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Chapter 1

Introduction

Quantum noise is due to the discrete nature of the energy-carrying particles. In lasers, this
noise source takes the form of spontaneous emission photons, whose random nature causes
both phase and intensity fluctuations. Although these fluctuations are relatively small, the
near absence of thermal noise in lasers makes quantum noise the primary source of intensity
noise as well as phase noise (this phase noise sets the Schawlow-Townes frequency linewidth
of the emitted light). The weakness of the thermal noise is due to the low frequency nature
of thermal radiation as compared to the oscillation frequencies of common lasers. As given
by Planck’s law, the number of thermal photons in each mode 1/(ehν/kT − 1) becomes very
small once kT drops below hν; conversely, there is always one quantum noise photon in
a laser mode. This is a fundamental noise limit that cannot be removed by cooling or by
vibrational stabilisation such as in the case of thermal or vibrational noise. However, since
the number of noise photons is always equal to one, its effect will depend on the total number
of photons in the cavity and hence the laser size. As a result, small lasers show a tendency
towards more fluctuations.

In this thesis we address the effects of quantum noise on lasers with slow inversion decay.
These lasers are known as class B lasers and they show very different dynamic properties from
class A lasers. While the latter laser class has inversion decay rates that are fast enough to be
adiabatically eliminated, the relatively slow inversion of class B lasers allows for quantum-
noise-driven relaxation oscillations. These oscillations become particularly extreme in the
case of very small lasers because of the increased effect of quantum noise (see also chapter 2).
Interestingly, owing to the continuing trend of miniaturisation in optoelectronics, these small
devices are becoming more and more commonplace. We will therefore focus on quantum
noise in these extreme class B lasers where the fluctuations can be as large as the average
intensity (see chapter 4).

The class B laser class is probably the largest of the laser classes. One typical example
of this group, namely the semiconductor laser, is found in all kinds of devices from commu-
nication systems to sensing applications. In such applications, the presence of noise can be
highly adverse since it reduces the attainable data transfer rate or the sensitivity of spectro-
scopic measurements. To counteract these effects, a good understanding of class B dynamics
may be critical.

To study class B lasers, we have chosen to use Nd3+:YVO4 (Neodymium doped Yttrium
Vanadate) crystals for use as gain medium. These crystals lend themselves well to very small
systems because of their large absorption cross-section at the pump wavelength so that small
crystals can furnish relatively large gain, even when pumped with low power pumps. In
addition, at 77 µs (see chapter 3), the upper level decay rate of Nd3+:YVO4 is extremely
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4

slow as compared to the decay rate in semiconductor lasers, which is typically 1 ns. This
makes it relatively easy to use Nd3+:YVO4 crystals to build lasers with the desired class B
properties. From an instrumental point of view, another advantage is that the slow dynamics
of the system simplifies the experiment greatly when compared, for instance, to the case of a
semiconductor laser.

To put this thesis into context, all the work described here was conducted in the Quantum
Optics group at Leiden University. The group has been involved with quantum noise for a
number of years but most of the work has been concentrated on the phase diffusion of laser
light. This thesis, on the other hand, only concerns itself with the intensity noise.

Several of this thesis’ chapters correspond to independently published articles, which
although written as separate entities, are presented here as parts of a whole. As a consequence,
some aspects will be repeated in several of the chapters.

Chapter 2 gives a brief discussion of the quantum noise and its effect on lasers with slow
inversion (class B lasers). We will introduce the rate equations and link them to the relaxation
oscillations.

Chapter 3 will introduce the reader to the properties of the Nd3+:YVO4 laser. In particu-
lar, we will focus on heating and birefringence properties as well as absorption and emission.

In Chapter 4 we consider the definition of a laser threshold and we show how the slow
inversion decay of the Nd3+:YVO4 laser can lead to some surprising threshold characteristics
which are usually only seen in microlasers with a few modes. While laser output does still
show a sudden increase at threshold, the output remains very noisy for a laser of its size. The
starting point for our analysis is the rate equations, which we linearise to produce a simple
but powerful model of the dynamics.

Chapter 5 examines the photon statistics of a slow-inversion laser. Because of its noisy
behaviour, such a laser display quite different statistics from its more quiet class A laser
counterpart with fast inversion decay. Our experimental data is compared with a model based
on the Toda oscillator that is intrinsically nonlinear.

Chapter 6 makes use of the Toda oscillator model to go beyond the framework of linear-
isation of chapter 4 to study such properties as the anharmonicity of the relaxation oscillations
and the effect of the oscillation amplitude on the oscillation frequency.

Chapter 7 pertains to a slightly different subject, namely the gain and index guiding in a
Nd3+:YVO4 chip. We will focus on the case where the two guiding effects become equally
large. Intriguingly, this guiding can give rise to a far field modal profile that has zero intensity
in the middle and a near-Gaussian shape in the near field. This is in contrast to “normal”
Gaussian modes, which are similar in the far and near fields. The experimental configuration
described in this chapter is commonly found in commercial solid state systems.

Chapter 8 discusses the consequences of mixed guiding on the noise properties. Here we
observe large increases in intensity fluctuations when tuning the laser towards mode cross-
ings. A related increase in relaxation oscillation damping shows that this is due to excess
noise.



Chapter 2

Laser quantum noise

Fluctuations in the emitted light of lasers is caused by spontaneous emission photons,
a form of quantum noise. Here, we review the quantum noise concept and its effect on the
various laser classes. Our focus is on lasers with strong class B properties, whose display
of strong relaxation-oscillation behaviour is directly linked to their slow inversion decay.

2.1 Introduction
Quantum noise is present in all lasers, but its effect is largest in lasers with small cavities.
This is due to the fact that there is on average exactly one spontaneous emission photon in
the lasing mode above threshold, independent of laser size (this photon is often known as
the “extra photon” since it is the only photon emitted through spontaneous emission [1]). To
compare, the number of stimulated emission photons n in the laser increases with size:

n =
1

2β

[

(M − 1) +

√

(M − 1)2 + 4βM

]

, (2.1)

where M is the pump intensity normalised by the threshold value. The fraction of spon-
taneous emission going into the lasing mode, β, is the inverse of the number of spontaneous
emission modes p. The connection to size is straightforward as p is proportional to the volume
of the laser cavity [2].

Spontaneous emission affects the phase as well as the intensity of the laser since the
spontaneously emitted photons do not have the same phase as the photons in the lasing mode.
Figure 2.1 shows a vector diagram with the optical electric field of the laser. While any per-
turbation tangential to the circle perturbs the phase of the intra-cavity field, the perturbations
normal to the circle affects the intensity. Because the laser dynamics are independent of the
optical phase, this phase will perform an undamped random walk around the circle in Fig.
2.1, (resulting in the Schawlow-Townes linewidth). The intensity perturbations, however, are
driven back to equilibrium, giving rise to relaxation oscillations in the case of weak damping.
In this thesis we concentrate on the intensity fluctuations.

2.2 The laser classes
It is often convenient to group the various lasers into different classes, where each set has a
few properties in common [3, 4]. In lasers, the defining characteristics of a laser class are
usually the relative sizes of the following decay rates: the decay of the upper lasing level γ1,
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12

Im E(t)

Re E(t)

n

θ

Figure 2.1: Figure showing the effect of spontaneous emission on the optical field. As
indicated by the small arrows and the circle, spontaneous emission leads to a perturbation
of one unit in any direction. In these units the amplitude of the optical field is

√
n, while θ

is the phase.

the decay of the atomic polarisation γ⊥, and the cavity decay rate Γc (note that, as discussed
in section 3.2, this naming convention tends to differ between articles and publications). In
both class A and class B lasers, γ⊥ is much faster than the other cavity parameters like the
cavity decay rate, and the atomic polarisation can therefore be adiabatically eliminated. This
is the good cavity approximation. In class A lasers also the inversion can be adiabatically
eliminated so that the dynamics can be formulated in terms of the photon number only [3].
Class B lasers, on the other hand, have photon and inversion numbers that couple to give
rise to relaxation oscillations. In addition to class A and class B lasers, more exotic lasers
such as the class C laser exists. In this type of laser, all three parameters γ1, γ⊥ and Γc are
approximately equally large, allowing for very complex or even chaotic behaviour [4].

2.3 Rate equations and relaxation oscillations
As mentioned above, quantum noise leads to relaxation oscillations in class B lasers. These
oscillations are described using the laser intensity rate equations to which a few approxima-
tions have been applied. One (very good) assumption is that the laser is operated in the good
cavity regime. Another assumption is that the laser medium (Nd3+:YVO4 in our case) is a
perfect four-level medium; in this case the lower level population can be neglected. The rate
equations are now written as

ṅ = −Γcn + βγ1Nn + Nβγ1 + fn, (2.2a)

Ṅ = P − γ1N − βγ1Nn, (2.2b)

where n is the intra-cavity photon number, N is the inversion and P is the pump rate. β
is the fraction of spontaneous emission that goes into the lasing mode. Both Γc and γ1 are
defined above. The term fn in Eq. 2.2a satisfies 〈fn(t)fn(t′)〉 = 2βγ1Nnδ(t − t′) in the
Langevin description of the quantum noise. The inversion noise source fN can be assumed
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to be negligible because of the low frequency of this noise contribution [5]. Note that in class
A lasers, the adiabatic elimination sets the inversion term Ṅ equal to zero.

It is the coupling of the two rate equations 2.2a and 2.2b that gives rise to relaxation oscil-
lations. To find the rate of these oscillations, the photon number and inversion are rewritten
in terms of the deviation from the steady state values n0 and N0 (these values are both found
by setting ṅ and Ṅ equal to zero, while N0 = (Γcn0)/(βγ1(n0 + 1)), n0 is defined by Eq.
2.1, i.e. n = n0 + δn and N = N0 + δN . Thus when linearising about steady state,

δ̇n = −γnδn + γ1β(n0 + 1)δN + fn, (2.3a)

δ̇N = −γ1N0βδn − γNδN, (2.3b)

where γN = γ1(1+βn0) is known as the inversion damping. It is noteworthy that the photon
damping γn = Γc/(n0 +1) has its origin in the spontaneous emission, which is, as described
above, also the driving force of the relaxation oscillations. Usually this damping is quite weak
above threshold, but in the case of very slow inversion decay, its impact will nevertheless be
significant due to the weakness of the inversion damping.

Using the linearised rate equations of Eq. 2.3 we obtain the noise spectrum by performing
a Fourier transform on the two equations and by inverting the resulting matrix,

〈δn2(ω)〉 =
2(ω2 + γ2

N )Nβγ1n0

(ω2
ro + γnγN − ω2)2 + 4ω2γ2

ro

, (2.4)

where 〈δn2(ω)〉 is the double-sided spectral density of the intensity fluctuations; γro and
ωro are the decay and oscillation rates of the relaxation oscillations respectively. For a more
thorough discussion, see chapter 4.

2.4 Extreme class B lasers
Even though relaxation oscillations are observed in all class B lasers, they are usually weak
as the oscillation damping tends to be strong. However, once lasers are made smaller, the
fraction of spontaneous emission into the lasing mode β increases and the laser soon reaches
the limit

γ1 . Γcβ, (2.5)

where the inversion damping rate becomes as weak as the typical photon damping rate, al-
lowing for very deep anharmonic oscillations (this is discussed in chapters 3-6).

Another interesting aspect of this regime are the threshold characteristics. In most lasers
the threshold is very clearly defined as the point where output power increases sharply with
an accompanying sharp drop in the noise levels. This bears some similarities to the very
smallest cavities with only a few modes (our lasers in comparison have approximately 105

modes) where the threshold is ill-defined both intensity- and noise-wise. In extreme class B
lasers however, we do see the clear intensity threshold but the noise remains very high until
far above threshold. This is discussed in more detail in chapter 4.

It is the dynamics of these extreme class B lasers that is the main theme of this thesis. In
the following chapters we will not only discuss the effect of slow inversion decay, but also
the generation of excess quantum noise in Nd3+:YVO4 lasers.
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Chapter 3

Nd3+:YVO4 characteristics

The very slow upper level decay rate and the large absorption cross-section of neo-
dymium vanadate (Nd3+:YVO4 ) make it ideal for the study of small class B lasers.
Here, the characteristics of the Nd3+:YVO4 crystal will be investigated; we focus on the
atomic levels, the decay rates and the effect of temperature on the birefringence and gain.
The crystal temperature is measured by observing its effect on the crystal’s birefringence.

3.1 Spectroscopic properties

Neodymium, a rare earth metal, is used as dopant in a variety of host materials, among which
amorphous glass, crystalline yttrium aluminium garnet (YAG) and yttrium orthovanadate
(YVO4) are the most common. In all these materials, the neodymium is triply ionised with
three electrons bonding to neighbouring host atoms. As a dopant in YVO4 and YAG, the
Nd3+ ion substitutes a Y3+ atom, and the Nd3+ ions are hence hosted in a nearly identical
environment, ensuring homogeneously broadened transitions at room temperature. Upon
cooling, however, the inhomogeneous spectrum becomes apparent as the homogeneous spec-
trum narrows (the emission line at 1064 nm narrows to typically 30 GHz full-width-half-max
as compared to the homogeneous width of 215 GHz at room temperature). There is more
than one laser transition and the crystal is operated at 914 nm and 1342 nm as well as at the
more common 1064 nm transition.

In all our experiments, we use the 1064 nm transition which corresponds to a four-level
configuration. Here the 4I9/2 state is the ground state and, as shown in Fig. 3.1, the atoms
are excited from this state to two closely spaced high energy states (4H9/2 and 4F5/2) using a
pump of 809 nm [8]. Once excited, the atoms relax to the lower 4F3/2 state. This is the upper
laser level. The 4F3/2 state decays primarily to either the lowest of the 4I11/2 states [7] or
to the 4I9/2 level with branching ratios 0.467 for the 4F3/2→4I11/2 transition and 0.420 for
the 4F3/2→4I9/2 transition. Lasing around 1064 nm is readily achieved as the 4I11/2 level
decays relatively quickly to the ground state (the rate is estimated to be γ2 = 1−2×109 s−1

[9, 10]) whereas the decay time of upper lasing level is as long as 77 µs (see section 3.3).
The extremely long lifetime of the upper level implies that essentially all Nd3+:YVO4

lasers are class B lasers. Also, it makes Nd3+ and other Nd3+ lasers particularly suited for
frequency doubling. In this process, Q-switching is often used to enhance the efficiency for
frequency doubling. It is the relatively slow dynamics of Nd3+:YVO4 lasers that allow for
this.

9
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Figure 3.1: Energy level diagram of Nd3+:YVO4 at room temperature. As the diagram
indicates, the crystal is pumped at 809 nm and the most common lasing transition is the
1064 nm 4F3/2→

4I11/2 transition. The numbers refer to the energy of the level and is
denoted in cm−1. In addition to the laser transition at 1064 nm, the 4F3/2 decays to the
4I9/2 level, emitting light at ≈ 890 nm. This figure was compiled from Refs. [6, 7]. All
the measurements were conducted at 300 K except for the measurement marked with an
asterisk; this was measured at 85 K [7].

3.2 Parameter nomenclature
Lasers physics is at the crossroads of many disciplines such as quantum mechanics, atomic
physics, material science and solid state physics, and as a result of this diversity, nomenclature
tends to differ from publication to publication. As well as depending on the discipline, para-
meter names also depend on considerations such as convenience (and logic) when applied in
a specific model. Hence, this thesis’ decay rate of the upper lasing level, γ1, can be denoted
as γa [5, 11], γ‖ [12, 13] or γ2 [1]. Similarly, we denote the lower level decay rate as γ2,
while other authors use γb [5, 11] and γ1 [1]. The cavity decay rate Γc is sometimes also
denoted as γc [1], or (rather inconveniently) K [12].

3.3 Measurement of inversion decay
The intriguing noise behaviour that is the central point of this thesis is caused by the slow
upper level decay rate of the Nd3+:YVO4 crystal. This decay rate is directly dependent on
the properties of the Nd3+ ion and is only mildly affected by the YVO4 host. The decay rate
can be found by measuring the fluorescence decay when exposing the crystal to a pulsed or a
chopped pump. Fig. 3.3 shows such a measurement using a 0.23(3) mm thick CASIX crystal
being pumped with a chopped 1 mW Ti:Sapph laser. The pump laser had a Gaussian beam
profile and was focussed onto the crystal where the beam had a width of 14 µm (FWHM) .
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Since the amount of fluorescence is proportional to the population of the upper lasing level,
this graph also allows one to determine the inversion decay rate. Measuring a small batch

1e-05

0.0001

0.001

0.01

0.1

0 0.1 0.2 0.3 0.4

In
te

ns
ity

 (A
rb

. u
ni

ts
)

Time(ms)

0

0.02

0.04

0 0.2 0.4

Figure 3.2: Fluorescence decay in a Nd3+:YVO4 crystal. The pump laser (with a power of
1 mW) is switched off at the point t = 0 s. The inset shows the same decay on a linear scale.
The fit (broken curve) in the figure corresponds to a population decay rate of 1.18×104 s−1.

of crystals from different manufacturers and with different levels of neodymium doping we
found that the results were consistent with γ1 = 1.18(3) × 104 s−1 for a doping of 1%.
However, the doping level affected the decay rate which was found to be 3.70(5) × 104 s−1

for crystals with 3 % doping (these crystals were not, however, used in the experiments).
The increased population decay rate at higher doping levels is due to non-radiative decay in
Nd3+:YVO4 crystals with impurities. The non-radiative decay is often preceeded by diffu-
sion of the excitation from one neodymium ion to another and then to an impurity, leading
to ion-pair relaxation [7]. This process is greatly enhanced at a larger concentration of neo-
dymium ions. Another effect worth mentioning is that the pump intensity was observed to
affect the decay rate. The value of γ1 = 1.18(3) × 104 s−1 reported above was obtained
using a pump of 1 mW. For a 120 mW pump a higher decay rate of 1.40(5) × 104 s−1

was found. The observed increase is most probably due to crystal heating as this leads to
enhanced relaxation through phonon-assisted radiative transitions [14] and pure multiphonon
transitions [15, 16]. The pump strength applied in our experiments would typically be some-
where between 1 mW and 120 mW; we therefore chose to use an average decay rate of
1.3(1)× 104 s−1 for the upper laser level in the following chapters.

