are also

immediately found. The eigenvectors of R can be expressed as |ψm〉 =
∑

n |n〉c
(m)
n , with

the expansion coefficients c
(m)
n = Jm−n(ζ). Here the argument ζ of the Bessel functions

must be chosen as the sum

ζ = Ω
∑

n

Jn

( δ
ω

) 1

∆0 + nω
, (2.56)

which replaces the simple argument Ω/∆ in eq. (2.39). The eigenvalues of R = U(T ) are

exp(−iEmT/~), with the discrete quasienergy values Em = ~m∆0 (modulo ~ω).

In the resonant case that ∆0+n0ω = 0 for some integer n0, one summand in the expres-

sion for α and β is modified, as indicated above. When T = t, only this modified summand

is nonzero, and the evolution operator U(T ) = R for one time period is characterized by the

values

α = ΩTJn0
, β = 0, φ = −2πn0. (2.57)

The eigenvectors of R are the Bloch states |k〉, and the corresponding quasienergy values are

E(k) = ~ΩJn0

( δ
ω

)
. (2.58)

2.7 Discussion and conclusions

We have analyzed the Wannier-Stark system, which is characterized by the Hamiltonian (2.6),

in terms of the operators B± and B0. The present interest in this model arises from the dy-

namics of atoms in a periodic optical potential, with an additionally applied uniform external
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force. We adopted the tight-binding limit, which implied nearest-neighbor interaction only.

This gives rise to an explicit simple dispersion relation between energy and quasimomentum,

which makes the model exactly solvable. From the commutation properties of the basic op-

erators we obtain eq. (2.16) for the evolution operator for an arbitrary time dependence of

the uniform force, where the three parameters are defined in eq. (2.13) and (2.15). As shown

in Secs. 2.3.2 and 2.4, the parameter φ determines the shift in the value of the quasimo-

mentum, whereas α and β determine the evolution of the average position and the width of

a wave packet. A particle starting in a single Wannier state has a uniform distribution over

the quasimomentum, and cannot change its average position, whereas the width of its wave

packet is simply measured by α. On the other hand, even when only two neighboring states

are populated initially, the wave packet can display an appreciable motion. In Sec. 2.4.2 it

is demonstrated that an initially Gaussian packet remains Gaussian at all times. This remains

true when the initial state has a nonzero expectation value of the quasimomentum, which is

described as an initial phase difference between neighboring Wannier states.

These results, which are valid for a uniform force with an arbitrary time dependence, unify

and extend earlier results obtained for a constant or an oscillating uniform force. A constant

force induces Bloch oscillations of a wave packet, and we obtain a simple expression for the

amplitude of the oscillation and for the time dependence of the width of the wave packet. For

an oscillating force, the operator method shows that the quasienergy bands can be evaluated

directly in terms of the value of the parameter α after one oscillation period. This produces

an exactly solvable model for dynamical localization and fractional Wannier-Stark ladders.

In general, by selecting a proper time dependence of the force or of the coupling between

wells, thereby realizing the desired values of the parameters α, β, and φ, we can coherently

control the width and the position of a wave packet, as well as the phase difference between

neighboring sites.
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Chapter 3

Momentum transfer for an optical transition in a
prepared two-level atom

We consider the interaction of a travelling optical wave with a resonant two-level

atom, which is initially in its most general superposition state, i. e. in a superposition

state of the ground and excited internal energy levels with mutually different momentum

distributions for each of these internal energy levels. We show that the momentum dis-

tribution per atomic internal energy level periodically gets large scale changes during

the interaction. The amount of momentum that the photon transfers between the atomic

internal energy levels is, in general, more than its own momentum ~k.

A special case is discussed, when the atom’s preliminary superposition state is cre-

ated as a result of interaction of the atom with a resonant standing wave. Also it is pointed

out that the phenomenon can be considered as a transformation of the resonant Kapitza-

Dirac splitting of atomic states into the Stern-Gerlach type splitting, if the interaction

periods are appropriately chosen.

3.1 Introduction

When an atom interacts with a resonant travelling wave, the changes of the total momentum

of the atom can not exceed one photon momentum ~k. What can be said about the distribution

and the mean values of momentum for translational states per each atomic level? The answer

is well-known and trivial, if the atom before the interaction is on one of the internal energy

levels: the momentum distribution on the other level gets shifted by ~k and the mean value

of momentum may get shifted by ~k as well; 〈pe〉 ∼ 〈pg〉 + ~k at certain time instants,

where pg and pe are mean values of momentum, corresponding to the ground and the excited

internal levels (1D case). Therefore, a photon, during an absorption or emissions, transfers

between the atomic internal energy levels an amount of momentum ∆p just equal to its own

momentum ~k. What would happen in a general case, that is, when the atom before the

interaction with a travelling wave is in the superposition state of ground and excited levels

with mutually different momentum distributions? Such a state can be considered as the most

general superposition state for the atom. In the further discussion this question is elucidated.

We start from a general formalism and then turn to important special cases. It is shown that in

general ∆p 6= ~k, that is a photon being absorbed or emitted by an atom, transfers between

the internal atomic energy levels the amount of momentum not necessarily equal and even

largely exceeding the photon’s own momentum.
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In Sec. 2 the general conditions are discussed, when one may obtain large average mo-

mentum changes at internal energy levels for an atom interacting with a travelling wave.

These redistributions are a direct consequence of interference between the amplitudes of

translational states for ground and the excited internal energy levels.

In Sec. 3 we discuss the possible connection to applications. That is when the preliminary

superposition state of the atom is realized by a coherent diffraction of the atom in the field of

a resonant standing wave, which is being often referred as the resonant Kapitza-Dirac effect.

It is pointed out, that the redistribution of momentum in the travelling wave can be considered

as a transition from the resonant Kapitza-Dirac splitting to the Stern-Gerlach type splitting.

In Sec. 4 we discuss in details the temporal behavior of mean momentum corresponding

to both of the internal energy levels. The results are summarized in Sec. 5, where also the

possibilities of experimental observation of this phenomenon are briefly sketched.

3.2 Momentum distributions and mean momenta

per atomic internal energy levels

Let’s start from the discussion of a resonant interaction of a two-level atom with a radiation

field [44, 45]. For the sake of simplicity, suppose that the light field has a plane wavefront

and a linear polarization (these assumptions will be kept also for the standing wave in the

next sections). Let’s suppose that the light field amplitude is turned on instantaneously. The

internal wave functions of a free two-level atom in ground (g) and excited (e) levels are noted

respectively ϕg(
−→ρ , t) and ϕe(

−→ρ , t), where−→ρ is the atomic internal coordinate (the radius-

vector of the optical electron, relative to the atomic center-of-mass). The wave function of an

atom interacting with a light field can be presented as [44, 45]

Ψ = A ϕg(
−→ρ , t) +B ϕe(

−→ρ , t), (3.1)

where A and B are the probability amplitudes of the atom to be respectively at the ground

and the excited internal energy levels.

While taking into account the translational motion of the atomic center of mass, it is

useful to separate the corresponding parts (wave functions) in A and B coefficients. For an

atom with the well-defined momentum p, the corresponding wave function is given by the

function

χ(p) =
1√
2π~

exp(
i

~
pz), (3.2)

that is, by an exponential function with imaginary degree. In general, if the momentum of an

atom isn’t fixed at any energy level, the coefficients A and B can be expressed by the series

of χ(p)-states

A(t, z) =

∫
a(p, t)χ(p)dp, B(t, z) =

∫
b(p, t)χ(p)dp, (3.3)

where the probability amplitudes a(p, t) and b(p, t) represent the probability for an atom to

have momentum p at the time instant t while being at the ground or excited internal energy

levels.
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Plugging the expressions (3.1)-(3.3) into the quantum-mechanical definition of average

momentum, given as

〈p〉 =
∫

Ψ∗p̂Ψd−→ρ dz,
∫

Ψ∗Ψd−→ρ dz = 1, (3.4)

after standard transformations we arrive to the following expressions for the average momen-

tum

〈p〉 =
∫
|a(p, t)|2 pdp+

∫
|b(p, t)|2 pdp. (3.5)

Terms in the exp. (3.5) specify the contribution of translational states into the total momentum

per internal energy levels: for the ground internal energy level

〈p〉g =
∫
|a(p, t)|2 pdp. (3.6)

and for the excited one

〈p〉e =
∫
|b(p, t)|2 pdp. (3.7)

Both momenta are time-dependent and their changes after the interaction period t are ex-

pressed as

〈∆p〉g =
∫ (
|a(p, t)|2 − |a(p, 0)|2

)
pdp, (3.8)

〈∆p〉e =
∫ (
|b(p, t)|2 − |b(p, 0)|2

)
pdp.

When the atom interacts with a travelling wave, the internal ground level coefficient a(p, t) is

related with the excited internal level coefficient b(p+~k, t). The relation can be represented

in the form of a conserving quantity

|a(p, t)|2 + |b(p+ ~k, t)|2 = const = |a(p, 0)|2 + |b(p+ ~k, 0)|2 (3.9)

(it can be checked by the eq. (3.17)). We can use the relation (3.9) to express 〈∆p〉g by 〈∆p〉e
as follows

〈∆p〉e =
∫ (
|b(p+ ~k, t)|2 − |b(p+ ~k, 0)|2

)
(p+ ~k) d (p+ ~k) = (3.10)

=−
∫ (
|a(p, t)|2 − |a(p, 0)|2

)
(p+ ~k) d (p+ ~k) =

=−〈∆p〉g + ~k

∫ (
|a(p, t)|2 − |a(p, 0)|2

)
dp = −

=−〈∆p〉g + ~k ∆ng,

where ∆ng with

∆ng = −∆ne =
∫ (
|a(p, t)|2 − |a(p, 0)|2

)
dp = −

∫ (
|b(p, t)|2 − |a(p, 0)|2

)
dp (3.11)
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is the change of population for the internal ground level, or which is the same, the population

change ∆ne of the internal excited level with the opposite sign (see (3.20)). From the equality

of the first and the last terms in the exp. (3.10) a well known inequality follows directly

between the momentum of the photon and the atom

〈∆p〉 = 〈∆p〉g + 〈∆p〉e = ~k ∆ng ≤ ~k (3.12)

Let, nevertheless, note that this ”one photon demarcation” pertains to the total momentum of

the atom and has nothing to do with separate average momentum changes per internal energy

levels 〈∆p〉g and 〈∆p〉e. In accordance with (3.8), these quantities can exhibit arbitrary

changes depended on the distribution functions |a(p, t)|2−|a(p, 0)|2 and |b(p, t)|2−|b(p, 0)|2
in the momentum space. As it follows from the exp. (3.8), the large magnitudes for 〈∆p〉g
(〈∆p〉e) are possible, if one requires to have strictly non-symmetric distributions |a(p, t)|2−
|a(p, 0)|2 (or |b(p, t)|2 − |b(p, 0)|2) relative to the replacement p→ −p and the distributions

are also required to have an accumulation in the range of large values of |p|.
And now we show that the one photon absorption/emission process in the field of a trav-

elling wave actually allows such a behavior. The Hamiltonian of the system can be written in

a dipole approximation as

Ĥ = Ĥ0 − d̂E(t, z), (3.13)

where Ĥ0 is the free atom Hamiltonian, and d̂ is the dipole moment operator and

−→
E (t, z) =

−→
E

2
exp(ikz − iωt) + c.c, t > 0 (3.14)

is the frequency ω of the electric field taken equal to the Bohr transition frequency ω0.
From the time-dependent Schrödinger equation we arrive to the system of equations for

the amplitudes A(t, z) and B(t, z)

i
∂A(t, z)

∂t
=−ν exp(−ikz)B(t, z), (3.15)

i
∂B(t, z)

∂t
=−ν exp(ikz)A(t, z),

As it is well-known, the system of equations (3.15) It exhibits the Rabi-solutions [44, 45]

A(z, t) =A(z, 0) cos νt+ iB(z, 0) exp(−ikz) sin νt, (3.16)

B(z, t) =B(z, 0) cos νt+ iA(z, 0) exp(ikz) sin νt,

where ν = dE/2~ represents the Rabi frequency, d =
〈
ϕa | d̂ | ϕb

〉
.

Performing the χ(p)-expansion in (3.16) (see Eq. (3.3)), we arrive to the expressions for

the atomic amplitudes in the momentum space (3.3)

a(p, t) = a(p, 0) cos νt+ ib(p+ ~k, 0) sin νt, (3.17)

b(p, t) = b(p, 0) cos νt+ ia(p− ~k, 0) sin νt.
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First of all, it can be readily verified that the outcome is trivial if the atom is at one of energy

levels before the interaction. Indeed, if one takes b(p, 0) = 0, then

〈∆p〉g = (cos2 νt− 1)

∫
|a(p, 0)|2 pdp = (cos2 νt− 1) 〈p〉g |t=0 (3.18)

〈∆p〉e = (1− cos2 νt)
[
〈p〉g |t=0 +~k

]
.

This means that the contribution to the total momentum, coming from single internal energy

levels, evolves periodically in time, and this evolution is merely caused by the periodic ex-

change of population between the internal energy levels (posed by the term (1 − cos2 νt)).
Note also that in this case (b(p, 0) = 0) the momentum distributions for the internal energy

levels coincide with each other after the shift ~k: b(p + ~k, t) = i a(p, t) tanνt, as it is

indicated in Introduction.

The situation is totally different, if the atom is initially in a superposition state of the inter-

nal ground and excited levels. Now, generally speaking, the initial momentum distributions

for the internal ground and excited levels are not required to be identical with the ~k shift :

b(p, 0) 6= α a(p−~k, 0) (α is a constant, independent on p). Then, as it follows from the exp.

(3.17), the optical transition changes not only the population on the internal energy levels, it

also introduces periodical changes in the form of momentum distribution. Thus, the atomic

amplitudes a(p, t) and b(p, t) are not mutually proportional (they do not coincide after the

constant shift).

To wash out the contribution coming from the evolution of population of the internal

energy levels, let us introduce a pair of new quantities pg and pe, which are defined by scaling

the average momentum per internal energy level by the corresponding population ng and ne

pg = 〈p〉g /ng, pe = 〈p〉e /ne (3.19)

ng =

∫
|a(p, t)|2 dp, ne =

∫
|b(p, t)|2 dp (3.20)

Since the pg, pe are independent on the population on the internal energy levels, their possible

evolution is due to the form-deformation in the momentum distribution for the internal energy

levels. Thereby, the total momentum of the atom, in addition to (3.5), can be represented in a

more convenient form

〈p〉 = ngpe + nepg (3.21)

It is easy to see that the quantities pg and pe remain constant, if the atom is initially at one of

the energy levels. They remain unchanged also when the initial distributions a (p, 0) , b (p, 0)
are mutually proportional with the constant ~k shift

b(p, 0) = α a(p− ~k, 0). (3.22)

Indeed, plugging the exp. (3.22) in the relations (3.17) and performing simple substitutions,

we arrive to the following relation for the internal ground energy level

pg =
|cos νt− iα sin νt|2

∫
|a(p, 0)|2 pdp

|cos νt− iα sin νt|2
∫
|a(p, 0)|2 dp

= pg |t=0,
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and the same is true for the internal excited energy level. So, if the condition (3.22) holds,

only a population exchange takes place between the internal energy levels, and the scaled

average momenta pg and pe do not change.

Nevertheless, in the general case the state evolution forms as a result of interference be-

tween non-similarly distributed amplitudes. The atomic amplitudes distributions per internal

energy levels aren’t proportional to each other and subsequently the mean momenta pe and

pg exhibit non-trivial temporal evolution.

Now we turn to the issue of a more concrete and quantitative picture for the developed

formalism. This can be important for various applications in atom optics and interferome-

try [4, 46]. As an example, we study the coherent scattering of atoms in a resonant field of

a standing wave. This example is particularly important, because it is the main routine to

prepare a widespread momentum distribution in atom optics. The probability amplitudes,

prepared in such a way, principally can not satisfy the ”undesirable” condition (3.22). The

reason is well- known: any state with momentum p at one of internal energy levels is con-

nected to two states with momenta p − ~k and p + ~k simultaneously at the other internal

energy level in the field of a standing wave. Therefore, any atom prepared by means of the

resonant Kapitza-Dirac effect is forced to change implicitly the momentum distribution at the

internal energy levels while interacting with a travelling wave.

3.3 The case of preparation of atomic superpositional states

by scattering in the field of resonant standing wave

We consider a coherent interaction of an atom with a resonant (ω = ω0) standing wave

[47–52] during the time interval τs followed by the interaction with a travelling wave. We

restrict ourselves to a relatively simple case, when the interaction proceeds by the well known

scheme of mutually orthogonal atom-standing wave beams. Moreover, the Raman-Nath ap-

proximation is applied, which allows to leave out the kinetic energy term in Hamiltonian

(3.13) (note that the kinetic energy term has not been included also in eq. (3.15)). Although

the scheme of calculations is well known and presented elsewhere in details(see, for exam-

ple [4, 46–52]), we find it appropriate to give here an overview of the main intermediate

formulas, too.

To describe the interaction in the preparing standing wave, the electric field (3.14) in the

Hamiltonian (3.13) must be substituted by the following one

E(t, z) = Es cos kz exp(−iωt) + c.c, − τs ≤ t ≤ 0. (3.23)

Now, the atomic amplitudes As(z, t) and Bs(z, t) have to satisfy (3.15)-type equations

where the following replacements are made: ν → 2νs = 2dEs/~ (which is mean Rabi

frequency in the standing wave), exp(±ikz) → cos kz. Allowing the atom initially (t <
−τs) to be at the ground level, we arrive to the following expressions for the amplitudes

As(z, t), Bs(z, t) after the atom interacts with the standing wave (3.23)

As(z, t) = cos(2νs(t+ τs) cos kz), (3.24)

Bs(z, t) = i sin(2νs(t+ τs) cos kz).
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The multiphoton nature of the standing wave diffraction is evident, if one performs the

χ(p)-expansion for the amplitudes As(z, t) and Bs(z, t) (3.24) [53]

As(z, 0) = cos(2νsτs cos kz) =

∞∑

m=−∞

i2mJ2m(2νsτs) exp(i2mkz), (3.25)

Bs(z, 0) = i sin(2νsτs cos kz) =
∞∑

m=−∞

i2m+1J2m+1(2νsτs) exp(i(2m+ 1)kz),

wherem is the number of photons reemitted from one into the other of the counterpropagating

waves, Jm(x) is the Bessel function of m-th order.

At t = 0 the standing wave is turned off, the amplitudes (3.24) serve as initial amplitudes

for the subsequent interaction with the travelling wave. For the atomic center-of-mass motion

probability amplitudes a(p, t) and b(p, t) at t > 0 the following expressions can be easily

evaluated using (3.3,3.16)

a(2m~k, t) = i2m [cos νt J2m(2νsτs)− sin νt J2m+1(2νsτs)] , (3.26)

b((2m+ 1)~k, t) = i2m+1 [cos νt J2m+1(2νsτs) + sin νt J2m(2νsτs)] ,

a((2m+ 1)~k, t) = b(2m~k, t) = 0.

Figure 3.1: Probability distribution is plotted in the momentum space for the ground and

excited internal energy levels. State is prepared symmetrically in the momentum space. The

chosen parameters are 2νsτs = 40, |A(−τs)|
2 = 1, |B(−τs)|

2 = 0, νt = π/4.

We see that the superposition state, created as a result of the interaction with the standing

wave, represents discrete manifolds of states, where the space between the adjacent values of

momentum is 2~k, herewith the manifolds for the ground and excited internal energy levels

are shifted with respect to each other by ~k [47–52].

The formulas (3.26) contain explicitly the aimed result about the evolution of momentum

distribution. To demonstrate it, first of all we note, that the initial momentum distribution for

any of internal energy levels is symmetric relative to the middle point p = 0. Indeed, the

distribution functions are given by the functions i2mJ2m(.) and i2m+1J2m+1(.) respectively

for the ground and excited energy levels and remain symmetric relative to the transformation
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2m → −2m, 2m + 1 → −(2m + 1), that is relative to the value m = 0 (p = 0). This

symmetry proofs that the average momentum per each internal energy level is zero before

interacting with the travelling wave [47–52].

Nevertheless, in accordance with (3.26), the symmetry breaks down when the travelling

wave acts. So, one photon absorption/emission process transforms the momentum distribu-

tion for internal energy levels to an asymmetric form for both of the internal energy levels.

Both distributions are peaked in the opposite directions for the ground and excited internal

energy levels. The sign of asymmetry per each internal energy level changes periodically.

A typical form of the initial distribution and the subsequent transformation (due to a

single-photon process) are plotted on the Fig. 3.1 for the ground and the excited energy levels.

To be more precise, the quantities W
(g)
m = |a (2m~k, t)|2 and W

(e)
m = |b ((2m+ 1) ~k, t)|2

are plotted on the Fig. 3.1 at two time instants, namely before and after the travelling wave.

Single-photon induced large-scale momentum changes are apparent.

Figure 3.2: Probability distribution is plotted in the momentum space for the ground and

excited internal energy levels. State is prepared asymmetrically in the momentum space.

The chosen parameters are 2νsτs = 40, |A(−τs)|
2 = 1/2, |B(−τs)|

2 = 1/2, νt = π/4.

Now let us notice that we obtain almost one-side distributions for conditions taken for Fig.

3.1. The translational states with positive momentum prevail at the ground internal energy

level, and the opposite ones are mostly at the excited internal level. So, the state of the atom is

split into two subgroups, where one subgroup represents the ground-level atoms with positive

momentum, and the second subgroup is related to the excited-level atoms. Obviously, this

is a Stern-Gerlach type splitting. Thus, one-photon optical transition transforms the resonant

Kapitza-Dirac splitting into the Stern-Gerlach type splitting.

The phenomenon of one-photon coherent accumulation of momentum on the internal

energy levels (OP-CAMEL) can be generalized, if the initial momentum distributions for the

atom are taken in an asymmetric form. Such distributions can also be built by a standing

wave, but only if a travelling wave precedes the standing wave [54, 55]. This is a typical

situation, if the standing wave is formed by means of reflection of a laser pulse from a mirror

(see, for example [56]). In order to keep the discussion short, we give the main features of

the asymmetric OP-CAMEL in figures.

In Fig. 3.2 we plot the evolution of a maximally asymmetric distribution for the ground

and the excited internal energy levels. As it can be seen from the figures, OP-CAMEL mani-

fests itself as an accumulation of an asymmetry for one internal energy level (ground in this

case), whereas the asymmetry of the other internal energy level (excited) is strongly sup-
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pressed.

Figure 3.3: The temporal evolution of average momentum per ground and excited internal

energy level, while the atom interacts with the standing and the travelling waves. Population

changes per energy levels are plotted by dashed lines. All parameters are taken the same as

for Fig. 3.1.

3.4 Time evolution of mean momentum per ground and ex-

cited internal energy levels in the field of travelling wave

Let us now discuss the evolution of momenta pg and pe after the sequence of two pulses,

namely standing wave-travelling wave pulse sequence. Using the expressions for pg and pe
(3.6, 3.7, 3.19, 3.20), we can easily calculate the average momentum and the population of

the internal ground energy level

〈p〉g = ~k
∞∑

m=−∞

2m [cos νt J2m(u)− sin νt J2m+1(u)]
2
= (3.27)

=−~k

[
1− J0(2u)

2
sin2 νt+

u− J1(2u)
4

sin 2νt

]
,

ng =

∞∑

m=−∞

[cos νt J2m(u)− sin νt J2m+1(u)]
2
= (3.28)

=
1

2
+
J0(2u)

2
cos 2νt− J1(2u)

2
sin 2νt

and the same for the excited one

〈p〉e = ~k

∞∑

m=−∞

(2m+ 1) [cos νt J2m+1(u) + sin νt J2m+1(u)]
2
= (3.29)

= ~k

[
1 + J0(2u)

2
sin2 νt+

u+ J1(2u)

4
sin 2νt

]
,



i

i

i

i

i

i

i

i

30 Chapter 3

ne =

∞∑

m=−∞

[cos νt J2m+1(u) + sin νt J2m(u)]
2
= (3.30)

=
1

2
− J0(2u)

2
cos 2νt+

J1(2u)

2
sin 2νt = 1− ng,

where we use a notation u = 2νsτs.
The last relations (3.27)-(3.30) are derived using Bessel function summation formulas

[57]) for the initial conditions are assumed to be 〈p〉g |t=0= 0, 〈p〉e |t=0= 0, (the same is true

for pg and pe), so their values at any time instant coincide with their changes: 〈∆p〉g = 〈p〉g ,

〈∆p〉e = 〈p〉e.
On the Fig. 3.3 the temporal evolution of the average momenta is plotted, while the

atom interacts with the travelling (accumulating) wave. Population changes, which contribute

also to the time evolution of average momentum, are plotted by dashed lines. For the case

presented on the figures, the population on the internal energy levels is practically unchanged

during the interaction period with the travelling wave. Indeed, it immediately follows from

the exp. (3.28) and (3.30), if one takes u >> 1, the Bessel functions J0,1(2u) are negligible.

Figure 3.4: Temporal behavior of the scaled mean momentum per ground internal energy

level (left plot) and the excited internal energy level (right plot).

Respectively, the temporal evolution of the scaled average momentum pg and pe is con-

ditioned only by the redistribution of momentum between the internal energy levels, as it is

shown in Fig. 3.4. The parameters of the preparing standing wave are the same as in Fig. 3.1,

where the distance between the left-hand and right-hand maximuma (the width of momen-

tum distribution) is about 70 ~k. Such magnitudes for the resonant Kapitza-Dirac splitting

are totally in limits of experimental realization (for example [52]).

Note also, that the comparison between the deviation of pg or pe (from the Fig. 3.4) and

the width of momentum distribution (from the Fig. 3.1) shows the same order of magnitude

for them. The widespread character of the momentum distribution comes from the multipho-

ton nature of the phenomenon (multiphoton process of photon reemission from one wave into

the counterpropagating one takes place), so the large-scale variations in OP-CAMEL may be

named as ”multiphoton”.

The multiphoton character of OP-CAMEL can be made more transparent, if we consider

the limit of a sufficiently wide initial momentum distribution, that is ∆p À ~k, then u =
2νsτs À 1. The last estimate comes from the theory of resonant Kapitza-Dirac effect, where

the connection between momentum width δp and the number of Rabi-flops 2νsτs is given as
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δp ≈ 2νsτs~k. Taking into account also that J1,0(2u) ≤ 1, we conclude that the terms 14 ~k
u sin 2νt (3.27) and − 14 ~k u sin 2νt (3.29) stand out as the prevailing terms for respectively

〈p〉g and 〈p〉e

〈p〉g ≈ −
u

4
~k sin 2νt, 〈p〉e ≈

u

4
~k sin 2νt.

Since u >> 1, the changes of 〈p〉g and 〈p〉e per Rabi period, which are in the order of u/2~k
largely exceed the momentum ~k of a single photon.

Figure 3.5: The atom at a ground internal energy level with a fixed momentum (zone 1)

changes its state into a superposition while coherently interacting with a resonant standing

wave (zone 2). The next interaction with the travelling wave leads to large-scale changes in

the momentum distribution per internal energy level. Solid lines represent the atoms at the

ground level and the dotted lines represent the atoms at the excited internal energy level.

3.5 Conclusions

We presented a simple theoretical picture for an optical transition of a single two-level atom

for general conditions, when the atom is in a superposition state of ground and excited internal

energy levels. When these levels initially have different momentum distributions, the one-

photon optical transition leads to significant asymmetric changes in the form of momentum

distributions per internal energy level. In other words, the photon induces a change of the

mean momentum for each internal energy level and this change is larger than the momentum

of the photon itself.

For an important case, when the preliminary superposition state of the atom is prepared

by a coherent scattering at the resonant standing wave, the phenomenon can be considered as

a transition from the resonant Kapitza-Dirac splitting of atomic translational states into the

Stern-Gerlach type splitting. This is sketched schematically on the Fig. 3.5.

Finally, let’s make some remarks on possibilities of the experimental observation of the

phenomenon. First of all, the ”non-optical” methods, which detect the atom in total (for ex-

ample, the ”hot-wire” method), can’t be used for our purposes. It is because the phenomenon
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deals with individual internal energy level. The momentum distribution of the total atom

doesn’t change, or rather, it changes only in limits of one-photon momentum.

Preferably, other detecting methods can be used, which deal only with one of resonantly

connected internal energy levels, such as adjacent optical transitions. Then the phenomenon

appears as asymmetry in the profile of the Doppler broadening, relative to the Bohr frequency.

The other proposal is to use long-living energy levels, so the atomic translational states can be

distinguished in space before the spontaneous emission (zone 3 in Fig. 3.5). In this case the

space-sensitive schemes of spontaneous emission collection or probe pulse absorption may

lead to the desired result.
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Diffraction and trapping in circular lattices

When a single two-level atom interacts with a pair of Laguerre-Gaussian beams with

opposite helicity, this leads to an efficient exchange of angular momentum between the

light field and the atom. When the radial motion is trapped by an additional potential,

the wave function of a single localized atom can be split into components that rotate in

opposite direction. This suggests a novel scheme for atom interferometry without mirror

pulses. Also atoms in this configuration can be bound into a circular lattice.