To gauge the magnitude of the various relaxation effects, we compare our measurements
with the results of Lomheim and DeShazer [8] who measured the lifetime of the upper laser
level in Nd3+:YVO4 crystals with 0.412 % neodymium doping. At this level of neodymium
doping, the effect of ion-pair relaxation is thought to be negligible [8]. The decay rate was
found to be equal to 0.91× 104 s−1 in these crystals with low doping. Judd-Ofelt theory [17,
18] gives an indication of what the relaxation rate would be with neither multiphonon nor ion-
pair relaxation effects. The theory was applied [8] to calculate a decay rate of 0.66×104 s−1

for the neodymium doping ion. When compared to our own measurements (γ1 = 1.18(3) ×
104 s−1), the results suggest that both ion-pair and phonon-related relaxation influence the
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upper level decay rate of the crystal significantly at a 1 % doping level.

3.4 Pumping of Nd3+:YVO4 crystals
Unlike semiconductor lasers, Nd3+ type solid state lasers need to be pumped optically since
the host crystal is an insulator. While using a flashlamp is possible, it is more convenient to
use another laser because of the comparatively well-defined properties and the high intensities
of such a laser pump. In commercial applications, Nd3+:YVO4 crystals are usually pumped
by semiconductor diode lasers. These diode lasers have the advantage that they are pumped
electrically; two disadvantages of these lasers, however, are their poor spatial properties and
comparatively wide emission spectrum. This is especially true in the case of a diode array,
where the emission spectrum comprises many relatively broad resonance peaks, with each
peak being produced by a separate diode.

Single laser diodes are often the most convenient way to pump Nd3+:YVO4 crystals
and they are in common use for both research and commercial purposes. They are of small
size and they are easy to operate. However, these devices do not scale well and they deliver
relatively little output power (maximum output power seldomly reaches more than 200 mW).
As a result they are mostly found in compact devices with low intensity requirements.

Because of the intensity restrictions of the single diodes, we have used both a diode
array and a titanium sapphire laser to pump our Nd3+:YVO4 crystal. These two lasers are
presented below. In sections 3.5 and 3.6 some peculiarities of the high power diode array will
be discussed.

High pump powers can be reached by stacking many laser diodes to make a diode array.
An example of such an array suitable for pumping Nd3+:YVO4 crystals is the TSA30-0808-
0600 fiber-outcoupled diode pump from Spectra Physics. This pump has an specified output
power of 30 W that is delivered through a fiber (OPCFS 637 1M LOH) with a core diameter
of 600 µm. As commonly seen in fiber-outcoupled laser diodes, the outcoupled light has
an inconvenient top-hat beam profile and a beam cone with strong divergence (in this case
25 degrees full angle). The emission spectrum is also typically wide, even compared to the
absorption linewidth of the gain medium, effectively wasting some of the pump light. Fig.
3.3 compares the emission spectra of our diode array with the absorption of Nd3+:YVO4 .
In addition to the relatively width of the diode array spectrum (curve a), the reader should
note that the absorption is surprisingly weak when compared to measurements using a low-
intensity beam (curve c), even within the absorption profile (which has a width of approx-
imately 600 GHz). This is partially a result of the mixed polarisation of the pump beam:
approximately 5 % of the light is polarised along the ordinary axis which has a relatively
small absorption cross-section as compared to the extraordinary axis. The low absorption
also indicates other problems such as heating, which broadens the absorption profile and
lowers the peak absorption. We will return to this issue later in section 3.5.

In contrast to diode type lasers, optically pumped lasers such as Coherent’s 899-01 Ti-
tanium Sapphire ring laser have intracavity etalons that limits the bandwidth of the emitted
light to below 10 MHz. At 809 nm this is equivalent to a width of 2.2 × 10−5 nm, and is
thus negligible as compared to the emission spectrum of diode lasers as well as the absorption
linewidth of Nd3+:YVO4 crystals. The narrow emission spectrum makes Titanium:Sapphire
lasers very efficient pumps as they can be tuned to the absorption maximum of the pumped
medium. This is especially important in frequency doubling applications where a narrow
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Figure 3.3: The output spectrum of our fiber-outcoupled diode array (Model TSA30-0808-
0600 from Spectra Physics) at an output setting of 21.2 W in relation to the absorption
spectrum of a 1 mm thick CASIX Nd3+:YVO4 crystal. The full curve (a) shows the spec-
trum of the incoming light, while curve (b) shows the spectrum of light transmitted through
1 mm of crystal. The third curve (c) shows the absorption spectrum of the crystal as meas-
ured with a tunable Titanium:Sapphire laser (right hand scale shows transmitted fraction).
Curve (c) was measured by J. Dingjan. The separate points represent steps of 225 GHz.

pump spectrum is a necessity. The Coherent 899-01 Titanium:Sapphire ring laser, does how-
ever have the disadvantage that it has to be pumped by another laser. In our case the Titanium
Sapphire laser was pumped at 532 nm by either a 5 W Verdi or a 5 W Millennia. The
Titanium Sapphire then produces a collimated Gaussian output beam with intensity noise as
low as 0.1 % when used in combination with a “noise eater”.

3.5 Birefringence and temperature
One well-known property of the YVO4 host crystal is its uniaxial geometry which leads to
birefringence. This property ensures that lasers using c-cut Nd3+:YVO4 crystals have a linear
output polarisation that does not change with time1. Since both input and output beams are
linearly polarised along the c-axis, the birefringence does not affect the beam. Even though
birefringence plays no role in normal laser action, the effect can nevertheless be utilised for
measurement purposes. If for instance a beam is transmitted through the crystal with field
components along both polarisation axes, the difference in phase shift along the two axes will
generally change the beam’s ellipticity. As we will show below, such a phase shift is also
influenced by temperature changes. This makes a good tool for the measurement of heating
in the crystal in a non-contact, very local way.

It is relatively straightforward to find the relationship between the relative phase shift φ
between the a- and c-components and ellipticity χ of the transmitted beam. An incoming

1To be more precise, this is not a direct result of the birefringence itself but of the related increase in absorption
and stimulated emission for light polarised along the c-axis (this is known as dichroism).
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beam which is linearly polarised at 45◦ to the ordinary (a) and extraordinary (c) axes has the
electric field ~E = ~e45E0 = 1√

2
(~ea + ~ec) E0, where ~ea and ~ec are unit vectors along the

ordinary and extraordinary axes, respectively, and ~e±45, are the two unit vectors oriented at
45◦ and −45◦ to the ordinary axis. Then for the output light

~E = E0(~ea + eiφ~ec)/
√

2 ≡ E0(e
−iφ/2~ea + eiφ/2~ec)e

iφ/2/
√

2

= E0 [cos (φ/2) (~ea + ~ec) − i sin (φ/2) (~ea − ~ec)] e
iφ/2/

√
2

= E0 [cos (φ/2)~e45 − i sin (φ/2)~e−45] e
iφ/2.

(3.1)

From this we see that the polarisation direction is unaffected by the phase change while the
ellipticity is given by χ = φ/2.

In the experiment, a commercial diode-pumped neodymium laser (CrystaLaser model
IRCL-1064-100-S) was used to produce the 1064 nm incident beam polarised at 45◦ with
respect to both the ordinary and extraordinary axes of our Nd3+:YVO4 crystal. A 1 mm
thick Nd3+:YVO4 crystal with 1064 nm anti-reflective coatings on both facets was mounted
inside a compartment that could be heated or cooled. The polarisation of the light behind the
crystal was analysed with a combination of a rotatable quarter-waveplate followed by a half-
waveplate in front of a polariser. The transmitted light was detected with a silicon photodiode
(Centronic OSD15-0) in combination with an adjustable current converter. By minimising the
transmitted light using the rotatable waveplates, it was found that the polarisation remained
the same while the ellipticity changed linearly with temperature. Fig. 3.4 shows the measured
ellipticity of a transmitted beam as a function of temperature.

A temperature change is expected to affect the refractive indices and na and nc as well as
the thickness of the crystal L. The relative phase shift φ is thus given by

dφ

dT
= 2

dχ

dT
=

2π

λ

[

L(
dna

dT
− dnc

dT
) + (na − nc)

dLa

dT

]

(3.2)

The manufacturer (CASIX) specifies that the refractive indices are na = 1.97 and nc =
2.19 for our probe beam at 1064 nm. The thermo-optical coefficients are specified to be
dna/dT = 8.5 · 10−6 K−1 and dnc/dT = 3.0 · 10−6 K−1, while (1/La)(dLa/dT ) =
4.43× 10−6 K−1. Using these specifications we expect that dφ/dT = 1.55 o/K for a 1 mm
thick crystal. Our own measurements gave a comparable although slightly higher value with
dφ/dT = 1.70 o/K (see Fig. 3.4).

The phase change can now be used to measure the actual temperature inside the crystal
when the laser is being pumped with the diode array. Using the same probe beam and the
same crystal (which has no AR-coating for light at 1064 nm), we find that the crystal centre
experiences a temperature increase of 64 K/W (see Fig. 3.5) when pumped with the diode
array. The output power of the pump was controlled by adjusting the diode current. The
600 µm wide fiber output was focussed onto the crystal using two composite lenses with
focal length 29.5 mm. The lens next to the laser output was placed with its focus on the fiber
tip, thereby ensuring that the image on the crystal was about the same size as that of the fiber
output. Between the two lenses we placed a beamsplitter and a wedge in order to deposit
excessive pump light in an absorber. If no wedges or beamsplitters were to be used, pump
intensity would reach 2.7× 107 W/m2 at the maximum diode array output of 30 W.

The crystal birefringence is thus a very convenient diagnostics tool to measure the tem-
perature inside the crystal. In the following section we will report shortly on how heating
affects the gain.
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Figure 3.4: Ellipticity change as a function of temperature. The reference χ = 0o value is
zero at room temperature (16 oC).
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Figure 3.5: Ellipticity change of the transmitted beam as a function of the pump power
delivered. The change in χ has a reference value of zero for no pumping.

3.6 The effect of temperature on gain
One of the main limitations of Nd3+:YVO4 crystals is probably their tendency to overheat.
Keeping in mind the large absorption cross-section of the neodymium ions in the crystal, this
is not surprising, especially when considering the modest thermal conduction coefficient of
the host lattice (K ≈ 5.1 − 5.2 Wm−1K−1 in YVO4 as compared to 38 Wm−1K−1 for
LiNbO3). Heat generation is caused by the absorption of low-energy photons or phonons
that originate from transitions other than the direct optical transitions of pump and output
light2. Overheating can lead to damage in the crystal surface or to significantly reduced gain.

We expect this gain depreciation to be due to thermal broadening of both the absorption
2While most low-energy emissions are actually phonons (at least when their energy is less than 2500 cm−1

[15]), it does occur that low-energy photons are emitted. This is the case when the lower laser level of Nd : YAG
crystals decays. Here photons are emitted only to be absorbed by the host lattice [6] and converted to heat.
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Figure 3.6: Gain as a function of pump power. The filled circles (a) shows the gain when
using a chopped pump with the crystal fixed to a heat sink; the crosses (b) were measured
with a continuous pump without any thermal management. The curve in (a) has been added
to guide the eye. Note that the y-axis is plotted as a logarithmic scale. The top x-axis denotes
the estimated heating in curve (b).

and emission spectra, as this broadening also reduces the peak absorption and emission coef-
ficients. As it is the pump itself that heats the medium, Fig. 3.6 depicts the gain as a function
of pump power. For this experiment we used our most powerful pump, the diode array, to
compare two different configurations. The points (b) were measured having fixed the crystal
with (our standard) non-conducting resin to the crystal holder while the medium was pumped
continuously. The points (a) were measured using a “chopped” pump, illuminating the crystal
only 1/20 of a cycle. The chopping frequency was about 10 Hz, long enough to allow inver-
sion and photon number to reach “steady state” (for which 5 ms was available), but still fast
enough to limit heat generation during the illumination period. Instead of fixing the crystal
to its metal holder using non-conducting resin as in (b), indium was used (see (a)). Also the
size of the holder was much larger, giving it a double function of a thermal heatsink. As Fig.
3.6 shows, the temperature has a massive impact on the attainable gain per round trip.
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3.7 Overview Nd3+:YVO4 characteristics
This section provides the reader with some general properties of the Nd3+:YVO4 crystal.

Atomic density with a 1.1 % Neo-
dymium concentrationa

1.37× 1020 atoms/cm3

Thermal expansion coefficientab Ordinary axis:
1
L

dLa

dT = 4.43× 10−6 K−1

Extraordinary axis:
1
L

dLc

dT = 11.37× 10−6 K−1

Thermal conductivity coefficienta 5.2 ± 0.1 Wm−1K−1

Refractive indexab na = 1.957, ne = 2.1652 @ 1064 nm
na = 1.972, ne = 2.186 @ 809 nm.

Thermal optical coefficient ab dna

dT = 8.5× 10−6 K−1,
dnc

dT = 3.0 × 10−6 K−1

Absorption length a 0.32 mm @ 809 nm
Gain bandwidthac Casix specifications: 257 GHz @ 1064 nm

(equivalent to 0.96 nm )
Measured: 215 GHz @ 1064 nm

Absorption bandwidth:
(see Fig. 3.3)

700(100) GHz

Decay rate upper lasing level (see
sec. 3.3)

1.3(1) × 104 s−1

Decay rate lower lasing level
(see chapter 6)

1 − 2 × 109 s−1

aThese specifications can be found in the ‘99 crystal guide of the manufacturer, Fujian JDSU CASIX, Inc. [19].
bThese numbers were used in section 3.5. Good agreement with the experimental results was obtained.
cIn addition to the Casix specification, the gain bandwidth was measured by J. Dingjan.
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Chapter 4

The thresholdless laser1

Lasers with slow inversion show weak damping of quantum noise; this leads to
strong relaxation oscillations and super-Poissonian statistics until far above threshold.
Thus, even though the thresholds of these lasers are well-defined in terms of average
output power, diffuse fluctuation thresholds are observed, and in this respect, the laser
is thresholdless. Here, we outline the generic properties of thresholdless lasers and we
show the importance of the condition βΓc/γ1 & 1 for thresholdless fluctuations.

4.1 Introduction
In chapter 2 we discussed the laser properties in terms of the laser classes [3, 4]. It was
shown that if the inversion decay is too slow to be adiabatically eliminated, then standard
class A theory becomes insufficient to describe the laser intensity dynamics. Instead of this
theory [11, 20, 21], we therefore employ the more complex class B theory [22, 23] to show
that lasers with slow inversion decay (which are also known as slow-inversion lasers) have
very different threshold characteristics from textbook class A lasers. This is the focus of the
present chapter. We start by outlining the defining properties of laser thresholds.

The threshold of macroscopic class A lasers is marked by a sudden increase of output
power and an abrupt quenching of the laser’s quantum noise as the laser switches from chaotic
lamp-like emission to coherent laser-like output [20]. The switch takes place within a very
well-defined threshold region with a relative width of β1/2 [20], where β is the fraction of
spontaneous emission going into the lasing mode [24, 2].

Microscopic class A lasers, i.e. lasers with only a few intracavity modes (β approaches
1) show very different behaviour from macroscopic lasers of the same class. For these micro-
lasers the threshold is poorly defined both in terms of the intensity and the fluctuations. This
is not surprising considering that the relative threshold width β1/2 becomes of order unity for
β ≈ 1 and such lasers are hence commonly referred to as thresholdless lasers [24]. However,
microscopic class A lasers are interesting mostly from a theoretical point of view as they are
very rare in practice.

In this chapter, we will show that small class B lasers differ from both laser types outlined
above. While the intensity threshold is well-defined like in macroscopic class A lasers, the
fluctuation threshold becomes diffuse due to strong noise-driven relaxation oscillations. In
fact, the behaviour of the fluctuation threshold is similar to that of the thresholdless micro-
scopic (β → 1) class A lasers.

1N. J. van Druten, Y. Lien, C. Serrat, M. P. van Exter, and J. P. Woerdman,“Laser with thresholdless intensity
fluctuations”, Phys. Rev. A 62, 3808-3816 (2000).
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Our study of threshold properties of small class B lasers has been limited to the intensity
dynamics. Using the rate equations, we focus on the effect of laser size as quantified by the
spontaneous emission factor β. We have shown that the intensity threshold in class B lasers
may disappear even when β � 1. Linearised theory was applied successfully to describe the
intensity dynamics and to derive a condition for extreme class B behaviour.

Most results presented in this chapter were published in Physical Review A [5]. An ex-
ception is section 4.9, which contains unpublished experiments and a short discussion on the
laser behaviour when the emission factor β and the cavity decay rate Γc is varied. Also the
appendix (section 4.11) has been added later.

4.2 The threshold definition

The laser’s intensity threshold is easily recognised in both class A and class B lasers. In
macroscopic lasers, this threshold is observed as a clear “kink” in the input-output curve
as the laser switches from spontaneous to stimulated emission. To identify the fluctuation
threshold, however, a measure for the fluctuation strength has to be defined first.

The fluctuations threshold is often [20] defined in terms of the sudden drop in the reduced
factorial moment Q2 when the laser starts oscillating. Q2 is defined as

Q2 = g2(0) − 1 ≈ 〈n2〉
〈n〉2 − 1 =

〈δn2〉
〈n〉2 , (4.1)

where g2(0) is the second-order correlation function, n is the intra-cavity photon number,
and δn = n − n0, with n0 the steady state photon number. In the thermal regime below
threshold, Q2 is equal to 1, but it drops to 0 once the system stabilises above threshold. The
approximation sign in Eq. 4.1 (and later in Eq. 4.2) is related to the ordering of the creation
and annihilation operators, and is irrelevant for the macroscopic (〈n〉 � 1) lasers described
here.

An alternative criterion for the fluctuation threshold is the Fano factor as suggested by
Rice and Carmichael [24]. It is defined by

F =
〈δn2〉
〈n〉 ≈ 〈n〉 × Q2 = 〈n〉 × (g2(0) − 1) (4.2)

In a macroscopic class A laser, the Fano factor exhibits a sharp peak with a height of ≈
2β−1/2 on the fluctuation threshold. The peak has a relative width of β1/2, which is the same
width as in the case of the Q2 and the average-intensity definitions. The Fano factor is equal
to one both below and above threshold. When compared to the reduced factorial moment,
the Fano factor has the advantage that it scales with system size. The Fano factor is used
in squeezing experiments, where it allows ready comparison with coherent light, which has
a Fano factor equal to 1. For super-Poissonian light the factor is greater than one, and for
sub-Poissonian light, it is smaller than one.

Both the reduced factorial moment and the Fano factor are used as (fluctuation-) threshold
criteria in this chapter.
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4.3 Thresholdless oscillation
The manner in which quantum noise gives rise to relaxation oscillations was discussed briefly
in section 2.3. In the present section, we will elaborate further on the ideas presented there.
The analysis is based on the treatments of McCumber [23] and Lax [22] but it has been
expanded to include the consequences of class B behaviour on the fluctuation threshold.

We start with the intensity rate equations. These have been derived from the laser Maxwell-
Bloch equations [23, 25],

ṅ = −Γcn + βγ1Nn + Rsp + fn(t), (4.3a)

Ṅ = P − γ1N − βγ1Nn + fN(t), (4.3b)

where P is the pump rate and Rsp = Nβγ1 is the spontaneous emission rate. N = N1 −N2

is the inversion number, with N1 and N2 representing the upper and lower level populations,
respectively. Γc is the cavity decay rate and γ1 the upper level decay rate. The dynamics
of the atomic polarisation are of no concern to us as they can be adiabatically eliminated
(the polarisation decay rate, γ⊥ = 690(60) × 109 s−1 is much greater than the cavity decay
rate, Γc, which is typically ≈ 109 − 1010 s−1). The makeup of Eqs. 4.3 can be explained
as follows: The first two terms of Eq. 4.3a represent the cavity decay rate and stimulated
emission respectively. The second term of Eq. 4.3b denotes the spontaneous emission into
all modes, while the third term is stimulated emission. The two noise terms fn(t) and fN (t)
are discussed in section 4.6.

Note that the rate equations given in Eqs. 4.3 correspond to those of an ideal four-level
laser. In such a laser, the lower level depopulates quickly and the lower-level population can
thus be neglected. For the laser dynamics, this approximation is valid only when the lower-
level decay rate, γ2, is much greater than the cavity decay rate, Γc. The non-ideal case will
be considered in section 4.5.

If one assumes that there is no noise present in the system, the system will reach a steady
state. This state is given by

N0 =
Γc

βγ1

n0

n0 + 1
, (4.4a)

M

1 + βn0
=

n0

n0 + 1
, (4.4b)

where n0 and N0 are the steady state intracavity photon and the inversion numbers, respect-
ively, and M = Pβ/Γc is known as the pump parameter. Note that Eq. 4.4b is equivalent to
Eq. 2.1.

To obtain the fluctuations in the frequency domain, we linearise around steady state and
write n = n0 + δn and N = N0 + δN , where δn and δN are the deviations from this state.
This yields new, linearised rate equations:

δ̇n = −γnδn + γ1β(n0 + 1)δN + fn(t), (4.5a)

δ̇N = −γ1N0βδn − γNδN + fN(t), (4.5b)

which are equivalent to Eq. 2.3 of chapter 2 except for the inversion noise term. After
linearisation, we perform a Fourier transform on the rate equations. An expression for the
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photon-number fluctuations as a function of frequency, δn(ω), is obtained the easiest by
subsequently applying Cramer’s rule,

δn(ω) =
(−iω + γn)fn(ω) − βγ1(n0 + 1)fN (ω)

(−iω + γN )(−iω + γn) − ω2
ro

, (4.6)

where ωro is the relaxation oscillation frequency, which is given by

ω2
ro = γ2

1N0β
2(n0 + 1) = γ1Γcβn0. (4.7)

In Eq. 4.6, the two damping rates, γn and γN , are especially significant .

γn = Γc/(n0 + 1) (4.8)

works directly on the photon number n and is known as the “photonic damping”. Since it is
inversely proportional to (n0 + 1), this term decreases rapidly once the intensity threshold is
crossed. Still, the very large value of Γc ensures that γn remains important until far above
threshold. The “inversion damping”

γN = γ1(1 + βn0), (4.9)

however, increases with the intracavity photon number. This damping is weak in class B
lasers, where γ1 is small.

Although it is relatively straightforward to show how the damping mechanisms arise from
the rate equations, their physical origins are more subtle. The photonic damping γn is due
to the difference between the stimulated emission rate into the lasing mode and the cavity
loss rate from this mode, i.e., γn = −Γc + βγ1N = Γc/(n0 + 1). This difference creates
an effective photon loss which is made up by spontaneous emission. The inversion damping,
γN = γ1(1+βn0), is due to two effects: one is related to stimulated emission into the lasing
mode (the βγ1n0 term), the second is due to spontaneous emission into all other modes (βγ1

term). The naming convention, i.e., photonic and inversion damping, is related to how these
damping effects enter the rate equations (Eqs. 4.5).

It is important to realise that Eq. 4.6 gives resonant behaviour for ω ≈ ωro since the
relationship ωro � γn, γN applies to all class B lasers operated not too close to the las-
ing threshold. Spectrally wide quantum noise drives relaxation oscillations at the resonance
frequency.

As discussed later in section 4.6, we can generally neglect the fN noise term. The double-
sided spectral density is then

〈δn2(ω)〉 =
2(ω2 + γ2

N )Rspn0

(ω2
ro + γnγN − ω2)2 + 4ω2γ2

ro

, (4.10)

where we have γro = (γN + γn)/2 and where 〈f2
n(ω)〉 = 2Rspn0 (see page 2.3). Eq. 4.10

can now be integrated over all positive and negative frequencies [26], resulting in a reduced
factorial moment Q2 that equals

Q2 =

(

γn

γn + γN

) (

1 +
γ2

N

ω2
ro + γnγN

)

= 1 −
(

γN

γn + γN

) (

ω2
ro

ω2
ro + γnγN

)

.

(4.11)
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This expression for fluctuations in class B lasers is the main result of this chapter. From Eq.
4.11 we see that the reduced factorial moment remains high as long as
γN < γn, since the condition ω2

ro > γnγN is fulfilled for most lasers with M > 1. The
mentioned condition γN < γn shows that the fluctuations will only damp out when the
atomic damping is larger than the photonic damping. Although this relation is surprising, its
explanation is straightforward as both the photonic damping and the oscillation driving force
are due to the same spontaneous emission. Hence, when considering the laser dynamics, the
fraction γN/γn is central. It can be written as

γN

γn
≈ γ1(1 + βn0)n0

Γc
≈ γ1M(M − 1)

βΓc
, (4.12)

where the approximation n0 ≈ (1/β)(M − 1) was used (see Eq. 2.1). The stabilising effect
of the pump is reflected in the fact that γN/γn becomes larger with increasing M . How
quickly the output is stabilised depends on the relative strength of the parameters β, Γc and
γ1. This is discussed in the section below.

4.4 The slow inversion condition
It is convenient to distinguish three different categories of lasers on the basis of Eq. 4.12.
The three categories are known as the macroscopic, mesoscopic and the microscopic regime
and they are equivalent to those outlined by Hofmann and Hess in Ref. [27]. The boundaries
of these categories depend on the factor β, and the ratio Γc/γ1, which are two dimensionless
parameters for the cavity size and the “relative slowness” of the inversion decay, respectively.
Hence the names macroscopic, mesoscopic and microscopic, and the term “slow-inversion
laser”.

The macroscopic regime is defined by

β . (γ1/Γc)
2
, (4.13)

which is valid for large class B lasers and all class A lasers. This is the textbook example of
a laser with strong inversion damping and well-defined thresholds. In this regime γN > γn

as soon as M > 1. Hence, we assume that γN/(γn + γN) ≈ 1 in Eq. 4.11, yielding a new,
simplified expression for Q2 :

Q2 ≈ γnγN

ω2
ro + γnγN

, (4.14)

where all the Γc and γ1 factors cancel out when Eqs. 4.7-4.9 are inserted, leaving only n0

and β. It can thus be shown that the fluctuation level Q2 always drops from 1 to 0 within a
narrow region of width ≈ β−1/2.

The microscopic regime is the opposite of the macroscopic regime. These lasers are true
slow-inversion lasers with very distinct class B properties. The definition for this regime is

β & γ1/Γc, (4.15)

where quantum noise is very weakly damped, resulting in very deep relaxation oscillations
that persist until far above threshold. The approximation ω2

ro � γnγN is used (and should
be valid except very close to the intensity threshold) to yield

Q2 ≈ γn

γn + γN
. (4.16)
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Since photonic damping γn remains much smaller than the inversion damping γN in this
regime, Q2 = 1/2 is only reached at M ≈ 1/2+(Γcβ/γ1)

1/2 & 2 (where the approximation
holds unless the laser is operated very close to M = 1). The Fano factor peaks at the same
point. The fluctuation threshold not only shifts, it also becomes much more diffuse. This is
discussed together with our experimental results in sections 4.8 and 4.9

In addition to these regimes, the mesoscopic regime is naturally defined as

γ1/Γc . β . (γ1/Γc)
2
, (4.17)

marking the intermediate case between the two opposing regimes outlined above. It has many
of the same fluctuation properties as the microscopic regime, but to a lesser extent.

4.5 Damping due to the lower-level decay
Until now, we have assumed that the lower-level population has a negligible effect on the
laser dynamics. This assumption holds true for lasers known as ideal four-level lasers. In
such lasers the lower-level decay rate is very fast as compared to the photon dynamics of the
system. Although the decay rate of the lower lasing level γ2 in Nd3+:YVO4 is generally
considered to be very fast (γ2 = 1 − 2 × 109 s−1 as compared to γ1 = 1.3(1)× 104 s−1), it
is still slower than the cavity decay rate of our setup (Γc ≈ 109 − 1010 s−1). This leads to a
significant lower-level population and strong relaxation oscillation damping. To account for
this phenomenon in our theory, we consider rate equations that comprise the lower level

ṅ = −Γcn + βγ1(N1 − N2)n + Rsp + fn, (4.18a)

Ṅ1 = S − γ1N1 − βγ1(N1 − N2)n, (4.18b)

Ṅ2 = −γ2N2 + γ1N1 + βγ1(N1 − N2)n, (4.18c)

where the spontaneous emission rate Rsp = N1βγ1. As before in Eq. 2.2, the Langevin
noise source fn(t) satisfies 〈fn(t)fn(t′)〉 = 2Rspnδ(t − t′). The inversion noise source has
been neglected (see section 4.6).

In order to derive an expression for relaxation oscillation damping, we assume that the
dynamics of the lower level can be adiabatically eliminated (Ṅ2 = 0). This assumption is
fulfilled in all our experiments, since γ2 � γ1, ωro. We can now reduce Eq. 4.18c to

N2 = N1
γ1(1 + βn)

γ2 + γ1βn
, (4.19)

which allows us to remove N2 from Eqs. 4.18a and 4.18b. Since γ2 � γ1, we find that
the lower-level population is small but its dynamics are fast. The lower-level population N2

responds almost instantaneously to any change in the photon number, which gives rise to
significant damping despite the small lower-level population.

We now derive the linearised rate equations for a laser with a lower-level population. For
this we substitute n = n0 + δn and N1 = N1,0 + δN1. With the assumption that γ1/γ2 � 1
and β � 1, the rate equations become:

δ̇n = −(γn + γNL)δn + β(n0 + 1)δN1 + fn, (4.20a)

δ̇N1 = −γ1N1,0βδn − γNδN1, (4.20b)
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which are essentially the same as those reported in section 4.3 (Eqs. 4.5) except for an
additional damping term, γNL, and the replacement of the inversion N by the upper level
population N1. The additional damping term is

γNL =
γ1Γcβn0

γ2
=

ω2
ro

γ2
. (4.21)

This damping has its origin in the non-linear (stimulated-emission) term of Eq. 4.18a and is
therefore known as the non-linear damping (see also [10]).

Non-linear damping leads to weaker intensity fluctuations. The expression for Q2 is now

Q2 =
〈δn2〉
n2

0

=

(

γn

γn + γN + γNL

) (

1 +
γ2

N

ω2
ro + [γn + γNL]γN

)

, (4.22)

which is slightly more complex than Eq. 4.11. Despite this added complexity, we can still
identify three different laser regimes as before.

In the macroscopic regime, we compare γNL to the photonic damping γn to find that

γNL

γn
=

γ1βn0(n0 + 1)

γ2
, (4.23)

which is very small close to M = 1 since γ2 � γ1 (this is necessary to create inversion).
Thus, for macroscopic lasers, non-linear damping does not affect the threshold and Eq. 4.14
for Q2 is still valid close to threshold.

In the microscopic regime, intensity fluctuations persist for relatively large values of M
and here non-linear damping does often play a role. When comparing non-linear damping to
inversion damping, we find that

γNL

γN
=

Γc

γ2

(

M − 1

M

)

, (4.24)

indicating that non-linear damping becomes significant once γ2 . Γc. In all our experiments
γ2 � Γc (and generally even γ2 � Γc (M − 1) /M ) with the result that the non-linear
damping completely dominates over the inversion damping. This yields

Q2 ≈ γn

γn + γNL
(4.25)

for the microscopic regime with dominant non-linear damping, i.e. γNL � γN .
Based on the above results, the slow inversion condition for the microscopic regime (Eq.

4.15) can be rewritten as
β &

γ1

γ2
, (4.26)

where Γc in Eq. 4.15 has been substituted by γ2. The definition for the mesoscopic and
macroscopic regimes may still, however, remain unchanged, i.e. the same as in Eqs. 4.13
and 4.17. There are two reasons for this. One, as compared to inversion damping, non-linear
damping plays a comparably small role at small M (see discussion above). Additionally,
since Γc = 2c/lopt ln Rm ∝ 1/lopt, we find that somewhat larger lasers generally have
Γc � γ2, and that the ideal four-level approximation is therefore often still valid.
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4.6 Noise sources
All noise sources can be divided into two categories: photon noise and inversion noise, de-
pending on how they enter the rate equations.

The photon noise, represented by fn(t) in Eq. 4.6, is due to spontaneous emission noise
(as discussed in chapter 2). There is also a thermal component to the photon noise, but at
room temperature this is negligible in the near-infrared of laser operation (see chapter 1). As
before, the photon noise strength is given by 〈fn(t)fn(t′)〉 = 2Rspnδ(t − t′).

The inversion noise source is represented by the Langevin term fN (t). A Poissonian
pump source has 〈fN(t)fN (t′)〉 = 2γ1Nδ(t − t′) [25], which is comparable in size to the
photon (quantum) noise source. The largest difference in the effect of the two noise sources
lies in the prefactors in Eq. 4.6. At the “resonance” oscillation frequency ωro, the “photon”
prefactor (≈ ω) is much larger than the “inversion” prefactor (γ1β(n0 + 1) ≈ γ1(M − 1)).
At frequencies around γ1 and below, inversion noise does play a role and if a sufficiently
regular pump is used, the output of the laser might even become squeezed [10]. However, the
squeezing bandwidth will naturally be limited to frequencies ω . γ1(M − 1).

In addition to the Poisson intensity noise, we consider technical pump noise. This noise
enters the inversion noise term fN through the pump P . If the bandwidth of this noise is
γpump and it has a relative root-mean-square strength R, the contribution to the spectral
density of 〈f2

N 〉 is approximately R2P 2/γpump (for frequencies ω < γpump).
We now estimate the impact of this pump noise at the relaxation oscillation frequency

by assuming the worst case scenario, which is when the pump noise extends up to and bey-
ond the relaxation oscillation frequency ωro. Comparing the pump noise contribution to
〈δn2(ωro)〉 with that of the photon noise, yields a ratio (pump noise over photon noise)
R2M2γ1/2βγpump. In our experiment, the experimental parameters are such that this is
much smaller than 1 since R ≈ 0.001 (as we will see in section 4.7). Pump noise is hence
negligible, even in the case of this simple model, where the pump’s bandwidth has been
greatly overestimated.

At low frequencies, the relative contribution to the spectral density of δn equals approx-
imately R2Γcn0/2γpump. In our experiments, this would dominate the noise at low frequen-
cies. As a result, low-frequency squeezing is not possible [27].