4.1 Introduction

It is well-known that light may carry both angular and linear momentum. When a light field

interacts with matter, exchange of momentum and angular momentum between light and

matter can occur. Laguerre-Gaussian (LG) light modes are known to carry orbital angular

momentum. If one employs the paraxial approximation for the light field, simple expressions

for the field amplitudes and its average angular momentum can be derived [58]. An easy way

to produce such beams is using spiral phase plates [59].

Another important question is the separability of the total angular momentum into ’or-

bital’ and ’spin’ parts [60]. The orbital part is associated with the phase distribution of the

light field, and the spin part is connected with its polarization. This question is essential in

the context of momentum transfer from light to the atom when one includes atomic internal

degrees of freedom. It has been shown that ’spin’ and ’orbital’ angular momentum of the

photon are transferred from the quantized light field to, respectively, the internal and the ex-

ternal angular momentum of the atom. The interaction with a LG mode is a possible way to

entangle internal and external degrees of freedom of an atom [61]. The transfer of the angu-

lar momentum of light to particles has been also experimentally demonstrated in [62], where

trapped massive particles are set into rotation while interacting with the light field. Other

authors have studied the cooling properties for atoms using LG beams [63]. Also LG beams

have been proposed as a 2D trapping potential for Bose condensates [64].

Whereas angular momentum exchange between light and matter is a relatively new topic,

the linear momentum exchange is a well-established issue [47, 48, 65]. It is well-known that

two counterpropagating waves lead to a more efficient exchange of linear momentum between

an atom and the light field than a single travelling wave. Using quantum language for a

classical light field, one can describe such an interaction as a sequence of successive single

photon absorption and emission events. This suggests that one may expect more efficient

angular momentum exchange between a light field and an atom if one uses two LG modes

with opposite helicity, e.g. counterrotating waves.

33
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4.2 General framework

We start with radiation fields propagating along the z-axis with wave number k and carrying

orbital angular momentum (Laguerre-Gaussian beams). If one considers the paraxial limit of

these waves, the expressions for the light fields are particularly simple [58]

E (ρ, z, φ, t) = E0 (ρ, z) e
i(kz−ωt+lφ) + c.c., (4.1)

where ρ, z, φ are the cylindrical coordinates, ω is the frequency and the integer index l is indi-

cates the helicity of the LG beam. For two Laguerre-Gaussian beams with opposite helicity,

namely l and −l, the total field can be written as

E (ρ, z, φ, t) = 2E0 (ρ, z) cos lφ e
i(kz−ωt) + c.c. (4.2)

We indicated already in the Introduction, that one expects a more efficient exchange of angu-

lar momentum between the light field and the atom in the configuration (4.2) than in a single

LG mode. This expectation is based on the corresponding situation of momentum exchange

between an atom and a standing light wave. In addition to the light field (4.2), the atomic

motion in the radial direction is assumed to be confined by an extra trapping potential U (ρ)
with cylindrical symmetry.

The z−dependence of the amplitude E0 (ρ, z) is slow and can be ignored. Properly shap-

ing the LG mode, the radial dependence of E0 (ρ, z) can be ignored on the characteristic

width of the trapping potential U (ρ). Thus, we assume that E0 (ρ, z) ' E0 is constant. For

a two-level atom the Hamiltonian in the rotating-wave approximation can then be written as

Ĥ = Ĥ0 + U (ρ) + 2~ωR cos lφ
(
ei(kz−ωt) |e〉 〈g|+ e−i(kz−ωt) |g〉 〈e|

)
, (4.3)

where ωR is the Rabi frequency of each of the travelling waves that create the standing wave,

ω is the laser frequency, and

Ĥ0 =
P̂ 2

2M
+

~ω0
2

(|e〉 〈e| − |g〉 〈g|) (4.4)

is the Hamiltonian for a free atom, with P̂ the momentum operator of the atom, |g〉 and |e〉
indicate the ground and excited states, and ω0 = (Ee−Eg)/~ defines the transition frequency

of a free atom.

The dynamics of the atom is rather simple if the laser is far detuned. We assume that

|∆| À ωR, (4.5)

where the detuning ∆ is defined as ∆ = ω0 − ω. For an atom in the ground state, the excited

state can be adiabatically eliminated, which leads to an effective Hamiltonian in the well-

known form

Ĥ =
P̂ 2

2M
+ U (ρ) + V (φ) , (4.6)

where the light-shift potential is specified by

V (φ) = −~Ωcos2 lφ (4.7)

with Ω = ω2R/∆.
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4.3 Trapping in counterrotating fields

Some general conclusions on the bound states of the Hamiltonian (4.6) directly follow from

its symmetry properties. We introduce the unitary translation operator T̂ defined as

T̂ |φ〉 =
∣∣∣φ+

π

l

〉
, (4.8)

where |φ〉 indicates the states with fixed azimuthal angle. Since the Hamiltonian (4.6) is

invariant for rotation about an angle π/l, it follows from a rotational version of the Bloch

theorem that the eigenstates of this Hamiltonian are also eigenstates of T̂ . The eigenvalue

relation can be expressed as

T̂ |Ψq〉j = e−i
π

l
q |Ψq〉j , (4.9)

where q is referred to as angular quasimomentum and j identifies the energy band. We

consider a single energy band, and we suppress the index j. We can restrict q to the first

Brillouin zone given as

−l ≤ q < l. (4.10)

The eigenstates |Ψq〉 should be periodic in φ with period 2π, because a rotation over 2π must

leave the wave function invariant. The finite range of φ leads to a discretization of angular

quasimomentum. On the other hand, a rotation over 2π is equivalent to the action of the

operator T̂ 2l. Since it follows from Eq. (4.9) that

T̂ 2l |Ψq〉 = e−2iπq |Ψq〉 ,
we conclude that the only possible values of the angular quasimomentum are determined

from the condition

e−2iπq = 1.

Hence q must be integer, and each band contains 2l Bloch states. For example, for l = 2 the

first Brillouin zone contains only the four values q = −2,−1, 0, 1 of the angular quasimo-

mentum.

Also, in analogy to the case of an infinite linear lattice, one can introduce localized Wan-

nier states |Θn〉 in the usual manner, as Fourier transforms of the Bloch states

|Ψq〉 =
1√
2l

l−1∑

n=−l

eiq
π

l
n |Θn〉 .

Obviously, the number of Wannier states within an energy band is equal to 2l, just as the

number of Bloch states.

In Fig. 4.1 we plot the trapping potential (4.7) V (x, y) /~Ω for l = 2, 4 in Cartesian

coordinates. When the potential is sufficiently deep, atoms can be bound in the angular

wells, and the Wannier states are confined to a single well. An additional confining potential

U(ρ) is required to trap particles in the radial direction, and to avoid their escape. Then the

potential (4.7) can create a circular lattice, where particles are located near the minima of the

periodic potential. A circular optical lattice has many applications, as discussed recently by

several authors [66–68].
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Figure 4.1: Circular lattice structure due to the trapping potential V (x, y). The plot shows

V (x, y) /~Ω for l = 2, 4 in Cartesian coordinates.

4.4 Diffraction in counterrotating fields

Since the potentials have a cylindrical symmetry, it is convenient to express the kinetic energy

in cylindrical coordinates, and we write

P̂ 2

2M
= − ~

2

2M

(
∂2

∂z2
+

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2

)
. (4.11)

The dynamics along the z axis is completely free. For simplicity, we assume that the radial

potential U(ρ) is narrow, so that the radial motion is restricted to a ring with radius ρ0, and

we ignore radial dispersion in the present Section. We return to it in Sec. VI, where the effect

of the radial dispersion is estimated. The motion of an atom in the angular direction is then

described by the one-dimensional Hamiltonian

Ĥ = −~
2

2I

∂2

∂2φ
− ~Ωcos2 lφ, (4.12)

which has the azimuthal angle as the only coordinate. The quantity I = Mρ20 is the mo-

ment of inertia. This Hamiltonian is the circular counterpart of the Hamiltonian for simple

linear diffraction. The main difference is that the coordinate φ is periodic, which forces

the angular wave number l to be integer. Diffraction of a single atom described by such a

linear Hamiltonian has been extensively studied theoretically and experimentally by several

groups [47, 48, 65].

Just as is usually done for linear diffraction, we consider the situation that an initially

localized atom interacts with the optical potential during a small interaction interval [−τ, 0],
where the atom picks up momentum from the lattice. The transition from the near field

immediately after the interaction and the far field is described by free evolution. We assume

the atom to be initially in its ground state and situated in a small segment of the ring. Since

the angular wave function Φ(φ) of the atom must be periodic at all times, we cannot represent

a localized wave packet by a Gaussian. The initial state at the beginning of the interaction
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interval is taken as

Φ(φ,−τ) = CN cos2N
φ

2
, (4.13)

with N to be a large natural number, and CN is the normalization constant

CN =
22N√

2π

(
4N
2N

) . (4.14)

The state (4.13) can be written as a Fourier series, which is just an expansion in the angular-

momentum eigenstates. This gives

Φ(φ,−τ) = 1√
2π

N∑

m=−N

ψme
imφ, (4.15)

with

ψm =
1√(
4N
2N

)
(
2N
N +m

)
. (4.16)

The initial state (4.13) is localized around φ = 0, which is clear from the asymptotic form

cos2N
φ

2
' exp

{
−N φ

4

2}
, (4.17)

for large N . The half width in the azimuthal angle is of the order of
√

2/N . From the

asymptotic form of the binomial coefficient

(
2N
N +m

)
' 22N

1√
πN

exp

(
−m

2

N

)

we find the asymptotic expression of the Fourier coefficient

ψm '
(

2

πN

)1/4
exp

(
−m

2

N

)
. (4.18)

This demonstrates that the half width in angular momentum is of the order of
√
N/2.

If we take the duration τ of the light pulse short and the moment of inertia I is large, so

that ~
2l2τ/(2I), no propagation occurs, and the kinetic-energy term can be neglected during

the interaction. This is the equivalence of the standard Raman-Nath approximation applied

by Cook et al [47]. Then the final state at time 0 after the interaction is

Φ(φ, 0) = Φ (φ,−τ) exp
(
iΩτ cos2 lφ

)
. (4.19)
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This state can be expressed as an expansion in angular-momentum eigenstates, in the form

Fourier series, which is just an expansion in the angular-momentum eigenstates. This gives

Φ(φ, 0) =
1√
2π

∑

m

ζme
imφ, (4.20)

where

ζm = exp (iΩτ/2)
∑

n

inψm−2nlJn (Ωτ/2) , (4.21)

in terms of the ordinary Bessel functions.

States with large angular momentum |m| > N are initially not populated, whereas all

angular momentum states get populated after the interaction. Thus, the configuration with

two LG modes leads to more efficient exchange between the light field and the atom than

a single LG beam. The physical interpretation is the same as for diffraction in the field of

classical counterpropagating waves: an atom picks up a photon from the light beam with one

helicity and emits a photon into the opposite one.

Figure 4.2: Probability distribution of angular momentum m before (left figure) and after

the pulse (right figure). Here the helicity of the circular lattice is l = 10, the initial state is

determined by N = 10 and the pulse duration τ is given by Ωτ = 6.

In Fig. 4.2 we present a typical diffraction pattern calculated for the case that l > N.More

precisely, we plot the angular-momentum coefficients |ψm|2 before the interaction, and the

coefficients |ζm|2 after the interaction with the circular lattice, for Ωτ = 6. In the latter case,

the momentum peaks correspond to different values of n. The distance between neighboring

peaks is equal to 2l. The half width of each peak is of the order of
√
N/2.

4.5 Free evolution on a ring

As shown above, the angular-momentum distribution of an atom after the interaction with

a pair of counterrotating LG beams can be broad. However, as a result of the Raman-Nath
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approximation, the angular distribution of the atom has not been modified during the inter-

action, so that |Φ(φ,−τ)|2 = |Φ(φ, 0)|2 . In this chapter we investigate the spatial form of

the atomic distribution in the far field, i. e. after free evolution of the atom over the ring.

As before, the motion along the z axis is completely free and the radial motion is restricted

on a ring. The initial state of this free evolution is given by Eq. (4.19), with the expan-

sion in angular-momentum states given by Eqs. (4.20) and (4.21). For positive times, the

atomic motion is still restricted to the ring with radius ρ0 by the confining potential U(ρ),
and the evolution of the angular wave function Φ(φ) is governed by the Hamiltonian (4.12)

with Ω = 0. With the initial state (4.20), the time-dependent wave function is given by the

expansion

Φ(φ, t) =
1√
2π

∑

m

ζm exp
(
imφ− iξtm2

)
(4.22)

where ξ = ~/(2I), and the coefficients ζm are given in Eq. (4.21). As displayed in Fig. 4.2,

the distribution |ζm|2 typically separates in a number of peaks centered at m = 2nl, where

n = 0,±1, ±2, . . .which are separated by 2l. Thus, the superposition state (4.22) can be

considered as a series of elementary wave packets centered at 2nl, in the angular-momentum

space. Each of these peaks gives a separate contribution to the wave function that moves

with its own angular group velocity 2ξm = 4ξnl ≡ νn. The angular separation between

neighboring wavepackets is given by 4ξlt, which is proportional to l. Since wave packets

with opposite angular-momentum values will move in opposite directions, i. e. clockwise

and anticlockwise, they will eventually meet again at some time t = T and start to interfere.

In order to estimate the time value that interference sets in, we use the fact that for not too

small arguments Ωτ/2 the Bessel function Jn(Ωτ/2) with the maximal value is the one with

n = nmax ' Ωτ/2. Hence, the meeting time of the pair of the strongest counterpropagating

packets is

T =
π

vmax
=

π

2ξΩτ l
.

The exact expression for the time-dependent wave function can be expressed in an integral

form by using the mathematical identity [4]

exp
(
imφ− iξtm2

)
=

1√
4πiξt

∫ ∞

−∞

dφ
′

eimφ
′

exp

[
i
(
φ− φ′

)2
/4ξt

]
, (4.23)

which can be checked by performing the integration. When substituting this identity in the

right-hand side of Eq. (4.22), and using the expansion (4.20), we arrive at the exact expression

Φ(φ, t) =
1√
4πiξt

∫ ∞

−∞

dφ
′

Φ(φ′, 0) exp

[
i
(
φ− φ′

)2
/4ξt

]
. (4.24)

A similar equation is well-known to describe the free evolution of a quantum particle in one

dimension. In the present case it is crucial that the integration be performed over all values

of φ′, while using that the wave function Φ(φ′, 0) is periodic. Because of this periodicity, we

can express the integral in (4.24) as a sum of bounded integrals
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Φ(φ, t) =
1√
4iπξt

∞∑

p=−∞

∫ 2π(p+1)

2πp

dφ
′

Φ(φ′, 0) exp

[
i
(
φ− φ′

)2
/4ξt

]
. (4.25)

By a shift of variables the integrations can be performed over the interval [0, 2π], which leads

to an integral expression over a single interval

Φ(φ, t) =
1√
4iπξt

∞∑

p=−∞

exp
[
i (φ− 2πp)

2
/4ξt

]

∫ 2π

0

dφ
′

Φ̃
(
φ
′

, t
)
exp

[
−i (φ− 2πp)φ

′

/2ξt
]
. (4.26)

Here we introduced the modified wave function Φ̃ which is just the initial wave function,

modified by a phase factor, defined by

Φ̃
(
φ
′

, t
)
= Φ(φ′, 0) exp

[
iφ
′ 2/4ξt

]
. (4.27)

In order to emphasize its physical significance, we write Eq. (4.26) in the form

Φ(φ, t) =
1√
2iξt

∞∑

p=−∞

exp
[
i (φ− 2πp)

2
/4ξt

]
F

(
φ− 2πp

2ξt

)
, (4.28)

where the function F is the Fourier transform of the modified wave function defined over a

single period

F (x) =
1√
2π

∫ 2π

0

dφ
′

Φ̃
(
φ
′

, t
)
exp

[
−ixφ′

]
. (4.29)

For a freely evolving quantum particle in one dimension, the time-dependent wave func-

tion has the same form as the term with p = 0 in (4.28). The other terms can be understood

from the periodic nature of the dynamics on the circle, where each period of the initial wave

function serves as an additional source that contributes to the wave function Ψ(φ, t) in the

relevant interval [0, 2π]. Because of the finite range of the integration in Eq. (4.29), the dis-

tinction between the modified wave function and the initial wave function vanishes for times

t obeying the inequality tÀ 1/(ξN), when we find in a good approximation

Φ̃
(
φ
′

, t
)
' Φ

(
φ
′

, 0
)
. (4.30)

In this limit, the function F is just the Fourier transform of the initial wave function Φ(φ, 0),
and Φ(φ, t) is simply determined by the Fourier transform F of the initial wave function

Φ(φ, 0) multiplied by a phase factor. The equation (4.28) has the flavor of the far-field picture

of the time-dependent wave function. The Fourier transform of the initial state determines

not only the momentum wave function, but also the asymptotic form of the coordinate wave

function, scaled by a factor that varies linearly with time. Characteristic for the present case
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of evolution on a circle is that each interval of length 2π serves as a separate source, each

giving a contribution to Φ(φ, t). Since the Fourier transform of the wave function determines

the angular-momentum amplitudes, we may conclude that the wave function for not too small

times has the same form as the initial distribution of angular momentum, scaled by the factor

2ξt. It is clarifying to follow the temporal evolution of |Φ(φ, t)|2 by distinguishing two time

regions, namely 0 ≤ t < T and t ≥ T. In the region 0 ≤ t < T , the wave function has

not yet spread beyond a single period of length 2π, and only a single term in eq. (4.28) (or

(4.26)) differs from zero.

Figure 4.3: Angular distribution |Φ(φ, t)|2 is plotted versus the azimuthal angle φ before the

left and right rotating components cross. Here ξt = 3π× 10−3, the value of N determining

the width of the initial state, the helicity l and the pulse duration τ are the same as in Fig.

4.2.

The contribution to the wave function coming from different sources do not overlap yet, so

that one can neglect the interference term between them. At later times t ≥ T, the diffraction

pattern on the interval [0, 2π] is formed as an interference pattern between two and more terms

in the superposition state (4.25). This picture is confirmed by numerical calculation of the

diffraction pattern for the two time regimes. In Fig. 4.3 the angular probability distribution

|Φ(φ, t)|2 is shown for a time t < T . The spatial pattern resembles the angular momentum

distribution shown in Fig. 4.2. Figure 4.4 displays the same probability distribution for a later

time t > T . One notices that the counterrotating components give rise to clear interference

fringes. These fringes will be quite sensitive to any perturbation in one of the arms. This

suggests to use the present scheme as an atomic interferometer [4]. Usually, interferometers

have two key components, namely a beam splitter and a mirror. A coherent incoming atomic

beam is split into spatially separated components by the beam splitter. Two arms are getting

formed, which freely propagate and may undergo different phase shifts, which are probed by

recombining the two arms. The interference pattern contains the information of the phase

perturbation in one of the arms. Recombination usually requires atomic mirrors. In atom

optics, beam splitters and mirrors are commonly realized by using light pulses, with carefully

selected duration and shape.

In the present case, only a single pulse is required that splits the initial atomic wave

packet into components rotating to the left and to the right. No mirrors are employed in this

scheme. Instead, one uses the radial potential U (ρ), to constrain the atomic motion to a ring.
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Radial potentials can be realized by hollow light beams, which are widely used in atomic

interferometric schemes.

Figure 4.4: Angular distribution |Φ(φ, t)|2 is plotted versus the azimuthal angle φ after the

left and right rotating components cross. Here ξt = 6π × 10−3, the value of N , the helicity

l and the pulse duration τ are the same as in Fig. 4.2.

4.6 Radial dispersion

In this chapter we consider the radial dynamics of the diffracted wave function during its free

evolution, after the passage of the circular lattice. We assume that the wave function at time

t = 0, after the diffracting pulse, is factorized as

Ψ(ρ, φ, 0) = Q(ρ, 0)Φ(φ, 0), (4.31)

where the radial partQ of the wave function is sharply peaked at ρ = ρ0, and the angular wave

function is specified by Eq. (4.20). The radial functionQ is normalized (
∫∞
0
dρQ2(ρ)ρ = 1).

We wish to study the possible deformation of the wave packet, when the radial dispersion is

included during the stage of free evolution. We take the simplest possible trapping potential,

which allows radial dispersion, and we take for the confining potential U (ρ) an infinitely

deep cylindrical box with radius a, as defined by

U (ρ) = 0 for ρ ≤ a, and U (ρ) =∞ for ρ > a. (4.32)

This potential models a hollow light beam. With this potential, the normalized eigenfunctions

of the Hamiltonian for the cylindrical coordinates during the free-evolution stage take the

form

Ψnm(ρ, φ) = Rnm(ρ)
1√
2π
eimφ, (4.33)

where the radial functions Rnm are solutions of the equation

[
− ~

2

2M

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
− m2

ρ2

)
+ U (ρ)

]
Rnm(ρ) = EnmRnm(ρ), (4.34)
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with Enm are the corresponding eigenenergies. The radial functions are proportional to the

Bessel function of order m

Rnm(ρ) ∝ Jm(αnmρ/a), (4.35)

with Rnm normalized in the interval 0 ≤ ρ ≤ a. In order that the wave function vanishes at

the edge ρ = a of the cylindrical well, we have to take the numbers αnm for various values

of n as the subsequent zero’s of the Bessel function Jm. This determines the corresponding

eigenenergies as

Enm = ~λα2nm. (4.36)

with λ = ~/(2Ma2). For each value of the angular momentum m, the set of functions

Rnm(ρ) is complete. An expansion of the initial state (4.31) in the energy eigenfunction is

found when we expand the initial radial wave function Q(ρ, 0) in the radial eigenfunctions

(4.35), so that

Q(ρ, 0) =
∑

n

cnmRnm(ρ), (4.37)

while substituting Eq. (4.20) for the initial angular state Φ(φ, 0). For the time-dependent

state we find

Ψ(ρ, φ, t) =
∑

m

1√
2π
ζme

imφQm(ρ, t), (4.38)

where the m-dependent radial wave function Qm is

Qm(ρ, t) =
∑

n

cnmRnm(ρ) exp(−iEnmt/~). (4.39)

From Eq. (4.37) one notices that Qm(ρ, 0) = Q(ρ, 0), independent of the angular mo-

mentumm. It is obvious from the radial Schrōdinger equation (4.34) and the initial condition

(4.31) that the normalized radial wave function obeys the identity Qm(ρ, t) = Q−m(ρ, t)
for all m. Moreover, since the total wave function before diffraction is even in φ, it must

remain even for all times. This implies that ζm = ζ−m for all m. So just as discussed in

Sec. IV, the angular distribution separates in different wave packets that are counterrotating.

Since the phase of ζmQm is even in m, its derivative with respect to m will be odd, and the

angular group velocities of packets with opposite values of m will be opposite. This leads

to interference after the packets have traversed the entire ring. The initial radial function is

taken as a narrow Gaussian

Q (ρ, 0) ∝ exp
(
− (ρ− ρ0)2 /2L2

)
, (4.40)

Here L is the width and ρ0 represents the initial position of the wave packet within the

box. The normalized wave function Qm(ρ, t) describes the radial dynamics for each value

of the angular momentum m. As an example, we evaluate the time behavior of the average
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Figure 4.5: Time behavior of the average radial distance 〈ρ (t)〉
m
/a for the angular momen-

tum m = 10. N is the same as in Fig. 4.2, the width of the initial Gaussian is L = 0.01a,

and the initial average radial distance is ρ0 = a/2.

radius for each angular momentum, with the given initial radial state (4.40), according to the

expression

〈ρ (t)〉m =

∫ ∞

0

dρ |Qm(ρ, t)|2 ρ2.

The result is displayed in Fig. 4.5, in the special case that m = 10. The average radius

displays oscillations, which can be understood as arising from the outward motion due to the

centrifugal potential, followed by reflection at the hard wall of the cylinder. The oscillations

display collapse, followed by a revival. These may be viewed as arising from the initial de-

phasing of the contribution from the radial eigenfunctions Rnm with different values of n,

due to their energy difference. The revival of the oscillation can be understood from the dis-

crete nature of the contributing energy eigenvalues, when the phase factors due to neighboring

eigenenergies have built up a phase difference 2π. Because of the conservation of angular

momentum, the probability density near the origin remains zero. The interference between

the counterrotating wave packets is illustrated in Fig. 4.6, for the ring at radius ρ = ρ0 = a/2.

Fig. 4.6a shows the short-time separation of the angular wave packets. Fig. 4.6b displays

the interference that arises as soon as overlap occurs around φ = π between the clockwise

and the anti-clockwise rotating packets. This demonstrates that the radial wave functions

Qm(ρ, t) for different values of m have sufficient overlap, so that the angular interference

survives the effect of radial dispersion.

4.7 Conclusions

In this paper we describe the diffraction of an atomic wave by a circular optical lattice. Such a

lattice can be formed by the superposition of two Laguerre-Gaussian beams with opposite he-

licity, which gives rise to a standing wave in the angular direction. Such a light field will split

a single localized atom into clockwise and anticlockwise rotating components. If the system
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Figure 4.6: Angular distribution |Ψ(ρ0, φ, t)|
2

in the presence of radial dispersion, at the

ring ρ = ρ0 = a/2. The time values are determined by λt1 = π × 10−3 and λt2 =
2π × 10−3. N, l,Ωτ are the same as in Fig. Fig. 4.2.

is in a trapping potential in the form of a ring or in a cylindrical box, these counterrotating

components give rise to interference. We express the spatial pattern in the far diffraction

field in terms of the Fourier transform of the near-field diffraction pattern. The periodic na-

ture of the circular motion modifies this relation compared with the case of diffraction by

a linear standing wave. The general conclusions are backed up by numerical calculations.

Characteristic for the circular case is that the wave packets corresponding to opposite angular

momentum will cross each other, even without applying light pulses to reverse their motion,

as in more common interferometric schemes. The scheme is reasonably robust to changes in

the radial confining potential.
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Chapter 5

Analogy between a two-well Bose-Einstein
condensate and atom diffraction

We compare the dynamics of a Bose-Einstein condensate in two coupled potential

wells with atoms diffracting from a standing light wave. The corresponding Hamiltonians

have an identical appearance, but with a different set of commutation rules. Well-known

diffraction phenomena as Pendellösung oscillations between opposite momenta in the

case of Bragg diffraction, and adiabatic transitions between momentum states are shown

to have analogies in the two-well case. They represent the collective exchange of a fixed

number of atoms between the wells.

5.1 Introduction

The most common approach to the description of a trapped Bose-condensed gas is based on

the mean-field approximation, which yields the Gross-Pitaevski equation for the macroscopic

wave function. This wave function, which depends on the number of atoms, plays the role

of the mode function for the Maxwell field. This approach is reliable when the condensate

is trapped in a single quantum state in a potential well. However, when the condensate is

separated into two or more parts, so that more than one quantum state is populated, the mean-

field approach is not evidently justified. It has been shown by Javanainen and Yoo [15] that

two originally separate parts of a condensate that are initially in a Fock state and that are

brought to overlap will reveal an interference pattern that varies in position from one real-

ization to another. This effect, which has also been observed experimentally [69, 70], cannot

be described by a single macroscopic wave function. A simple model for a condensate in

a double potential well is defined by a field-theoretical Hamiltonian for a boson-Hubbard

dimer [71, 72], which can be expressed in terms of SU(2) angular-momentum-type operators

with a quadratic term. This latter term represents the interaction between atoms in a well. The

mean-field approximation is basically equivalent to classical equations of motion for the ex-

pectation values of the SU(2) operators [73,74]. The quantum regime has mainly been studied

numerically, leading to collapse and revival [73], and to nonclassical dynamics arising from

the periodic modulation of the coupling between the wells [75]. The formation of a two-well

condensate by the raising of the barrier has been analyzed theoretically [76]. The situation of

a Bose-Einstein condensate (BEC) in a two-well trap is also studied experimentally [77, 78].

A very similar Hamiltonian describes the situation of an atom diffracting from a standing-

wave optical potential. This problem has received attention already in the early days of

laser cooling [47–49, 65]. More recent work has developed the band structure of the energy

47
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spectrum [79], and a number of regimes have been distinguished that allow an analytical

description [80]. In a simple version of the model, the Hamiltonian is identical in form as in

the two-well problem mentioned above. Now the quadratic term represent the kinetic energy

of the atom. The only difference between the two cases is that the commutation rules for

the operators in the diffraction case are slightly simplified compared to the case of SU(2)

symmetry.

In this paper, we discuss the analogy and the differences between these two systems. We

point that a number of analytical solutions known for the diffraction problem can be carried

over to the two-well system. The physics of these cases is discussed.

5.2 BEC in a double potential well

We consider a potential consisting of two wells. When the barrier between the wells is not

too low, the ground state and the first excited state |g〉 and |e〉 of a single atom are well

approximated as the even and odd superposition of the lowest bound states in the two wells.