4.7 Experimental setup
The microchip laser was the central component of our setup. The laser cavity was constructed
using a Nd3+:YVO4 crystal of small lateral size and a convex mirror. The mirror could easily
be replaced for one with a different coating. On one side, all the crystals were coated with
a coating that was anti-reflective at 809 nm and highly reflective at the emission wavelength
of 1064 nm. On the opposite side, the crystals had anti-reflective coatings at the emission
wavelength of 1064 nm. The mirror, which faced the second facet, had a radius of curvature
of R = −25 mm and its angle to the laser beam could be adjusted to ensure cylinder sym-
metry of the cavity.

For flexibility, the mirror was mounted on a translation stage that allowed us to lengthen
or shorten the cavity very easily (see Fig. 4.1) with an accuracy of 1 µm. In addition,
the crystal was mounted on a cylindrical piezo that was connected to a piezo driver (Tech-
nical Optics FPZ-1-RG). This allowed for very fine sub-wavelength adjustment of the cavity
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Mirror Tilting plate

Micrometer screw

Figure 4.1: Crystal and mirror mounts. The mirror mount was placed on a translation stage,
allowing for easy adjustment of the cavity length.

length. Hence we could tune the laser to gain maximum by observing its output.
The piezo could also be used to measure the cavity length. By detuning the laser from

gain maximum, we could get it to lase in two longitudinal modes. By means of a Fabry-
Perot interferometer, we measured the longitudinal mode splitting for a “typical” cavity with
a 200 µm crystal and a normal R = −25 mm mirror as c/2lopt = 250(30) GHz. From
this an optical length lopt ≈ 600(70) µm was found. This is consistent with geometrical
considerations of the cavity. Note that frequency pulling can still be neglected as the cavity
loss rate is still much smaller than the spectral width of the gain profile (≈ 225 GHz).

In general, we always constructed a cavity that was as compact as possible to ensure a
relatively large β factor. To shorten the distance between the mirror and the crystal for our
measurements with the highest β value, in some experiments we used a mirror of which
the mirror edges were ground away, leaving only a post in the middle as described further
in chapter 6. We worked with the different crystal thicknesses 100 µm and 200 µm. In
experiments with the 100 µm thick crystals and the modified mirror, we reached values for β
as high as 10−5. For unmodified mirrors and the 200 µm crystal, β was typically of the order
10−6 when the mirror was placed as close as possible to the crystal.

The Nd3+:YVO4 crystal was pumped using a Coherent 899-01 Titanium:Sapphire ring
laser which itself was pumped by a 5 W Millennia. With the use of a noise eater, the intensity
fluctuations in the pump beam were brought down to below 0.1 % r.m.s.. To focus the beam
onto the crystal, we used a lens with a focal length of 100 mm. The pump beam hence had a
cross-section of 38 µm, which is approximately 1.3 times larger than that of a TEM00 cavity
mode. In our setup, this ensured negligible gain guiding and the laser was indeed clearly
lasing in a single TEM00 mode. We employed a Cohu 4722 CCD-camera to monitor the
intra-cavity modes and to measure mode cross-sections.

The intensity measurements were conducted using two different detectors. One detector,
a Centronic OSD15-0 silicon detector, was used in combination with an external current
converter to measure the average output intensity. The intensity dynamics were observed
with another, faster DC-coupled detector with a bandwidth of 20 MHz. This detector, which
is homebuilt, was equipped with a InGaAs photo diode.
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The intensity time traces were recorded using a 9310L LeCroy oscilloscope which could
record up to 1× 106 points at a maximum sampling rate of 1× 108 samples per second. The
RF-spectra were recorded with a Tektronix 2712 spectrum analyser.

4.8 Experimental Results: Thresholdless oscillations
A recurring theme of this chapter, and indeed this whole thesis, is the large intensity fluctu-
ations of lasers that fulfil the slow inversion condition, Eq. 4.15. To help the reader imagine
the dynamics involved, typical intensity measurements have been plotted in Fig. 4.2. From
the figures it can be seen that the oscillations change from being harmonic far above threshold
(M = 8.5 in Fig. 4.2a and b) to being anharmonic closer to threshold (M = 1.5 in Fig. 4.2c
and d). Just above threshold, at M = 1.065, a regime is reached where the oscillation damp-
ing rate γro becomes as large as the oscillation rate ωro. This leads to oscillations with an
ill-defined oscillation frequency as observed in Fig. 4.2e and f. It is such time traces that are
used to (directly) calculate the reduced factorial moment Q2 = 〈δn2〉/〈n〉2. To make this
average accurate, the total measurement time has to be large as compared to the relaxation
rate of the relaxation oscillations γro = (γn+γN +γNL)/2 in order to average out the slowly
varying dynamics. The number of measurement points must also be sufficiently large.
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Figure 4.2: The effect of the pump strength on relaxation oscillations in a slow inversion
laser. The three plots on the left show typical timetraces for a laser showing slow inversion.
The measurement parameters are Γc = 5.7 × 1010 s−1 and β = 5.8 × 10−6; a and b:
M = 8.5 ; c and d: M = 1.5; e and f: M = 1.065.
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In the theoretical analysis of the class B laser (see section 4.3), we expressed most vari-
ables in terms of the steady-state intra-cavity photon number n0. Here, for the experimental
section, it is more convenient to use the pump parameter M instead of n0. These two are
related by n0 = β−1(M − 1) when the laser is not too close to M = 1. Eq. 4.22 for the
intensity fluctuations in a microscopic class B laser can now be reduced to

Q2 ≈
Γcβ

(M−1)
(

Γcβ
(M−1) + γ1M + γ1Γc(M−1))

γ2

) . (4.27)

Apart from the pump parameter M , this expression contains four constants. These are
all obtained from separate measurements. The upper level decay rate γ1 is obtained from
the fluorescence lifetime measurements discussed in chapter 3. The lower-level lifetime
of Nd3+:YVO4 has been measured in [10] to be 620 ns. The cavity decay rate Γc is de-
termined directly from the relaxation oscillation rate as described in conjunction with Fig.
4.4. β is found from the input-output curve (see Fig. 4.3) with the relationship Pout =
Γchν(M − 1)/β, where hν is the photon energy .
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Figure 4.3: Results of timetrace measurements. Graph (a) shows the output intensity as
a function of pump. The two lower graphs depict the resultant fluctuation measurements.
(b) shows the Fano Factor. (c) shows the second order correlation function g2(0). The
experimental parameters here are β = 2.4 × 10−5 and Γc = 1.0 × 1011 s−1. The mirror
reflectivity was 80 % and the optical cavity length was estimated to be lopt = 320(30) µm3.

When considering the measurements of Fig. 4.3 (which were all recorded with an oscil-
loscope) in terms of the two threshold definitions, we see that the intensity threshold remains
well-defined with a sudden increase in output power at threshold. The fluctuation threshold,
however, is diffuse and shifted. The intensity fluctuations are only weakly damped, and the
Fano factor peaks at M ≈ 2.7 instead of M ≈ 1 (Q2 ≈ 1/2 at the same point). Note that
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Fig. 4.3 also shows the strong effect of non-linear damping, without which the fluctuation
threshold (Q2 = 1/2) would be at M ≈ 1/2 + (βΓc/γ1)

1/2 = 14.1. However, with non-
linear damping, the fluctuation threshold is expected at M = 1/2 + (βγ2/γ1)

1/2 ≈ 2.2 as
derived from Eqs. 4.23 and 4.25, which is in reasonable agreement with Fig. 4.3. Deviations
from theory are small; the most significant is in the intermediate M ≈ 2.5 region, where
we measure slightly more fluctuations than suggested by theory (especially observable in the
measurement of the Fano factor). This is most probably due to the anharmonic behaviour
of the oscillations. Our linear model does not consider higher-order harmonics even though
their contribution to the fluctuations can be large (a part of the second order harmonic is seen
to the very right of Fig. 4.2d). The anharmonic effects can (at least partly) be explained using
the more extensive pseudo energy theory described in chapters 5 and 6.

While the above measurements were obtained using an oscilloscope to record time traces,
additional measurements were conducted with an RF-analyser. These measurements give a
clear picture of the frequency behaviour of the intensity fluctuations. The oscillation rate
and the damping rate of the relaxation oscillations are found directly from the spectrum by
measuring the position and width of the main harmonic. Fig. 4.4 compares the measured
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Figure 4.4: Relaxation oscillation rate (a) and damping rate (b) of a laser with strong
relaxation oscillations. In this laser β = 8.06 × 10−6 and Γc = 8.23 × 1010 s−1.

oscillation and damping rates with the theoretical predictions. As seen from the figure, the
oscillation rate is approximated quite well by theory. Since the relaxation oscillation rate
is given by the simple expression ωro =

√

γ1Γc(M − 1), (from Eq. 4.7), we use this ex-
pression to find the value for Γc. The oscillation damping rate does not fit the theoretical
prediction very well in the region M = 1.3 to M = 3.5. In brief, this discrepancy is an
artefact which is caused by variations in the oscillation frequency with modulation depth,
which again lead to smearing of the harmonics in the intensity spectrum. This effect is the
largest in the intermediate region as discussed above due to the relatively large amplitude of
the oscillations in this region. Close to threshold (M = 1) it is less pronounced because of
the relatively low frequency of the oscillations. We will discuss this issue in more detail in
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chapter 6.

4.9 Experimental results: Changing parameters
The effect of changing the two central parameters β and Γc will now be investigated. These
parameters, whose effect was thoroughly discussed in the theoretical sections, could easily be
changed by moving or replacing the cavity mirror. In conducting the experiments, we found
that changing the mirror reflectivity (from 60 % to 98 %) had a negligible effect on the laser
dynamics since non-linear damping dominated over inversion damping (this was expected).
In comparison, changing the parameter β had a large effect.

We remind the reader that β is the fraction of spontaneous emission going into the lasing
mode. This parameter is a direct function of the optical volume Vcav occupied by the mode.
For the case where the spectral width of the spontaneous emission in free space γat is much
larger than the cavity decay rate [2],

β =
1

p
=

1

4π
× λ3

Vcav
× ω

γat
, (4.28)

where p is the number of intra-cavity modes and γat is the spectral width of the spontaneous
emission in free space. Vcav changes as a function of the cavity length and width of the
mode. The width, w0, of a TEM00 mode is given by w2

0 = Lλ
π

√

R/L− 1 which reduces to
λ
π

√
LR in short cavities. As a result, β is expected to scale via Vcav as β = L−3/2. Since β

represents the coupling of spontaneous emission with the lasing mode [2], it depends on the
spatial overlap of the laser mode with the emission source. This spatial overlap may change
as the mode widens. Eq. 4.28 assumes that all inverted atoms are situated in the central
region of the transverse lasing profile, leading to optimal coupling. Thus, while Eq. 4.28
defines the optimum value for β, our values were generally somewhat lower.
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Figure 4.5: The effect of cavity size on fluctuation properties. For (a) β = 2.38 × 10−5, for
(b) β = 8.06 × 10−6 . The lines show the theoretical predictions.

In Fig. 4.5, the measured g2(0) is plotted as a function of the pump parameter M for
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different values of β. The value for Γc is almost the same for the two plots: for (a) Γc =
1.05× 1011 s−1 and for (b) Γc = 0.83× 1011 s−1. The small difference in Γc has an almost
negligible effect as is discussed below. Fig. 4.5 confirms the dependency of the threshold on
β and hence the cavity size (see Eq. 4.28). As before, the theoretical estimates of g2(0) lie
somewhat below the experimental values since higher order harmonics have been neglected.
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Figure 4.6: Changing the cavity decay rate leads only to slight changes in g2(0). The full
curve and the filled circles were measured with Γc = 1.37× 1011 s−1 (mirror reflectivity of
60 %) and β = 4.71×10−6 . The dashed curved and open circles were measured with a 14-
fold lower value of Γc = 9.82×109 s−1 (mirror reflectivity of 98 %) and β = 4.68×10−6 .

In Fig. 4.6, the second order correlation function, g2(0), has again been plotted as a func-
tion of M . Both the experimental data and the theoretical treatment show that the threshold
shifts only slightly when changing the cavity decay rate, Γc. This is due to the dominance of
the non-linear damping, which makes the effect of inversion damping almost negligible. As
we will explain in the following section this is partly related to the small longitudinal size of
our “microchip” laser configuration. In lasers as small as ours, Γc � γ2 unless the mirror
reflectivities are very high. In the case of a cavity where lopt ≈ 600 µm, Γc only becomes as
low as γ2 for a mirror reflectivity of ≈ 99.3 %.

For a Nd3+:YVO4 microchip laser such as ours, therefore, the noise dynamics are inde-
pendent of the cavity mirror except for in the case of very high reflectivities (& 99.3). Instead,
the fluctuations are only affected by the spontaneous emission factor β.

4.10 Discussion and conclusion
In this chapter we have limited our description of the class B laser to a linearised model.
This model relies on the approximation that the oscillations are very small as compared to
the steady state values. Although simple and very powerful, the model should not be valid in
the case of very deep anharmonic oscillations. In this regime, deviations from the linearised
theory become sizable, especially with respect to the oscillation damping rate and the quantity
of fluctuations. Instead of using the linearised model, further insight can be gained by using
a Pseudo Energy approach as pioneered by Ogawa [12] and Paoli et al. [13]. This model is
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discussed in chapters 5 and 6. A fully analytic and practical solution to the problem of class
B lasers is yet to be found.

Usually, Nd3+:YVO4 lasers are considered ideal four-level systems. However, when
Γc and γ2 become comparable in size, the laser dynamics may still be affected by the fast
responding lower-level population. This population causes additional damping of the relaxa-
tion oscillations, with the non-linear damping γNL = (Γc/γ2) × γ1(M − 1) that often even
dominates over inversion damping due to the upper-level decay. It may interest the reader
that, since Γc decreases with increasing laser cavity length (keeping the mirror unchanged,
Γc ∝ 1/lopt), we find that non-linear damping only becomes important when the laser is
made small enough to reach the microscopic limit. Thus, although this is not the most gen-
eral case, we observe that atomic damping tends to dominate in the mesoscopic limit while
non-linear damping becomes dominant in the microscopic limit.

In conclusion, a relatively simple model for the study of relaxation oscillations in class B
lasers was presented. Applying this theory to experimental data, it was shown that small class
B lasers have ill-defined fluctuation thresholds while the power threshold is still very distinct.
With the use of a very flexible cavity configuration, the impact of changing the cavity size
and decay rate have both been presented and discussed in relation to the fluctuation threshold.
Furthermore, the oscillation rate and damping rate of the relaxation oscillations was studied,
showing that linearised theory gives a surprisingly good approximation of the fluctuation
properties.
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4.11 Appendix

In our treatment of the rate equations (see Eq. 4.18 and discussion), which are the same as the
ones that appeared in Ref. [5], a few simplifications were made. In this appendix, we will go
beyond these simplifications and discuss the consequences of three effects that in principle
can significantly alter the laser behaviour. These are

i) Finite branching ratio: The population of the upper laser level does not only decay
spontaneously to the lower laser level, but also to other levels with a fixed branching ratio. In
fact, the diagnostics chapter 3 shows that typical branching ratios are of the order of 50 %.
In Eq. 4.29b this effect enters the equation as an additional decay term −γ ′

1N1. Note that the
other decay terms in Eqs. 4.29 that involve γ1 do not change. In these terms, however, the γ1

has to be reinterpreted as the decay to the laser lower level only.
ii) Frequency detuning: The coupling of the laser mode with the excited atoms will de-

crease when the laser frequency is detuned from atomic resonance. In the rate equations this
shows up as a reduction of the factor β in the stimulated emission terms present in all three
equations. We describe this reduction by introducing a quantity β ′ = β/(1 + (∆ω/γat)

2),
where ∆ω = ω − ωat, with ω the laser frequency, and ωat and γat the frequency and width
of the spontaneous emission, respectively.

iii) Excess noise: Non-orthogonality of the cavity eigenmodes can enhance the spontan-
eous emission rate into the lasing mode by an Petermann excess noise factor K. The associ-
ated Langevin noise amplitude is enhanced by a factor

√
K. These effects are represented in

Eq. 4.29a by a modified spontaneous emission rate R′
sp = KN1β

′γ1, where the excess noise
effect is represented by the multiplier K and the detuning is contained in β ′. The modified
Langevin noise source f ′

n now satisfies 〈f ′
n(t)f ′

n(t′)〉 = 2R′
spnδ(t − t′).