Therefore, these states can be described as

|g〉 = 1√
2
(|1〉+ |2〉), |e〉 = 1√

2
(|1〉 − |2〉), (5.1)

with |1〉 and |2〉 the localized states in either well. When the energy separation between the

excited and the ground state is indicated as ~δ, the off-diagonal element of the one-particle

Hamiltonian Ĥ1 between the localized states is

〈1| Ĥ1 |2〉 = −~δ/2.

At the low energies that are of interest here, the two particle interaction is well approximated

by the standard contact potential U(~r, ~r′) = (4π~
2a/m)δ(~r − ~r′), with a the scattering

length. The second-quantized field operator is now

Ψ̂(~r) = âgψg(~r) + âeψe(~r) = â1ψ1(~r) + â2ψ2(~r), (5.2)

in terms of the wave functions ψi and the annihilation operators âi of the single-particle

states. The annihilation operators and the corresponding creation operators obey the standard

bosonic commutation rules. The corresponding Hamiltonian is

Ĥ =

∫
d~r Ψ̂†(~r)H1Ψ̂(~r) +

1

2

∫
d~r d~r′ Ψ̂†(~r)Ψ̂†(~r′)U(~r, ~r′)Ψ̂(~r)Ψ̂(~r′). (5.3)

The wave functions ψ1 and ψ2 of the localized states have the same form, and we assume that

they do not overlap. Then the interaction term can be expressed exclusively in the parameter

κ defined by

~κ =
4π~

2a

m

∫
d~r |ψ1(~r)|4, (5.4)

which measures the strength of the interatomic interaction. Performing the integrations in eq.

(5.3) leads to the expression for the Hamiltonian

Ĥ = −~δ

2

(
â†1â2 + â†2â1

)
+

~κ

2

(
â†1â

†
1â1â1 + â†2â

†
2â2â2

)
, (5.5)
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where we took the zero of energy halfway the two energy levels of a single atom. This is also

known as the boson-Hubbard dimer Hamiltonian [71].

The Hamiltonian (5.5) can also be expressed in terms of SU(2) operators by applying the

standard Schwinger representation of two modes. This leads to the definition

Ĵ0 =
1

2

(
â†1â1 − â†2â2

)
, Ĵ+ = â†1â2, Ĵ− = â†2â1. (5.6)

These operators are related to the Cartesian components of angular momentum by the stan-

dard relations Ĵ± = Ĵx ± iĴy and Ĵ0 = Ĵz . They obey the commutation rules for angular

momentum operators

[Ĵ0, Ĵ±] = ±Ĵ±, [Ĵ+, Ĵ−] = 2Ĵ0, (5.7)

which generate the SU(2) algebra. The Hamiltonian (5.5) can be rewritten in the form

Ĥ = −~δ

2
(Ĵ+ + Ĵ−) + ~κĴ20 +

~κ

4

(
N̂2 − 2N̂

)
, (5.8)

with N̂ = â†1â1+ â
†
2â2 the operator for the total number of particles. Obviously, Hamiltonian

(5.8) commutes with N̂ , and it is block diagonal in the number of particlesN . For each value

of N , the Hamiltonian (5.8) can be expressed as

ĤN +
~κ

4
(N2 − 2N),

with the N -particle Hamiltonian

ĤN = −~δ

2
(Ĵ+ + Ĵ−) + ~κĴ20 , (5.9)

where the operators are now restricted to the N + 1 Fock states |n,N − n〉 with n =
0, 1, . . . N , with n particles in well 1 andN−n particles in well 2. In the language of angular

momentum, this manifold of states corresponds to the angular-momentum quantum number

J = N/2, and the 2J + 1 Fock states are eigenstates of Ĵ0 with eigenvalue µ = n − N/2
with µ = −J,−J + 1, . . . , J . Note that µ is half the difference of the particle number in the

two wells. For an even number of particles, the angular-momentum quantum number J as

well as the ”magnetic”quantum numbers are integer, whereas these number are half integer

in case of an odd number of particles. The action of the operators Ĵ0 and Ĵ± on the Fock

states has the well-known behavior

Ĵ0 |µ〉 = µ |µ〉 , Ĵ+ |µ〉 = fµ+1 |µ+ 1〉 , Ĵ− |µ〉 = fµ |µ− 1〉 , (5.10)

with fµ =
√

(J + µ) (J − µ+ 1). The µ dependence of the strength of the hopping oper-

ators Ĵ± reflects the bosonic accumulation factor, which favors the arrival of an additional

bosonic atom in an already occupied state.

When the quadratic term in eq. (5.9) would be replaced by a linear term, the evolution

would be a uniform rotation in the (2J + 1)-dimensional state space with angular frequency√
δ2 + κ2. The presence of the quadratic term makes the dynamics considerably more com-

plex. Therefore, we compare this dynamics with another well-known case in which a similar

quadratic term appears.



i

i

i

i

i

i

i

i

50 Chapter 5

5.3 Standing-wave diffraction of atoms

The translational motion of a two-level atom in a far detuned standing-wave light field is

described by the effective Hamiltonian

Ĥd = −
~
2

2m

∂2

∂z2
− ~ωR

2

∆
cos2 kz, (5.11)

with ∆ = ω0 − ω is the difference of the resonance frequency and the optical frequency, and

ωR is the Rabi frequency of each of the traveling waves that make up the standing wave. The

Hamiltonian takes a particularly simple form in momentum representation, since the kinetic-

energy term is diagonal in momentum and the potential energy changes the momentum by

±2~k. Therefore, we introduce momentum eigenstates |µ〉 which have the momentum 2µ~k.

Then apart from an irrelevant constant, Hamiltonian (5.11) can be represented in the algebraic

form

Ĥd = −
~δ

2

(
B̂+ + B̂−

)
+ ~κB̂20 , (5.12)

where κ = 2~k2/m determines the kinetic energy term and δ = ω2R/2∆ the atom-field

coupling. The operators occurring on the right-hand side are defined by the relations

B̂0|µ〉 = µ|µ〉, B̂±|µ〉 = |µ± 1〉. (5.13)

They differ from the corresponding relations (5.10) in that now the strength of the hopping

operators is uniform.

This Hamiltonian (5.12) has the same form as eq. (5.9), even though they describe com-

pletely different physical situations. The difference is mathematically characterized by the

commutation relations. The SU(2) relations (5.7) are replaced by the simpler set

[B̂0, B̂±] = ± B̂±, [B̂+, B̂−] = 0, (5.14)

which is easily found from their explicit expressions (5.13). The two operators B̂± are found

to commute. A result of this difference is that the state space in the two-well case has a

finite dimension 2J + 1 = N + 1, whereas the momentum space has an infinite number of

dimensions.

A mathematically identical set of operators occurs in the description of the dynamics of

the Wannier-Stark system, consisting of a particle in a periodic potential with an additional

uniform force (Chapter 2). In that case, the eigenstates of B̂0 represent the spatially localized

Wannier states, rather than the momentum states.

We recall three approximate solutions of the evolution governed by Hamiltonian (5.12),

which are valid in different situations, and which allow analytical solutions.

The Raman-Nath regime is valid for interaction times that are so short that the atom

has no time to propagate. Then the quadratic term in eq. (5.12) can be neglected, and the

evolution is determined by the atom-field coupling δ(t). The evolution operator is simply

Û = exp[iφ(B̂+ + B̂−)/2], where φ =
∫
dtδ(t) is the integral of the coupling constant over

the evolution period. The matrix elements of the resulting evolution operator for the pulse

can be found by operator algebra in the form (Chapter 2)

〈µ′|Û |µ〉 = iµ
′−µJµ′−µ(φ), (5.15)
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in terms of Bessel functions. For an initial state |µ〉 with a well-determined momentum, the

time-dependent state following the pulse can be expressed as

|Ψ(t)〉 '
∑

µ′

e−iκtµ
′2 |µ′〉 〈µ′| Û |µ〉 . (5.16)

This leads to explicit analytical expressions for diffraction experiments [47–49, 65]. The

probability of transfer of n units of momentum is proportional to |Jn(φ)|2.
The Bragg regime is valid when the coupling δ between neighboring momentum states

is small compared to the kinetic-energy separation ≈ 2~κµ of the initial state |µ〉 from its

neighboring states |µ+ 1〉 . This initial state leads to an oscillating time-dependent state

between the two states |µ〉 and | − µ〉 with the same kinetic energy

|Ψ(t)〉 = cos
Ωµt

2
|µ〉+ i sin

Ωµt

2
|−µ〉 , (5.17)

apart from an overall phase factor. This can only occur when the momentum transfer 2µ
(in units of 2~k) is an integer, which corresponds precisely to the Bragg condition. The

Pendellösung frequency is given by Ωµ = δ(δ/2κ)2µ−1/ [(2µ− 1)!]
2

[80]. This expression

is fully analogous to the effective Rabi frequency for a resonant multiphoton transition, with

nonresonant intermediate states [81, 82].

The regime of adiabatic coupling arises for a time-dependent atom-field coupling δ(t)
that varies sufficiently slowly, so that an initial energy eigenstate remains an eigenstate. The

adiabaticity condition in the present case reads

dδ

dt
¿ κδ. (5.18)

When an atom passes a standing wave with a sufficiently smooth variation of the intensity,

and the Bragg condition is fulfilled, the presence of two initially degenerate eigenstates |±µ〉
leads to interference after the passage, which produces two outgoing beams. Because of the

similarity between the two Hamiltonians (5.9) and (5.12), these well-known diffraction cases

can be expected to have analogies in the dynamics of the two-well problem.

5.4 Symmetry considerations of generic Hamiltonian

The Hamiltonians (5.9) and (5.12) can be represented in the generic form

Ĥ = −~δL̂x + ~κL̂2z, (5.19)

with L̂x = (L̂+ + L̂−)/2, L̂z = L̂0, where the operators L̂i represent Ĵi or B̂i, depending

on the commutation rules and the corresponding algebra that they obey. In the two-well case,

the eigenstates |µ〉 of the operator L̂z represent number states in the two-well case, with the

eigenvalue µ half the number difference between the wells. In the diffraction case, the states

|µ〉 are momentum eigenstates. In this latter case, the coupling between neighboring momen-

tum states is independent of µ [eq. (5.13)], whereas in the two-well case the µ dependence of
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the hopping operator indicated in eq. (5.10) reflects the bosonic accumulation effect. A con-

sequence of this is also that the Hamiltonian in the diffraction case couples an infinite number

of states |µ〉, whereas in the two-well case the number of coupled states has the finite value

N + 1. In the diffraction case, we restrict ourselves to the situation that the Bragg condition

is respected. Therefore, both in the diffraction case and in the two-well case µ attains either

integer or half-integer values. The action of L̂z is the same in both cases.

Hamiltonian (5.19) is invariant for inversion of µ. In order to demonstrate this, we intro-

duce the inversion operator P̂ , defined by the relation P̂ |µ〉 = | − µ〉. In the diffraction case,

the operator P̂ corresponds to inversion of momentum, which does not change the kinetic

energy. In the two-well case, the operator P̂ represents interchanging the particle numbers in

the two wells, which has no effect on the interparticle interaction. The commutation rules of

the inversion operator with the operators L̂i are specified by P̂ L̂zP̂ = −L̂z , P̂ L̂±P̂ = L̂∓,

so that P̂ inverts L̂y and L̂z , and commutes with L̂x. It follows that Hamiltonian (5.19) com-

mutes with P̂ , so that it is invariant for inversion of µ. Therefore, Hamiltonian has vanishing

matrix elements between the even and the odd subspaces, which are the eigenspaces of P̂
with eigenvalue 1 and −1, respectively. For half-integer µ values, these spaces are spanned

by the states

|µ〉+ ≡
|µ〉+ |−µ〉√

2
; |µ〉− ≡

|µ〉 − |−µ〉√
2

; (5.20)

for positive values of µ. In the case of integer µ values, the state |µ = 0〉 also belongs to the

even subspace. The even and odd subspace evolve independently from one another. This

symmetry property of H depends on the fact that it is quadratic in the operator L̂z .

The action of the quadratic term in Hamiltonian (5.19) on the new basis is simply given

by the relation L̂2z|µ〉± = µ2|µ〉±. The action of the coupling term in the Hamiltonian can be

expressed in a general form by introducing coefficients Fµ for non-negative values of µ. In

the case of the SU(2) algebra, we define Fµ = fµ, whereas in the diffraction case we simply

have Fµ = 1. The matrix elements of L̂x can be fully expressed in terms of the coefficients

Fµ for positive µ. Within the even or the odd subspace, the operator L̂x has off-diagonal

matrix elements only between two states for which the values of µ differ by one, and we find

±

〈
µ+ 1

∣∣∣L̂x
∣∣∣µ
〉
±
=

1

2
Fµ+1, (5.21)

provided that the value of µ is positive. These matrix elements coincide with those on the

basis of the states |µ〉. For the state |µ = 0〉, which belongs to the even subspace of a manifold

of states with integer µ values, the matrix element is

+

〈
1
∣∣∣L̂x
∣∣∣ 0
〉
= F1/

√
2. (5.22)

On the other hand, in a manifold of states with half-integer µ values, L̂x has a single nonzero

diagonal element for µ = 1/2, that is given by

± 〈1/2| L̂x |1/2〉± = ± F1/2. (5.23)
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Hence, in the case of half-integer µ values, the Hamiltonian projected on the even and the

odd subspace differ exclusively in the diagonal matrix element for µ = 1
2 , for which we find

± 〈1/2| Ĥ |1/2〉± =
~κ

4
∓ 1

2
~δF1/2. (5.24)

For integer values of µ, the Hamiltonian for the odd subspace is identical to the Hamiltonian

for the even subspace with µ < 1. The only difference is that the even subspace also contains

the state |0〉, which is coupled to the other states by the matrix element

+

〈
1
∣∣∣Ĥ
∣∣∣ 0
〉
=
〈
0
∣∣∣Ĥ
∣∣∣ 1
〉
+
= −~δF1/

√
2. (5.25)

Figure 5.1: Energy levels in units of ~κ for the double well with N = 100 particles, for

various values of δ/κ. The levels are labeled by the quantum number µ.

In both cases, the difference between the Hamiltonian parts on the even and odd subspaces

are proportional to δ. These differences are responsible for the energy splitting between the

even and the odd energy eigenstates. Moreover, since these differences in the Hamiltonian

parts occur for low values of µ, we expect that for a fixed value of δ/κ, the even-odd energy

splittings decrease for increasing µvalues. This is confirmed by numerical calculations. In

Figs. 5.1 and 5.2, we display the energy levels of the Hamiltonian, for a few values of δ/κ,

both for the double-well case (with N = 100), and for the diffraction case.

The energy levels are found to be alternatingly even and odd, with increasing energy. In

the two-well case, the energy shifts and splittings due to the coupling are larger for the same

value of δ/κ and the same value of µ. This arises from the factor Fµ, which is unity in the

diffraction case, whereas in the two-well case it decreases from ∼ J = N/2 at µ = 0 to zero
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Figure 5.2: Energy levels in units of ~κ for the diffraction case, for various values of δ/κ.

at µ = J . In fact, the condition for weak coupling is that matrix elements coupling the states

|µ〉 and |µ− 1〉 are small compared with their unperturbed energy separation. This condition

can be expressed as

λµ =
δ

2κ

Fµ
2µ− 1

< 1. (5.26)

This confirms that for a given value of δ/κ, the region of weakest coupling occurs for the

highest values of µ. In the two-well case, the lowest-energy states start out to be nearly

equidistant for low µ values as long as λµ is large.

5.5 Pendellősung oscillations

The energy splittings between the even and the odd eigenstates give rise to time-dependent

states that oscillate between the states |±µ〉. In the diffraction case, they correspond to the

well-known Pendellösung oscillations in the Bragg regime. Here we show that similar os-

cillations can occur for the two-well problem, and we give an analytical estimation of the

oscillation frequencies. For the generic Hamiltonian given by eq. (5.19), the Bragg condition

is fulfilled when inequality (5.26) holds.

The energy differences between the even and odd states to lowest order in λµ can be

found from the effective Hamiltonian for two degenerate states that are coupled via a number

of nonresonant intermediate states. This situation occurs for the states |±µ〉, with their 2µ−1
intermediate states. In this case, the intermediate states can be eliminated adiabatically, as
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demonstrated in Sec. 18.7 of ref. [81]. The resulting effective Hamiltonian for these two

states |±µ〉 has an off-diagonal element that is the ratio between two products. The numerator

contains the product of the successive 2µ matrix elements −~δFµ′/2 of the Hamiltonian

coupling neighboring states, and the denominator is the product of the 2µ − 1 unperturbed

energy differences of the degenerate states |±µ〉 with the successive intermediate states. In

the diffraction case, this result coincides with the calculation given in ref. [79], which was

obtained by diagonalizing a tridiagonal matrix and keeping only the lowest order in δ/κ.

Generalizing this result to the present case of the two states |±µ〉, we find that the effective

Hamiltonian has the diagonal element

〈±µ| Ĥeff |±µ〉 = ~κµ2, (5.27)

and the off-diagonal element

〈∓µ| Ĥeff |±µ〉 = −~Ωµ/2, (5.28)

with Ωµ an effective oscillation frequency given by

Ωµ = (−1)2µ+1 1

22µ−1
δ2µ

κ2µ−1
1

[(2µ−1)!]2
F. (5.29)

The factor F is just the product of the coefficients Fµ successively coupling the states inter-

mediate between |µ〉 and |−µ〉. In the diffraction case, we simply have F = 1, whereas in

the case of SU(2) symmetry, applying to the double well, we find

F =
(J + µ)!

(J − µ)! . (5.30)

These expressions are valid both for integer and half-integer values of µ. The eigenstates

of the effective Hamiltonian are the even and odd states, and the eigenvalue equations are

Ĥeff |µ〉± =
(
~κµ2 ∓ ~Ωµ/2

)
|µ〉±. For integer values of µ, the frequency Ωµ is negative,

so that the even states |µ〉+ are shifted upwards and the odd states are shifted downwards in

energy. The opposite is true for half-integer values of µ. In both cases, the ground state is

even, and the energy eigenstates for increasing energy are alternatingly even and odd. In view

of the results of the numerical calculation mentioned above, one may expect that this alter-

nating behavior of the even and odd eigenstates is valid for all finite values of the ratio δ/κ. It

is interesting to notice that in the special case that µ = J ≡ N/2, eq. (5.29) for the two-well

case coincides with the ground-state energy splitting of two coupled quantum anharmonic

oscillators, which model two coupled vibrational degrees of freedom in a molecule [83].

For an initial state |µ〉, the effective Hamiltonian Ĥeff leads to a time-dependent state

that is given by eq. (5.17), apart from an irrelevant overall phase factor. This shows that the

oscillating solution (5.17) corresponding to the Bragg regime of diffraction can be generalized

to the case of a condensate in a double well. The same expression (5.17) remains valid,

while the oscillation frequency Ωµ is determined by eqs. (5.29) and (5.30). This describes

a state of the condensate atoms in the double well in the weak-coupling limit. In this case,

the state oscillates between the Fock states |n1, n2〉 = |N/2 + µ,N/2− µ〉 and |n1, n2〉 =
|N/2− µ,N/2 + µ〉.
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Obviously, when the initial state is given by |µ〉±, the system is in a stationary state, and

no oscillations occur. In this case, Pendellösung oscillations can still be induced by including

in the Hamiltonian a term that is linear in L̂z . In the diffraction case, there is no obvious

physical realization of such a term. For the Wannier-Stark system, where the quadratic term

in L̂2z is absent, the linear term can be realized by imposing a uniform force, which gives rise

to Bloch oscillations [25, 26] and Chapter 2. In the case of the BEC in a double well, a term

~ξL̂z in the Hamiltonian can be realized by imposing an energy difference ~ξ between the

single-particle ground states in the two wells. When this term is periodically varying, it can

be used for coherent control of the condensate [84]. The additional term couples the even and

odd subspaces, thereby breaking the symmetry of the Hamiltonian. On the basis of the states

|µ〉±, the effective Hamiltonian attains the off-diagonal element

± 〈µ| Ĥeff |µ〉∓ = ~ξµ/2. (5.31)

When we assume that both δ and ξ are small compared with the splitting due to the inter-

particle interaction κ, so that we remain in the Bragg regime, the two states |±µ〉 remain

decoupled from the other number states, and we have an effective two-state system. In prac-

tice, the parameter ξ can be easily controlled, so that many effects of two-state atoms [45] can

also be realized for these two states. For example, in analogy to the excitation of ground-state

by an adiabatic sweep across the resonance, one could create an effective transfer from the

state |µ〉 to the state |−µ〉 by varying the parameter ξ adiabatically from a positive to a nega-

tive value that is large compared to Ωµ. This gives an effective collective transfer of n = 2µ
atoms from one well to the other one.

5.6 Time-dependent coupling

When the coupling δ(t) varies with time, the time-dependent eigenstates of the Hamiltonian

are coupled to each other. The eigenstate that correlates in the limit δ → 0 to the state |µ〉±
is denoted as

∣∣ϕ±µ
〉
. Note that even eigenstates are only coupled to other even eigenstates,

and odd eigenstates to odd eigenstates. The coupling results from the time dependence of the

eigenstates. In fact, the term in the Schrödinger equation coupling
∣∣ϕ±µ

〉
to |ϕ±ν 〉 is propor-

tional to

〈
ϕ±ν (t)

∣∣ d
dt

∣∣ϕ±µ (t)
〉
= −

〈
ϕ±ν (t)

∣∣ L̂x
∣∣ϕ±µ (t)

〉 ~
.

δ (t)

E±ν − E±µ
; µ 6= ν. (5.32)

This coupling is ineffective in the case that the r.h.s. of eq. (5.32) is small compared with

(E±ν −E±µ )/~. In this case, an initial eigenstate remains an eigenstate at all times. This is the

standard case of adiabatic following, which has been discussed in the diffraction case [80].

Since within the even or the odd subspace there are no degeneracies, the dynamics of adia-

batic following is particularly simple. When the coupling coefficient δ is smoothly switched

on, with the system initially in the state |µ〉 = (|µ〉+ + |µ〉−)/
√
2, the time-dependent state

is obviously

|Ψ(t)〉 = e−iϑ(t)
(∣∣ϕ+µ

〉
e−iη(t)/2 +

∣∣ϕ−µ
〉
eiη(t)/2

)
/
√
2, (5.33)
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with ϑ(t) =
∫ t
dt′
(
E+µ (t

′) + E−µ (t
′)
)
/2~ the average phase and

η(t) =

∫ t

dt′
[
E+µ (t

′)− E−µ (t′)
]
/~, (5.34)

the accumulated phase difference of the two eigenstates.

In a time interval that the coupling δ is constant, the phase difference η(t) increases lin-

early with time, and state (5.33) gives rise to expectation values oscillating at the single fre-

quency
[
E+µ (t

′)− E−µ (t′)
]
/~. When the coupling is switched off again, the phase difference

approaches a constant limiting value η = η (∞).
State (5.33) at later times corresponds to a linear superposition of the states |±µ〉 pro-

portional to |µ〉 cos(η/2) + |−µ〉 sin(η/2). Again, as we see, this effect that is known

in the diffraction case also has a counterpart for the double-well problem, where adiabatic

switching of the coupling between the wells leads to a linear superposition of the Fock states

|n1, n2〉 = |N/2 + µ,N/2− µ〉 and |n1, n2〉 = |N/2− µ,N/2 + µ〉. By proper tailoring of

the pulse, the final state can be made to coincide with either one of these Fock states, with the

even state |µ〉+ or with the odd state |µ〉−, depending on the precise value of the accumulated

phase difference η, which in turn is determined by the energy difference E+µ − E−µ between

the even and the odd eigenstate. In Fig. 5.3, we plot this energy difference in the two-well

case, for N = 100, and for a few values of δ/κ. This shows that these splittings decrease

monotonously for increasing quantum number µ. When δ/κ is not small, the decrease starts

out to be slow, and then falls rapidly to zero .

Figure 5.3: Even-odd energy splittings for the double well as a function of the quantum

number µ, for various values of δ/κ and for N = 100 particles.

In contrast, when the coupling term δ(t) has the form of a short pulse around time zero,

such that the action of the quadratic term can be neglected during the pulse, the initial state

|µ〉 couples to all other states |µ′〉 . The state vector has exactly the same form (5.16) as

for diffraction in the Raman-Nath regime. For the two-well problem, the evolution operator

takes the form Û = exp(iφL̂x) with φ =
∫
dtδ(t), which has matrix elements that can be

expressed in the Wigner rotation matrices [85] by

〈µ′| Û |µ〉 = iµ
′−µdJµ′µ(φ), (5.35)
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with J = N/2. A comparison with Eq. (5.15) shows that for the two-well-problem, the

Wigner functions play the same role as the Bessel functions in the diffraction case.

5.7 Conclusions

In this paper, we have analyzed both the similarity and the difference between the dynami-

cal behavior of atom diffraction from a standing wave and a Bose-Einstein condensate in a

double-well potential. In both cases, the Hamiltonian is given by the generic form (5.19), the

only difference being in the commutation rules for the operators L̂iwith i = x, y, z. Well-

known diffraction phenomena as Pendellősung oscillations between opposite momenta in the

case of Bragg diffraction, and the result of adiabatic transitions between momentum states

have counterparts in the behavior of the atom distribution over the two wells, in the case that

the coupling between the wells is weak compared to the interatomic interaction or slowly

varying with time. A common underlying reason for these effects is the symmetry of the

Hamiltonian for inversion µ ↔ −µ, and the energy splitting between even and odd states

arising from the coupling term. In these cases, effective coupling occurs between the states

|n1, n2〉 and |n2, n1〉 with opposite imbalance between the particle numbers in the two wells.

These states are coupled without population of the intermediate states, so that a number of

n1 − n2 particles oscillate collectively between the two wells. The interparticle interaction

is essential for this effect to occur. A simple analytical expression is obtained for the Pen-

dellősung frequency. An initial state |n1, n2〉 with a well-determined number of atoms in

each well can be transferred to a linear superposition of |n1, n2〉 and |n2, n1〉, which is a

highly entangled state of the two wells. A similar analogy is obtained to diffraction in the

Raman-Nath regime. For the double-well problem this requires that the coupling is suffi-

ciently short to ignore dynamical effect of the atomic interaction during the coupling. The

well-known diffraction pattern in terms of the Bessel function is replaced by elements of the

Wigner rotation matrix for the double well. These effects do not show up in the mean-field

approximation, where the Gross-Pitaevski equation holds.
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Resonances for coupled Bose-Einstein
Condensates

We study some effects arising from periodic modulation of the asymmetry and the

barrier height of a two-well potential containing a Bose-Einstein condensate. At certain

modulation frequencies the system exhibits resonances, which may lead to enhancement

of the tunneling rate between the wells and which can be used to control the particle

distribution among the wells. Some of the effects predicted for a two-well system can be

carried over to the case of a Bose-Einstein condensate in an optical lattice.

6.1 Introduction

Since the experimental realization of Bose-Einstein condensates (BEC) one has considered

the possibility of extending one-mode models to two or more modes [69, 70]. This raises

the issue of the relative phase between modes. As indicated by several authors [74, 86], a

two-well BEC may exhibit features that are not covered by the semiclassical description in

terms of the Gross-Pitaevski equation. These features are significant at low particle numbers

and for strong interactions. In previous work, we discussed some aspects of the dynamics of

a two-well BEC in the strong-interaction regime Chapter 5. This is close to the experimental

situation for a BEC in a double-well trap, designed in Ref. [78].

A sensitive way to probe the properties of a BEC in a double-well potential with strong

interatomic interactions is to look for resonant behavior when a parameter of the system is

periodically modulated. The response of the system may be expected to be very sensitive to

the value of the modulation frequency in the neighborhood of a resonance. A periodic pertur-

bation can be implemented in various ways. One example would be periodically modulating

the trapping potential. Salmond et al [75] study a numerical model of a double-well potential

with periodically modulated coupling between the wells. This semiclassical analysis reveals

the existence of uncoupled regions with chaotic and regular motion. The inclusion of the

quantum nature of the evolution leads to transitions between these regions. Another type

of periodic perturbation can be imposed by periodically modulating the energy difference

between the ground states in the two wells.

Periodic modulations are known to give rise to dynamical localization in some cases. This

effect has been widely discussed in the literature in the case a particle in a periodic potential,

such as an electron in a crystal or an atom in an optical lattice [87] and Chapter 2. When the

particle also feels a uniform force in addition to the lattice potential (a tilted optical lattice), it

59
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is found to have an infinite discrete set of equidistant energy levels, with a level separation that

is determined by the strength of the uniform force Chapter 2. A variation of the magnitude

of the uniform force affects the phase of the state. So, when this magnitude is periodically

modulated, resonances may be expected. The population in one well is described by adding

the amplitudes for arriving at this well from various other wells, each one with a different

phase shift. In the long time limit, when the time of observation is long compared to the

period of the modulation, this gives rise to destructive interference, leading to a suppression

of the net tunneling rate. Hence, the asymptotic distribution over the wells coincides with the

initial one, and dynamical localization has been realized.