With the three above corrections, the rate Eqs. 4.18 are modified into:

ṅ = −Γcn + β′γ1(N1 − N2)n + R′
sp + f ′

n, (4.29a)

Ṅ1 = S − γ1N1 − γ′
1N1 − β′γ1(N1 − N2)n, (4.29b)

Ṅ2 = −γ2N2 + γ1N1 + β′γ1(N1 − N2)n. (4.29c)

As before, the inversion noise source has been neglected; the population is adiabatically
removed from Eq. 4.29c to yield

N2 = N1
γ1(1 + β′n)

γ2 + γ1β′n
≈ γ1

γ2
(1 + β′n)N1, (4.30)

where the approximation is based on the adiabatic assumption γ2 � γ1β
′n. This expression

is used to substitute N2 in the above Eqs. 4.29a and 4.29b.
We linearise about steady state (n0 and N ′

1,0) to find for the fluctuation dynamics

d

dt

(

δn
δN1

)

=

(

−(γ′
n + γ′

NL) β′γ1n0

−Γc −γ′
N

)(

δn
δN1

)

+

(

f ′
n(t)
0

)

, (4.31)

where we have used the substitution γ1N
′
1,0β

′ ≈ Γc. The three (modified) decay rates in the
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above matrix equation

γ′
n = Γc − β′γ1(N1,0 − N2,0) =

R′
sp

n0
= K

Γc

n0
, (4.32a)

γ′
NL =

γ1Γcβ
′n0

γ2
, (4.32b)

γ′
N = γ1(1 + β′n0) + γ′

1. (4.32c)

The modifications to the decay rates, as compared to those given in this chapter, are as fol-
lows: The photon damping γ ′

n is enhanced by a factor K. The non-linear damping γ ′
NL is

decreased in the case of frequency detuning since β ′ ≤ β. The atomic damping γ ′
N splits into

a decay rate to the lower laser level (γ1(1 + β′n0)), and additional decay to all other levels
(γ′

1). Also the relaxation oscillation frequency is modified to a value given by

ω2
ro = Γcβ

′γ1n0 = Γc(γ1 + γ′
1)(M − 1), (4.33)

where we have used the (modified) steady state condition

n0 ≈ M − 1

β′
γ1 + γ′

1

γ1
. (4.34)

Since, in the present experiment, there is no frequency detuning (β ′ = β) and since excess
noise has little or no effect (K ≈ 1), we will now concentrate on the consequences of the
finite branching ratio for the analysis presented in this chapter. We start by noting that the
measured spontaneous decay rate of 1.3(1)×104 s−1 is actually equal to γ1+γ′

1. Fortunately,
this does not affect our estimate for the cavity loss rate Γc, which we obtain from the slope
of ω2

ro versus the pump parameter M (see Eq. 4.33). However, the presence of γ ′
1 does affect

our estimate for the spontaneous emission factor β. Denoting the true spontaneous emission
factor by β, and this chapter’s experimental estimate by βexp, the steady state Eq. 4.34 gives
a relation

βexp = β

(

γ1

γ1 + γ′
1

)

=
M − 1

n0
=

Γchν(M − 1)

Pout
. (4.35)

As the literature value for the branching ratio is 0.467 (see chapter 3), the true β must hence
be 2.14 times larger than the experimental estimate βexp.

At the end of this appendix, we note (luckily enough) that the reanalysis presented above
only affects the β value and not the values for the various damping rates, at least when the
damping rates are expressed in terms of M , βexp and the total spontaneous decay rate (γ1 +
γ′
1). The new damping rates are

γ′
n = Kβexp

Γc

M − 1
, (4.36a)

γ′
NL =

(

γ1 + γ′
1

γ2

)

Γc(M − 1), (4.36b)

γ′
N = (γ1 + γ′

1)M. (4.36c)

Thus, since the difference is so small, we will continue using this chapter’s notation in the
following chapters. Some of the derived rate equations presented here, however, will be used
in chapter 8, where we will discuss a laser with excess noise and detuning.
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Chapter 5

Photon statistics1

We have measured the photon number probability distribution of a laser in which the
inversion is not slaved to the field. For the experiments, we have used a Nd3+:YVO4

laser which has a sufficiently slow inversion to allow measurement of the photon fluctu-
ations at a timescale much shorter than that of the relaxation oscillations. The photon
distribution function becomes highly nonstandard (i.e. non-Poissonian) in such a laser;
this is consistent with available theoretical work. We point out the relevance of our results
for the case of the semiconductor microlaser.

5.1 Background
The photon statistics of a single-mode laser has been studied for more than 30 years [22, 28,
29, 30, 31]. In those days the photon statistics were obtained by adiabatically eliminating
the dynamic variables of the gain medium. Over the years, this approximation has given
excellent agreement with experimental results. Incorporation of the variables of the gain
medium has been considered in some theoretical papers [12, 13] but this work received little
attention. Recently, it has been stressed that the validity of adiabatically eliminating the gain
medium depends on the size of the laser; conventional laser theory is expected to break down
as the laser gets smaller and smaller [5, 32, 27]. This applies when the inversion is slow
enough to fulfil the condition γ1 < ΓC , where γ1 and ΓC are the inversion and cavity decay
rates, respectively. Dramatic deviations from “standard” photon statistics have been predicted
for the case Λβ & 1 in the previous chapter, where Λ ≡ ΓC/γ1 and β is the fraction of
spontaneous emission going into the lasing mode2. Since β is roughly proportional to the
inverse of the laser mode volume [2], the condition Λβ & 1 is easier fulfilled the smaller the
laser is. In view of the present trend of laser miniaturisation, in particular for semiconductor
lasers, this deviation from standard photon statistics is a highly relevant issue; it is in fact
the theme of this chapter. We report experimental observation of highly nonstandard photon
statistics of a Nd3+:YVO4 microchip laser operating under the condition Λβ ≈ 1, and we
interpret these results in the context of available theories [12, 13]. The good agreement allows
us to predict similar nonstandard photon statistics for semiconductor lasers operating under
the condition Λβ & 1; such lasers are already available on a prototype basis [33, 34, 35]. Our

1Y. Lien, S. M. de Vries, N. J. van Druten, M. P van Exter, and J. P. Woerdman, “Photon statistics of a laser with
slow inversion”, Phys.Rev.Lett. 86, 2786-2789 (2001).

2The definition Λ = ΓC/γ1 applies for the ideal four-level laser, i.e., γ2 = ∞, where γ2 is the lower level
decay rate. In the non-ideal case, an extra damping term is introduced through the population of the lower level. In
the case where γ2 � ΓC , the ratio of photonic and atomic damping is not ΓC/γ1 but γ2/γ1 [5]. This is the case
for our laser, where ΓC/γ2 ≈ 70.
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experimental validation of the generalised theories on the photon statistics [12, 13] is all the
more important in view of the fact that standard semiconductor lasers will soon operate in the
regime Λβ & 1.

In technical terms, if we make the usual assumption that the polarisation of the gain
medium can be adiabatically eliminated, a laser with Λ < 1 is a class A laser whereas Λ > 1
corresponds to class B [13]. One may wonder why the photon statistics of a class B laser
have not been addressed so far experimentally, in particular for semiconductor lasers for
which so much noise data are available. The problem in measuring photon statistics is that
one requires high quality time-domain data for faithful sampling of the relaxation oscillations.
For semiconductor lasers this implies a time resolution of 100 ps, which is at the border of
the present technical possibilities. For this reason we have used a Nd3+:YVO4 microchip
laser as an experimental model system; this laser offers a relatively low relaxation oscillation
frequency (ωro/2π ≈ 10 MHz) and an extreme class B character (Λ ≈ 106). Recently
we have studied the second-order moment of the photon distribution of this laser within the
context of a linearised theory [5]; this approximation fails when studying the shape of the
photon number distribution since linearisation leads by necessity to a Gaussian distribution.
It is the shape of the photon distribution of a class B laser that we address in this chapter: this
distribution is very different from the predictions of the linearised model, and as we will see
below, the distributions also show substantial deviations from a class A distribution.

5.2 The intensity statistics
As a reminder, the class A laser, defined by Λ � 1, has a photon probability distribution
P (n) given by the generalised Poissonian distribution [20]

P (n) =
(p + n̄)

(p+n)
exp (−p − n̄)

(p + n)!
, (5.1)

where n is the intracavity photon number and p is interpreted as the number of modes avail-
able for spontaneous emission. Equivalently, p = 1/β, where β is the fraction of spontan-
eous emission going into the lasing mode. For p � 1, we can approximate Eq. 5.1 by
using Stirling’s expansion for the factorial. This then yields a truncated Gaussian distribu-
tion of P ≈ C exp(−(n − n̄)2/2(n̄ + 1)), where C is a normalisation constant[36]. Above
threshold, the parameter n̄ = p(M − 1), where M is the pump parameter, approximates the
average photon number [20]. For high-intensity beams, where effects due to reflected vacuum
fluctuations can be neglected [37] and a semi-classical description suffices, n is related to the
output intensity I by I = nΓChν.

Because of the nonlinear nature of the full class B coupled rate equations, solutions are far
from trivial. Both Ogawa [12] and Paoli et al. [13] have put forward theoretical predictions for
the photon probability distribution in class B lasers. The two approaches have some common
traits but differ at crucial points; however, their results can be represented by the same generic
equation, which we will give first, before discussing the differences in derivation,

P (n) = C(a, b)nae−bn , (5.2)

where the normalisation constant C(a, b) = b(1+a)/a!. The first and second moments of this
distribution are given by the parameters a and b via n̄ = (a+1)/b and g2(0)−1 ≈ δn2/n2 =
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1/(a + 1). The function P (n) is thus entirely defined by the two experimentally accessible
variables n̄ and g2(0).

5.3 The pseudo energy
Paoli et al. [13] use the concept of “pseudo energy” to solve the laser dynamics. The inversion
and the intensity are re-expressed in terms of one fast and one slow variable, which are then
separated. These variables are the coordinate q = ln(n/n0), with n0 as the equilibrium
photon number, and the pseudo energy W, defined by

W ≡ 1

2(M − 1)Γcγ1

(

dq

dt

)2

+ V (q), (5.3)

where M is the normalised pump parameter and V (q) = eq − q − 1 is the Toda potential
[13]. The pseudo energy quantifies the strength of the intensity fluctuations; for low noise
levels its time average is in fact equal to g2(0) − 1. The advantage of the pseudo energy
over the true energy is that, in the limit of weak excitation and damping of the noise, the
pseudo energy is conserved, whereas the true energy of the system is not. Interestingly, Paoli
et al. [13] (and also Ogawa [12]) predict that the photon probability P (n) goes to zero for
n/n0 → 0, since V (q) (and thus W (q)) diverges in that limit. To obtain an expression for the
photon probability distribution, Paoli et al. find themselves forced to expand the probability
distribution in terms of the pseudo energy, W , taking only terms up to the second order.
The distribution becomes non-normalisable and remains in principle only valid for small
values of W , i.e., relatively weak relaxation oscillations, a condition that is not fulfilled in
our experiments.

Also Ogawa [12] makes use of the pseudo energy concept, but he does not invoke the
separation of timescales. Moreover, his model corresponds to what Siegman [1] calls an
ideal three-level laser (note that lasers which are known as three and four-level systems by
experimentalists like Siegman[1], are referred to as two- and three-level systems, respectively,
by theoreticians [29, 12]). This model leads to approximately equal population in the two
laser levels, whereas a four-level laser like our Nd3+:YVO4 laser has an almost negligible
population in the lower level3. This could conceivably lead to different noise properties from
what is expected in a Nd3+:YVO4 laser. Nevertheless, both Ogawa and Paoli et al. arrive
at the same final result, namely Eq. 5.2. This suggests that Eq. 5.2 has generic validity
beyond the stringent conditions used in the two derivations [12, 13]. As we will show, our
experimental results confirm this hypothesis.

5.4 Setup
Our experimental setup is shown in Fig. 5.1. A Nd3+:YVO4 chip with a thickness of 0.1 mm
and a doping of 1 % atomic Nd3+ was put as close as possible to a concave mirror with a
radius of curvature of 25 mm and a reflectivity of 80%. The mirror has a diameter of only
≈ 1 mm; it is basically a small platform made by the careful removal of the surrounding
mirror through grinding (see mirror in Fig. 5.1). The small size was needed to keep the

3The relation SP = 4SD , used by Ogawa, is a consequence of the three-level model used in his paper. This is
equivalent to N2 = N1. Note that Paoli et al. [13] assume that N1 = 0, i.e., a four-level system.
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cavity length small and β relatively large. The crystal was optically pumped with an intensity-
stabilised titanium-sapphire laser at 809nm, with relative noise below 0.1 % r.m.s.. By using
a Fabry-Perot we confirmed that the Nd3+:YVO4 laser was oscillating in a single mode
only. The Nd3+ fluorescence, at 1064 nm, had an almost Lorentzian spectrum with a width
(FWHM) of γ⊥/π = 0.22 THz; this large value allows for adiabatic elimination of the
polarisation of the gain medium. The values of β and ΓC were found directly from the
experimental data themselves. Plotting the output as a function of pump parameter and using
the relation n = (M − 1)/β yielded β = 1.8 × 10−5. Furthermore, the value of ΓC was
deduced from the relaxation oscillation frequency ωro =

√

ΓCγ1(M − 1), leading to ΓC =
1.05× 1011 s−1. The upper level decay rate was measured to be γ1 = 1.3(1)× 104 s−1. Our
laser is an extreme class B laser since Λ = ΓC/γ1 = 8×106 � 1 and γ2/γ1 = 1.2×105 � 1

The photon number probability distribution was determined by direct binning of the in-
tensity values observed in an intensity-time trace. With a typical output power of 1 mW,
there was no need to use a photon counter; instead we used a DC-coupled 125 MHz pho-
todetector (NewFocus 1811) which has a much larger dynamic range than a photomultiplier.
Nevertheless, we will refer to intensities in terms of the corresponding intra-cavity photon
numbers because of the ease at which this can be related to theory. To obtain high-quality
data, we took special care to minimise the background signal since this produces a smear-
ing of the probability distribution through its noise. Therefore, to ensure that the signal was
maximised without saturating the detector, the intensity was adjusted for each measurement
using a half-waveplate and polariser combination (Fig. 5.1). This made it impractical to em-
ploy this detector to measure the absolute intensity, for which another, slower Si photodiode
with an adjustable current amplifier was used. The oscilloscope, a LeCroy 9304A, had a non-
ideal flash-type AD-converter, which introduced extra noise. Some of the intensity bins of
the converter had a larger probability to be filled than others and thus, for each pump value,
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Laser

Noise
eater

Hwp/Pol

80% at 1064nm

Nd  :YVO Mirror Optical
isolator

detector
Fast

Hwp/Pol

HR at 1064nm
AR at 809nm,

AR at 1064nm
AR at 1064nm

W

W

3+

4

Slow
detector
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Perot

Figure 5.1: The setup, with the laser cavity depicted in the bottom of the figure. The cavity,
which is not drawn to scale, is shown with the remodelled concave mirror. W indicates a
Wedge, and Hwp/Pol is a half-waveplate and polariser combination used for the adjustment
of the light intensity. AR and HR denote an anti-reflection and a high-reflection ( ≈100%)
coating respectively.
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ten measurements at various oscilloscope offsets were conducted in order to average out this
effect.

5.5 Experimental results
The photon number probability distribution is shown in Fig. 5.2, where the experimentally
obtained data are compared to the theoretical curves according to Eq. 5.2. Since the variables
a and b (Eq. 5.2) are already set by the measured values of n̄ and g2(0), the comparison
is a test of the shape of the curves. Fig.3 shows that the experimental data are in excellent
agreement with theory. Smearing of P (n) due to the noisy dark signal can only be seen in
Fig. 5.2a, where the sharp drop in probability at very small photon numbers is somewhat
diffuse in the experimental data (see inset).

It is instructive to compare the shapes of the P (n) curves in Fig. 5.2 with those for a
class A laser. Fig. 5.2a may remind the reader of the thermal photon statistics of a class A
laser below threshold; however, it is obtained here above threshold (M = 1.04) at an average
photon number n̄ = 1750; its nature is due to the relaxation oscillation enhanced spontaneous
emission noise [5].

Jumping now to Fig. 5.2c, we observe at M=7.28 a curve that is approximately Gaussian,
as applies to a class A laser sufficiently far above threshold, but with an anomalously large
width. At this point a class A distribution would have a standard deviation σn ≈ n̄1/2 = 642,
while the measured standard deviation is σn = 80500, i.e., 125 times larger! This is due
to the extreme class B behaviour of our laser; for lasers that are only marginally class B,
the distribution is narrower; furthermore, lasers with marginal class B properties retain their
Gaussian shape (such as depicted in Fig. 5.2c) till closer towards threshold. Apart from a
somewhat larger width, these marginal class B lasers have photon probability distributions
that are indistinguishable from those of class A lasers.

Fig. 5.2b shows an intermediate case, which for a class A laser would correspond to a
truncated Gaussian as shown by the dashed curve. As can be seen, the class B distribution
deviates strongly from this truncated Gaussian; this is shown in more detail in Fig. 5.3 where
two sections of Fig. 5.2b have been enlarged. Whereas there is a finite probability of having
zero photons in the cavity in the class A case, class B theory predicts that there will be zero
probability of having no photons in the cavity (this holds true, even very close to threshold
such as in Fig. 5.2a, where the probability drop is very abrupt just above zero photons). This
prediction is confirmed by our experimental results. In Fig. 5.3 the dashed curves represent
the Gaussian photon probability distribution of a class A laser, chosen with n̄ and g2(0) equal
to those of the class B distribution, here shown by drawn curves. Note also how the upper tail
extends much further for the class B distribution; this is due to the non-linearisable nature of
the class B laser dynamics.

5.6 Discussion and conclusion
Despite the a priori weaknesses of the theories [12, 13] discussed above, they are highly
successful in predicting the probability distribution. The use of a three-level system by Ogawa
[12] is apparently appropriate for a four-level laser. This surprising result is consistent with
the finding of Levien et al. [25] that the differences in the noise of a three-level system and a
four-level system are sometimes smaller than anticipated. The approximation of Paoli et al.
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[13] that W remains relatively small also seems better than expected. In the framework of
pseudo energy this could be explained by a spurious drift term [38], which leads to an extra
damping of the intensity fluctuations and a reduction in W , thus effectively increasing the
region of validity for the low W approximation.