Another example of dynamical localization arises for a single two-level atom in a driving

field with a periodically modulated detuning [88]. For certain ratios of the modulation fre-

quency and the strength of the field, the atom is localized in its ground state. The time scale

is restricted by the modulation frequency.

In the present case of a BEC in a two-well potential with a fixed total number of atoms,

the state space is finite dimensional. In the SU(2) representation of the operator algebra, the

Hamiltonian has a quadratic term due to the interatomic interactions. So, in this sense the

system is quite different from that of an atom in a tilted lattice, with its infinite number of

states and a Hamiltonian that is linear in the SU(2) operators. Still, there are some obvious

similarities: the discrete structure of the energy and the presence of interatomic interactions

and tunneling between wells as competing processes. Therefore, we expect interesting ef-

fects also in the two-well case when the energy difference or the hopping between wells is

periodically modulated. From a formal point of view, the analysis in the present paper may

be regarded as a generalization of the process of dynamical localization for the Hamiltonian

with a quadratic term. Specifically, this paper considers the possibilites of coherent control

of a BEC in a double-well potential by using any kind of time-periodic perturbation.

6.2 BEC in a double potential well

We describe a BEC in a double potential well in terms of a one-particle Hamiltonian H (1)

and a two-particle interaction U(~r, ~r′). The states |1〉 and |2〉 are the the localized ground

states in either well, with wave functions ψ1(~r) and ψ2(~r). On the basis of the states |1〉 and

|2〉, the one-particle Hamiltonian has the matrix elements

〈1|H(1) |1〉 = −〈2|H(1) |2〉 = ~ε/2, 〈1|H(1) |2〉 = 〈2|H(1) |1〉 = −~δ/2 . (6.1)

In the case that ε = 0, the coupling between the wells lifts their degeneracy, and creates an

energy splitting ~δ between the even ground state |g〉 and the odd excited state |e〉, defined

by

|g〉 = 1√
2
(|1〉+ |2〉); |e〉 = 1√

2
(|1〉 − |2〉) . (6.2)

When we restrict ourselves to these two states, the field operator in second quantization has

the standard form

Ψ̂(−→r ) = â1ψ1(~r) + â2ψ2(~r), (6.3)
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with âi the one-particle annihilation operator in the two states, which together with the cor-

responding creation operators obey the bosonic commutation rules. When we substitute this

expression in the formal expression

Ĥ =

∫
d−→r Ψ̂†(−→r )H(1)Ψ̂(−→r )+ 1

2

∫
d−→r d−→r ′Ψ̂†(−→r )Ψ̂†(−→r ′)U(~r, ~r′)Ψ̂(−→r )Ψ̂(−→r ′). (6.4)

for the second-quantized Hamiltonian, we find

Ĥ =
∑

i,k

~ 〈i|H(1) |k〉 â†i âk +
1

2

∑

i,k,l,m

~ 〈i, k|U |l,m〉κi,k,l,mâ†i â†kâlâm, (6.5)

where the indices i, j, k, l = 1 or 2, and the matrix elements are taken between the states ψ1
and ψ2. .

At sufficiently low energy, the two particle interaction is well approximated by the contact

potential U(~r, ~r′) = (4π~
2a/m)δ(~r − ~r′), with a the scattering length. The function ψ1 and

ψ2 states have the same form, and we assume that they do not overlap. So we obtain the

following expression for the Hamiltonian

Ĥ =
~ε

2

(
â†1â1 − â†2â2

)
− ~δ

2

(
â†1â2 + â†2â1

)
+

~κ

2

(
â†1â

†
1â1â1 + â†2â

†
2â2â2

)
. (6.6)

where the parameter κ defined by

~κ =
4π~

2a

m

∫
d~r |ψ1(~r)|4 (6.7)

measures the strength of the interatomic interaction.

For convenience we express the Hamiltonian (6.6) in terms of SU(2) operators by apply-

ing the standard Schwinger representation of two modes. This leads to the definition

Ĵz =
1

2

(
â†1â1 − â†2â2

)
, Ĵ+ = â†1â2 , Ĵ− = â†2â1. (6.8)

These operators are related to the Cartesian components of a fictitious angular momentum

by the standard relations Ĵ± = Ĵx ± iĴy . They obey the commutation rules for angular

momentum operators

[Ĵz, Ĵ±] = ±Ĵ± , [Ĵ+, Ĵ−] = 2Ĵz , (6.9)

which generate the SU(2) algebra. These operators commute with the operator for the total

number of particles N̂ = â†1â1 + â†2â2. The Hamiltonian (6.6) can be rewritten in the form

Ĥ = ĤN +
~κ

4

(
N̂2 − 2N̂

)
, (6.10)

where the N -particle Hamiltonian ĤN is defined by

ĤN = ~εĴz − ~δĴx + ~κĴ2z . (6.11)



i

i

i

i

i

i

i

i

62 Chapter 6

For a given number of particles N , the last term in Eq. (6.10) is a constant, and it suffices

to consider the dynamics of the subspace of the N + 1 number states |n,N − n〉, with n =
0, 1, . . . N , with n particles in well 1, and N − n particles in well 2. This subspace has the

structure of the angular momentum states, with J = N/2, and the 2J + 1 magnetic quantum

numbers µ = n−N/2, with µ = −J,−J+1, . . . , J . Note that µ is half the difference of the

particle number in two wells. For a given particle number N we represent the number states

by the quantum number µ, so that |µ〉 ≡ |n,N − n〉. The action of the operators Ĵ0 and Ĵ±
on the Fock states has the well-known behavior

Ĵz |µ〉 = µ |µ〉 , Ĵ± |µ〉 =
√

(J ∓ µ) (J ± µ+ 1) |µ± 1〉 . (6.12)

This also determines the action of the Cartesian operators Ĵx and Ĵy .

6.3 Quantum states in two wells

The Schwinger representation of the operators occurring in the Hamiltonian suggests in a

natural way various possible choices of states of N atoms in the two wells. Arecchi et al [89]

introduced the spin coherent states (SCS) [90], in analogy to the Glauber coherent state of a

mode of the quantum radiation field. The SCS follow from applying an arbitrary rotation to

the state |µ〉 with µ = J . As rotation operator we take

R̂(θ, φ) = exp(−iφĴz) exp(−iθĴy) exp(iφĴz) = exp[−iθ(Ĵy cosφ− Ĵx sinφ)], (6.13)

which represents a rotation over an angle θ, around an axis in the xy-plane, specified by the

angle φ with the y-axis. The SCS |θ, φ; J〉 is

|θ, φ; J〉 = R̂(θ, φ) |J〉 (6.14)

which is also the eigenstate with eigenvalue J of the component −→u · −̂→J of the angular-

momentum vector in the direction −→u specified by the polar angle θ and the azimuthal angle

φ. Just as the Glauber coherent states of a mode with annihilation operator ĉ can be obtained

by acting with a displacement operator D̂ (ζ) = exp
(
ζĉ† − ζ∗ĉ

)
on the vacuum state, the

SCS follows by a rotation R̂(θ, φ) = exp
(
ζĴ− − ζ∗Ĵ+

)
with ζ = (θ/2) exp (iφ), acting on

the state |J〉. When we view this state |J〉 as the ground state, the operator Ĵ+ is analogous

to the annihilation operator, since Ĵ+ |J〉 = 0. An essential difference between the two

cases is, of course, that the state space of a radiation mode has infinite dimensions, while the

dimension of the angular-momentum state space is 2J + 1.

In our case, the analogy is carried one step further, since the SCS defined by (6.14) do not

represent angular-momentum states, but refer to the states of N atoms, distributed over two

potential wells. The ground state |J〉 represents the state with all particles in the first well.

When we substitute the identity |J〉 =
(
â†1

)N
|vac〉 /

√
N ! with N = 2J into the right-hand

side of (6.14), we obtain an expression for the SCS in the language of the two wells, in the

form

|θ, φ; J〉 = 1√
N !

(
cos

θ

2
â†1 + eiφ sin

θ

2
â†2

)N
|vac〉 . (6.15)
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We can interpret (6.15) as a state with N atoms in the one-particle superposition state

cos
θ

2
|1〉+ eiφ sin

θ

2
|2〉

of the two wells. A special case arises for θ = π/2, when the average populations of the two

wells are the same. Then the state (6.15) describes a collective mode from two interfering

sources of equal intensity, and its expansion in number states is given by

|π/2, φ; J〉 = 1

2N/2

N∑

n=0

(
N
n

)1/2
ei(N−n)φ |n,N − n〉 (6.16)

Such a state can be considered as a state with a well-defined phase difference φ. The atom

distribution over the two wells is binomial, and they have been termed phase states (PS) of a

two-mode boson system in Ref. [91]. For simplicity, we suppress the value π/2 in this case,

and we simply denote the PS as |φ; J〉 . Upon rotation around the z-axis, a PS transforms as

exp(−iαĴz) |φ; J〉 = exp(−iαJ) |φ+ α; J〉 (6.17)

The concept of Glauber coherent states of a radiation mode has been generalized by de

Oliveira et al [92], who introduced so called displaced coherent states defining them as a dis-

placed number state, rather than a displaced vacuum state. The corresponding generalization

of a SCS is found when the rotation operator (6.13) acts on a number state |µ〉. The resulting

displaced spin coherent states (DSCS) are

|θ, φ;µ〉 = R̂(θ, φ) |µ〉 . (6.18)

They are the eigenstates of the angular-momentum component −→u · −̂→J with eigenvalue µ. In

the special case that θ = π/2 and φ = 0, we find that R̂(θ, φ) = exp(−iπĴy/2), and this

component is simply Ĵx. Its eigenstates are denoted as

|π/2, 0;µ〉 = |µ〉x .

and they obey the eigenvalue relation Ĵx |µ〉x = µ |µ〉x. The state |µ〉x describes a state with

J + µ atoms in the even state |g〉, and J − µ atoms in the odd state |e〉. These states are

coupled by the ladder operators

Ĵ±x ≡ exp(−iπĴy/2)Ĵ± exp(iπĴy/2) = −Ĵz ± iĴy, (6.19)

according to the relations

Ĵ±x |µ〉x =
√

(J ∓ µ) (J ± µ+ 1) |µ± 1〉x .

When θ = π/2 and φ = π/2, the DSCS are indicated as

|π/2, π/2;µ〉 = |µ〉y ,
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which are eigenstates of −→u · −̂→J = Ĵy, as specified by the relation Ĵy |µ〉y = µ |µ〉y . The

corresponding ladder operators are

Ĵ±y ≡ exp(iπĴx/2)Ĵ± exp(−iπĴx/2) = Ĵx ∓ iĴz. (6.20)

In the special case that µ = J , the DSCS |µ〉x and |µ〉y become the SCS |J〉x and |J〉y ,

which are also the PS with φ = 0 and φ = π/2, respectively.

6.4 Evolution in limiting cases

For a given number N of atoms, the evolution is characterized by an evolution operator that

is governed by the Hamiltonian (6.11), and that obeys the Schrödinger equation

i~
dÛ

dt
= ĤN Û . (6.21)

In order to get an intuitive insight into the evolution, we first consider two extreme cases,

which are simple to understand. We assume that the two wells have equal energy, so that

ε = 0. If the interatomic interactions are negligible, the quadratic term in (6.11) can be

skipped. For a possibly time-dependent coupling strength δ, the evolution operator is

Û(t) = exp
(
iη (t) Ĵx

)
, (6.22)

with η (t) =
∫ t
0
δ(t

′

)dt
′

the area of the coupling pulse. In the language of angular momentum,

Û represent a rotation over an angle −η around the x-axis. In this case, the states |µ〉x
are eigenstates of the evolution operator, so that these states acquire only a phase factor

exp (iη (t)µ). An initial state in the form of a single number state |µ〉 state gets rotated

by the operator (6.22) and evolves into a superpostion of number states. At the instant that

η (t) = π/2 an initial number state has evolved into an eigenstate of the operator Ĵy.
Conversely, when the interatomic interactions are strong enough on the scale of tunneling,

the hopping between the wells can get suppressed Chapter 5. Now, a single number state |µ〉
only acquires a phase factor exp(−iκµ2t). The evolution operator takes the form

Û (t) = e−iκĴ
2

z
t, (6.23)

which cannot be conceived as a rotation in the angular-momentum space. Since the eigen-

values of Ĵ2z are discrete, the evolution (6.23) has revivals. First we consider the situation

that the number of particles N is even, so that the eigenvalues µ of Ĵz are integer. Then the

eigenvalues of Û are exp(−iκµ2t) = 1 when t = mT , withm an integer, and T = 2π/κ . At

these times the initial state is reproduced, which proves that the evolution of any initial state

is time periodic, with period T . For a time t = T/2, which is half the period, the eigenvalues

of Û(T/2) are exp(−iπµ2) = (−1)µ, which proves that the evolution operator at this instant

is equal to

Û(T/2) = exp(−iπĴz).
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For an initial PS |Ψ(0)〉 = |φ; J〉, we find that the state at the time t = T/2 is

|Ψ(T/2)〉 = exp(−iπJ) |φ+ π; J〉 ,
which is just the opposite PS. At other instants of time, that are a simple rational fraction of

T , an initial PS can be transformed into a linear combination of a few PS. For t = T/4, the

relevant eigenvalues of Û can be rewritten as

exp(−iπµ2/2) = 1√
2

(
e−iπ/4 + exp(−iπĴz)eiπ/4

)
.

The corresponding expression for the evolution operator is then

Û(T/4) =
1√
2

[
e−iπ/4 + eiπ/4 exp(−iπĴz)

]
.

For the same initial state |Ψ(0)〉 = |φ; J〉, we apply Eq. (6.17), and arrive at the result for the

state at t = T/4

|Ψ(T/4)〉 = 1√
2

[
e−iπ/4 |φ; J〉+ eiπ/4e−iπJ |φ+ π; J〉

]
, (6.24)

which is the linear superposition of two PS’s. For times t that are equal to other simple

rational fractions of the period T (t = T/3, T/5,..) a superposition of more PS’s is found.

One may use the fact that the eigenvalues exp(−iκµ 2t) of Û are periodic in µ with some

integer period p. Therefore these eigenvalues can be expressed as a finite Fourier series in

powers of exp(2πiµ/p), which is equivalent to expressing the evolution operator Û(t) as a

finite sum of rotations around the z-axis.

When the number N of particles is odd, so that the values of J and µ are half-integer, full

revival of the initial state is again found after one period t = T . In fact, since 2µ is an odd

number, (4µ2 − 1)/4 is always an even integer, and it follows that both at time T and T/2,

the evolution operator is just a phase factor

Û(T ) = exp(−iπ/2), Û(T/2) = exp(−iπ/4).
Hence, apart from a phase factor, full revival is found already at half the time T . In order to

obtain the evolution operator at the time t = T/4, it is convenient to use the identity for half

integer values of µ

exp(−iπµ2/2) = 1√
2
e−iπ/8

(
eiπµ/2 + e−iπµ/2

)
.

For the evolution operator this gives the expression

Û(T/4) =
1√
2
e−iπ/8

[
exp(iπĴz/2) + exp(−iπĴz/2)

]
.

For the initial PS |Ψ(0)〉 = |φ; J〉, we obtain for the state vector at time T/4

|Ψ(T/4)〉 = 1√
2
e−iπ/8

[
eiπJ/2 |φ− π/2; J〉+ e−iπJ/2 |φ+ π/2; J〉

]
.

Revivals of the state of a BEC have been observed in an optical lattice [16].
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6.5 Periodic modulation of energy difference

A simple example of a periodic modulation of the two-well system is to include a time-

varying energy difference between the two wells. This is realized by substituting in the

N -particle Hamiltonian (6.11) the harmonically varying parameter ε (t) = ε1 cosωt, while δ
and κ remain constant. It is convenient to describe the evolution in an interaction picture that

removes the diagonal terms in the Hamiltonian. We introduce the transformed state vector

|Ψ′(t)〉 by the relation

|Ψ(t)〉 = T̂ (t)
∣∣∣Ψ′ (t)

〉
, (6.25)

where the state vector |Ψ(t)〉 obeys the Schrödinger equation with the Hamiltonian (6.11),

and the transformation operator T̂ (t) is defined by

T̂ (t) = exp
[
−iθ (t) Ĵz − iκtĴ2z

]
, (6.26)

with θ(t) =
∫ t
0
dt
′

ε
(
t
′

)
= ε1 (sinωt) /ω. Notice that the transformed state |Ψ′(t)〉 has

the same distribution over the number states |µ〉 as the actual state |Ψ(t)〉. The transformed

Schrödinger equation has the standard form

i~
d
∣∣∣Ψ′ (t)

〉

dt
= Ĥ ′(t)

∣∣∣Ψ′ (t)
〉
. (6.27)

An explicit form of the transformed Hamiltonian

Ĥ ′(t) = −~δT̂ †(t)ĴxT̂ (t) (6.28)

follows from the general transformation rule [93]

f(Ĵz)Ĵ+ = Ĵ+f(Ĵz + 1). (6.29)

Ths relation (6.29) holds for any analytical function f of the operator Ĵz . After substituting

(6.29) into (6.28), we arrive at the result

Ĥ ′(t) = −~δ

2

[
Ĵ+e

iθ(t)+iκt(2Ĵz+1) + H.c.
]
.

After a Fourier expansion of the exponentials, we find

Ĥ ′(t) = −~δ

2

∞∑

n=−∞

Jn (ε1/ω)
(
Ĵ+e

it[κ(2Ĵz+1)+nω] + H.c.
)
. (6.30)

The form (6.30) of the operator Ĥ ′(t) allows a clear physical interpretation. The oscillating

energy difference ε(t) is equivalent to a series of harmonic couplings between the wells with

equally spaced driving frequencies nω. The amplitude for each harmonic is proportional to
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the Bessel function of the corresponding order. So the effective coupling between the number

states |µ〉 depends strongly on the frequency.

The Hamiltonian Ĥ ′(t) contains only non-vanishing elements coupling neighboring num-

ber states |µ〉 and |µ+ 1〉. A resonance occurs for the nth harmonic when

nω + κ(2µ+ 1) = 0, (6.31)

which requires that κ (2µ+ 1) /ω is an integer.

The strength of this coupling is −ΩµJn(ε1/eω)/2, with

Ωµ = δ
√

(J − µ) (J + µ+ 1). (6.32)

The effective coupling by the nth harmonic is measured by the parameter

Un
µ =

Ωµ
nω + κ(2µ+ 1)

Jn

(ε1
ω

)
, (6.33)

which is the ratio of the coupling strength and the detuning from resonance for the transition.

Whenever
∣∣Un

µ

∣∣¿ 1, the coupling is weak.

When the oscillation frequency ω is large compared with the maximal diagonal frequency

splitting κ(2J + 1), all the time-dependent couplings are weak, and the dominant coupling

term is the static one with n = 0. The effect of the modulated energy difference is then that

the coupling term is reduced by the factor J0(ε1/ω). In the high-frequency limit ω À ε1,
this factor is one, and we recover the case of a static and symmetric double-well potential

with ε1 = 0.

A simple isolated resonance between two number states can occur involving the states |µ〉
with µ = −J or µ = J , since these can be coupled to only one other state. Suppose that at

t = 0 all atoms are in one of the two wells, so that

|Ψ(t = 0)〉 = |−J〉 . (6.34)

Figure 6.1: Time dependence of the populations Pµ for the state |µ〉 = |−J〉 and |µ〉 =
|−J + 1〉 . The parameters are taken as δ/κ = 0.25, ε1/κ = 14, ω/κ = 3, N = 2J = 16.

If one chooses the frequency ω such that the resonance condition (6.31) holds at cer-

tain integer n0, the corresponding harmonic can be made dominant. Indeed, provided that
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∣∣Un
µ

∣∣¿ 1 for µ = −J + 1, for all n, coupling to other states is weak, and we have an effec-

tive two-level system. This is possible provided that at resonance ω is large compared with κ,

which in turn is large compared with the coupling parameter δ. This is demonstrated in Fig.

6.1, where oscillations between the states |−J〉 and |−J + 1〉 are displayed for the initial

state (6.34). This means that a single atom out of N atoms resonantly oscillates between the

wells. Upon decreasing the coupling between the wells, the rate of off-resonant coupling is

decreasing, so one approaches ideal Rabi oscillations between resonant levels. Weaker cou-

pling implies a larger oscillation period. The two-level behavior can only occur for a system

with a nonlinear term Ĵ2z , since for a linear system the various transitions are simultaneously

in resonance [87] and Chapter 2.

In the case that the modulation frequency ω is of the same order as κ, resonances on the

different transitions can coincide, and the initial state (6.34) can spread out over many number

states. For example, in the simple case that ω = κ, the resonance condition (6.31) shows that

for each value of µ, there is a harmonic n = −(2µ + 1) that is resonant, and the population

spreads out over all number states.

Figure 6.2: Time dependence of the fluctuation
〈
Ĵz

〉2

of operator Ĵz at resonance (a) ω = κ

and out of resonance (b) ω = 6κ. The other parameters are taken the same as in the previous

figure.

The difference with the high-frequency case is demonstrated in Fig. 6.2, where we plot

the fluctuations ∆J2z of Ĵz as a function of time, for the initial condition (6.34), for ω = κ (a)

and ω = 6κ (b). In the first case, a resonance occurs on each transition, and ∆J 2z continues to

increase. In the second case, the fluctuations remain limited. Even for a very small coupling

between wells, resonances designed in such a way can lead to enhancement in the tunneling

rate. This is close to the experimental situation for the double-well trap presented in Ref. [78].

Again, this situation is specific for a system with a non-linear term Ĵ2z in the Hamiltonian,

since for a linear system various transitions have the same effective coupling. Since the

coupling is proportional to Jn (ε1/ω), a resonant transition can be turned off by setting the

ratio ε1/ω equal to a zero of the Bessel function.

This can be used to restrict the evolution to a limited number of states, thereby locating a

desired number of particles in one of the wells. We demonstrate this idea in Fig. 6.3. There

we start from the same initial condition (6.34) and see that 11 atoms out of 16 are localized in

the left well if one chooses the ratio ε1/ω such that J7 (ε1/ω) = 0 (Fig. 6.3a). Then, taking

J11 (ε1/ω) = 0, or J15 (ε1/ω) = 0, one can localize 13 or 16 particles in one of the wells, as
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demonstrated on fig. 6.3b and 6.3c).

Figure 6.3: Time dependence of the expectation value of Ĵz operator is plotted at resonance

ω = κ. The ratio ε1/ω is chosen such that (a) ε1/ω = 24.26918 (J(13(ε1/ω) = 0) ,

(b) ε1/ω = 23.2759 (J11 (ε1/ω) = 0) (c) ε1/ω = 24.93493 (J7 (ε1/ω) = 0). The total

number of particles is chosen N = 16.

6.6 Generalization to an optical lattice

The discussion of the previous section for two wells with an energy difference can be gen-

eralized to the case of a multimode system, consisting of a chain of potential wells. As a

model, we take a BEC in a tilted optical lattice Chapter 2. As usual, we neglect the higher

bands in the lattice, and we consider only a BEC trapped in the lowest energy band, that

roughly speaking is composed of the ground states in all the wells [12, 94–96]. If one takes

the Wannier states |l〉 with l = . . . − 2, −1, 0, 1, 2, . . .as the basis of one-particle states, the

Hamiltonian in second quantization is a direct generalization of Eq. (6.6) for two wells, and

it takes the form

ĤBH = −~δ

2

∑

l

(
â†l+1âl + â†l âl+1

)
+

~κ

2

∑

l

â†l â
†
l âlâl + ~ε (t)

∑

l

lâ†l âl, (6.35)

where âl

(
â†l

)
are bosonic annihilation (creation) operators in a single Wannier state, δ and κ

are the obvious multimode generalizations of two-mode definitions for the nearest neighbor

coupling and interaction constant (6.1, 6.7), ε is the energy difference in frequency units

between neighboring Wannier states, which determines the uniform force. This Hamiltonian

defines the so-called Bose-Hubbard model.
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The time evolution in a lattice is governed by the time-dependent Schrödinger equation

i~
d |Ψ(t)〉
dt

= ĤBH |Ψ(t)〉 . (6.36)

The uniform force and the interatomic interaction can be eliminated by the substitution

|ΨBH (t)〉 = T̂BH(t)
∣∣∣Ψ′BH (t)

〉
,

with

T̂BH(t) = exp

(
−iθ (t)

∑

l

lâ†l âl −
iκt

2

∑

l

â†l â
†
l âlâl

)

and θ (t) =
∫ t
0
dt
′

ε
(
t
′

)
is the area of pulse. The Schrödinger equation for the transformed

state

∣∣∣Ψ′BH (t)
〉

follows by using the transformation properties of the annihilation operator

T̂ †BH(t)âlT̂BH(t) = âl exp
(
−ilθ(t)− iκt

(
â†l âl − 1

))
= exp

(
−ilθ(t)− iκtâ†l âl

)
âl,

which leads to the identity

T̂ †BH(t)â†l+1âlT̂BH(t) = â†l+1âl exp
[
iθ(t) + iκt

(
â†l+1âl+1 − â

†
l âl + 1

)]
.

We obtain the evolution equation

i~
d |Ψ′BH (t)〉

dt
= Ĥ

′

BH |Ψ′BH (t)〉 , (6.37)

with the effective Hamiltonian

Ĥ
′

BH = −~δ

2

∑

l

(
â†l+1âl exp

[
iθ(t) + iκt

(
â†l+1âl+1 − â

†
l âl + 1

)]
+ H.c.

)
. (6.38)

For the case of a periodically modulated uniform force, described by ε (t) = ε1 cosωt, this

Hamiltonian can be put in the form

Ĥ
′

BH = −~δ

2

∑

l

∑

n

Jn

(ε1
ω

)(
â†l+1âl exp

[
inωt+ iκt

(
â†l+1âl+1 − â

†
l âl + 1

)]
+ H.c.

)
.

(6.39)

This Hamiltonian couples collective number states

∣∣∣−→N
〉

= |. . . , N−1, N0, N1, . . .〉 where

two neighboring wells l and l + 1 have exchanged one particle. The coupling between states

with Nl = p, Nl+1 = q and Nl = p− 1, Nl+1 = q + 1 is resonant for a harmonic n when

nω + κ (q − p+ 1) = 0, (6.40)
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which is analogous to the resonance condition (6.31). At small tunneling rate we can exclude

non-resonant coupling terms while assuming that their effective coupling rate is negligible.

When the uniform force also contains a constant term, so that ε(t) = ε0+ ε1 cosωt, we have

to add a term ε0t to θ(t), and the resonance condition is modified into

nω + ε0 + κ (q − p+ 1) = 0. (6.41)

When p − q = 1, this condition is independent of κ, and a resonant oscillation can occur

between states with Nl −Nl+1 = ±1.

Another interesting case is a Mott insulator state, with the same number of particles N0
in each well. Such a state has been predicted in [12] and has been recently experimen-

tally realized in ( [14]), where one (two) atoms have been put in a single lattice site. So,

|Ψ(t = 0)〉 = |. . . , N0, N0, N0, . . . , 〉 . This state is directly coupled to the collective Fock

state which arises if a boson escapes to a neighbouring well, so it has N0 + 1 atoms in one

lattice site, andN0−1 in the neighboring one. Then the resonant condition is nω+ε0+κ = 0.

Just as in the case of two wells, resonances coincide when ω is of the same order as

κ. When ω = κ, there is always a harmonic that resonantly couples neighboring wells.

In the absence of the constant term ε0, the resonance condition takes the universal form

n+ q − p+ 1 = 0. So, if in the Mott insulator phase the number fluctuations are suppressed

between wells, we obtain their increase at resonances.

6.7 Periodic modulation of coupling

In this Section we consider the effects of a periodic modulation of the coupling coefficient

δ(t) between the wells. As a simple model, we assume that δ contains a harmonic component,

so that

δ (t) = δ0 + δ1 cosωt. (6.42)

In order that the even state |g〉 = (|1〉 + |2〉)/
√
2 is the ground state, we keep δ(t) positive

at all times, and we choose δ1 to be smaller than δ0. Hence we assume that δ0 ≥ δ1 ≥ 0.

Moreover, we take the energy of the two wells to be equal, so that ε = 0. The Hamiltonian in

the form of (6.11) with the coupling coefficient (6.42) can be easily implemented in practice.

It describes a BEC in a two-well configuration with a periodically modulated barrier height.

Precise calculations of the coupling coefficient are given in [75].

Since in the Hamiltonian (6.11) the term proportional to Ĵx is periodically modulated,

we expect that the basis of states |µ〉x, which are eigenstates of the operator Ĵx, is the nat-

ural basis to describe the evolution. Then it is convenient to describe the Hamiltonian in

terms of the operators Ĵx and Ĵ±x , which are defined in Eq. (6.19). By using the identities

Ĵz = −(Ĵ+x + Ĵ−x )/2 and Ĵ+x Ĵ
−
x + Ĵ−x Ĵ

+
x = 2[J(J + 1) − Ĵ2x ], we rewrite the N -particle

Hamiltonian (6.11) in the form

ĤN = −~δ (t) Ĵx +
~κ

2

(
J(J + 1)− Ĵ2x

)
+

~κ

4

(
Ĵ+2x + Ĵ−2x

)
. (6.43)

This expression demonstrates that a state |µ〉x is coupled only to its next nearest neighbors
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|µ± 2〉x. The coupling strength is measured by the matrix element

Ωxµ =
κ

4
x 〈µ+ 2| Ĵ+2x |µ〉x =

κ

4

√
(J + µ+ 1) (J + µ+ 2) (J − µ− 1) (J − µ), (6.44)

which depends on the interparticle interaction coefficient κ and the particle number N = 2J .

In order to get a closer insight to the role of periodic modulation and its resonances, we

again eliminate the diagonal part of the Hamiltonian, now with respect to the basis of states

|µ〉x. The time-dependent state is expressed

|Ψ(t)〉 = Ŝ(t) |Ψ′′ (t)〉 , (6.45)

with

Ŝ(t) = exp

[
iη (t) Ĵx −

1

2
iκt
(
J(J + 1)− Ĵ2x

)]
, (6.46)

and η (t) =
∫ t
0
dt
′

δ
(
t
′

)
is the integrated coupling coefficient. In order to obtain the Schrödinger

equation for the transformed state |Ψ′′ (t)〉, we need the transformation property of the off-

diagonal operators Ĵ+2x and Ĵ−2x . The transformed state |Ψ′′(t)〉 obeys the Schrödinger equa-

tion with the effective Hamiltonian

Ĥ ′′(t) =
~κ

4
Ŝ†(t)

(
Ĵ+2x + Ĵ−2x

)
Ŝ(t).

In analogy to Eq. (6.29), we now apply the general transformation rule

g(Ĵx)Ĵ
+2
x = Ĵ+2x g(Ĵx + 2), (6.47)

for an arbitrary analytical function g of Ĵx. After making a Fourier expansion we obtain for

Ĥ ′′(t) the explicit expression

Ĥ ′′(t) =
~κ

4

∞∑

n=−∞

Jn

(
2δ1
ω

)[
Ĵ+ 2x e−it(δ0+2κ(Ĵx+1)+nω) + H.c.

]
(6.48)

The form of the Hamiltonian Ĥ ′′(t) resembles the Hamiltonian Ĥ ′(t), as specified in Eq.

(6.30). In the present case, the basis states are the states |µ〉x, which are now coupled by the

square of the corresponding ladder operator Ĵ± 2x . As in (6.30), the coupling term is a series

of harmonics with equidistant frequencies nω, with an amplitude proportional to the Bessel

function of the corresponding order.

In the high-frequency limit, when the modulation frequency ω is large compared with the

diagonal frequency splittings of the Hamiltonian (6.43), the effect of the static term propor-

tional to J0(2δ1/ω) in Eq. (6.48) will be dominant, and the Hamiltonian will be effectively

constant. Just as in precious sections, the physical reason is that a rapidly modulated field,

which has a negligible average pulse area, also has a negligible influence.

On the other hand, Eq. (6.48) immediately shows that the coupling between the state |µ〉x
and |µ+ 2〉x of the nth harmonic is resonant when

nω + 2κ(µ+ 1) + δ0 = 0. (6.49)
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The other coupling terms are negligible when the coupling strength is small compared with

the oscillation frequency, which leads to the weak-coupling criterion

∣∣∣∣
Ωxµ

nω + 2κ (µ+ 1) + δ0
Jn

(
2δ1
ω

)∣∣∣∣¿ 1. (6.50)

Figure 6.4: Time dependence of the populations P
(x)
µ of the state |µ〉

x
with µ = J and

µ = J − 2. The other parameters are taken as δ1/κ = 14, δ0/κ = 16, ω/κ = 20, N = 14.

So, if the initial state |Ψ(0)〉 = |J〉x is resonantly coupled to |J − 2〉x, while further cou-

plings of this alter state are negligible, we have an effective two-level system. This is demon-

strated on the figure 6.4, where besides the resonant oscillations, one obtains non-resonant

escape of population to the rest of manifold. Upon decreasing the coupling between the state

|µ〉x, only the resonant states are involved and they exhibit clear Rabi oscillations. This shows

how resonances lead to an escape of population from the initial state to the other states in the

manifold of states |µ〉x. The similarity with the response to the periodic modulation in the

form of a periodically modulated energy difference between the wells. Recall that the state

|J〉x is the state in which all particles are in the even state |g〉 = (|1〉+ |2〉)/
√
2, which is the

one-particle ground state. In the state |J − 2〉x, two particle have been transferred to the odd

excited state.

6.8 Conclusions

A BEC trapped in a two-well potential can be expected to be very sensitive to the frequency of

any applied periodic perturbation. We test this idea by periodically modulating the asymmetry

or the barrier height of such a configuration. Compared with the analogous situation of a

single atom trapped in a light field with a periodic modulation, the many-particle nature of

the BEC gives rise to some new effects. For both types of modulation, two-state resonances

may be observed, where a single atom out of the BEC oscillates between the wells. It is also

possible to enter a regime of parameters where more than two states are resonantly coupled,

with more than one particle oscillating between the wells. Using such resonances, one can

manipulate the average number of particles in the wells by varying the relevant parameters,

such as the magnitude and the modulation frequency of the energy difference. This effect

can be considered also as a means to resonantly enhance the tunnelling rate between wells.

We generalize the basic ideas developed for two-wells to a multiwell system, such as a BEC
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in an optical lattice. Whereas the periodic modulation of the energy difference is related to

coupling between number states in the two wells, the periodic modulation of the height of the

barrier leads to coupling between number states in superposition states of the two wells with

specific values of the relative phase.
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Chapter 7

Phase dynamics of a multimode Bose condensate
controlled by decay

The relative phase between two uncoupled Bose-Einstein condensates tends to attain

a specific value when the phase is measured. This can be done by observing their decay

products in interference. We discuss exactly solvable models for this process in cases

where competing observation channels drive the phases to different sets of values. We

treat the case of two modes which both emit into the input ports of two beam splitters and

a linear or circular chain of modes. In these latter cases, the transitivity of relative phase

becomes an issue.

7.1 Introduction

Since the first observation of Bose-Einstein condensation, the formation and the nature of

the relative phase between two condensates has been a central issue of many theoretical and

experimental studies. It has been predicted by Javanainen and Yoo [15] and observed by

Andrews et al. [69] that two interfering Bose-Einstein condensates exhibit a clear spatial in-

terference pattern. This shows that in a single run of an interference experiment, they manifest

themselves as being coherent. Furthermore, it was predicted in [15] that two cases should be

distinguished. When a cold cloud of atoms is first split into two modes, which are separately

cooled further into two condensates ( ”cut then cool”), two independent condensates arise.

Alternatively, two correlated condensates arise when a single condensate is split into two

parts (”cool then cut”) [69, 70]. The interference pattern from two independent condensates

can be different for each realization of interference experiment, while correlated condensates

show the same interference pattern for each run. Cirac et al [97] showed by analytical argu-

ments that a system consisting of two independent Bose-Einstein condensates evolves into

a state with a fixed relative phase if one detects the emitted bosonic atoms while observing

their spatial interference pattern.

A number of authors have studied the possible manipulation of phase coherence and en-

tanglement between two or more Bose-Einstein condensates, with tunneling interaction as

the key mechanism [98–100]. A scheme has been proposed to use an interferometric scheme

including an atomic beam splitter to recombine two modes in order to reconstruct the state

of a two-mode condensate [101]. The buildup of a relative phase between two independent

condensates has also been investigated in the situation that the atoms emitted from the two

condensates are mixed in a 50% − 50% beam splitter [91, 102]. Two initially independent

bosonic modes, described by a factorized state, have a uniform distribution over the relative

75
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phase. Hence all values of this phase are equally probable as the outcome of a phase measure-

ment. After a large number of detections in the output ports of the beam splitter the system

evolves into an entangled state of the two modes. An exactly solvable analytical model has

been discussed [102] which allows one to get closed expression for the particle detection

statistics over two output channels of the beam splitter for a fixed total number of detections.

It is remarkable that even though both detection channels are identical, in a typical detection

history the detections are unevenly distributed over the two output ports. This is obviously

connected to the bosonic nature of the particles, for which boson accumulation applies. After

the first few emissions, the subsequent particles have a tendency to choose the same port as

the majority of their predecessors, and the relative phase of the modes converges to one of

the phases imposed by the beam splitter. This can also be viewed as an example of sponta-

neous symmetry breaking [103]. The role of interparticle interaction is also discussed, and it

has been shown that it leads to collapse and revival of the relative phase distribution, thereby

reflecting the discrete nature of the states of the system [91].

We recalled that in the presence of a single beam splitter, after a large number of detec-

tions, the relative phase converges to a single value. It is interesting to consider cases where

more detection channels are present which tend to project the relative phase on different val-

ues, so that a detection from one beam splitter favors phase values that are incompatible with

the setting of another one. In the present paper we consider a number of model cases where

such a conflicting tendency arises. This raises the question whether in the end the system

simply settles down in one of the possible phase values or whether it continues to shift be-

tween values, without ever coming to a final decision. We consider cases where the detection

statistics can be solved analytically. Also we study the effect of a direct Hamiltonian coupling

between the condensates on both the detection statistics and the corresponding behavior of

the relative phase. Examples of such couplings are tunneling between condensates in two

spatially separated potential wells or stimulated Raman coupling between two condensates

corresponding to two different internal states [104]. We treat the condensates just as modes of

bosonic particles, so that most of the considerations hold just as well for photons in cavities.

7.2 Quantum states of two boson modes

It will be convenient to express the states of two boson modes in terms of spin-coherent

states (SCS’s), which is normally defined for the (2J + 1)-dimensional manifold of states

with angular momentum J [89]. The spin-coherent state |θ, φ〉 is the eigenstate of the com-

ponent −→u · −̂→J of the angular momentum vector with the maximal eigenvalue J , where−→u ≡ x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ is the unit vector in the direction specified by

the spherical angles θ and φ. This state is obtained from the eigenstate of Jz with eigen-

value J after performing the appropriate rotation. In the context of two boson modes (or two

harmonic oscillators), an SU(2) representation arises by introducing the fictitious angular-

momentum operators

Ĵx =
1

2

(
â†b̂+ b̂†â

)
, Ĵy =

1

2i

(
â†b̂− b̂†â

)
, Ĵz =

1

2

(
â†â− b̂†b̂

)
, (7.1)
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where â and b̂ are the annihilation operators for modes A and B. This is the well-known

Schwinger representation. These operators obey the standard commutation rules of angular

momentum ([Ĵx, Ĵy] = iĴz , etc.), so that the matrix form of the operators (7.1) on the eigen-

vectors of Ĵz and
−̂→
J
2

attains the shape that is well known from angular-momentum algebra.

Notice that
−̂→
J
2

= (N̂/2)(N̂/2 + 1), with N̂ = â†â + b̂†b̂ the number operator. The eigen-

vectors of Ĵz and
−̂→
J
2

are just the double Fock states |na, nb〉. A given number of particles,

N , corresponds to the value J = N/2. The eigenstate of Ĵz with this same eigenvalue is the

Fock state |N, 0〉, so that the SCS with direction −→u can be defined by the rotation

|θ, φ〉N = R̂(θ, φ) |N, 0〉 , (7.2)

with the rotation operator

R̂(θ, φ) = exp(−iφĴz) exp(−iθĴy) exp(iφĴz) = exp[−iθ(Ĵy cosφ− Ĵx sinφ)]. (7.3)

The SCS can be represented as a point on a sphere of radius J , specified by the polar angle

θ and the azimuthal angle φ. This sphere generalizes the Bloch sphere, describing the state

of a spin 1/2, or the Poincaré sphere which describes the polarization state of a light beam

or a photon. In the present case, the radius specifies the number of particles, N = 2J . An

explicit expansion of the SCS (7.2) in the Fock states follows then from the transformation of

the creation operators:

R̂(θ, φ)â†R̂†(θ, φ) = â† cos
θ

2
+ b̂† sin

θ

2
eiφ ≡ ĉ†(θ, φ). (7.4)

The SCS (7.2) is found after operating N times with the operator ĉ†(θ, φ) on the vacuum

state, which leads to the explicit result

|θ, φ〉N =

N∑

n=0

(
N
n

)1/2
cosn

θ

2
sinN−n

θ

2
ei(N−n)φ |n,N − n〉 . (7.5)

This demonstrates that the SCS |θ, φ〉N can be viewed as a number state in the mode that is

a linear combination of the modes A and B and for which the operator ĉ†(θ, φ), defined in

eq. (7.4), is the creation operator. In the SCS, the distribution of the N particles over the two

modes is binomial, and the angle θ specifies the average partition by 〈na〉 = N cos2(θ/2)
and 〈nb〉 = N sin2(θ/2). The azimuthal angle φ represents the relative phase between the

modes. This quantity is complementary to the number difference â†â − b̂†b̂. Number states

with all particles in the modeA are represented by the north pole of the Bloch sphere (θ = 0),

while the south pole represents the SCS with allN particles in modeB. Points on the equator

(θ = π/2) stand for states with equal population of the modes. Since the state (7.2) [or (7.5)]

is eigenstate of N̂ , the absolute phase is fully undetermined.

The relation between the SCS and the more common Glauber coherent states (GCS) is

easily found by representing the latter ones in the form

∣∣rae−iφa , rbe−iφb
〉
= e−(r

2

a
+r2

b
)/2
∑

N

1

N !
(rae

−iφa â† + rbe
−iφb b̂†)N |vac〉 . (7.6)
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These states are eigenstates of â and b̂, and they are obviously factorized, so that they carry

no entanglement between the modes. It is easy to check that they are related to the SCS by

the expansion [97]

∣∣rae−iφa , rbe−iφb
〉
= e−R

2/2
∑

N

1√
N !

RNe−iNφa |θ, φ〉N , (7.7)

with the parameters R, θ and φ determined by R2 = r2a + r2b , tan(θ/2) = rb/ra, and

φ = φa − φb. This indicates that the GCS has a Poissonian distribution of the total particle

number N , with average value 〈N〉 = R2, while the absolute phases φa and φb of both

modes are well specified. For bosonic atoms, states with a different total number of particles

do not superpose, according to the superselection rule, so that we have to restrict ourselves to

density matrices that are diagonal in N . Since the particle number is conjugate to the overall

phase, we introduce the density matrix

ρ̂(R, θ, φ) =
1

2π

∫ 2π

0

dφa

∣∣∣rae−iφa , rbe−i(φa−φ)
〉〈

rae
−iφa , rbe

−i(φa−φ)
∣∣∣ (7.8)

as the uniform mixture of the GCS (7.6) over the overall phase φa, for a given value of the

relative phase φ = φa − φb. Applying eq. (7.7) leads to an expansion of this same density

matrix in the SCS in the form

ρ̂(R, θ, φ) = e−R
2
∑

N

1

N !
R2N |θ, φ〉N N 〈θ, φ| . (7.9)

The density matrix ρ̂(R, θ, φ) is therefore diagonal in the particle number N .

In this paper we shall use density matrices that can be represented as a superposition of

the states (7.9) for a single value of the strength parameter R in the form

∫
dΩf(θ, φ)ρ̂(R, θ, φ), (7.10)

where we use the abbreviation
∫
dΩ =

∫ 2π
0

dφ
∫ π
0
dθ sin θ for the integration over the Bloch

sphere. When we express ρ̂(R, θ, φ) as in eq. (7.8), it becomes clear that eq. (7.10) is just

the two-mode version of the Glauber-Sudarshan diagonal coherent-state representation of the

initial density matrix [106], where the P distribution is uniform in φA, and is nonzero only

for a single value of R. This state is normalized as soon as the distribution f is, which we

shall assume. Another special case arises when the function f is nonzero only for a single

value of θ and uniform in φ. Then the density matrix (7.10) can be written as

∫
dφρ̂(R, θ, φ)/2π. (7.11)

It follows from the coherent-state representation (7.8) that in this case the density matrix

factorizes into a product of separate density matrices for the two modes, implying that the

state (7.11) is not entangled. The phase of both modes is uniformly distributed, and the state

is diagonal in both particle numbers na and nb.
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7.3 Decay and detection statistics of two boson modes

7.3.1 Master equation and detection histories

We assume that particles are leaking out of the two boson modes A and B at a total loss rate

Γ. The emitted particles are detected after passing through a beam splitter. For simplicity, we

assume perfect detection efficiency and lossless beam splitters. Moreover, the mode evolution

is governed by a Hamiltonian Ĥ that is supposed to commute with the number operator N̂
and which describes the energy per particle and possibly tunneling between the modes. Since

the two modes form an open system, their evolution can be described by a quantum master

equation [105, 106] for the two-mode density matrix ρ̂, which we formally express as

dρ̂

dt
≡ (L0 + L1) ρ̂. (7.12)

Here L0 describes the coherent evolution of the system, which is determined by the Hamil-

tonian evolution, and the loss of the probability of states due to the emission of particles. Its

explicit form is given by its action on a density matrix

L0ρ̂ = − i
~

[
Ĥ, ρ̂

]
− 1

2
Γ
(
N̂ ρ̂+ ρ̂N̂

)
, (7.13)

while the compensating probability gain is accounted for by

L1ρ̂ = Γ
(
âρ̂â† + b̂ρ̂b̂†

)
. (7.14)

For simplicity the loss rate of the two modes is taken to be the same. The solution of eq.

(7.12) describes the evolution of the system averaged over all possible detection histories.

In fact, we are interested in the conditional evolution for specific histories, where the arrival

times for particles at each detector are specified. Depending on the specific setup, we have

to separate the total gain term (7.14) in terms corresponding to each detector separately,

in accordance with the method of quantum trajectories [91, 97, 102]. For instance, when a

detector is directly coupled to each mode, the term âρ̂â† describes the effect of the detection

of a particle from modeA, which corresponds to the annihilation of a particle from this mode.

Now we consider the setup sketched in Fig. 7.1, where each mode emits particles into the

input port of two different beam splitters.

Detections in the two output ports of beam splitter I correspond to the detection operators

ĉ± = (â ± b̂)/
√
2, and detections in the output ports of beam splitter II correspond to the

detection operators d̂± = (â ± e−iξ b̂)/
√
2. The relative phases can be set either by using

dephasers or by differences in the path lengths of the channels. Notice that the detection

operators are annihilation operators corresponding to a spin-coherent state that is represented

by points on the equator of the Bloch sphere. For this setup the gain operator L1 can be

separated into four terms corresponding to the four detectors as

L1ρ̂ =
Γ

2

(
ĉ+ρ̂ĉ

†
+ + ĉ−ρ̂ĉ

†
− + d̂+ρ̂d̂

†
+ + d̂−ρ̂d̂

†
−

)
≡ Γ

2

4∑

s=1

ĉsρ̂ĉ
†
s =

4∑

s=1

L1sρ̂. (7.15)
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Figure 7.1: Sketch of setup with two decaying boson modes A and B. Each mode emits

particles into the input port of two beam splitters I and II. Output ports are coupled to particle

detectors 1-4.

The integral form of the master equation (7.12)

ρ̂ (T ) = eL0T ρ̂ (0) +
∑

i

∫ T

0

dt eL0(T−t)L1iρ̂ (t) (7.16)

allows us after iteration to express the density matrix as a summation and integration over de-

tection histories. The contribution to ρ̂ (T ) from the history with detections at the successive

time instants t1 ≤ t2 ≤ . . . ≤ tL by the detectors s1, s2, . . . , sL in the time interval [0, T ] is

described by the operator

ρ̂L ({ti, si} , T ) = eL0(T−tL−1)L1sLeL0(tL−tL−1) . . .L1s1eL0t1 ρ̂ (0) . (7.17)

The effect of the detection operators L1i is a sudden change in the density matrix, which

indicates the quantum-jump nature of a detection.

Since eqs. (7.14) and (7.15) are different representations of the same gain operator, the

unitarity of the evolution is guaranteed. The separated form (7.15) represents the physical

situation that the emitted particles from each mode can go into two different input channels,

with equal rate constants Γ/2.

7.3.2 Detection statistics and phase distribution

As the initial state ρ̂(0) of the system we take a density matrix of the form (7.10), so that

ρ̂(0) =

∫
dΩf(θ, φ)ρ̂(R, θ, φ). (7.18)

When the Hamiltonian only attributes a fixed energy per particle, its form is Ĥ = ~ωN̂ . Since

all density matrices that we shall encounter are diagonal in the total number of particles, the

Hamiltonian has no effect and can be ignored. The coherent evolution of the density matrix

is easily obtained from the identity L0 |φ, θ〉NN 〈θ, φ| = −ΓN |φ, θ〉NN 〈θ, φ|, which when

substituted into eq. (7.9) gives the result

eL0T ρ̂(R, θ, φ) = exp[−R2(1− e−ΓT )]ρ̂(Re−ΓT/2, θ, φ). (7.19)
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This shows that the evolution of the density matrix during a detection-free period of time

only gives a damping of the strength parameter R, without changing the distribution over

the Bloch sphere. The action of the detection operators on the density matrix is most easily

obtained by using eq. (7.8). The action of the annihilation operators on the SCS is found to

be given by

â |θ, φ〉N =
√
N cos

θ

2
|θ, φ〉N−1 , b̂ |θ, φ〉N =

√
N sin

θ

2
eiφ |θ, φ〉N−1 (7.20)

We observe that to each pair of spherical angles θ and φ or equivalently, to each real

Cartesian unit vector −→u corresponds a density matrix ρ̂(R, θ, φ) given in eq. (7.9) and an

annihilation operator ĉ(θ, φ) as defined in eq. (7.4). Now consider the annihilation operator

ĉ(θ0, φ0), corresponding to the unit vector −→u 0. Then a direct calculation shows that

ĉ(θ0, φ0)ρ̂(R, θ, φ)ĉ
†(θ0, φ0) =

1

2
R2(1 +−→u · −→u 0)ρ̂(R, θ, φ). (7.21)

The unit vectors−→u and−→u 0 in eq. (7.21) are defined to point in the directions specified by the

angles (θ, φ) and (θ0, φ0) respectively. This indicates that for these operators ĉρ̂ĉ† is propor-

tional to ρ̂. The proportionality factor takes the maximal value R2 when the two directions−→u 0 and −→u coincide, and it is zero when the directions are opposite. It is noteworthy that this

factor depends only on the inner product of the two unit vectors and thereby on the distance

between the two points on the unit sphere. This indicates that the effect of a detection on the

density matrix is determined by the relative geometry on the Bloch sphere.

Application of eq. (7.21) leads to the expression

L1sρ̂(R, θ, φ) = ΓR2gs(θ, φ)ρ̂(R, θ, φ), (7.22)

where the functions gi for the detectors 1 and 2 are given by

g1(θ, φ) =
1

4
(1 + sin θ cosφ), g2(θ, φ) =

1

4
(1− sin θ cosφ), (7.23)

and for the detectors 3 and 4 by

g3(θ, φ) =
1

4
[1 + sin θ cos(φ− ξ)], g4(θ, φ) =

1

4
[1− sin θ cos(φ− ξ)]. (7.24)

The functions are determined by the inner product of the unit vector −→u , indicated by θ and φ,

and the unit vectors −→u 0 corresponding to the detection operators ĉs. These four unit vectors

are all defined by θ0 = π/2, whereas φ0 = 0 and π for s = 1 and 2 and φ0 = ξ and

ξ + π for s = 3 and 4. The functions gs add up to 1, so that the total gain operator L1
when acting on ρ̂(R, θ, φ) just gives the factor ΓR2, as it should. According to eq. (7.22),

the effect of the ith detection at time ti by detector si is that the distribution over the Bloch

sphere is multiplied by the factor gsi , while an overall factor ΓR2 exp(−Γti) has to be added.

In brief, the detection-free periods produce a damping of R and the detection modifies the

distribution over the Bloch sphere by a multiplication with a function gsi . For a given value

of the ratio 〈na〉 / 〈nb〉, as specified by the angle θ, the factors gs modify the distribution
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over the relative phase φ, with a contrast that is maximal when both modes contain the same

number of particles (θ = π/2).

The equations. (7.19)-(7.24) allow one to evaluate explicitly the density matrix (7.17)

corresponding to a given detection history, with the initial state determined by eq. (7.18).

The contribution (7.17) to the density matrix is then found as

ρ̂L ({ti, si} , T ) = exp[−R2(1− e−ΓT )]
L∏

i=1

(ΓR2e−Γti)

×
∫
dΩf(θ, φ)

[
4∏

s=1

gnss (θ, φ)

]
ρ̂(Re−ΓT/2, θ, φ), (7.25)

with ns the total number of detections in channel s (with
∑
ns = L). This contribution

(7.25) does not depend on the specific order of the detections in the various channels. The

trace of eq. (7.25) specifies the probability distribution of the detection history {ti, si} in the

factorized form

wL ({ti, si} , T ) = F ({ns}) exp[−R2(1− e−ΓT )]
L∏

i=1

(ΓR2e−Γti), (7.26)

with

F ({ns}) =
∫
dΩf(θ, φ)

4∏

s=1

gnss (θ, φ) (7.27)

the probability that L successive detections occur in the specific order (s1, s2,. . .,sL). This

factor F only depends on the number of detections ns for each channel, not on the time

ordering of the detections. The remaining time-dependent factor in eq. (7.26) is the prob-

ability density for detections at the specified instants of time, irrespective of the detection

channel. The conditional density of the system, given the detection history {ti, si}, is equal

to ρ̂L ({ti, si} , T ) /wL ({ti, si} , T ), which is the normalized version of eq. (7.25). From

the expression (7.26) of the probability density one obtains the probability p({ns}, T ) that

in the time interval [0, T ] there were ns detections in channel s, (s = 1,. . .,4), irrespective

of the order of the detections. This requires an integration over the ordered detection times

and a multiplication with the number of possible orderings of the L detections over the four

detectors, given the partition {ns}. The result can be expressed as

p({ns}, T ) = PL(T )pL({ns}), (7.28)

where PL(T ) gives the probability that precisely L detections occurred in the time interval

[0, T ], irrespective of the detection channel. This distribution is Poissonian with average

R2(1 − e−ΓT ). The factor pL({ns}) is the probability that the L detections are distributed

over the four detectors by the partition {ns} and takes the form

pL({ns}) =
L!

n1!n2!n3!n4!
F ({ns}). (7.29)
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This distribution is independent of the strength factor R, the detection time T and the decay

rate Γ. Notice that both the distribution PL(T ) over the total number L of detections and the

distribution pL({ns}) of the L detections over the partitions are normalized.

In summary, we notice that the decay process only has the effect that the strength factor

R is damped. The effect of a detection is that the distribution over the Bloch sphere is mul-

tiplied by one of the factors gs, which changes both the distribution over the relative phase

and the probability distribution for subsequent detections. The probability distribution of L
detections over the four detection channels is given by (eq. 7.29). After a detection series

given by the partition {ns}, the normalized distribution function over the Bloch sphere is

given by f(θ, φ)
∏
s g

ns
s (θ, φ)/ F ({ns}). The detection statistics is invariant when both the

distribution function f and the detection functions gs are changed by the same rotation over

the Bloch sphere.

7.3.3 Special cases

When the detections in channels 3 and 4 are ignored and M detections have occurred in

channels 1 and 2, the distribution of these detections over the two channels can be evaluated

in the same fashion. The result is

pM (n1, n2) = 2M
(
M

n1

)∫
dΩf(θ, φ)gn1

1 (θ, φ)gn2

2 (θ, φ), (7.30)

with n1+n2 =M . The factor 2M is needed to ensure normalization, since g1+ g2 = 1/2 in

this case. This expression is a simple generalization of the result of [102] for the case of two

decaying modes observed through a single beam splitter. The generalization consists in the

fact that the populations of the two modes need not be the same in eq. (7.30). Intuitively it

is obvious that the partial statistics of detections in channels 1 and 2 is not affected when for

some reason the detections in channels 3 and 4 are simply added without distinguishing them.

This situation is equivalent to the case that beam splitter II is missing and a single detector is

just collecting particles in both of its input channels.

We have noticed that the effect of detections on the phase distribution is strongest when

the average number of particles is the same in both modes, so we consider the case that the

polar angle is θ = π/2 or ra = rb = R/
√
2 ≡ r. For this situation, the two-channel

distribution (7.30) has been evaluated in ref. [102]. When the relative phase φ has a well-

defined value φ0, the two-channel distribution is binomial:

pM (n1, n2) =

(
M

n1

)
cos2n1

φ0
2

sin2n2
φ0
2
, (7.31)

where the most probable detection history has the values

n1 =Mcos2(φ0/2), n2 =Msin2(φ0/2). (7.32)

When the phase distribution is uniform, the two-channel distribution was found as [102]

pM (n1, n2) =
1

22M

(
2n1
n1

)(
2n2
n2

)
. (7.33)



i

i

i

i

i

i

i

i

84 Chapter 7

This displays boson accumulation, and in a typical detection history the numbers n1 and

n2 of detections in the two channels are quite different. In fact, the most probable history is

specified by (n1, n2) = (M, 0) or (0,M). After such a history, the relative-phase distribution

is proportional to cos2M (φ/2) or sin2M (φ/2), which peaks at the positions corresponding to

the output channels of the beam splitter I . The width of this distribution is significant, so that

for large detection numbers M the probability of these most probable histories is quite small

in absolute terms. Nevertheless, they do characterize typical detection histories as being in

their neighborhood.