In conclusion, our experiment confirms the theoretical predictions [12, 13] for a class B
laser, and shows that these theories apply surprisingly far beyond the parameter ranges of
nominal validity. Our findings are significant for all class B lasers, in particular for semi-
conductor microlasers with Λβ & 1, where we expect to see photon number statistics that
are equivalent to those described here [5, 32]. In pioneering work, microdisk and microring
semiconductor lasers have already crossed the limit Λβ & 1 [33, 34, 35]: reference [33] has a
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Figure 5.2: The photon probability distribution for three different pump values: (a) M=1.04,
(b) M=2.85, (c) M=7.28 with the experimental data shown as bar graphs. The full curves
represent the theoretical predictions based on the measurement of g2(0) and n̄, and the
dashed curve in (b) shows a class A distribution with the same value of g2(0) and n̄ as the
experimental data. The inset in (a) shows the distribution of the background (dark) signal
as a dashed curve. The characteristic values for these graphs are (a) g2(0)= 1.96, n̄=1750;
(b) g2(0)= 1.47, n̄=96600; (c) g2(0)= 1.038, n̄=413000.
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Figure 5.3: Enlargement of two sections of Fig. 5.2b: again a comparison of the experi-
mental data with the theoretical curves for the class B model (solid line) and the class A
model (dashed line). The two curves have the same values for g2(0) and n̄ as the experi-
mental data.

value of Λβ that equals ≈ 2 · 102. It would therefore be very interesting to study the intensity
characteristics of these devices; so far, only DC properties have been reported. For more
common semiconductor lasers (edge-emitting and vertically-emitting devices), the Λβ & 1
criterion has not yet been satisfied since typically ΓC ≈ 300 ns−1, γ1 ≈ 3 ns−1, β ≈ 10−4

so that Λβ ≈ 10−2. However, since the dominance of class B properties is mainly a question
of laser size [5, 32, 27], the non-standard photon statistics emphasised in this chapter will
become obvious once these lasers are made an order of magnitude smaller. Especially close
to threshold, deviations from class A photon statistics should become visible even before
Λβ & 1 is reached as an onset towards extreme class B behaviour.
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Chapter 6

The laser as a Toda oscillator1

The Toda oscillator model gives a true description of the intensity fluctuations of a
laser. Here, we use this model to study lasers with strongly developed relaxation oscil-
lations. Via a separation of timescales, we focus on the theoretical and experimental
investigation of the instantaneous relaxation oscillation frequency and damping rate. As
an experimental system, the Nd3+:YVO4 laser is used.

6.1 Introduction
An essential ingredient of standard laser theory is that the intensity fluctuations are strongly
damped above threshold. However, very many lasers, such as rare-earth doped solid-state
lasers and most semiconductor lasers, do not have stable intensities but exhibit relaxation
oscillations that are driven by fluctuating spontaneous emission. To first order, these oscil-
lations are well-described by linearisation about the point of intensity stabilisation, but once
the oscillations get stronger, this approximation is stretched beyond its validity range. In this
chapter we will analyse the relaxation oscillations by using the Toda model. This model is
a generalisation of standard laser theory, and is particularly well-suited for our purpose. Al-
though the theory of the Toda oscillator has already been known for some time in the context
of laser physics [12, 13], we present here what is to our knowledge the first experimental
work carried out with this model specifically in mind.

Generally speaking, lasers with relaxation oscillations have relatively slow inversion de-
cay rates. These lasers are commonly known as class B lasers, which distinguish themselves
from class A lasers by fulfilling the condition Λ = Γc/γ1 > 1, where Γc and γ1 are the
cavity and inversion decay rates respectively [3] (see section 3.2 for discussion of the nomen-
clature). Since the relaxation oscillations are driven by spontaneous emission noise, they are
relatively strong if the fraction β of spontaneous emission going into the lasing mode is large.
Especially in the regime Λβ & 1, recent study (see chapter 4 as well as [5, 32, 27]) shows
that the intensity fluctuations can become as large as the mean intensity. Since β is inversely
proportional to the cavity size [2], this regime is reached by reducing the size of the laser.

To gain an understanding of the intensity fluctuations described above, we employ the
Toda oscillator model. By rewriting the laser rate equations, we map the problem onto that of
a mechanical oscillator consisting of a single particle, trapped in a so-called Toda potential
[39]; the particle is set into oscillation by noise. One of the key concepts of this model is the
pseudo energy, which is a measure for the depth of the relaxation oscillations and which is

1Y. Lien, S. M. de Vries, M. .P. van Exter and J. P. Woerdman, “Lasers as Toda oscillators”, J. Opt. Soc. Am. B
19, 1461-1466 (2002).
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almost conserved in a weakly-damped system. The introduction of this quantity allows for
a separation of the photon and inversion dynamics into fast relaxation oscillations with an
amplitude that evolves slowly in time.

6.2 The “anharmonic” oscillator
Most laser theories apply to class A lasers, which fulfil the condition Λ = Γc/γ1 < 1.
The difference between class A and class B lasers becomes apparent when studying the time
evolution of the lasers. In class A lasers, the inversion is sufficiently fast to be adiabatically
eliminated and it is thus slaved to the photon number. In class B lasers on the other hand,
the inversion and photon numbers oscillate approximately out of phase in potentially strong
relaxation oscillations.

This noise behaviour is usually the strongest in small lasers; but in spite of the very
smallest lasers being semiconductor lasers, these are not yet small enough to fulfil the noise
criterion Λβ & 1 (although it is believed that they will reach this regime in the near future
[32, 33, 40]). The Nd3+:YVO4 laser, however, does satisfy the above condition when made
sufficiently small and lossy; this is due to its extremely slow upper level decay rate γ1. Such
a Nd3+:YVO4 laser, which has a four-level scheme as depicted in Fig. 6.1, will be the
experimental basis of this chapter.

Pump

3

4

1

2

Stim. Emission
and absorption

Spontaneous
emission

g1

g2

Figure 6.1: The Nd3+:YVO4 laser is a four-level laser, with a pump wavelength of 809 nm
and an emission wavelength of 1064 nm.

The Toda model is based on a second-order differential equation that can be deduced
easily from the rate equations if either the optical field or the polarisation is adiabatically
eliminated (the so-called “bad-cavity” or “good-cavity” approximations). In our case, we
eliminate the polarisation (see section 6.5 for justification) to obtain the following four-level
rate equations [5]

dn

dt
= γ1βn∆N − Γc

n0
n − Γc

γ2
γ1βn (n − n0) + Γc +

√

2Γcnξ(t), (6.1a)

d∆N

dt
= γ1(1 + βn)∆N − Γc(n − n0) + Γc

γ1

γ2
[n − n0 + β(n − n0)

2], (6.1b)

where n and N are the photon and inversion numbers, respectively; n0 and N0 are the
corresponding steady-state values and ∆N = N − N0. These steady state values satisfy
Γc/n0 ≈ Γc/(n0 + 1) = Γc − γ1βN0, where Γc/n denotes the inherent photon damping of
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the relaxation oscillations. This damping arises because the decay rate Γc of the optical field
is not fully compensated by the stimulated emission rate γ1βN0 (there is also spontaneous
emission present). A finite lower-level decay rate γ2 gives rise to two terms that can be re-
cognised through the γ2. The γ2 terms in Eq. 6.1b are, however, negligible as compared to
the other coupling term Γc (n − n0) since γ2 � γ1. The Langevin noise source is denoted
by ξ(t) with 〈ξ(t)ξ(t + τ)〉 = δ(τ).

The two first-order equations (Eq. 6.1a and Eq. 6.1b) can be combined into a single
second-order differential equation. This rewrite yields

d2n

dt2
− 1

n

(

dn

dt

)2

+ 2γro(n)
dn

dt
+ ω2

ro(n) (n − n0) = f(t), (6.2a)

γro(n) =
1

2

[

Γc

n
+ γ1(1 + βn) +

Γc

γ2
γ1βn

]

, (6.2b)

ω2
ro(n) = Γcγ1βn, (6.2c)

where γro(n) and ωro(n) are the “instantaneous” relaxation oscillation damping and fre-
quency. The Langevin noise source f(t) =

√

2Rspn ξ(t) represents the fluctuations in the
spontaneous emission rate, acting only on n(t). Eq. 6.2a is similar to the equation for a
noise-driven, damped harmonic oscillator except for three important differences. For one,
the damping rate γro(n) is a function of the instantaneous photon number n. Similarly, the
anharmonic restoring force ω2

ro(n) is also a function of n. Finally, there is an additional term
proportional to (dn/dt)

2; this term generates higher-order harmonics.
A first-order solution can be found by assuming that (n−n0) � n0 so that the relaxation

oscillation damping and frequency remain approximately constant. This gives the linearised
forms for the two rates:

γ̃ro =
1

2

[

Γcβ

(M − 1)
+ γ1M + Γc

γ1

γ2
(M − 1)

]

, (6.3a)

ω̃ro =
√

(M − 1)Γcγ1, (6.3b)

where M = 1+βn0 is equivalent to a pump parameter when the laser is sufficiently far above
threshold. Far above threshold, the first term of Eq. 6.3a can be neglected, and the relaxation
oscillation damping rate is set by the lower level decay rate γ2 if γ2 � Γc; in this case the
definition of a class B laser changes from Λ = Γc/γ1 � 1 to Λ̃ = γ2/γ1 � 1 [5, 40]. From
here on, the standard route is to reduce the problem to that of a simple harmonic oscillator
by using the linearising assumption underlying Eq. 6.3, which also implies that (dn/dt)

2 is
negligible as compared to the

(

d2n/dt2
)

term in Eq. 6.2a. In this chapter, we will show how
one can go beyond this standard route.

6.3 Pseudo energy
In order to find (semi-)analytical solutions of Eq. 6.2, it is advantageous to introduce the
anharmonic “Toda potential”. This potential is found by rewriting Eq. 6.2a in terms of a
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coordinate q = ln (n/n0), and by neglecting, for the time being, the noise and damping
contributions in this equation. This yields

1

(M − 1)Γcγ‖

d2q

dt2
= −(eq − 1) = −dV (q)/dq. (6.4)

where the Toda potential V (q) is defined as

V (q) = eq − q − 1, (6.5)

where V (q=0) = 0 is the minimum. Note that of the three nonlinearities mentioned before,
the first one (γro (n)) has been neglected, the second has been removed through the coordin-
ate transformation, and the third one is incorporated in the non-linearity of the Toda potential.
The Toda potential has been plotted in Fig. 6.2; as one can see, it is asymmetric as well as
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Figure 6.2: The Toda potential in terms of the coordinate q on the left and re-expressed in
terms of the photon number on the right.

anharmonic. In Fig. 6.2a it has been plotted in terms of the coordinate q, whereas Fig. 6.2b
shows the potential in terms of the photon number to indicate how the photon dynamics will
be affected. After having defined the Toda potential, a quantity called the pseudo energy W
is introduced as [13]

W (t) ≡ 1

2(M − 1)Γcγ1

(

dq

dt

)2

+ V (q), (6.6)

where the first and second terms are the kinetic and potential pseudo energies, respectively.
The expression 1/ [(M − 1) Γcγ1] ≡

(

ω̃2
ro

)−1 plays a role equivalent to mechanical mass,
where ω̃ro is the linearised relaxation-oscillation frequency introduced in Eq. 6.3b. The
pseudo energy is a measure for the fluctuations in relative intensity or q; each value of the
pseudo energy W corresponds to a specific relaxation oscillation depth, frequency and wave-
form. As long as the relaxation oscillations are neither damped nor driven, this pseudo energy
will remain constant. This means that the time development of the pseudo energy W , which
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is on the timescale of the relaxation oscillation damping rate γro, can be seen entirely separ-
ate from the individual oscillations that evolve on the much faster timescale of the relaxation
oscillation frequency ωro. It is this separation of W from q that simplifies the problem suffi-
ciently to yield (semi-)analytical solutions beyond the linearised regime. An example of the
separation of timescales can be seen in section 6.6 below, where typical time traces for both
intensity and pseudo energy have been plotted.

6.4 Damping and oscillation rate
The relaxation oscillation damping rate can be found relatively straightforwardly in the limit
of small fluctuations. In this case, the Toda potential can be rewritten as a harmonic potential
V (q) = eq − q − 1 ≈ 1

2q2 and the coordinate q can be reformulated as the photon number
deviation from the steady state value (q = ln(n/n0) ≈ (n − n0)/n0). With this approxim-
ation, it is no surprise that the autocorrelation function of the pseudo energy can be written
as

〈W (t)W (t + τ)〉 = 〈W 〉2
(

1 + e−2γ̃roτ
)

, (6.7)

where γ̃ro is the linearised relaxation oscillation damping rate as defined in Eq. 6.3. Al-
though Eq. 6.7 was found in the limit of small, linearised fluctuations, below we use the
agreement with experimental results to show that this equation also applies in the case of
large fluctuations.

One of the key points in this chapter is that it is in general impossible to deduce the re-
laxation oscillation damping rate from a measurement of the intensity noise spectrum alone.
The reason for this is the anharmonic nature of the (Toda) potential, or equivalently the de-
pendency of ωro on photon number. The increase of the relaxation oscillation period tc with
modulation depth can be expressed as (see Eq.2.20 in Ref. [13]):

ω̃rotc = 2π(1 +
1

12
W + ..). (6.8)

In the spectral domain the non-constant oscillation period leads to a broadening δωro of the
principal harmonic. Restricting ourselves to the first order we obtain a rough estimate for this
broadening:

δωro ≈ ω̃roW̄/12, (6.9)

where the time-averaged pseudo energy is given by

W̄ =
Γcβ

2γ̃ro(M − 1)
. (6.10)

The broadening δωro comes in addition to the intrinsic spectral width caused by the damping
of the relaxation oscillations.

6.5 The setup and experimental parameters
For the experiments, we have used a Nd3+:YVO4 chip with a thickness of ≈ 100 µm and
a doping of 1 % atomic Nd3+ together with various outcoupling mirrors (see Fig. 6.3).
On one side the crystal was coated to be highly reflective at 1064 nm and anti-reflective at
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809 nm, while on the opposite facet it had a 1064 nm anti-reflection coating. All experiments
described here were conducted with the Nd3+:YVO4 laser operating in a single transverse
and longitudinal mode. Single mode operation was easily achieved owing to the short length
of the cavity and the strong curvature of the mirror. This ensured large longitudinal and
transverse mode splitting. In addition, the spatial confinement of the pump strongly favoured
the TEM00 mode. Since we are interested in the effect of the magnitude of the spontaneous
emission factor β on the laser noise, we varied the optical cavity length from ≈ 300 µm to
≈ 1200 µm (here we have accounted for a crystal refractive index of ne = 2.17 at 1064 nm).
The mirror depicted in Fig. 6.3 had the edges ground away to leave a small platform only; this
enabled us to make the air section of the cavity very short (about ≈ 75 µm at the shortest).
The mirror was concave with a radius of curvature of 25 mm and had a reflectivity of 80 %
at the lasing wavelength. We pumped the laser with an intensity-stabilised titanium-sapphire
laser at 809 nm. The relative noise of this pump was below 0.1 % r.m.s., which is effectively
negligible (in particular since the fluctuation bandwidth of the pump laser was 5 kHz, i.e.
much smaller than ωro/2π ≈ 10 MHz). Owing to the relatively large splitting of the levels,
the effect of thermal photons was also negligible. The data were collected with a LeCroy 9450
digital oscilloscope and a Tektronix 2712 spectrum analyser. The oscilloscope could record
as many as 50000 intensity-time points; its time window was chosen to measure a minimum
of 20 points per oscillation cycle. Up to twenty separate time traces were taken for each
pump value and the data presented below are averages of these results. We established the

Crystal
thickness

Nd :YVO  Crystal
3  +

4

AR coating for 808nm
HR for 1064nm

AR coating for 1064nm

Cavity
length

Mirror

80% coating for 1064nm

Figure 6.3: The Nd3+:YVO4 laser consists of a crystal with reflective and anti-reflective
coatings and a spherical mirror. The edges of the spherical mirror were ground away to
produce a small platform with a diameter of 1 mm, which allows the mirror to be moved
closer to the crystal.

following laser parameters for use in the rate equations: the Nd3+ fluorescence at 1064 nm
had an almost Lorentzian spectrum with a width (FWHM) of γ⊥/π = 0.22(2) THz. This
is much larger than the cavity decay rate Γc, thus validating the adiabatic elimination of the
polarisation that we described in section 2. The value of β was found directly from the output
versus input power curve [5], while the product Γcγ1 was determined from the linearised
relaxation oscillation frequency ω̃ro (see Eq. 6.3b). The upper-level decay rate was measured
directly from the fluorescence decay and was found to be γ1 = 1.3(1) × 104 s−1. Another
important variable is the lower-level decay rate γ2, for which References [10] and [9] quote
values in the range of 1− 2× 109 s−1. The lower level decay rate γ2, which was obtained by
fitting Eq. 6.7 to the experimental data reported in section 6, was found to be in reasonable
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agreement with literature2.

6.6 Experimental results
Our experimental results are based on high-quality time traces, from which the pseudo energy
can be calculated by the use of Eq. 6.6. Since the pseudo energy W changes at a very slow
timescale as compared to the photon number, it is not necessary to calculate it for all intensity
points. Instead, we have chosen to extract W only at the relaxation oscillation extrema (peaks
and troughs); at these points all the pseudo energy is stored in the oscillator as “potential
energy” and it can thus be easily found. A section of a typical timetrace for the oscillating
laser intensity and the calculated pseudo energy is displayed in Fig. 6.4. As a consequence
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Figure 6.4: A typical timetrace of the laser intensity (thin curve). The pseudo energy (thick
curve) is related to the relaxation oscillation amplitude; it changes on the timescale of the
relaxation oscillation damping, which is slow compared to the oscillation frequency.

of being a measure for the relaxation-oscillation depth, the pseudo energy also dictates the
frequency and the shape of the oscillations, which become anharmonic when the pseudo
energy becomes large. This relationship is illustrated in Fig. 6.5, where we have plotted two
enlarged sections of Fig. 6.4 with different pseudo energies (see caption for details). For
comparison, the dotted curves depict the theoretical curves given by Eq. 6.4 and solved with
an iterative solution method. The relaxation oscillations are clearly well-described by the
theoretical framework. Fig. 6.5a demonstrates the almost harmonic nature of the oscillations
in the limit of weak modulations; Fig. 6.5b shows how the oscillations become slower and
more anharmonic when the pseudo energy increases. The frequency reduction at increased
modulation depth was found to be consistent with the theoretical predictions (Eq. 6.9 predicts
that oscillations with W = 1 should be about 8 % slower than for W ≈ 0).