Now we turn to the detection statistics over the four channels when the initial density

matrix is specified by eq. (7.11), with equal population of the two modes and initial uniform

relative phase. Then the initial density matrix is equivalent to the factorized form ρ̂(0) =
ρ̂a ⊗ ρ̂b, with

ρ̂a =
1

2π

∫
dφa

∣∣re−iφa
〉 〈
re−iφa

∣∣ , (7.34)

and a similar expression for ρ̂b. Both modes have a density matrix that is diagonal in the num-

ber state, with a Poissonian distribution. In order to characterize the statistics, we look for the

detection histories with the largest probabilities. A typical detection history can be expected

to be in the neighborhood of these maxima. First we notice that the emission probability onto

both beam splitters I and II is the same, so that for a total of L detections a most probable

history must have n1 + n2 = n3 + n4 = L/2. (We assume that L is even for simplicity.) If

nothing is specified on the distribution of the L/2 detections in channels 3 and 4, the distri-

bution over the two channels 1 and 2 is given by eq. (7.33) with M = L/2, with the most

probable partitions (n1, n2) = (L/2, 0) or (0, L/2). The relative phase has then converged to

the value φ = 0 or φ = π, which makes the distribution over the L/2 detections in channels

3 and 4 binomial. For example, for the partition (n1, n2) = (L/2, 0), the partition over the

two other detectors has maximal probability for (n3, n4) = (L/2)(cos2(ξ/2), sin2(ξ/2)).
Since the pair of detectors 1 and 2 is fully equivalent to the pair 3 and 4, another history with

the same maximal probability occurs for the partition (n3, n4) = (L/2, 0), with (n1, n2) =
(L/2)(cos2(ξ/2), sin2(ξ/2)). This corresponds to a relative phase converging to the value

φ = ξ. In summary, we expect four most probable histories for L detections. The partitions

over the four detectors attain the values (n1, n2, n3, n4) = (L/2)(1, 0, cos2(ξ/2), sin2(ξ/2)),
(L/2)(0, 1, sin2(ξ/2), cos2(ξ/2)),(L/2)(cos2(ξ/2), sin2(ξ/2),
1, 0) and (L/2)(sin2(ξ/2), cos2(ξ/2), 0, 1), while the phase has converged in these cases to

the values φ = 0, π, ξ and ξ + π, respectively. These considerations are backed up by a

numerical calculation of the probability distribution pL({ns}), for L = 40, equal population

of the two wells (θ = π/2), and uniform distribution over the relative phase φ, while the

setting of the two beam splitters is maximally different (ξ = π/2). The distribution for equal

number of detections through both beam splitters is plotted in Fig. 7.2.

The most probable histories are marked. The gradual transition between the two dis-

tributions (7.31) and (7.33) is noticed along the axis n1, when n3 varies from 0 (binomial

distribution over n1 and n2 = L/2− n1) and L/2 [bunching distribution (7.33)].
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Figure 7.2: The probability distribution pL({ns}) as a function of n1 and n3, for equal

particle numbers in the modes. The total detection number is L = 40, with 20 particles

going into each beam splitter. The phase difference between the beam splitters is equal to

ξ = π/2. The most probable detection histories are marked.

7.4 Detection statistics of two coupled boson modes

7.4.1 Pulsed coupling between modes

In this secton, we consider the case that the particles emitted by the two boson modesA andB
are detected directly, without the use of beam splitters, as sketched in Fig. 7.3(a). Therefore

we separate the gain operator in the master equation (7.12) as L1 = L1a+L1b, corresponding

to the two terms in eq. (7.14). The coherent-evolution operator L0 is given by eq. (7.13),

where the Hamiltonian Ĥ describes coupling between the two modes by tunneling, in the

form

Ĥ = −~δ

2

(
â†b̂+ âb̂†

)
= −~δĴx. (7.35)

In realistic cases we can imagine that the coupling can be switched on during a time interval

τ , which is sufficiently small so that decay during the coupling is negligible. This means that

the initial state for the decay process is found by applying the pulse evolution operator

Û0 = exp(−iĤτ/~) = exp(iδτ Ĵx). (7.36)

In the picture of the Bloch sphere, this is a rotation about the x axis in a negative direction

over an angle δτ . When the initial state before the coupling is given by eq. (7.10), the state

after switching off the coupling at the beginning of the detection period is

ρ̂(0) =

∫
dΩf(θ, φ)Û0ρ̂(R, θ, φ)Û

†
0 . (7.37)

The contribution to the density matrix from a given detection history {ti, si} is expressed by

eq. (7.17), where now the indices s of the jump operators L1s can take the values a or b and
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where eq. (7.37) specifies the initial density matrix. The evolution during the detection-free

periods is given in eq. (7.19). The effect of the jump operators on the rotated density matrix

can be expressed using the identity

L1aÛ0ρ̂Û †0 = ΓÛ0ĉaρ̂ĉ
†
aÛ

†
0

and a similar expression for L1b, where we introduced the counterrotated operators ĉa ≡
Û †0 âÛ0 and ĉb ≡ Û †0 b̂Û0. Their explicit expressions are then

ĉa = â cos
δτ

2
+ îb sin

δτ

2
, ĉb = iâ sin

δτ

2
+ b̂ cos

δτ

2
.

They correspond in the sense of eq. (7.4) to the two unit vectors −→u a = −ŷ sin δτ + ẑ cos δτ
and −→u b = ŷ sin δτ − ẑ cos δτ , which arise when the opposite rotation is applied to ±ẑ. By

using eq. (7.21), the action of the jump operators L1a and L1b in a detection history is given

by the relation

L1aÛ0ρ̂(R, θ, φ)Û †0 = ΓR2ga(θ, φ)Û0ρ̂(R, θ, φ)Û
†
0 ,

L1bÛ0ρ̂(R, θ, φ)Û †0 = ΓR2gb(θ, φ)Û0ρ̂(R, θ, φ)Û
†
0 , (7.38)

with

ga(θ, φ) =
1

2
(1 +−→u · −→u a), gb(θ, φ) =

1

2
(1 +−→u · −→u b). (7.39)

Notice that these factors add up to ΓR2. The contribution to the density matrix arising from

the history {ti, si} is now easily found in the form

ρ̂L ({ti, si} , T ) = exp[−R2(1− e−ΓT )]
L∏

i=1

(ΓR2e−Γti)

×
∫
dΩf(θ, φ)gnaa (θ, φ)gnbb (θ, φ)Û0ρ̂(Re

−ΓT/2, θ, φ)Û †0 , (7.40)

which looks quite similar as eq. (7.25). The probability distribution for detection histories is

given by the trace of eq. (7.40), and the detection statistics can be obtained in the same way

as above. In analogy to eq. (7.28), the probability p(na, nb, T ) that in the time interval [0, T ]
there were na detections in channel a and nb in channel b, irrespective of their order, is now

p(na, nbT ) = PL(T )pL(na, nb),

where, as before, PL(T ) is the Poissonian distribution of the total number L = na + nb of

detections in the interval [0, T ]. The factor pL(na, nb), which represents the probability that

the L detections are partitioned over the two detectors as (na, nb), is

pL(na, nb) =

(
L

na

)
F (na, nb), (7.41)
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with

F (na, nb) =

∫
dΩf(θ, φ)gnaa (θ, φ)gnbb (θ, φ). (7.42)

As an example, we consider the case that before the coupling period the two modes are

fully decoupled, with equal population, so that the function f is uniform over the equator of

the sphere. The density matrix before coupling has then the form (7.11), with θ = π/2. When

moreover the pulse duration is chosen such that δτ = π/2, we find −→u a = −ŷ, −→u b = ŷ, and

the functions ga and gb at the equator are found as ga(φ) = (1 − sinφ)/2 and gb(φ) =
(1 + sinφ)/2. The distribution pL(na, nb) is now exactly the same as in the case of an

initally uniform phase distribution, with detectors placed in the output channel of a single

50%− 50% beam splitter [102]. We recover the bunching distribution

pL(na, nb) =
1

22L

(
2na
na

)(
2nb
nb

)
,

with (na, nb) = (L, 0) or (0, L) the most probable histories of L detections. The identity of

the distribution in these two cases may be surprising in view of the quite different physical

situations. It is the merit of the description of states and detections as distributions on the

Bloch sphere that it clarifies this identity, since the two cases have the same relative geometry

on the Bloch sphere.

Figure 7.3: Comparison of the geometry on the Bloch sphere for two cases. (a) particles

emitted by modes A and B are detected directly, without the use of a beam splitter; (b)

emitted particles are detected through a beam splitter. For each case, the position of the

detectors on the Bloch sphere are indicated in both cases. The large circles on the sphere

indicate the distribution f that determines the initial state just before the detections.

This is illustrated by Fig. 7.3. The situation that the pulse duration deviates slightly from

the identity δτ = π/2 implies that the detector positions do not lie precisely on the large
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circle that describes the initial distribution. Then it follows from the general expressions

(7.39) that the contrast of the functions ga and gb on the large circle is diminished, so that

convergence to a single phase value is slowed down. Accordingly, the distribution pL(na, nb)
will have a diminished bunching.

For the initially coupled modes and the detections without the beam splitter, the relative

phase is initially rather well determined around φ = 0 and φ = π. A typical detection series

now projects the state of the system onto the state with most particles either in mode A or in

mode B, with an undetermined relative phase. If at the end of the detection series a second

pulsed coupling is applied as described by the operator Û0, the final state after this pulse has

a well-determined relative phase. The final state after the entire scheme of pulsed coupling,

detection series and second pulse is the same as the result of just a detection series through

the beam splitter. In this sense, the pulsed coupling can be viewed as a replacement of the

beam splitter. This scheme with pulsed coupling offers a simple possibility of realizing the

bunching distribution (7.33) of bosons, without the use of a beam splitter.

7.4.2 Continuous coupling between modes

The situation is different when the coupling between the modes is present continuously. Then

in expression (7.13) for the coherent-evolution operator, the Hamiltonian is given by eq.

(7.35). Since the Hamiltonian commutes with the number operator N̂ , the decay terms are

not affected the Hamiltonian evolution, and eq. (7.19) is replaced by the modified form

eL0T ρ̂(R, θ, φ) = exp[−R2(1− e−ΓT )]Û(T )ρ̂(Re−ΓT/2, θ, φ)Û †(T ) (7.43)

with Û(T ) = exp(−iĤT/~) = exp(iδT Ĵx). The effect of the Hamiltonian on the density

matrix for a detection history {ti, si} can be expressed in the Heisenberg picture, with the

time-dependent detection operators

ĉs(ts) = Û †(T )ĉsÛ(T ). (7.44)

Their action on the density matrix follows from eq. (7.21) when one uses that ĉa(t) cor-

responds to the direction −→u a(t) = −ŷ sin δt + ẑ cos δt and ĉb(t) to the opposite direction−→u b(t) = ŷ sin δt− ẑ cos δt. This gives

ĉs(ts)ρ̂(R, θ, φ)ĉ
†
s(ts) = R2gs(θ, φ, ts)ρ̂(R, θ, φ), (7.45)

with gs(θ, φ, t) = [1 + −→u · −→u s(t)]/2. The general expression (7.17) for the contribution to

the density matrix from a detection history {ti, si} with the initial state (7.18) is found as

ρ̂L ({ti, si} , T ) = exp[−R2(1− e−ΓT )]
L∏

i=1

(ΓR2e−Γti)

×
∫
dΩf(θ, φ)

L∏

i=1

[gsi(θ, φ, ti)]Û(T )ρ̂(Re−ΓT/2, θ, φ)Û †(T ). (7.46)

Each detection s leads to a multiplication of the distribution function over the Bloch sphere by

a factor gs(θ, φ, t) that now depends on the detection time. This time dependence corresponds

to a rotation of the direction −→u s in the yz plane.
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For the initial state of two decoupled modes, with a uniform distribution of the phase, the

function f is uniform over the equator of the Bloch sphere. A detection at time t of a particle

emitted by modeA orB then multiplies the distribution over the relative phase φ by the factor

ga(φ) = (1−sin δt sinφ)/2 or gb(φ) = (1+sin δt sinφ)/2. These functions have their max-

imum value for φ = 3π/2 or φ = π/2. Strictly speaking, this distribution describes the state

of the system in the Heisenberg picture, where it is not affected by continuous evolution, but

only by the quantum jumps that describe the effect of detections. The evolution of the phase

distribution during a typical detection history is conceptually simple. The total decay rate,

summed over both detectors, is autonomous and has the time dependent rate ΓR2 exp(−Γt).
The branching over the two detectors a and b is determined by the expectation value of ga(φ)
and gb(φ), which has a contrast that oscillates in time at the coupling frequency δ, as a result

of the mode coupling. The effect of a detection on the phase distribution is a multiplication

with the same factor (1 ∓ sin δt sinφ)/2 for detectors a and b. This will eventually lead to

a convergence of the phase distribution to a single peak at a value where either one of the

factors gs is maximal; hence, φ = π/2 or φ = 3π/2. The convergence to these peaked dis-

tributions is slower than in the case of a detections through a single beam splitter, as a result

of the oscillations of the contrast in the functions gs(t).

Figure 7.4: Relative phase distributions for two coupled modes after L = 10 detections. The

sets of ten detections times are selected randomly, and for each set the most probable pair of

detection histories is determined numerically. Each curve is the final phase distribution after

such a detection history.

In Fig. 7.4 we plot the phase distributions for a set of typical detection histories consisting

of L = 10 detections. These curves are numerically calculated in the following way. First we

randomly select the ten time instants. Then the most probable set of ten detection channels

at those instants is chosen. For each set of time instants, there are two complementary sets of

detection channels, which are related by interchanging detectors a and b. The different curves

in Fig. 7.4 correspond to a different selection of the time instants of detection. As seen in

Fig. 7.4, after each such history, the distribution over φ is a peak centered either at π/2 or at

3π/2.
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7.4.3 Coupling and energy shift

An energy difference ~ε between the two modes in addition to the effect of tunneling is

described by the Hamiltonian

Ĥ = −~δĴx + ~εĴz, (7.47)

which replaces eq. (7.35). The angular momentum operators are defined in eq. (7.1). We

consider the same detection scheme used in the preceding subsection. The energy difference

modifies the detection statistics and the phase distribution following a representative detection

history. On the Bloch sphere, the modified evolution operator Û(t) is represented by a rota-

tion in the positive direction around the axis εẑ − δx̂, over an angle Ωt, with Ω =
√
ε2 + δ2.

Equations (7.43) for the density matrix after a detection history and (7.44) for the detection

operators in the Heisenberg representation ĉs(t) remain valid. The detection operators are

represented by points −→u s on the sphere that are reached from the poles when the opposite

rotation is applied. Since the rotation axis does not lie in the equator plane, the azimuthal an-

gle varies continuously with time, and the relative phase is no longer projected preferentially

onto the same value. These unit vectors are found in the form

−→u a(t) = −−→u b(t) =
εδ

Ω2
(cosΩt− 1)x̂− δ

Ω
sinΩtŷ +

(
δ2

Ω2
cosΩt+

ε2

Ω2

)
ẑ.

They determine the factors gs(θ, φ, t) = [1+−→u ·−→u s(t)]/2 that multiply the distribution over

the sphere when a particle emitted by mode A or B is detected.

As above, we consider the case of an initially factorized state, which is represented by a

uniform distribution over the equator of the Bloch sphere. When a particle from mode A or

B is detected, the distribution over φ is multiplied by

ga(φ) =
1

2

(
1 +

εδ

Ω2
cosφ(cosΩt− 1)− δ

Ω
sinφ sinΩt

)
,

gb(φ) =
1

2

(
1− εδ

Ω2
cosφ(cosΩt− 1) +

δ

Ω
sinφ sinΩt

)
.

The maximum of these functions no longer coincides with the maximum of ± sinφ, as is the

case when ε = 0.

In Fig. 7.5 the resulting phase distributions are shown after a number of most probable

detection histories, each consisting of ten detections, for ε/δ = 1/4. The various curves

differ in the selection of the detection times. The prescription of the calculation is the same

as used in Fig. 7.4. Now not only the width of the peak, but also their position varies for

different selections of the detection times. This can be explained from the time variation in

the position where the maximum of gs(φ, t) occurs.

7.5 Linear and circular chains of modes

The dynamics of a coupled chain of condensates in an optical lattice has been explored,

with emphasis on the difference between a linear and a circular chain [66]. The coupling
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Figure 7.5: Same as Fig. 7.4, but now for coupled modes at different energies. The ratio of

the energy splitting and the coupling strength is ε/δ = 1/4.

was due to tunneling between neighboring modes. One expects analogous differences in

the situation considered in this paper, where the phase relation between neighboring modes

arises by spontaneous symmetry breaking from the observation of emitted bosons interfering

through a beam splitter. This raises the question of the transitivity of the relative phase. When

the relative phase between two modes A and B is well determined and the same holds for

the relative phase between two modes B and C, then one expects the phase between C and

A should also be fixed. On the other hand, when this latter phase is also selected by direct

interaction, one may expect different dynamics depending on whether the two paths of phase

determination converge to the same result or not. In the present section we compare the phase

dynamics on a linear and a circular chain of modes.

7.5.1 Linear chain of modes

Figure 7.6: Setup with a linear chain of boson modes ..., s − 1, s, s + 1, ... Neighboring

modes emit particles in the input port of a beam splitter, and detectors monitor the particles

in the output ports.

We consider a linear chain of modes, as sketched in Fig. 7.6. As initial state we take the

uncorrelated state given by the factorized density matrix

ρ̂(0) =
∏

s

ρ̂s = . . . ρ̂s−1 ⊗ ρ̂s ⊗ ρ̂s+1 . . . , (7.48)
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where the density matrix ρ̂s of each mode s has the form (7.34) with a uniform phase φs.
Beam splitters are mixing the bosons emitted from neighboring modes s and s + 1, with

orthogonal detection operators in the output channels

d̂s± =
1√
2
(âs ± e−iξs âs+1) (7.49)

with âi the annihilation operator of mode i. The evolution is described by the master equation

(7.12), with

L0ρ̂ = −
∑

s

Γ

2
(â†sâsρ̂+ ρ̂â†sâs), L1 =

∑

s

(L1s+ + L1s−), (7.50)

where the contribution to L1 corresponding to the detection channels s± is specified by

L1s± =
Γ

2
d̂s±ρ̂d̂

†
s±. (7.51)

Physically it is obvious that the detection statistics over the output channels of each beam

splitter is identical to the statistics for each of the two beam splitters in Sec. III, since each

mode emits into two input channels with equal rate. The density matrix corresponding to a

given detection history with ns detections in channel s+ and ms detections in the channel

s− is easily written down by using the fact that a detection in channel s+ gives a factor

cos2[(Φs − ξs)/2] and a detection in channel s− a factor sin2[(Φs − ξs)/2]. After each

detection history, the distribution over the phases φs of all modes factorizes into a product of

distributions for each relative phase Φs ≡ φs−φs+1 between neighbors. After ns detections

in channel s+ and ms detections in the channel s−, the distribution over the relative phase

φs − φs+1 is proportional to cos2ns [(Φs − ξs)/2] sin2ms [(Φs − ξs)/2], and the distribution

over the phases is proportional to the product

∏

s

[
cos2ns

(Φs − ξs
2

)
sin2ms

(Φs − ξs
2

)]
. (7.52)

Because of this factorization, the detection statistics for the pair of output channels of each

beam splitter is uncorrelated to the other detections. The total number Ms of detections in

the time interval [0, T ] on the two output channels of a single beam splitter is Poissonian with

average value r2[1 − exp(−ΓT )], and the probability distribution of the Ms detections over

the two detectors is identical to the distribution (7.33) [102]. Therefore, the most probable

histories with Ms detections on this sth beam splitter are given as (ns,ms) = (Ms, 0) and

(0,Ms). The relative phase Φs between modes s and s+1 converges to a single peak located

at ξs or ξs + π, for each value of s. This also determines in a unique and unambiguous way

the relative phase between any pair of modes. Hence for a linear chain of modes, the relative

phase between two neighbors converges to one out of two possible values, in precisely the

same way as it occurs for two modes and a single beam splitter. Spontaneous symmetry

breaking occurs independently for each neighboring pair.
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7.5.2 Circular chain of modes

Now we consider a series of K modes, coupled by beam splitters and arranged into a circular

chain. For K = 3, the scheme is presented in Fig. 7.7. Equations (7.48)-(7.50) still hold,

with the index s running from 1 to K. The relative phases Φs and the detection operators

d̂s± are defined as above for s = 1, 2,. . ., K − 1, while we denote ΦK = φK − φ1 and

d̂K± = (âK ± e−iξK â1)/
√
2. The number of beam splitters is now equal to the number of

modes. On the other hand, since

K∑

s=1

Φs = 0, (7.53)

the K modes have only K − 1 independent relative phases Φs, which makes the detection

system overdetermined. This is the main difference with the case of the linear chain. Detec-

tions on the sth beam splitter tend to drive the relative phase Φs to the value ξs or ξs + π.

However, these values are consistent only when the values of all ξs add up to a multiple of π.

The probability p({ns,ms}, T ) of a specified number of detections by each detector in the

time interval [0, T ] factorizes as in eq. (7.28) in a Poisson distribution for the total number

L of detections, with the mean value Kr2(1− e−ΓT ) and the probability pL({ns,ms}) that

the L detections are distributed over the detectors according to the indicated partition. This

latter distribution can be specified in analogy to eq. (7.29) by

pL({ns,ms}) =
L!∏

s(ns!ms!)
F ({ns,ms}), (7.54)

with

F ({ns,ms}) =
(

1

2π

)K ∫
dφ1dφ2 . . . dφK

K∏

s=1

[
cos2ns(

Φs − ξs
2

) sin2ms(
Φs − ξs

2
)

]
.

(7.55)

After a detection history with ns detections in channel s+ and ms detections in channel s−,

the distribution over the relative phase is still proportional to eq. (7.52). However, because of

the relation (7.53), the relative phases are no longer independent, and the detection statistics

of the output channels of the different beam splitters become correlated.

The most probable histories can now be found by similar considerations as we used above

in Sec. 7.3.3. For a total number of L = K ×M detections, the distribution for the total

number of particles reaching the K beam splitters must be multinomial, with the average

value M . For a most probable history the number of particles that passed each beam splitter

is equal to M for each one of them. One might expect that these M particles display bosonic

bunching into one output channel, with the most probable partition (ns,ms) = (M, 0) or

(0,M) for all of the K beam splitters. This would indicate that the corresponding relative

phases probed by these beam splitters will have converged to the value ξs or ξs = π. However,

in general this can only be true for all relative phases except one, because of the phase relation

(7.53). Assume that this excepted relative phase has the index s0. As a result of this relation,

the value of the last relative phase Φs0 is thereby also fixed. The distribution over the two
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output channels s0+ and s0− will then be binomial, and the most probable partition is given

by (ns0 ,ms0)=(M cos2[(Φs0 − ξs0)/2],M sin2[(Φs0 − ξs0)/2]. For symmetry reasons, each

beam splitter has the same probability to end up in such a binomial distribution rather than

a bunching one. The situation can be summarized by stating that in addition to the local

spontaneous symmetry breaking for each beam splitter, also a global symmetry breaking

occurs, by which the relative phase between two neighbors is not determined by the setting

of their own shared beam splitter, but by the settings of all the other ones. Again, a typical

detection history may be expected to be in the neighborhood of a most probable history, even

though for large detection numbers, the absolute probability of a most probable history will

be small.

Figure 7.7: Setup of a circular chain of three boson modes 1, 2 and 3, with decay channels

that are pairwise coupled by beam splitters 1, 2 and 3.

As an example, consider the caseK = 3, as sketched in Fig. 7.7. The settings of the beam

splitters are given by ξ1 = ξ2 = 0 and ξ3 = π/2. After 30 detections, one of the partitions

with the highest probability was found to be (n1,m1) = (5, 5), (n2,m2) = (10, 0), and

(n3,m3) = (10, 0). As one would expect from symmetry considerations, other partitions

with the same maximal probability are found by swapping ns and ms for each beam splitter

s and also by a permutation of the three indices 1, 2 and 3. This result is confirmed by a

numerical calculation based on a direct evaluation of the probability distribution (7.54).

7.6 Discussion and conclusions

The absolute phase of a single-mode or multimode bosonic system is fully undetermined

when the state of the system is diagonal in the total particle number. For bosonic atoms, this

must be the case, since states with different particle numbers do not superpose. For a two-

mode system we use the Schwinger representation with fictitious angular momentum oper-

ators to take advantage of the underlying SU(2) symmetry of the state space. This allows

us to represent the density matrix of the two-mode system with an undetermined absolute

phase and a Poissonian distribution of the total number of particles as an integral over the
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Bloch sphere of the fictitious angular momentum. The representation is given in eq. (7.10),

where f (θ, φ) is the distribution function over the sphere. It may be viewed as the Glauber-

Sudarshan P function restricted to the sphere. The azimuthal angle φ is the relative phase,

whereas the polar angle θ measures the ratio of the average number of particles in A and

B, with equal populations represented by points on the equator and the poles representing

states with all particles in one mode. The merit of these states with Poissonian distribution

of the total particle number is that the overall decay of the modes factors out, and the detec-

tion statistics is the product of time-dependent probabilities for the total number of detections

and time-independent distributions for the partitions over the various detection channels. The

effect of a detection is described by the action of an annihilation operator, which also corre-

sponds to a point on the sphere. This is equivalent to the multiplication of the distribution

function f (θ, φ) by a factor that depends only on the distance over the sphere between the

points (θ, φ) and the detection point. This allows exact expressions, both for the detection

statistics and for the conditional density matrix of the system for a given detection history.

It also implies that identical detection statistics arises for different choices of the distribution

f and the detection points on the Bloch sphere, provided that the setup has the same relative

geometry on the sphere. This can correspond to quite different experimental setups, since the

effect of detection through a beam splitter can be produced by a pulsed tunneling coupling

between the modes.

In the case that the modes are constantly coupled by tunneling and in the presence of an

energy difference between the modes, the phase distribution still becomes nonuniform by the

detecting particles emitted by the two modes. However, since the preferred phase imposed

by the detections is not the same for all detections in this case, the maximum in the phase

distribution will continue to vary in position even after many detections. The convergence

of the phase is expected to be perturbed more strongly when interparticle interactions are

important during a detection history [107].

We treat explicitly the case of two modes which both emit particles in an input channel

of two different beam splitters. When the settings of the beam splitters are different, they

can drive the relative phase of the modes to values which are conflicting. Such a situation of

conflicting phase values occurs for any number of modes which are coupled by beam splitters

and arranged in a circular chain. Our model shows that in these cases the most probable

detection histories lead for each pair of neighboring modes to a relative phase converging

with equal probability to one of the conflicting values. The partition of the detection over

the channels is a signature of the location of the peak in the phase distribution. Such a

conflict does not arise for a linear chain of modes coupled by a beam splitter. A common

feature of these various cases is that an initially factorized state of several modes builds up a

specific value of all relative phases by only detecting their decay products in interference. In

principle, this means that the modes become entangled, even though they have never been in

direct contact.
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Samenvatting

Sinds de komst van de quantummechanica is licht een belangrijk middel om de quantumei-

genschappen van materie te bepalen en te begrijpen. Om de bouwstenen van de wereld op

atomaire schaal (atomen, ionen en elektronen) te onderzoeken is het nodig om de thermische

fluctuaties van de atomaire dynamica te beperken. Dit probleem is uitgebreid onderzocht in

de afgelopen jaren, met als prominent voorbeeld succesvolle methoden om neutrale atomen

te koelen en op te sluiten met de kracht van licht. Aan dit onderzoeksgebied is in 1997 de No-

belprijs voor natuurkunde verleend, die gezamenlijk werd toegekend aan W. D. Phillips, C.

Cohen-Tannoudji en S. Chu. Het basismechanisme is de uitwisseling van impuls en energie

tussen het licht en een atoom. De lichtkrachten die het atoom ondervindt kunnen zijn bewe-

gingsvrijheid in de ruimte beperken, en bovendien de thermische fluctuaties in zijn snelheid

verminderen.

Daarnaast vormen lichtvelden het belangrijkste middel om de quantumeigenschappen van

neutrale atomen te sturen. Dit is in verscheidene toepassingen gerealiseerd. De belangrijkste

toepassing is atomaire interferometrie, die tegenwoordig een aanzienlijk hogere gevoeligheid

te zien geeft dan de meer conventionele, zuiver optische interferometrie. Een verdere toepas-

sing van koude atomen, meer in het bijzonder koude ionen, wordt nagestreefd in opstellingen

die de basis moeten vormen van onderdelen van quantumcomputers.

Een volgende belangrijke stap in het ”meer quantummechanisch” maken van neutrale

atomen is gezet in 1995, met de eerste experimentele demonstratie van een Bose-Einstein-

condensaat (BEC) van alkali-atomen. Dit is een toestand van materie waarin alle atomen in

eenzelfde quantumtoestand verkeren. In 2001 werd de Nobelprijs voor natuurkunde toege-

kend aan E. A. Cornell, W. Ketterle and C. E. Wieman, voor de realisatie van BEC in een

ijl gas van alkali-atomen, en baanbrekend fundamenteel onderzoek van hun eigenschappen.

De macroscopische bevolking van de laagste energietoestand werd bereikt door de atomen

op te sluiten in licht, en door ze met behulp van afdamping tot extreem lage temperaturen te

koelen. Op deze wijze kunnen de quantumeigenschappen van materie worden versterkt, en

op macroscopische schaal worden onderzocht.

De meeste theoretische beschrijvingen van een systeem van koude atomen verwaarlozen

de correlatie tussen de atomen. Maar een beschrijving van een BEC als een echt veeldeel-

tjessysteem vereist dat de wisselwerking tussen de atomen in rekening wordt gebracht. Het

vroegere theoretische werk aan condensaten in een enkele mode maakte gebruik van het mo-

del van Gross, Pitaevski en Bogoliubov. De basisvergelijking van deze theorie beschrijft het

systeem met behulp van een macroscopische golffunctie, die de verdeling van de atomen

over plaats en impuls beschrijft. Deze beschrijving is semiklassiek van aard, en is nauw

verwant met de theorie van superfluiditeit. Maar in de praktijk kan een BEC quantumfluctu-

aties vertonen die niet in de semiklassieke theorie zijn vervat. Dit soort quantumeffecten is

waarneembaar voor een BEC in meerdere modes, bijvoorbeeld in een optisch rooster.

In dit proefschrift bekijken we een aantal voorbeelden van fysische situaties waar licht-

velden worden gebruikt om condensaten en andere systemen van koude atomen met hoge
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102 Samenvatting

nauwkeurigheid te manipuleren. We beginnen met beschouwingen van enkele atomen, en

breiden vervolgens de discussie uit tot veeldeeltjessystemen, zoals condensaten.

In Hoofdstuk 2 bekijken we de mogelijkheden om de toestand van een enkel atoom te

prepareren en te sturen. Het atoom verkeert in een periodieke optische potentiaal met een

helling. Meestal wordt een periodieke optische potentiaal gevormd door een staande golf van

licht, die is samengesteld uit twee tegen elkaar in lopende golven. Het resultaat is een keten

van potentiaalputten, waarbinnen een deeltje door het tunneleffect de barrière tussen twee be-

lendende putten kan passeren. Een systeem van atomen in een periodieke optische potentiaal

wordt een optisch rooster genoemd. Wij beschouwen de situatie waarin behalve de periodieke

potentiaal ook een uniforme kracht wordt opgelegd, die bovendien met de tijd kan variëren.

We bepalen de dynamica van een deeltje bij een willekeurige begintoestand, met behulp van

een exact oplosbaar model. Het gedrag van zo’n deeltje is rijk gestructureerd, en hangt sterk

af van de beginverdeling van het deeltje over het rooster. Als het deeltje bijvoorbeeld aan-

vankelijk is gelokaliseerd in een enkele potentiaalput, dan beweegt het niet in de richting van

de uniforme kracht, maar het spreidt zich slechts uit over het rooster, zonder dat zijn gemid-

delde positie verandert. Als het deeltje aanvankelijk een redelijk welbepaalde quasi-impuls

heeft, waarbij het verdeeld moet zijn over vele roosterplaatsen, dan zal het Bloch-oscillaties

gaan vertonen. Daarbij vertonen de quasi-impuls en de gemiddelde positie van het deeltje

een periodieke variatie in de tijd. Dit effect is aanvankelijk voorspeld voor elektronen in een

kristal, maar het is waargenomen voor atomen in een optisch rooster. We geven een algemene

beschrijving van de gemiddelde beweging en de spreiding van de toestand van een deeltje in

een optisch rooster met een uniforme kracht.

Ook in Hoofdstuk 3 kijken we naar de wisselwerking van een enkel atoom met een peri-

odieke optische potentiaal. Maar terwijl het in Hoofdstuk 2 ging over de dynamica van een

atoom dat gevangen was in het rooster, gaat het nu om een vrij atoom, waarvan de golffunctie

diffractie vertoont als het een staande golf van licht doorkruist. De belangrijkste resultaten

kunnen worden begrepen uit de beginselen van behoud van energie en impuls. Als het atoom

wisselwerkt met twee tegen elkaar in lopende golven, dan kan het een foton uit één lopende

golf absorberen, en dat weer uitzenden naar de andere lopende golf. Zo kan een atoom in

een staande golf een grote impuls oplopen, zonder dat er sprake is van spontane emissie. Dit

is in tegenstelling tot het geval van een lopende golf, waar een atoom niet meer impuls kan

opnemen dan de impuls ~k van een enkel foton. Deze bekende resultaten gelden als een

atoom voorafgaand aan de wisselwerking in de grondtoestand verkeert. Maar de situatie is

anders wanneer het atoom in een superpositie verkeert van de grondtoestand en de aangesla-

gen toestand. We laten zien dat in dit geval de impulsoverdracht van de fotonen aan het atoom

gedurende de wisselwerking met een lopende golf groter kan zijn dan ~k. Dit effect sugge-

reert een belangrijke praktische toepassing. Het effect van diffractie kan worden gestuurd

door een welgekozen afwisseling van staande en lopende golven te gebruiken.

Terwijl de wisselwerking van een atoom met een staande golf van licht gepaard gaat

met een uitwisseling van impuls tussen veld en atoom, kan de wisselwerking met een paar

Laguerre-Gauss-bundels met tegengestelde heliciteit leiden tot uitwisseling van impulsmo-

ment. Dit is het gevolg van het feit dat de fotonen in een Laguerre-Gauss-bundel een baan-

impulsmoment in de propagatierichting dragen. Ruimtelijk gezien vormt een paar van zulke

bundels met tegengestelde heliciteit een circulair optisch rooster, dat het gevolg is van een

staande golf langs een cirkel. Zo’n circulaire staande golf heeft wezenlijke voordelen verge-
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leken met een gebruikelijke lineaire staande golf. Een aanvankelijk gelokaliseerd golfpakket

van een atoom wordt gesplitst in een superpositie van een naar links en een naar rechts draai-

ende component. Als het atoom is opgesloten in een ringvormige potentiaal, dan leiden de

beide componenten tot interferentie. Karakteristiek voor het circulaire rooster is dat de com-

ponenten elkaar treffen zonder dat hun bewegingsrichting hoeft te worden omgekeerd. In

gebruikelijke interferometrische opstellingen zijn altijd lichtvelden nodig die als spiegel die-

nen voor een atomair golfpakket. Dit schema voor atoominterferometrie zonder spiegelende

lichtvelden wordt besproken in Hoofdstuk 4.

Vanaf Hoofdstuk 5 bekijken we condensaten in meerdere modes. Als modelsysteem ne-

men we het geval van een BEC in een dubbele potentiaalput. We vergelijken de dynamica

van een BEC in de twee putten met de dynamica van atomen die aan een staande lichtgolf

diffractie ondergaan. De aanleiding daarvoor is dat de Hamiltonianen in operatorgedaante

er hetzelfde uitzien. Het verschil ligt in de commutatieregels van de operatoren. Beken-

de diffractieverschijnselen zoals de Pendellösung-oscillaties tussen tegengestelde impulstoe-

standen in het geval van Bragg-diffractie hebben een analogon in het gedrag van de verdeling

van de atomen in een BEC over de twee putten. Deze verdeling vertoont een oscillatie in het

verschil in de atoomaantallen in de twee putten, tenminste als de koppeling tussen de putten

zwak is vergeleken met de wisselwerking tussen de atomen. Als deze koppeling langzaam

varieert in de tijd, dan kan een deel van de atomen adiabatisch van de ene put overgaan naar

de andere.

In Hoofdstuk 6 worden de eigenschappen van een BEC in een dubbele potentiaalput nader

onderzocht in het geval van sterke wisselwerking tussen de atomen. Een gevoelige manier om

de eigenschappen van een condensaat te bepalen is te zoeken naar resonanties in de respons

van het systeem op een externe periodieke variatie van de parameters. In de buurt van de

resonantiefrequenties is te verwachten dat de respons sterk met de frequentie zal variëren.

De periodieke variatie kan worden gerealiseerd door de vorm van de potentiaal te moduleren.

We vinden een resonante overgang tussen twee toestanden waarbij een enkel atoom uit het

condensaat oscilleert tussen de putten. Het kan ook voorkomen dat meer dan twee toestanden

resonant met elkaar zijn gekoppeld, zodat meer dan één atoom tussen de putten oscilleert.

Als gevolg van deze resonantie-effecten kan men het aantal atomen in de putten beheersen

door de sterkte en de frequentie van de modulatie van het energieverschil tussen de putten

geschikt te kiezen. Ook de tunnelsnelheid tussen de putten kan door resonanties worden

vergroot. Deze beschouwingen kunnen ook worden gegeneraliseerd tot een systeem met

meer dan twee putten, zoals een condensaat in een optisch rooster.

In Hoofdstuk 7 behandelen we het probleem van de relatieve fase tussen de verschillende

modes van een BEC. De relatieve fase wordt bepaald door de atomen waar te nemen die door

de verschillende modes worden geëmitteerd. Daarbij worden de atomen uitgezonden door

verschillende modes in de ingangskanalen van een bundelsplitser gestuurd, en zodoende in

interferentie waargenomen. Eerst behandelen we het geval van een BEC in twee modes. Bei-

de modes zenden atomen uit in de ingangskanalen van twee verschillende bundelsplitsers,

waarvan de uitgangskanalen worden gedetecteerd. De uitgangskanalen van een bundelsplit-

ser corresponderen met twee tegengestelde relatieve fasen van de modes. De instelling van

de bundelsplitsers kan zo worden gekozen dat de paren van relatieve fasewaarden met elkaar

in tegenspraak zijn. Ook bij meer dan twee modes treedt een dergelijk conflict op, wanneer

ze met elkaar gekoppeld zijn in een cyclische structuur. We berekenen de statistiek van de
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verschillende mogelijke detectiehistories van alle uitgangskanalen, en we leiden af welke van

die histories de grootste waarschijnlijkheid hebben. Het model laat zien dat bij elk van de

histories met de grootste waarschijnlijkheid de relatieve fase uiteindelijk convergeert naar

een van de elkaar tegensprekende waarden. Welke van de waarden uiteindelijk optreedt is

een strikt quantumproces, dat zich dus niet laat voorspellen. Een dergelijk conflict treedt niet

op bij een lineaire keten van modes, die buursgewijs door bundelsplitsers zijn gekoppeld.

Een gemeenschappelijke eigenaardigheid van de verschillende gevallen is dat een aanvanke-

lijk gefactoriseerde toestand van de modes leidt tot een gecorreleerde toestand door alleen

maar de vervalsproducten van de modes in interferentie te detecteren. Dit houdt in dat een

quantummechanische verstrengeling ontstaat zonder dat de modes met elkaar in contact zijn

geweest.
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ê³éÁ ³ïáÙÝ»ñÇ ¨ ´á½»-¾ÛÝßï»ÛÝÇ ÏáÝ¹»Ýë³ïÇ ÏáÑ»ñ»Ýï

Õ»Ï³í³ñáõÙÁ Éáõë³ÛÇÝ ³ÉÇùÝ»ñáí

øí³Ýï³ÛÇÝ Ù»Ë³ÝÇÏ³ÛÇ ëï»ÕÍÙ³Ý ³é³çÇÝ ûñ»ñÇó Éáõë³ÛÇÝ ¹³ßï»ñÁ

É³ÛÝáñ»Ý  û·ï³·áñÍí»É »Ý ÙÇÏñá³ßË³ñÑÇ (³ïáÙÝ»ñ, ¿É»ÏïñáÝÝ»ñ, ÇáÝÝ»ñ ¨ ³ÛÉÝ)

ùí³Ýïá-Ù»Ë³ÝÇÏ³Ï³Ý Ñ³ïÏáõÃÛáõÝÝ»ñÁ áõëáõÙÝ³ëÇñ»ÉÇë£ ²Û¹ Ñ³ïÏáõÃÛáõÝÝ»ñÝ Ç

Ñ³Ûï µ»ñ»Éáõ Ñ³Ù³ñ ¿³Ï³Ý ¿ ë³ÑÙ³Ý³÷³Ï»É Ù³ëÝÇÏÝ»ñÇ ç»ñÙ³ÛÇÝ ß³ñÅáõÙÁ: ²Ûë

åñáµÉ»ÙÁ »ñÏ³ñ Å³Ù³Ý³Ï É³ÛÝ ùÝÝ³ñÏÙ³Ý ³é³ñÏ³ ¿ñ Å³Ù³Ý³Ï³ÏÇó ýÇ½ÇÏ³ÛáõÙ:

Ð»ï³·³ÛáõÙ, ã»½áù Ù³ëÝÇÏÝ»ñÇ ë³é»óÙ³Ý ¨ ·»ñÙ³Ý ÷áñÓ»ñÁ åë³Ïí»óÇÝ

Ñ³çáÕáõÃÛ³Ùµ, áñÇ Ñ³Ù³ñ 1997Ã Üáµ»ÉÛ³Ý Ùñó³Ý³ÏÁ ýÇ½ÇÏ³ÛÇó ßÝáñÑí»ó àô.

üÇÉÇåëÇÝ, Î. ÎáÑ»Ý-î³ÝáõçÇÇÝ ¨ ê. âáõÇÝ£ ²Ûë ÷áñÓ»ñÇ ÑÇÙùáõÙ ÁÝÏ³Í ¿ ¿Ý»ñ·Ç³ÛÇ ¨

ÇÙåáõÉëÇ ÷áË³ÝóáõÙÁ Éáõë³ÛÇÝ ÷ÝçÇó ³ïáÙÇÝ, áñÇ ³ñ¹ÛáõÝùáõÙ ³ïáÙÇ íñ³ ³½¹áÕ áõÅ ¿

³é³ç³ÝáõÙ£ ¸ñ³ Ñ³ßíÇÝ ë³ÑÙ³Ý³÷³ÏíáõÙ ¿ ³ïáÙÇ ï³ñ³Í³Ï³Ý ß³ñÅáõÙÁ ¨

ÙÇ¨ÝáõÛÝ Å³Ù³Ý³Ï Ïñ×³ïíáõÙ ¿ ß³ñÅÙ³Ý ç»ñÙ³ÛÇÝ ÏáÙåáÝ»ÝïÁ£

´³óÇ ½áõï ýáõÝ¹³Ù»Ýï³É Ñ»ï³ùñùñáõÃÛáõÝ Ý»ñÏ³Û³óÝ»Éáõó, Éáõë³ÛÇÝ

¹³ßï»ñÁ É³ÛÝáñ»Ý û·ï³·áñÍíáõÙ »Ý ³ïáÙÝ»ñÇ ùí³Ýïá-Ù»Ë³ÝÇÏ³Ï³Ý ß³ñÅáõÙÁ

µ³ñÓñ ×ßïáõÃÛ³Ùµ Õ»Ï³í³ñ»Éáõ Ñ³Ù³ñ£ ØÇÝã ³ÛÅÙ ³ïáÙ³ÛÇÝ ÇÝï»ñý»ñáÙ»ïñ»ñÁ

Ñ³Ý¹Çë³ÝáõÙ »Ý ë³éÁ ³ïáÙÝ»ñÇ ³Ù»Ý³Ï³ñ¨áñ ÏÇñ³éáõÃÛáõÝÁ£ Üñ³Ýù ³å³ÑáíáõÙ »Ý

ß³ï ³Ý·³Ù µ³ñÓñ ½·³ÛÝáõÃÛáõÝ, ù³Ý Çñ»Ýó É³ÛÝáñ»Ý ï³ñ³Íí³Í ûåïÇÏ³Ï³Ý

³Ý³Éá·Ý»ñÁ£ ê³é»óí³Í ³ïáÙÝ»ñÇ ¨ Ñ³ïÏ³å»ë ÇáÝÝ»ñÇ ÙÛáõë Ï³ñ¨áñ ÏÇñ³éáõÃÛáõÝÁ

Ï³åí³Í ¿ Ýñ³Ýó û·ï³·áñÍÙ³Ý Ñ»ï ùí³Ýï³ÛÇÝ Ñ³ßí³ñÏÇ ëË»Ù³Ý»ñáõÙ£  

ê³é»óí³Í ³ïáÙÝ»ñÝ ³í»ÉÇ ùí³Ýïá-Ù»Ë³ÝÇÏ³Ï³Ý ¹³ñÓÝ»Éáõ áõÕÕáõÃÛ³Ùµ

Ñ³çáñ¹ ù³ÛÉÝ ³ñí»ó 1995Ã, »ñµ ³é³çÇÝ ³Ý·³Ù ÷áñÓáõÙ ÑÝ³ñ³íáñ »Õ³í ¹Çï»É ´á½»-

¾ÛÝßï»ÛÝÇ ÎáÝ¹»Ýë³ïÁ (´¾Î)£ ²ñ¹»Ý 2001Ã Üáµ»ÉÛ³Ý Ùñó³Ý³ÏÁ ýÇ½ÇÏ³ÛÇó ßÝáñÑí»ó

¾. ÎáéÝ»ÉÇÝ, ì. Î»ï»ñÉÇÇÝ ¨ Î. ì³ÛÙ³ÝÇÝ ´¾Î-Ç ëï³óÙ³Ý ¨ Ýñ³ ýáõÝ¹³Ù»Ýï³É

Ñ³ïÏáõÃÛáõÝÝ»ñÇ áõëáõÙÝ³ëÇñáõÃÛ³Ý Ñ³Ù³ñ£ ÎÇñ³é»Éáí ¦·áÉáñßÇ³óÙ³Ý§ ÏáãíáÕ

ë³é»óÙ³Ý Ù»Ãá¹Ý»ñÁ, ÑÝ³ñ³íáñ »Õ³í ë³é»óÝ»É ³ïáÙ³Ï³Ý ·³½Á ³ÛÝåÇëÇ ó³Íñ

ç»ñÙ³ëïÇ×³ÝÇ, »ñµ ³ïáÙÝ»ñÇ Ù»Í Ù³ëÁ ½µ³Õ»óÝáõÙ »Ý Çñ»Ýó ÑÇÙÝ³Ï³Ý

ÙÇÙ³ëÝÇÏ³ÛÇÝ íÇ×³ÏÁ` áñáß³ÏÇ ùí³Ýï³ÛÇÝ íÇ×³ÏáõÙ ëï»ÕÍ»Éáí Ù³ÏñáëÏáåÇÏ

µÝ³Ï»óí³ÍáõÃÛáõÝ£ ²ÛëåÇëáí, ´¾Î-áõÙ ÝÛáõÃÇ ùí³Ýï³ÛÇÝ Ñ³ïÏáõÃÛáõÝÝ»ñÁ áõÅ»Õ³óí»É

»Ý ¨ Ï³ñáÕ »Ý ¹Çïí»É Ù³ÏñáëÏáåÇÏ Ù³Ï³ñ¹³Ïáí£ Æ Ñ³Ï³¹ñáõÃÛáõÝ ë³éÁ ³ïáÙ³Ï³Ý

·³½Çª ´¾Î-Á Ñ³Ý¹Çë³ÝáõÙ ¿ Çñ³Ï³Ý µ³½Ù³Ù³ëÝÇÏ³ÛÇÝ Ñ³Ù³Ï³ñ· ¨ Ýñ³

Ñ³ïÏáõÃÛáõÝÝ»ñÇ ï»ë³Ï³Ý ÝÏ³ñ³·ñáõÃÛáõÝÁ ï³ÉÇë ÙÇç³ïáÙ³Ï³Ý ÷áË³½¹»óáõÃÛáõÝÁ

ÁÝ¹·ñÏ»ÉÁ ¿³Ï³Ý ¿£ ´¾Î-Ç í»ñ³µ»ñÛ³É ³é³çÇÝ ï»ë³Ï³Ý ³ßË³ï³ÝùÝ»ñÁ ÑÇÙÝí³Í »Ý



106

¶ñáëë-äÇï³¨ëÏÇ-´á·áÉÛáõµáíÇ ï»ëáÃÛ³Ý íñ³, áñÝ ÇÝùÝÇÝ ÏÇë³¹³ë³Ï³Ý  ¿ ¹Çï³ñÏáõÙ

Ñ³Ù³Ï³ñ·Ç Ñ³ïÏáõÃÛáõÝÝ»ñÁ£ ê³ ë»ñïáñ»Ý Ï³åí³Í ¿ ·»ñÑáëáõÝáõÃÛ³Ý ï»ëáõÃÛ³Ý

Ñ»ï£ ØÇ¨ÝáõÛÝ Å³Ù³Ý³Ï, ´¾Î-Á áëõáÙÝ³ëÇñ»ÉÇë Ï³ñáÕ »Ý Ç Ñ³Ûï ·³É »ñ¨áõÛÃÝ»ñ,

áñáÝó Ñ³Ù³ñ ÏÇë³¹³ë³Ï³Ý ÝÏ³ñ³·³ñáõÃÛáõÝÁ µ³í³Ï³Ý ã¿£ ²ÛëåÇëÇ »ñ¨áõÛÃÝ»ñ

³ñ¹»Ý ¹Çïí»É »Ý µ³½Ù³Ùá¹ ´¾Î-Ç Ñ³Ù³ñ, Ù³ëÝ³íáñ³å»ë, ´¾Î-Á ûåïÇÏ³Ï³Ý

µÛáõñ»ÕáõÙ ùÝÝ³ñÏ»ÉÇë£

²Ûë ³ï»Ý³ËáëáõÃÛ³Ý Ù»ç Ù»Ýù ùÝÝ³ñÏáõÙ »Ýù »ñ¨áõÛÃÝ»ñ ¨ ýÇ½ÇÏ³Ï³Ý

Çñ³íÇ×³ÏÝ»ñ, áñï»Õ Éáõë³ÛÇÝ ¹³ßï»ñÝ »Ý ÏÇñ³éí³Í ë³é»óí³Í ³ïáÙ³Ï³Ý ·³½Ç ¨

´¾Î-Ç ùí³Ýïá-Ù»Ë³ÝÇÏ³Ï³Ý í³ñùÁ µ³ñÓñ ×ßïáõÃÛ³Ùµ Õ»Ï³í³ñ»Éáõ Ñ³Ù³ñ£ ²é³çÇÝ

·ÉáõËÝ»ñÁ í»ñ³µ»ñíáõÙ »Ý ë³éÁ ³ïáÙ³Ï³Ý ·³½ÇÝ, áñÇó Ñ»ïá Ù»Ýù ³Ý¹ñ³¹³éÝáõÙ »Ýù

µ³½Ù³Ù³ëÝÇÏ³ÛÇÝ Ñ³Ù³Ï³ñ·»ñÇÝ ÇÝãåÇëÇÝ ¿ ´¾Î-Á£

¶ÉáõË 2-áõÙ Ù»Ýù ùÝÝ³ñÏáõÙ »Ýù Ù³ëÝÇÏÇ íÇ×³ÏÇ å³ïñ³ëïÙ³Ý ¨

Õ»Ï³í³ñÙ³Ý ËÝ¹ÇñÁ Ã»ùí³Í ûåïÇÏ³Ï³Ý µÛáõñ»ÕáõÙ£ êáíáñ³µ³ñ, ûåïÇÏ³Ï³Ý

µÛáõñ»ÕÁ Ï³½ÙíáõÙ ¿ »ñÏáõ Ñ³Ï³¹Çñ í³½áÕ ³ÉÇùÝ»ñÁ Ñ³Ù³¹ñ»Éáí£ ²ÛÝ Çñ»ÝÇó

Ý»ñÏ³Û³óÝáõÙ ¿ åáï»ÝóÇ³É Ñáñ»ñÇ Ñ³çáñ¹³Ï³ÝáõÃÛáõÝ, áñï»Õ Ù³ëÝÇÏÝ»ñÁ Ï³ñáÕ »Ý

ÃáõÝ»É³ÛÇÝ ³ÝóÙ³Ùµ ³ÝóÝ»É ÙÇ ÑáñÇó ÙÛáõëÁ£ Â»ùí³Í ûåïÇÏ³Ï³Ý µÛáõñ»ÕÝ Çñ»ÝÇó

Ý»ñÏ³Û³óÝáõÙ ¿ ¹³ßï, áñï»Õ  ³ïáÙÇ ÝÏ³ïÙ³Ùµ µ³óÇ ûåïÇÏ³Ï³Ý µÛáõñ»ÕÇó Ý³¨

Ñ³Ù³ë»é áõÅ ¿ ÏÇñ³éí³Í£ Öß·ñïáñ»Ý ÉáõÍíáÕ Ùá¹»ÉÇ ÑÇÙ³Ý íñ³ óáõÛó ¿ ïñí³Í, áñ

Ù³ëÝÇÏÁ óáõó³µ»ñáõÙ ¿ Ñ³ñáõëï ¹ÇÝ³ÙÇÏ³, ¨ Ýñ³ ëÏ½µÝ³Ï³Ý íÇ×³ÏÁ í×éáñáß ¿

Ñ»ï³·³ í³ñùÇ Ñ³Ù³ñ£ úñÇÝ³Ï, »ñµ Ù³ëÝÇÏÁ ëÏ½µáõÙ Ï»ÝïñáÝ³ó³Í ¿ ûåïÇÏ³Ï³Ý

µÛáõñ»ÕÇ ÙÇ³ÛÝ Ù»Ï ÑáñáõÙ, ãÝ³Û³Í Ýñ³ íñ³ ³½¹áÕ áñáß³ÏÇ áõÕÕáõÃÛáõÝ áõÝ»óáÕ áõÅÇ,

Ù³ëÝÇÏÇ ÙÇçÇÝ Ïááñ¹ÇÝ³ïÁ ãÇ ÷áËíáõÙ, ¨ Ù³ëÝÇÏÁ Ñ»ï³·³ÛáõÙ Ï³ñáÕ ¿ ÙÇ³ÛÝ ë÷éí»É

µÛáõñ»Õáí Ù»Ï£ ºñµ ëÏ½µÝ³Ï³Ý íÇ×³ÏÁ Çñ»ÝÇó Ý»ñÏ³Û³óÝáõÙ ¿ ³Ûëå»ë Ïáãí³Í ´ÉáËÇ

íÇ×³Ï, áñÁ Ýß³Ý³ÏáõÙ ¿, Ã» Ù³ëÝÇÏÁ ëÏ½µáõÙ ë÷éí³Í ¿ ³ÙµáÕç µÛáõñ»Õáí ¨ ûÅïí³Í ¿

áñáß³ÏÇ ùáõ³½ÇÇÙåáõÉëáí, Ñ»ï³·³ÛáõÙ Ù³ëÝÇÏÁ óáõó³µ»ñáõÙ ¿ ´ÉáËÇ ï³ï³ÝáõÙÝ»ñ£

²Ûë »ñ¨áõÛÃÁ Çñ»ÝÇó Ý»ñÏ³Û³óÝáõÙ ¿ Ù³ëÝÇÏÇ ï³ï³ÝáõÙÝ»ñ ï³ñµ»ñ

ùáõ³½ÇÇÙåáõÉë³ÛÇÝ íÇ×³ÏÝ»ñÇ Ù»ç£ ºñ¨áõÛÃÁ Ï³ÝË³ï»ëí»É ¿ í³Õáõó, ¿É»ÏïñáÝÝ»ñÇ

Ñ³Ù³ñ µÛáõñ»ÕáõÙ ¨ ¹Çïí»É ¿ ÙÇ³ÛÝ ã»½áù ³ïáÙÝ»ñÇ Ñ³Ù³ñ ûåïÇÏ³Ï³Ý µÛáõñ»ÕáõÙ£

ÀÝ¹Ñ³Ýáõñ ¹»åùáõÙ Ï³ñ»ÉÇ ¿ ³ñ³ç³¹ñ»É å³ÛÙ³Ý, áñÁ µ³ó³ïñáõÙ ¨ µÝáñáßáõÙ ¿

Ù³ëÝÇÏÇ ß³ñÅÙ³Ý µÝáõÛÃÁ Ã»ùí³Í ûåïÇÏ³Ï³Ý µÛáõñ»ÕáõÙ£

¶ÉáõË 3-áõÙ Ù»Ýù ß³ñáõÝ³ÏáõÙ »Ýù ùÝÝ³ñÏ»É ³ïáÙÇ ÷áË³½¹»óáõÃÛáõÝÁ

å³ñµ»ñ³Ï³Ý åáï»ÝóÇ³ÉÇ Ñ»ï£ Æ ï³ñµ»ñáõÃÛáõÝ ¶ÉáõË 2-Ç, áñï»Õ Ù»Ï ·»ñí³Í ³ïáÙÇ

¹»åùÝ ¿ ¹Çï³ñÏíáõÙ, ³Ûëï»Õ Ù»Ýù ¹Çï³ñÏáõÙ »Ýù ³½³ï ³ïáÙ, áñÁ ÷áË³½¹áõÙ ¿

ï³ñ³Í³Ï³Ýáñ»Ý å³ñµ»ñ³Ï³Ý Éáõë³ÛÇÝ ÷ÝçÇ Ï³Ù Ï³Ý·áõÝ ³ÉÇùÇ Ñ»ï£ ÐÇÙÝ³Ï³Ý

ê³éÁ ³ïáÙÝ»ñÇ ¨ ´á½»-¾ÛÝßï»ÛÝÇ ÏáÝ¹»Ýë³ïÇ ÏáÑ»ñ»Ýï Õ»Ï³í³ñáõÙÁ Éáõë³ÛÇÝ ³ÉÇùÝ»ñáí
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³ñ¹ÛáõÝùÝ»ñÁ Ï³áÕ »Ý Ù»ÏÝ³µ³Ýí»É` ÑÇÙÝí»Éáí ¿Ý»ñ·Ç³ÛÇ ¨ ÇÙåáõÉëÇ å³Ñå³ÝÙ³Ý