2We found values of the lower level decay rate γ2 in the range 1.7 − 2.4 × 109 s−1 when varying the cavity
length from 300 µm to 1200 µm. These variations in the estimate of γ2 suggest that a gain grating caused by
back-reflected standing waves caused extra damping; see Ref. [41].
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Figure 6.5: Two sections of Fig. 6.4, magnified to show how the oscillation magnitude affects
the shape and frequency of the oscillations. The solid curves represent the experimental data,
whereas the broken curves depict the theoretical predictions obtained from Eq. 6.4. Fig. 6.5a
is centred on ≈ 6.8 µs and Fig. 6.5b is on ≈ 10.3 µs of Fig. 6.4. The theoretical curves
have pseudo energies W = 0.068 and W = 1.00, respectively. As expected the oscillations
become slower and more anharmonic with increasing pseudo energy.

The magnitude of the intensity fluctuations depends on the laser size and pump strength.
This dependence is shown in Fig. 6.6, where the average pseudo energy W̄ has been plotted
for two different cavity lengths: a “short” cavity with a length l ≈ 300 µm and a measured
β = 9.9 × 10−6, and a “long” cavity with l ≈ 1200 µm and a measured β of 2.3 × 10−6.
Note how the average pseudo energy W̄ starts at ≈ 1 at the lasing threshold and gradually
drops for increasing pump strength. As might be expected from section 6.1, the laser with the
short cavity is noisier than the long-cavity laser (see Fig. 6.6). This is due to a relatively large
factor Λ̃β = 1.05, thus putting this laser further into the class B regime than the long-cavity
laser (Λ̃β = 0.28). As discussed in relation with Eq. 6.3, we have used Λ̃ = γ2/γ1 instead
of Λ = Γc/γ1 in our description of the class B behaviour.

We mentioned above (section 6.4 and discussion of Fig. 6.5) that the relaxation-oscillation
damping rate can not be found directly from the intensity spectrum. Instead we deduce this
damping rate using the Toda oscillator model. We start with analysing the dynamics of the
pseudo energy by calculating its time-autocorrelation from timetraces like the one shown in
Fig. 6.4. A typical result is plotted in Fig. 6.7 together with a fit using Eq. 6.7. From autocor-
relation timetraces such as the one plotted in Fig. 6.7, estimates for the relaxation-oscillation
damping rate γ̃ro were obtained.

For each pump value, we averaged over the estimates for γ̃ro to plot the relaxation-
oscillation damping rate as a function of pump strength (see Fig. 6.8). Although Eq. 6.7
and Eq. 6.3a have been proven only in the weak-oscillation regime, we nevertheless find that
theory compares favourably with the experimental results in all regimes. Since we have used
only the envelope of the oscillations to find the damping rate, the result is not affected by
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Figure 6.6: The average pseudo energy W̄ as a function of the pump parameter M . The
points represent the experimental data, the curves are the theoretical predictions for W̄
(Eq. 6.10). The parameters used for the theoretical curves were obtained from independent
experiments. The triangles and the broken curve correspond to a cavity with a length of
l ≈ 300 µm; the squares and the solid line represent a cavity with a length of l ≈ 1200 µm.
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Figure 6.7: The pseudo energy autocorrelation function typically decays within a few micro-
seconds. The solid curve shows the time development of the autocorrelation function, while
the broken curve is the theoretical fit.

other factors such as anharmonicity.
Fig. 6.8 deserves some further discussion; it shows the measured relaxation-oscillation

damping rate as a function of the pump parameter M for the two cavity configurations de-
scribed in conjunction with Fig. 6.6. Näıvely, the damping rate could be obtained by meas-
uring the width of the principal harmonic of the intensity spectrum. However, this measure-
ment is misleading since the harmonic is broadened through the varying oscillation frequency.
While the open circles represent the spectral measurement, the solid circles show the damp-
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Figure 6.8: Relaxation-oscillation damping rate γro as a function of M ; in (a) l = 300 µm,
in (b) l = 1200 µm. The open circles represent the width of the principal harmonic in the
intensity noise spectrum, which thus also includes an extra broadening due to the changing
oscillation frequency. The solid circles show the damping rate as obtained by analysing
the time dynamics of the pseudo-energy theory. The theoretical curves are based on the
linearised theory result of Eq. 6.3a.

ing obtained when using the Toda oscillator approach. It is the separation of timescales that
has allowed us to find the true damping rate, since we are now insensitive to the amplitude
dependence of the relaxation oscillation frequency. We note that this separation is very ro-
bust (provided that ωro � γro) and works far into the nonlinear regime, i.e. also for W ≈ 1.
However, theoretical complexities makes it difficult to go formally beyond the expansion
in Eq. 6.8. Also, γro quickly increases when approaching threshold (from above), leading
quickly to violation of the condition ωro � γro.

By calculating the difference between the two damping rates depicted in 6.8, we ob-
tain a quantitative estimate for the broadening in the intensity noise spectrum caused by the
amplitude dependency of the oscillation frequency. This experimental result can then be
compared to Eq. 6.9 which gives a rough estimate for the additional width of the principal
harmonic. The theoretical estimate is based on the first-order expansion of Eq. 6.8, and is
in qualitative agreement with the broadening (see Fig. 6.9), without using any free paramet-
ers. As can be seen from the graph, both the overall magnitude and the peak shift have been
qualitatively accounted for. The extra broadening δωro is the largest for intermediate pump
strengths (see also Eq. 6.9), where both W̄ and ωro are sizeable. Comparing the results for
the different cavity lengths, we find that if the laser is relatively small, the broadening δωro

remains large until further above threshold. This is an example of how the class B properties
manifest themselves more strongly in small lasers [5, 27].
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Figure 6.9: The broadening of the main harmonic due to the pseudo-energy dependency of
the oscillation frequency, here for two different cavity lengths of the laser. The data points
were obtained by subtracting the width as given by linearised theory from the measured
width of the principal harmonic. As in Fig. 6.6, the curves represent theoretical estimates
for which the parameters have been separately obtained. The upper figure (a) depicts the
short cavity results (l ≈ 300µm), the bottom figure (b) corresponds to the long cavity
(l ≈ 1200µm).

6.7 Concluding discussion
We have made a first theoretical and experimental study of a laser operating in the Toda os-
cillator regime. The Toda oscillator model describes the dynamics of the system through the
separation of timescales. These timescales correspond to the relaxation oscillation frequency
and damping rate, and their separation allows for a study of the damping rate without con-
tributions due to frequency variations. In addition, the model has been applied successfully
to estimate the noise strength in the laser, and to describe the anharmonic shape of the deep
oscillations. We have emphasised the importance of laser size for the intensity fluctuations;
extreme class B properties such as deep intensity modulations are stronger in small laser
systems and are observed until further above threshold.
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Chapter 7

Ring modes -Combining gain and index guiding1

The effect of quadratic index guiding and Gaussian gain guiding on the transverse
mode profiles in Nd3+:YVO4 microchip lasers is investigated. We concentrate on the re-
gime where the two guiding mechanisms are comparable in size, observing the transition
from the index-guided regime to the gain-guided regime. Excellent agreement is found
between experiment and theory, both in the far and near fields.

7.1 Introduction
End-pumped microchip lasers are in common use due to their simplicity of fabrication and
the ease at which they can be frequency doubled. In most practical applications, these lasers
are made from monolithic crystals with highly reflective coatings at the lasing wavelength.
Such laser cavities have planar mirrors and the transverse eigenmodes are not determined by
the mirror curvature but by the weak guiding effects introduced by the pump. In these lasers,
the optical end pump leads to both a gain guide and a thermally induced index guide. As an
alternative to the monolithic cavity, planar crystals are often combined with concave mirrors.

A thermal index guide can be due to a temperature-induced change in refractive index,
or a heating-related curvature of the crystal surface. Except for in planar monolithic cavities,
thermal guides are weak, and they can therefore often be neglected, at least when compared
to other guiding mechanisms such as index guiding due to curved mirrors. However, when
they are considered, the resulting weak index guide can reasonably be approximated to the
lowest non-vanishing order, which is the quadratic index guide [42, 43].

The gain guide tends to dominate over the index guide in three-level lasers [44]. However,
in four-level lasers such as in Nd3+ doped systems, gain guiding is usually relatively weak.
This is due to the fact that intra-cavity photons outside the pumped area are not absorbed
as they are in three-level lasers. Depending on the curvature of the cavity mirrors, if any, it
follows that gain- and index guiding can be of comparable size in four-level lasers as is the
case in the transitional regime studied in this chapter.

The regime of similar gain- and index-guiding regime is also very interesting from a noise
point of view. Recently, Druten et al. [45] showed that the noise strength can display resonant
behaviour at specific combinations of gain- and index guiding. In chapter 8 we will discuss
how this so-called excess quantum noise [46, 47, 48, 49] arises in a configuration that is very
similar to the one used in this chapter.

1N. J. van druten, S. S. R. Oemrawsingh, Y. Lien, C. Serrat and M. P. van Exter ,“Observation of transverse
modes in a microchip laser with combined gain and index guiding”, J. Opt. Soc. Am. B 18, 1793-1804(2001).
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In our experiment, we used a Titanium Sapphire pump laser with Gaussian intensity pro-
file and a planar crystal combined with a weakly-curved convex mirror to study the combina-
tion of Gaussian gain-guiding and quadratic index-guiding. A large set of transverse modes,
whose intensity profiles vary with mirror reflectivity, are observed both in the near and the
far fields. We find that these modes differ significantly from the usual Laguerre-Gaussian
modes, especially for low mirror reflectivities where conical emission is observed with sev-
eral rings in the far field and no rings in the near field. Also the effect of tuning the cavity
length is investigated and compared to our numerical results. The theoretical model is kept
simple: we neglect for example non-linearities such as spatial hole burning and temporal ef-
fects due to the slow inversion behaviour of our class B laser (see chapter 4). Despite these
approximations we find excellent agreement with theory.

7.2 Theoretical model

Although the experiments of this chapter were conducted with a planar crystal and a concave
mirror, this is only one of several equivalent configurations to which theory [50] for combined
gain- and index-guiding applies. In Fig. 7.1 we present three equivalent cavities. Our theoret-
ical model is based on the planar monolithic cavity (Fig. 7.1a) to which the two other cavities
are reduced using the relations given in Ref. [50]. Assuming a cavity of length L and a cavity
base refractive index n0, we consider the changes to the refractive index ∆n = ∆nR + ∆ng,
which constitute a quadratic index guide ∆nR and a (complex-valued) Gaussian gain guide
∆ng , where ∆ng is assumed to be proportional to the pump intensity. Since we account
for neither spatial nor temporal hole burning, the model, strictly speaking, only applies just
above threshold.

z

r

∆n R

∆ gn

n 0

∆ gn

n 0

∆ gn

n 1 n 2

L 1 L 2

Rc m,R

Rm

(b)(a) (c)

L L

Figure 7.1: (a) Cavity configuration considered in the theoretical model: a longitudinally
homogeneous system with length L, with a transverse quadratic index guide ∆nR and a
Gaussian gain guide ∆ng . The arrows in this figure indicate the output of the microchip
laser through the end mirror with reflectivity Rm. Configurations (b) and (c) are equivalent
as long as the longitudinal variation of the mode profile may be neglected. (b) a monolithic
cavity with a gain guide ∆ng , and a curved surface. (c) The cavity configuration used in the
experiments: a crystal gain medium, with a transverse Gaussian gain profile, and a separate
concave mirror, with radius of curvature Rc and reflectivity Rm.
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For our model, we unfold the standing-wave cavity and treat it as a waveguide of length
2L with the optical wave travelling in a single direction only. Expressing the paraxial wave
equation in terms of cylindrical coordinates r(r, φ, z), we obtain

[

∇2
r + 2k2

z

(

∆ω

ωat
+

∆n

n0

)]

u = −2ikz
∂u

∂z
, (7.1)

where

∇2
r =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
(7.2)

is the usual transverse Laplacian. Also, u(r) is the slowly varying envelope of the (monochro-
matic) electric field component of the electromagnetic field E(r), which has a wave vector
kz = n0ωat/c in the +z (longitudional) direction and is related given by

E(r) = u(r)e−i(ωt−kzz). (7.3)

Cavity detuning is given by ∆ω = ω−ωat, where ωat is the spontaneous emission frequency
(in radians). As is natural in the paraxial approximation, we assume that the guiding ∆n(r) =
n(r) − n0 � n0 and that ∆ω � ω.

Explicitly, the guiding ∆n = ∆nR + ∆ng can be written as

∆nR(r) = −2n0r
2

k2
zw4

0

, (7.4)

and

∆ng(r, ∆ω) = −cg(r, ∆ω)

2ωat
, (7.5)

with

g(r, ∆ω) = g0 exp(−2r2/w2
g)

i − ∆ω/γat

1 + (∆ω/γat)2
, (7.6)

where w0 is the modal waist width due to the quadratic index-guide, wg is the width of the
Gaussian gain-guide, and g0 denotes the gain per unit length at the peak of the Gaussian
pump.

At this point it is interesting to investigate the effect of detuning on the gain-guide ∆ng .
The imaginary part of Eq. 7.6 denotes the gain itself and is (by definition) the strongest for
zero detuning. The gain-related index-guide, which is the real part of Eq. 7.6, is important
to the transverse mode structure. We know that extending the cavity by a length ∆L gives
a negative frequency detuning ∆ω = −ωat(∆L/L). In a longer cavity, a gain-related index
change is therefore negative in the centre of the pump spot, which again leads to less focussing
of the mode and presumably a bigger mode profile. It is the differing behaviour of the gain
guide and the index-related gain guide that leads, as we will see, to the the complex ring
modes for positive (in ∆L) detuning. The effect of detuning on the gain and the gain-related
index guide has been plotted in Fig. 7.2 as a function of detuning ∆ω/γat. Nd3+:YVO4 is
homogeneously broadened with a FWHM of γat/π = 215 GHz (see page 17).

It is convenient to rescale the transverse coordinate r to ρ = r/w0. The paraxial wave
equation (Eq. 7.1) now becomes

[

−1

2
∇2

ρ + 2ρ2 + z0g

]

u = 2iz0

[

∂u

∂z
− in0∆ω

c
u

]

, (7.7)
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Figure 7.2: The effect of detuning on the gain (full curve, scaled on the left) and the gain-
related index guide (broken curve, scaled on the right). The two y-axes are not to scale.

with

∇2
ρ =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
, (7.8)

the rescaled transverse Laplacian, and z0 = kzw
2
0/2, the Rayleigh range corresponding to

the waist size w0. The mode amplitude u is now considered as a function of ρ instead of
r. Because the guiding of Eqs. (7.4)-(7.6) has cylinder symmetry, Eq. (7.1) is separable
in cylindrical coordinates. In addition, since the gain is maximum on axis, higher-order
angular-momentum modes, which have zero intensity on axis, will not be significant, and we
can thus limit the analysis to the lowest-order (angular-momentum) modes, eliminating the φ
dependence [50].

The transverse mode structure depends on the terms on the left hand side of Eq. (7.7)
as there are no radially-dependent terms on the equation’s right side. The key to the trans-
verse behaviour, z0g, contains three (dimensionless) parameters: these are the zero-detuning
on-axis gain per Rayleigh range z0g0, the ratio between the waists wg/w0 and the scaled
detuning ∆ω/γat. By setting the right side of Eq. (7.7) equal to µu, we can express the
z-dependency of the eigenfunction as

uµ(ρ, z) = uµ(ρ, 0) exp [i(n0∆ω/c − µ/2z0)z] . (7.9)

We now impose the boundary condition that the lowest-loss eigenmode reproduces after
one round trip. Considering the round trip mirror reflectivity Rm we now need

√

RmE0(z + 2L) = E0(z). (7.10)

Inserting Eq. (7.3) and then Eq. (7.9) yields

µ = 2z0

(

kz +
n0∆ω

c
− πm

L
− i

4L
ln Rm

)

, (7.11)

where the integer m � 1 is the longitudinal mode index. Thus, if the laser is at threshold, the
imaginary part of the eigenvalue Im µ is set by the mirror reflectivity only. The real part Re µ
is dictated by the requirement that the phase shift during a round trip is a multiple of 2π.
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The phase shift can be tuned by adjusting the length of the cavity. Expanding the cavity
length L around L0 and the mode index m around m0, which have been chosen so that
kz = πm0/L0, we obtain

2∆L

λat
=

[

− ∆ω

ωFSR
+ m̃ +

L0Re µ

2πz0

]

, (7.12)

where ∆L = L − L0 and m̃ = m − m0. ωFSR = πc/n0L0 is the free spectral range of the
cavity.

The transverse eigenvalue problem (left hand side of Eq. 7.7) is theoretically approached
most naturally by fixing the parameters z0g0, wg/w0 and ∆ω/γat. The eigenvalues µ and
the eigenfunctions u(ρ) can then be found numerically. Experimentally, however, it is the
values Im µ and ∆L that are fixed. Fixing ∆L also defines the relationship between Re µ
and ∆ω (see Eq. (7.12)). The boundary conditions set by Eq. (7.11) have to be considered
when solving the eigenvalue equation.