ëÏ½µáõÝùÝ»ñÇ íñ³£ ºñµ ³ïáÙÁ ÷áË³½¹áõÙ ¿ Ñ³Ï³¹Çñ ï³ñ³ÍÙ³Ý áõÕÕáõÃÛ³Ùµ í³½áÕ

³ÉÇùÝ»ñÇ Ñ»ï, ³ÛÝ Ï³ñáÕ ¿ ÏÉ³Ý»É ýáïáÝ ÙÇ ³ÉÇùÇó ¨ ×³é³·³ÛÃ»É ÙÛáõëÇ Ù»ç£

²ÛëåÇëáí, ³ïáÙÁ Ï³ñáÕ ¿ Ó»éù µ»ñ»É Ù»Í ÇÙåáõÉë Ï³Ý·áõÝ ³ÉÇùÇ Ñ»ï ÷áË³½¹»Éáí£ ê³

Ñ³Ï³é³Ï ¿ ÙÇ í³½áÕ ³ÉÇùÇ Ñ»ï ÷áË³½¹»óáõÃÛ³Ý ¹»åùÇÝ, »ñµ ³ïáÙÇ ÇÙåáõÉëÇ

÷á÷áËáÃÛáõÝÁ ãÇ Ï³ñáÕ ·»ñ³½³Ýó»É ³é³ÝÓÇÝ ýáïáÝÇ ÇÙåáõÉëÁ£ ²ÛëåÇëáí, Ñ»ï³ùñùÇñ

ýÇ½ÇÏ³Ï³Ý Çñ³íÇ×³Ï ¿ ³é³ç³ÝáõÙ, »ñµ Ñ³ßíÇ ¿ ³éÝíáõÙ ³ïáÙÇ Ý»ñùÇÝ Ï³éáõóí³ÍùÁ,

³ÛÉ Ëáëù»ñáí, ¹Çï³ñÏáõÙ »Ýù Ùá¹»É³ÛÇÝ »ñÏÙ³Ï³ñ¹³Ï ³ïáÙ, áñÁ ÷áË³½¹áõÙ ¿ í³½áÕ

³ÉÇùÇ Ñ»ï£ ºÃ» ³ïáÙÁ ÙÇÝã ÷áË³½¹»óáõÃÛáõÝÁ ·ïÝíáõÙ ¿ »ÝÃ³Ù³Ï³ñ¹³ÏÝ»ñÇó áñ¨¿

Ù»ÏáõÙ, ³ñ¹ÛáõÝùÁ áñ³Ï³å»ë ÝáõÛÝÝ ¿, ÇÝã áñ Ý³Ëáñ¹ ¹»åùáõÙ£ àñ³Ï³å»ë ³ÛÉ

Çñ³íÇ×³Ï ¿ ³é³ç³ÝáõÙ, »ñµ ³ïáÙÁ Ý³Ë³å»ë ÙÇÝã¨ í³½áÕ ³ÉÇùÇ Ñ»ï ÷áË³½¹»ÉÁ

»ÝÃ³Ù³Ï³ñ¹³ÏÝ»ñÇ áñáß³ÏÇ ëáõå»ñåá½ÇóÇáÝ íÇ×³ÏáõÙ ¿£ ²Û¹åÇëÇ ëáõå»ñåá½ÇóÇáÝ

íÇ×³ÏáõÙ ³ïáÙÁ Ñ³ÛïÝíáõÙ ¿, »Ã» ³ÛÝ ÷áË³½¹áõÙ ¿ Ï³Ý·áõÝ ³ÉÇùÇ Ñ»ï£ Î³ñ»ÉÇ ¿ óáõÛó

ï³É, áñ ³Ûë ¹»åùáõÙ Ù³Ï³ñ¹³ÏÝ»ñÇ ÙÇç¨ ÷áË³Ýóí³Í ÇÙåáõÉëÁ ³í»ÉÇ Ù»Í ¿ ù³Ý

³é³ÝÓÇÝ ýáïáÝÇ ÇÙåáõÉëÁ£ ²ÛëåÇáí, ÙÇ ýáïáÝ³ÝÇ åñáó»ëÁ, áñåÇëÇÝ Ï³ñ»ÉÇ ¿ ¹Çï»É

³ïáÙÇ ÷áË³½¹»óáõÃÛáõÝÁ í³½áÕ ³ÉÇùÇ Ñ»ï, ³é³ç³óÝáõÙ ¿ ³ïáÙÇ ÇÙåáõÉëÇ

÷á÷áËáõÃÛáõÝ, ¨ ÷á÷áËáõÃÛ³Ý ã³÷Á ß³ï ³Ý·³Ù Ï³ñáÕ ¿ ·»ñ³½³Ýó»É ³é³ÝÓÇÝ

ýáïáÝÇ ÇÙåáõÉëÁ£ ²é³ç³ñÏíáõÙ ¿ Ý³¨ »ñ¨áõÛÃÇ åñ³ÏïÇÏ ÏÇñ³éáõÃÛáõÝÁ. ³ïáÙÇª

Ï³Ý·áõÝ ³ÉÇùÇ íñ³ óñÙ³Ý å³ïÏ»ñÁ Ï³ñ»ÉÇ ¿ Õ»Ï³í³ñ»ÉÇ Ó¨áí ÷á÷áË»Éª ÏÇñ³é»Éáí

Ï³Ý·áõÝ ³ÉÇù+í³½áÕ ³ÉÇù Ñ³çáñ¹³Ï³ÝáõÃÛáõÝÁ ¨ ÁÝïñ»Éáí Ï³Ý·áõÝ áõ í³½áÕ ³ÉÇùÇ

Ñ»ï ÷áË³½¹»óáõÃÛ³Ý ÷áõÉ»ñÇ ï¨áÕáõÃÛáõÝÁ£

ºÃ» ÷áË³½¹»óáõÃÛáõÝÁ Ñ³ÏáõÕÕí³Í í³½áÕ ³ÉÇùÝ»ñÇ Ñ»ï µ»ñáõÙ ¿ ³ïáÙÇ

ÇÙåáõÉëÇ ÷á÷áËáõÃÛ³ÝÁ, ³å³ ÷áË³½¹»óáõÃÛáõÝÁ Ñ³Ï³é³Ï åïáõÛïÇ áõÕÕáõÃáõÝ

áõÝ»óáÕ È³·»ñ-¶³áõëÇ (È¶) ³ÉÇùÝ»ñÇ Ñ»ï µ»ñáõÙ ¿ Ýñ³Ý, áñ ³ïáÙÇ åïï³Ï³Ý

ÇÙåáõÉëÁ (ÇÙåáõÉë, áñÁ Ï³åí³Í ¿ ³½ÇÙáõï³ÛÇÝ ³ÝÏÛ³Ý Ñ»ï)  Ï³ñáÕ ¿ ½·³ÉÇ ³×»É£ ²Ûë

»ñ¨áõÛÃÁ Ï³åí³Í ¿ È¶  ³ÉÇùÝ»ñÇª áñáß³ÏÇ åïï³Ï³Ý ÇÙåáõÉëáí ûÅïí³Í ÉÇÝ»Éáõ

Ñ³ïÏáõÃÛ³Ý Ñ»ï£ ê³ Ù³Ýñ³Ù³ëÝ ùÝÝ³ñÏí³Í ¿ ¶ÉáõË 4-áõÙ, áñï»Õ  ¹Çï³ñÏáõÙ »Ýù

³ïáÙÇ ÷áË³½¹»óáõÃÛáõÝÁ Ñ³Ï³é³Ï åïï³Ï³Ý áõÕÕáõÃÛ³Ùµ È¶ Éáõë³ÛÇÝ ³ÉÇùÝ»ñÇ

Ñ»ï£ ²Ûë ³ÉÇùÝ»ñÁ ëï»ÕÍáõÙ »Ý ûåïÇÏ³Ï³Ý ßñç³Ý³ÛÇÝ ¹³ë³íáñí³Í µÛáõñ»Õ, áñÝ

Ï³ñáÕ ¿ Ý³¨ Ïáãí»É Ï³Ý·áõÝ ³ÉÇù ³½ÇÙáõï³ÛÇÝ ³ÝÏÛ³Ý  ÝÏ³ïÙ³Ùµ£ ²ÛëåÇëÇ

ßñç³Ý³ÛÇÝ µÛáõñ»ÕÁ ÙÇ ß³ñù ëÏ½µáõÝù³ÛÇÝ ³é³í»ÉáõÃÛáõÝÝ»ñ áõÝÇ ëáíáñ³Ï³Ý  ·Í³ÛÇÝ

µÛáõñ»ÕÇ ÝÏ³ïÙ³Ùµ£  úñÇÝ³Ï, »ñµ ³ÛÝ ³½¹áõÙ ¿ ³ÝÏÛáõÝ³ÛÇÝ Ý»Õ ë»·Ù»ÝïÇ íñ³

Ï»ÝïñáÝ³ó³Í ³ïáÙ³Ï³Ý ³ÉÇù³ÛÇÝ ÷³Ã»ÃÇ íñ³, ÷³Ã»ÃÁ ïñáÑíáõÙ ¿ Ñ³Ï³é³Ï

åïïÙ³Ý áõÕÕõÃÛ³Ùµ ³ÉÇùÝ»ñÇ£ ºÃ» ³Û¹åÇëÇ ³ïáÙÁ ·ïÝíáõÙ ¿ ·É³Ý³ÛÇÝ ëÇÙ»ïñÇ³

ê³éÁ ³ïáÙÝ»ñÇ ¨ ´á½»-¾ÛÝßï»ÛÝÇ ÏáÝ¹»Ýë³ïÇ ÏáÑ»ñ»Ýï Õ»Ï³í³ñáõÙÁ Éáõë³ÛÇÝ ³ÉÇùÝ»ñáí



108

áõÝ»óáÕ åáï»ÝóÇ³É ÑáñáõÙ, Ñ³Ï³é³Ï åïïíáÕ ÷³Ã»ÃÝ»ñÁ Ñ³ïíáõÙ »Ý ¨ Ï³ñ»ÉÇ ¿

·ñ³Ýó»É Ýñ³Ýó í»ñ³¹ñÙ³Ý ÇÝï»ñý»ñ»ÝóÇáÝ å³ïÏ»ñÁ£ ²ÛëåÇëáí, Ñ³Ï³é³Ï åïïíáÕ

³ïáÙ³Ï³Ý ÷Ýç»ñÁ Çñ³ñ í»ñ³¹ñíáõÙ »Ý ³é³Ýó Éñ³óáõóÇã Ñ³Û»ÉÇ Ñ³Ý¹Çë³óáÕ ¹³ßïÇ,

áñÁ ÙÇßï ³éÏ³ ¿ ³ïáÙ³Ï³Ý ÇÝï»ñý»ñáÙ»ïñ»ñáõÙ ¨ ÏÇñ³éíáõÙ ¿ ³ïáÙ³Ï³Ý ÷Ýç»ñÇ

áÕÕõÃÛáõÝÁ ßñç»Éáõ áõ Ýñ³Ýó Ñ»ï³·³ í»ñ³¹ñáõÙÁ ³å³Ñáí»Éáõ Ñ³Ù³ñ£ ²Ûë »ñõáõÛÃÁ

Ï³ñáÕ ¿ ÏÇñ³éí»É ëÏ½µáõÝùáñ»Ý Ýáñ ³ïáÙ³ÛÇÝ ÇÝï»ñý»ñáÙ»ïñ»ñ Ï³éáõó»Éáõ Ñ³Ù³ñ,

áñï»Õ ÁÝ¹Ñ³Ýñ³å»ë Ñ³Û»ÉÇÝ»ñ ã»Ý û·ï³·áñÍíáõÙ£ 

êÏë³Í ¶ÉáõË 5-Çóª Ù»Ýù ùÝÝ³ñÏáõÙ »Ýù µ³½Ù³Ùá¹ ´¾Î-Ý»ñ£ àñå»ë »ñÏÙá¹

Ùá¹»É³ÛÇÝ Ñ³Ù³Ï³ñ·ª ¹Çï³ñÏáõÙ »Ýù ´¾Î, áñÁ ·»ñí³Í ¿ ÏñÏÝ³ÏÇ åáï»ÝóÇ³É ÑáñáõÙ£

Ø»ñ Ùáï»óáõÙÁ ÑÇÙÝí³Í ¿ ³Û¹åÇëÇ ÑáñáõÙ ÏáÝ¹»Ýë³ïÇ í³ñùÇ ¨ Ï³Ý·áõÝ ³ÉÇùÇ íñ³

³ïáÙÝ»ñÇ óñÙ³Ý ÙÇç¨ Ñ³Ù³ÝÙ³ÝáõÃÛ³Ý íñ³£ Ð³Ù³å³ï³ëË³Ý Ñ³ÙÇÉïáÝÇ³ÝÝ»ñÁ

áõÝ»Ý ÙÇõÝáõÛÝ ï»ëùÁ, ÙÇ³ÛÝ µÝáõÃ³·ñíáõÙ »Ý ï³ñµ»ñ ÏáÙáõï³óÇáÝ ³éÁÝãáõÃÛáõÝÝ»ñáí£

²ïáÙÇ ¹Çýñ³ÏóÇ³ÛÇ ËÝ¹ñÇó Ñ³ÛïÝÇ »Ý ÙÇ ß³ñù »ñ¨áõÛÃÝ»ñ, ÇÝãåÇëÇÝ »Ý,

ûñÇÝ³Ï, ä»Ý¹»ÉáëáõÝ· ï³ï³ÝáõÙÝ»ñÁ, áñáÝù Í³·áõÙ »Ý ´ñ»·Ç ¨ ³¹Ç³µ³ïáñ»Ý

ÙÇ³óí³Í Ï³Ý·áõÝ ³ÉÇùÇ íñ³ óñÙ³Ý ¹»åùáõÙ£ ²Û¹ »ñ¨áõÛÃÝ»ñÁ Ñ³Ù³å³ï³ëË³ÝáõÙ »Ý

Ñ³Ù³ÝÙ³Ý »ñ¨áõÛÃÝ»ñÇÝ ÏñÏÝ³ÏÇ ÑáñáõÙ ÏáÝ¹»Ýë³ïÇ Ñ³Ù³ñ ÙÇ ³ÛÝåÇëÇ é»ÅÇÙáõÙ,

»ñµ Ñáñ»ñÇ ÙÇç¨ ÃáõÝ»É³ÛÇÝ ³ÝóÙ³Ý ·áñÍ³ÏÇóÁ ÷áùñ ¿ ³ïáÙÝ»ñÇ ÙÇç¨

÷áË³½¹»óáõÃÛ³Ý Ñ³ëï³ïáõÝÇ ÝÏ³ïÙ³Ùµ Ï³Ù Ñáñ»ñÇ ÙÇç¨ ³ñ·»ÉùÁ ³¹Ç³µ³ïáñ»Ý

¹³Ý¹³Õ ¿ ÙÇ³óíáõÙ£ ºñ¨áõÃÝ»ñÝ Ç Ñ³Ûï »Ý ·³ÉÇë, »ñµ ëÏ½µÝ³Ï³Ý å³ÑÇÝ ³ç ¨ Ó³Ë

Ñáñ»ñáõÙ å³ñáõÝ³ÏíáÕ Ù³ëÝÇÏÝ»ñÇ ÃÇíÁ  ½·³ÉÇáñ»Ý ï³ñµ»ñ ¿£ ÎáÝ¹»Ýë³ïÇ Ñ³Ù³ñ

Ýßí³Í »ñ¨áõÃÝ»ñÁ ³ñï³Ñ³ÛïíáõÙ »Ý Ýñ³ÝáõÙ, áñ ³ç ¨ Ó³Ë Ñáñ»ñáõÙ å³ñáõÝ³ÏíáÕ

Ù³ëÝÇÏÝ»ñÇ ÃíÇ ï³ñµ»ñáõÃÛáõÝÁ ûëóÇÉ³óíáõÙ ¿ ÙÇ ÑáñÇó ÙÛáõëÁ£

Ð³çáñ¹, 6-ñ¹ ·ÉËáõÙ Ù»Ýù ß³ñáõÝ³ÏáõÙ »Ýù áõëáõÙÝ³ëÇñ»É »ñÏÑáñ

åáï»ÝóÇ³ÉáõÙ ´¾Î-Ç í³ñùÁ£  ºñµ ÏáÝ¹»Ýë³ïÁ  Ï³½ÙáÕ ³ïáÙÝ»ñÇ ÙÇç¨

÷áË³½¹»óáõÃÛáõÝÁ áõÅ»Õ ¿, Ñ³Ù³Ï³ñ·Á óáõó³µ»ñáõÙ ¿ áõÅ»Õ é»½áÝ³ÝëÝ»ñ, Ñ»ïõ³µ³ñ

³ÛÝ ß³ï ½·³ÛáõÝ ¿ ³ñï³ùÇÝ å³ñµ»ñ³Ï³Ý ·ñ·éáõÙÝ»ñÇ ÝÏ³ïÙ³Ùµ£ ä³ñ½ ¿, áñ

é»½áÝ³Ýë»ñÇ Ùáï³Ï³ÛùáõÙ (»ñµ ³ñï³ùÇÝ å³ñµ»ñ³Ï³Ý ·ñ·éÙ³Ý ³Û¹

Ñ³×³Ë³Ï³ÝáõÃÛáõÝÁ Ùáï ¿ Ñ³Ù³Ï³ñ·Ç ë»÷³Ï³Ý é»½áÝ³Ýë³ÛÇÝ

Ñ³×³Ë³Ï³ÝáõÃÛáõÝÝ»ñÇó áñ¨¿ Ù»ÏÇÝ), Ñ³Ù³Ï³ñ·Ç í³ñùÁ ½·³ÉÇáñ»Ý  Ï³Ëí³Í ¿

·ñ·éÙ³Ý Ñ³×³Ë³Ï³ÝáõÃÛáõÝÇó£ ²ñï³ùÇÝ å³ñµ»ñ³Ï³Ý ·ñ·éáõÙÁ ÁÝ¹·ñÏáõÙ »Ýù

»ñÏÑáñ ·»ñáÕ åáï»ÝóÇ³ÉÇ ï»ëùÁ å³ñµ»ñ³Ï³Ýáñ»Ý ÷áË»Éáí£ êÏ½µáõÝùáñ»Ý, ÙÇ ù³ÝÇ

é»ÅÇÙÝ»ñ Ï³ñáÕ »Ý ¹Çïí»É£ ºñÏáõ Ù³Ï³ñ¹³ÏÝ»ñÇ ÙÇç¨ Ï³ñáÕ ¿ Í³·»É é»½áÝ³Ýë, áñÁ

Ñ³Ù³å³ï³ëË³ÝáõÙ ¿ ³ÛÝ å³ñ½ ¹»åùÇÝ, »ñµ Ù»Ï ³é³ÝÓÇÝ ³ïáÙ ï³ï³ÝíáõÙ ¿

Ñáñ»ñÇ ÙÇç¨£ ØÇ¨ÝáõÛÝ Å³Ù³Ý³Ï, µ³½Ù³Ù³ëÝÇÏ³ÛÇÝ é»½áÝ³ÝëÝ»ñ »Ý ÑÝ³ñ³íáñ, »ñµ
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ÙÇ ù³ÝÇ íÇ×³ÏÝ»ñ é»½áÝ³Ýë³ÛÇÝ Ó¨áí Ï³åí³Í »Ý, ¨ Ù»ÏÇó ³í»ÉÇ ³ïáÙÝ»ñ »Ý

é»½áÝ³Ýë³ÛÇÝ Ó¨áí ³ÝóÝáõÙ ÙÇ ÑáñÇó ÙÛáõëÁ£ ú·ï³·áñÍ»Éáí ³Û¹åÇëÇ é»½áÝ³ÝëÝ»ñÁª

Ï³ñ»ÉÇ ¿ Õ»Ï³í³ñ»ÉÇ Ó¨áí ÷áË»É Ù³ëÝÇÏÝ»ñÇ ÙÇçÇÝ ÃÇíÁ Ñáñ»ñáõÙª ÷á÷áË»Éáí ËÝ¹ñÇ

Ñ³Ù³ñ ¿³Ï³Ý Ñ³Ý¹Çë³óáÕ å³ñ³Ù»ïñ»ñÁ, ÇÝãåÇëÇù »Ý å³ñµ»ñ³Ï³Ý ·ñ·éÙ³Ý

Ñ³×³Ë³Ï³ÝáõÃÛáõÝÁ, ÏñÏÝ³ÏÇ ÑáñÇ ï»ëùÁ ¨ ³ÛÉÝ£ ÎÇñ³éáõÃÛ³Ý ï»ë³Ï»ïÇó

Ñ»ï³ùñùÇñ ¿ ³ÛÝ ÷³ëïÁ, áñ é»½áÝ³ëÝ»ñÇÝ Ùáï ÃáõÝ»É³ÛÇÝ ³ÝóÙ³Ùµ ÙÇ ÑáñÇó ÙÛáõëÁ

³ÝóÝáÕ Ù³ëÝÇÏÝ»ñÇ ÃÇíÁ ½·³ÉÇ ³×áõÙ ¿£ ÎñÏÝ³ÏÇ ÑáñÇ Ñ³Ù³ñ ¹áõñë µ»ñí³Í ÙÇ ß³ñù

é»½áÝ³Ýë³ÛÇÝ ¿ýý»ÏïÝ»ñÁ Ï³ñ»ÉÇ ¿ ÁÝ¹Ñ³Ýñ³óÝ»É µ³½Ù³Ùá¹ Ñ³Ù³Ï³ñ·Ç Ñ³Ù³ñ,

ÇÝãåÇëÇÝ ¿, ûñÇÝ³Ï, ûåïÇÏ³Ï³Ý µÛáõñ»ÕÁ£

Ð³çáñ¹ ¨ í»ñçÇÝ ·ÉËáõÙ Ù»Ýù ¹Çï³ñÏáõÙ »Ýù µ³½Ù³Ùá¹ ´¾Î-Ç Ùá¹»ñÇ ÙÇç¨

Ñ³ñ³µ»ñ³Ï³Ý ÷áõÉÇ Ñ³ëï³ïÙ³Ý Ñ³ñóÁ£ Øá¹»ñÇ ÙÇç¨ Ñ³ñ³µ»ñ³Ï³Ý ÷áõÉÁ ã³÷»Éáõ

Ñ³Ù³ñ ¹Çï³ñÏíáõÙ ¿ Ùá¹»ñÇó ×³ñ³·³ÛÃíáÕ Ù³ëÝÇÏÝ»ñÇ ÇÝï»ñý»ñ»óÇáÝ å³ïÏ»ñÁ£

ÆÝï»ñý»ñ»ÝóÇáÝ å³ïÏ»ñÁ Ï³ñ»ÉÇ ¿ Ùá¹»É³íáñ»É ·ñ³Ýó»Éáí Ù³ëÝÇÏÝ»ñÁ ³Ûëå»ë

Ïáãí³Í ¦³ÉÇù³ÛÇÝ µ³Å³Ý³ñ³ñ§-Ç ÙÇçáóáí, áñï»Õ Ù³ëÝÇÏÝ»ñÁ Ñ³í³ùíáõÙ »Ý »ñÏáõ

Ùáõïù»ñáõÙ ¨ Ñ»ï³·³ÛáõÙ ·ñ³ÝóíáõÙ »Ý »ñÏáõ »Éù»ñáõÙ£

øÝÝ³ñÏáõÙÁ ëÏëáõÙ »Ýù »ñÏÙá¹ Ñ³Ù³Ï³ñ· ¹Çï³ñÏ»Éáõó, áñï»Õ ×³é³·³ÛÃí³Í

Ù³ëÝÇÏÝ»ñÁ ·ñ³ÝóíáõÙ »Ý »ñÏáõ Çñ³ñÇó ï³ñµ»ñ ³ÉÇù³ÛÇÝ µ³Å³Ý³ñ³ñÝ»ñáí£ ÊÝ¹ñÇ

Ñ»ï³ñùñáõÃÛáõÝÁ Ï³Û³ÝáõÙ ¿ Ýñ³ÝáõÙ, áñ Ñ³ïÏáõÃÛáõÝÝ»ñáí ï³ñµ»ñ µ³Å³Ý³ñ³ñÝ»ñÇó

³Ù»Ý Ù»ÏÁ ³é³ÝÓÇÝ, »Ã» ÙÛáõëÁ µ³ó³Ï³ÛáõÙ ¿, åñáÛ»ÏïáõÙ ¿ Ñ³ñ³µ»ñ³Ï³Ý ÷áõÉÁ ÙÇ

áñáß³ÏÇ ³ñÅ»ùÇ, áñÁ áñáßíáõÙ ¿ ÙÇ³ÛÝ µ³Å³Ý³ñÇ Ñ³ïÏáõÃÛáõÝÝ»ñáí£ ²ÛëåÇëáí,

ï³ñµ»ñ µ³Å³Ý³ñ³ñÝ»ñÇ ·áÛáõÃÛáõÝÁ Ï³ñáÕ ¿ µ»ñ»É ³ÝÑ³Ù³ï»Õ»ÉÇ Ñ³ñ³µ»ñ³Ï³Ý

÷áõÉ»ñÇ£ ÜÙ³Ý Çñ³íÇ×³Ï, »ñµ ³ÝÑ³Ù³ï»Õ»ÉÇ ÷áõÉ»ñ Ï³ñáÕ »Ý Í³·»É, ³é³ç³ÝáõÙ ¿

µ³½Ù³Ùá¹ Ñ³Ù³Ï³ñ·áõÙ, áñï»Õ Ùá¹»ñÁ ¹³ë³íáñí³Í »Ý ßñç³Ý³Ó¨£ Ð³Ù³Ï³ñ·Ç

í³ñùÁ ùÝÝ³ñÏáõÙ »Ýù Áëï µ³Å³Ý³ñ³ñÇ »Éù»ñáõÙ Ù³ëÝÇÏÝ»ñÇ ·ñ³ÝóÙ³Ý å³ïÙáõÃÛ³Ý

¨ ÁÝïñáõÙ »Ýù ³ÛÝ å³ïÙáõÃÛáõÝÁ, áñÁ ³é³í»É Ñ³í³Ý³Ï³Ý ¿£ Àëï Ù»ñ Ùá¹»ÉÇª

Ñ³ñ³µ»ñ³Ï³Ý ÷áõÉÁ Ñ³í³ë³ñ Ñ³í³Ý³Ï³ÝáõÃÛ³Ùµ Ï³ñáÕ ¿ ½áõ·³ÙÇï»É

µ³Å³Ý³ñ³ñÇ Ñ³ïÏáõÃÛáõÝÝ»ñáí áñáßíáÕ ³ÝÑ³Ù³ï»Õ»ÉÇ ÷áõÉ»ñÇó áñ¨¿ Ù»ÏÇÝ£

ØÇ¨ÝáõÛÝ Å³Ù³Ý³Ï óáõÛó ¿ ïñí³Í, áñ Ñ³ñ³µ»ñ³Ï³Ý ÷áõÉÇ ½áõ·³ÙÇï»ÉÁ Ï³Ëí³Í ¿

·ñ³ÝóáÕ ë³ñùÇó£ Î³ñ»ÉÇ ¿ Ùá¹»É³íáñ»É Çñ³íÇ×³Ï Ï³Ù ÁÝïñ»É ³ÛÝåÇëÇ ·ñ³ÝóáÕ ë³ñù,

»ñµ Ñ³ñ³µ»ñ³Ï³Ý ÷áõÉÁ ãÇ ½áõ·³ÙÇïáõÙ áñ¨¿ ³ñÅ»ùÇ, ¨ ÷áõÉ³ÛÇÝ µ³ßËÙ³Ý

Ù³ùëÇÙáõÙÁ ÷áËíáõÙ ¿ Å³Ù³Ý³ÏÇ ÁÝÃ³óùáõÙ£

ê³éÁ ³ïáÙÝ»ñÇ ¨ ´á½»-¾ÛÝßï»ÛÝÇ ÏáÝ¹»Ýë³ïÇ ÏáÑ»ñ»Ýï Õ»Ï³í³ñáõÙÁ Éáõë³ÛÇÝ ³ÉÇùÝ»ñáí
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