Hence, we specify the values wg/w0 and z0 ln(Rm)/L0 in the experimental setup, with
the former corresponding to the relative narrowness of the pump and the latter being set by the
mirror reflectivity. The modal gain Im µ is now found directly from Eq. (7.11). The transverse
mode structure at threshold is calculated numerically by allowing g0 (instead of Im µ) and
Re µ to vary and by using the boundary condition that u(ρ) vanishes for ρ → ∞. This allows
us to find the threshold pump powers and the mode profiles of the individual modes. For each
solution the near-field intensity profile I(r) is given simply by I(r) ∝ |u(ρ)|2, while the far
field profile is obtained by performing the conversion integral

I(θ) ∝
∣

∣

∣

∣

∫ ∞

0

u(ρ)J0(kzw0ρθ)dρ

∣

∣

∣

∣

2

, (7.13)

where J0 is the zeroth-order Bessel function of the first kind.
Most importantly, the theoretical treatment presented here extends the theory of Serrat et

al. [50] by including the effect of tuning the cavity length. This is a theme that is highly
significant for the following chapter. The main difference between the model presented here
and other models on rare-earth microchip lasers [51, 52, 53] is our inclusion of the parabolic
index guide (in addition to the gain-related index guide). The other models, on the other
hand, often include the effects of gain medium saturation (and in some cases other radial gain
distributions).

7.3 Mirror reflectivity and guiding
One of the key points of this chapter (and Ref. [50]) is the fact that the relative importance of
the parabolic index guide as compared to the gain-related guiding is determined by the mirror
reflectivity. This can be understood as follows: since the laser reflectivity determines the gain
needed to reach threshold (imaginary part of Eq. (7.11)), it follows directly that cavities
with large mirror reflectivities need less gain to reach threshold. Conversely, if the mirror
reflectivity is low, gain guiding will be comparable or stronger than the parabolic index-
guide. The effect of the mirror enters Eqs. 7.9 and 7.11 through Im µ = −z0 ln Rm/2L,
which denotes the modal gain per Rayleigh length: it is found that the parabolic index guide
dominates when Im µ � 1 and that the gain guide dominates in the case where Im µ � 1.
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Figure 7.3: Transverse profile of the real (dashed line) and imaginary (dotted) part of the
guiding “potential” for wg/w0 = 0.30. We have plotted the transverse mode profile of
the lowest-loss eigenmode (solid line, with the vertical scale adjusted for each plot) for
comparison. Detuning was set to the point at which the threshold is the lowest.(a) Imµ =
0.36 (corresponding to Rm = 98 % in the experiment), the parabolic part (the mirror
curvature) of the real-valued index guide dominates. (b) For Im µ = 6.3 (Rm =70 % ),
the Gaussian guide dominates, as it confines the mode to a region where the parabolic index
guide is relatively small. Note the difference in vertical scale (for V ) between (a) and (b).

The two regimes have been illustrated in Fig. 7.3 for wg/w0 = 0.30, which is the case
studied in sections 7.4 and 7.5 of this chapter. Both the real (long-dashed curve) and the
imaginary part (short-dashed curve) of the potential V (ρ) = 2ρ2 + z0g were plotted. Both
on the right and on the left, detuning was set to be the point at which the system would reach
threshold first. Next to the various forms of guiding, the near-field intensity (solid curve)
of the lowest-loss (fundamental) eigenmode has been shown. While the curves on the left
correspond to Im µ = 0.36 and a mirror reflectivity Rm = 98 % in our system, the curves on
the right represent a reflectivity of 70 % and Im µ = 6.3.

It is interesting to note the differences between the two plots in Fig. 7.3. On the left hand
side, the refractive index is dominated by the quadratic index guide and the contribution of
the gain-related index guide adds only a small dimple at ρ = 0. The lowest-loss eigenmode
was hence only confined by the quadratic index guide. The detuning at which these curves
were plotted, was slightly negative in length (positive in frequency).

On the right hand side of Fig. 7.3, it is the gain-related guiding effects that dominate.
Here the imaginary part of the potential is much larger as compared to the plot on the left,
but it is the real part that is enhanced the most. The reason for this is the fact that this
cavity is detuned even more from gain maximum (towards larger positive ∆ω). Such a large
detuning is advantageous in cavities with strong gain guiding as additional focussing of the
laser eigenmodes improves the overlap with the gain profile, thereby lowering the lasing
threshold.

As already noted in the introduction, in this chapter we will be particularly interested in
the intermediate regime (Im µ ≈ 1) where the parabolic index guide and the gain-related
guiding are of similar strength. The experimental setup was specifically designed to address
this regime.
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7.4 Experimental setup
As was discussed by Serrat et al. in Ref. [50], the configuration shown in Fig. 7.1(a) can be
mapped onto the configurations of Fig. 7.1(b) and (c), as long as the cavity length is shorter
than the Rayleigh range of the cavity modes involved. Experimentally, the configuration of
Fig. 7.1(c), consisting of a separate laser crystal and a concave mirror was preferred since
it allows both flexibility and good control over the guiding parameters. For instance, the
strength of the effective quadratic index guide is determined by the curvature of the concave
mirror and its distance to the crystal [cf. Eqs. (7.14a)-(7.14c) below, and also the discussion
in section 7.6].

The cavity used in the experiments is shown in some more detail in Fig. 7.4. The laser
crystal is a 1% doped Nd:YVO4 chip of 3 × 3 × 0.21(3) mm. The left facet in the figure
has an anti-reflective coating at the pump wavelength, 808 nm, and it is highly reflective at
the lasing wavelength, 1064 nm. The other facet is coated anti-reflective at 1064 nm. An
out-coupling mirror with a radius of curvature of Rc = 200 mm and a diameter of 10 mm is
placed as close as possible to the latter end, leaving only a small air gap between the crystal
and the mirror.

The distance between laser crystal and output coupler could be varied with a micrometer-
based translation stage. In practice, the air gap was first minimised until the mirror touched
at the edge of the crystal holder (diameter: 5 mm), and then moved back a sufficient distance
to allow for fine alignment of the relative tilt. The resulting size of the air gap is estimated
from the translation stage read-out to be 0.10(3) mm, where the uncertainty is mainly due to
variations in the alignment procedure.

The use of a separate output coupler allows for its easy replacement for another. Hence we
can study the same cavity configuration with different out-coupling intensity reflectivities, i.e.
different intra-cavity losses. Five different reflectivities Rm were used: 98 %, 94 %, 90 %,
80 %, and 70 %. The laser crystal was mounted on a piezo-electric transducer (a piezo), so
that the cavity length could be fine-tuned on the subwavelength scale.

HR@1064nm
AR@808nm AR

AR

Nd:YVO4

Output coupler

Laser output
1064nm

Pump: 808 nm
Ti:sapphire

Rm

Figure 7.4: The experimental setup of the microchip laser. The plano-concave configuration
is end pumped using a Titanium Sapphire at 808 nm. The crystal is about 200 µm thick with
a refractive index of 2.2 and the air gap has a length of 0.1 mm. The radius of curvature of
the output coupler is 200 mm. We can vary the reflectivity by replacing the output coupler
for another with the same radius of curvature.

The microchip laser is pumped by a Coherent 899 Titanium Sapphire laser operating at
808 nm. The Titanium Sapphire laser itself is being pumped by a Spectra Physics Millennia
laser operating at 532 nm. The transverse profile of the pump is Gaussian and has a waist
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size wg = 14 µm in the focus, which was on the crystal. The pump power incident on
the Nd3+:YVO4 crystal was varied using a combination of a rotatable half-wave plate and
a polariser in the collimated part of the pump beam. Typical pump powers were in the 1 −
50 mW range.

The transverse profile of the output beam of the microchip laser was studied by imaging
the near field or the far field onto a HiSIS22 CCD camera, using calibrated two-lens imaging
systems. The estimated resolution of the imaging system was 3 µm for the near field and
0.2 mrad for the far field. Optical-quality beamsplitters were used to reduce the intensity
of the light incident on the camera to within its dynamic range. The camera was custom-
modified by replacing the original CCD device with a Kodak KAF-0440L CCD which had
an anti-blooming system and (more importantly) which did not have a glass window in front
of the chip. Avoiding this glass window eliminates optical interference effects originating
from the reflection of the glass surfaces; this was found to significantly improve the quality
of the images obtained. The size of the chip is 768 × 512 pixels, where the physical size
of one pixel is 9 × 9 µm2; the camera is capable of producing 16 bit grayscale images.
The resulting mode profiles were generally found to have excellent circular symmetry. For
comparison with the theoretical mode, a cross-section was taken along the long (768 pixel)
axis of the CCD chip through the centre of the mode profile.

To map the experimental parameters for the configuration of Fig. 7.1(c) onto those of the
theoretical model based on Fig. 7.1(a), we use Eqs. 7.14a, 7.14b and 7.14c from the paper of
Serrat et al. [50]. For convenience, these are reproduced here in the present notation, namely

n0 =

√

n1n2

(

n1L1 + n2L2

n2L1 + n1L2

)

(7.14a)

L =

√

(

L1

n1
+

L2

n2

)

(n1L1 + n2L2) (7.14b)

w2
0 =

2

kz

√

LRcn0. (7.14c)

Variable Description Value
L1 Crystal thickness 0.21(3) mm
n1 Crystal refractive index 2.1652
L2 Size of the air gap 0.10(3) mm
n2 Refractive index of air gap 1
Rc Mirror radius of curvature 200 mm
wg Gain(=pump) waist size 14(1) µm
λat Laser output wavelength 1064 nm

γat/π FWHM of the gain 207 GHz
L Effective length 0.3 mm
n0 Effective refractive index 1.7
w0 Waist size of parabolic index guide 46 µm

Table 7.1: Overview of the experimental parameters and the corresponding values of the
derived theoretical parameters.

An overview of all the relevant parameters of the laser used in the experiment is given in
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Table 7.1, including the model parameters derived using Eq. (7.14a)–Eq. (7.14c). Note that
the gain waist size wg is indeed smaller than the waist size w0 for the parabolic index guide,
wg/w0 = 0.30.

The output of the laser was investigated spectrally by passing it through a planar Fabry-
Perot interferometer. The laser was found to operate in a single transverse and longitudinal
mode for all the data presented in section 7.5. By operating the laser further above threshold,
and carefully tuning the cavity length close to the point of a longitudinal mode switch, it was
possible for two longitudinal modes to oscillate simultaneously. This allowed us to determine
the longitudinal mode spacing as 0.27(3) THz, where the estimated variation is mainly due
to the fact that the cavity needed to be rebuilt for the different mirror reflectivities. This
value is consistent with the theoretical value based on the numbers in Table 7.1, ωFSR/2π =
c/2n0L = 0.29 THz. Note that the longitudinal mode spacing is somewhat larger than the
gain bandwidth γat/π. This situation is typical for practical rare-earth microchip lasers, and
is favourable for single-mode operation.

In the case of the mirror with 90 % reflectivity, it was also possible, under a very limited
set of cavity and pumping conditions, to have two tranverse modes oscillating simultaneously.
The estimated transverse-mode frequency splitting was 3(2) GHz, where the uncertainty
is mainly determined by the difficulty of obtaining stable simultaneous oscillation in two
transverse modes. This value is in rough agreement with the calculated value of 1.3 GHz.

7.5 Results

7.5.1 Modal thresholds

In order to compare the theoretical mode profiles to the experimental ones, it is necessary
to know which of the modes will be lasing. Thus, in this section we first discuss the modal
thresholds, i.e. the pump power needed to bring each mode to threshold. We will discuss
the modal thresholds as a function of cavity detuning and reflectivity. This also serves as a
qualitative overview of the various regimes involved. Later, in section 7.5.2 we will compare
and discuss the theoretical and experimental transverse-mode profiles.

An overview of the threshold behaviour as a function of cavity detuning is shown in
Fig. 7.5. The left-hand side shows theoretical results, obtained through the methods described
in 7.2 for the five different reflectivities used in the experiments. Each curve in the graphs
represents the pump power needed to bring a particular mode to the lasing threshold. Note
that this has been plotted such that the highest curve corresponds to the mode with the lowest
lasing threshold. Each curve is smooth and when two curves cross, a different mode has the
lowest threshold and will become the lasing mode. The lowest-loss transverse modes from
adjacent longitudinal-mode manifolds [cf. Eq. (7.12)] have also been plotted, to indicate the
free spectral range. The right-hand side of Fig. 7.5 shows experimental results of the laser
output power (i.e., not the threshold power) as a function of the cavity length. These were
taken with the pump power fixed at a value close to the point where lasing over the entire free
spectral range was just observed.

Although strictly speaking the left-hand and right-hand side of Fig. 7.5 should not be
directly compared, we do expect to see very similar behaviour. When the laser is operated
not too far above threshold, as in the experimental data of Fig. 7.5, the output power will
usually be proportional to how far above threshold the laser is operated [1]. As long as the
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laser remains single-mode (i.e., as long as the saturation is sufficiently homogeneous, both
spatially and spectrally), we thus expect the experimental output power curve to follow the
topmost curve of the calculated modal thresholds. A crossing of the theoretical curves should
result in a discontinuous derivative of the experimental curve as the laser performs a “mode
switch” (accompanied by a sudden change in transverse mode profile, as will be discussed
extensively below).

Comparing the theoretical and experimental data in this way, we indeed see very similar
behaviour for each of the reflectivities. In addition, the modal behaviour shows the signature
of a transition from index-guiding-dominated at high reflectivities to gain-guiding dominated
at low reflectivities. At high reflectivity there are many modes with similar modal gains,
but only the lowest-order modes (e.g, in the case of Rm = 98 % the two modes shown in
Fig. 7.5) have sufficient overlap with the localised gain to become the lowest-loss mode for a
particular detuning.

For the lower reflectivities, Fig. 7.5 shows just a single smooth curve. In this case
higher-order modes actually have much higher threshold, and this reflects the strong mode-
discrimination that is typical for gain-guiding [50].

At intermediate reflectivities higher-order modes appear towards positive cavity-length
detuning, each in a rather narrow range of cavity detunings. This effect is caused by the
gain-related index guide and will be discussed in some more detail in section 7.5.2. Fig-
ure 7.5 illustrates that the intermediate regime is of special interest: it exhibits features that
are present neither in the index-guiding-dominated regime nor in the gain-guiding dominated
regime. Note also that in all cases the lowest threshold is achieved for a cavity detuning away
from gain maximum towards shorter cavity length, corresponding to ∆ω > 0, as already
discussed for Fig. 7.3.

Apart from the general qualitative agreement between theory and experiment in Fig. 7.5,
there are also quantitative differences. At 98 % reflectivity, the theory predicts two possible
modes, but the experiment shows no discontinuities, just one mode. At 94 % and 90 %,
the theory also predicts more modes than the experiment shows (5 versus 3 and 6 versus 4,
respectively). The modes that do not appear in the experiment are the last few higher order
modes in the calculations. This deviation and possible causes for it will be discussed more
extensively in section 7.6. We have verified that varying the theoretical parameters within the
range allowed by experimental uncertainties is insufficient to resolve the discrepancy. The
above comparison is only possible at positive cavity detunings where the higher-order modes
appear. In contrast, it is almost impossible to determine from Fig. 7.5 whether theory and
experiment differ significantly for negative cavity detunings.

7.5.2 Modal profiles
We now come to the main topic of this chapter: to compare the calculated and experimental
transverse modal profiles for each reflectivity. As a pragmatic solution to the systematic
deviation between theory and experiment noted in section 7.5.1, we have taken the following
approach: for the reflectivities of 98 %, 94 % and 90 %, it was found that the profiles did not
depend sensitively on cavity detuning (provided, of course that the detuning did not induce a
mode hop). For these reflectivities we compare the experimentally observed modes with their
theoretical counterparts at the cavity detuning that corresponds to the highest laser output and
the lowest threshold.

At lower reflectivities (80 % and 70 %), the modal profiles change continuously as a



Ring modes -Combining gain and index guiding 67

0

2

4

6

Theory

Rm=98%

0

1

2

3

Experiment

Rm=98%

6

8

10

12

Rm=94%

0

1

2

3
Rm=94%

10

12

14

16

Th
re

sh
ol

d 
pu

m
p 

po
w

er
 z

0g
0/

2

Rm=90%

0

1

2

3

O
ut

pu
t i

nt
en

si
ty

 (a
rb

. u
ni

ts
)

Rm=90%

15

20

25

Rm=80%

0

1

2

3
Rm=80%

15

20

25

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
Cavity detuning 2∆L/λat

Rm=70%

0

1

2

3

0.0 0.25 0.50 0.75 1.0
Cavity detuning ∆V/∆VFSR

Rm=70%

Figure 7.5: On the left is a theoretical calculation of the threshold of the modes against
the cavity detuning for various reflectivities of the outcoupling mirror. On the right are
experimental results which show the laser intensity output against the cavity detuning. The
cavity detuning is measured in terms of the voltage ∆V on the piezo, normalised to the
voltage required to scan a full free spectral range ∆VFSR. When in the calculation the laser
jumps from one mode to the next, the experiment should show a small discontinuity as well.

function of detuning. Large negative cavity-length detunings lead only to modes changes to
the modal profiles, while changes are much more profound for small and positive detuning.
Here, we resort to a slightly different procedure for comparing theory and experiment, guided
by the above observations. We assume that the most negative cavity detuning within the
free spectral range in the theory and experiment match. Then we match the most positive
cavity detuning within the free spectral range in the experiment to the largest detuning in
the calculations where the same high-order mode profile occurs as in the experiment (using
the 94 % and 90 % reflectivity data). This leaves us with approximately 85(5) % of the
original free spectral range in the theory to match with the entire free spectral range in the
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Figure 7.6: Near-field (left) and far-field (right) mode profile at reflectivity Rm = 98 %,
for the cavity detuning corresponding to the lowest threshold. The solid curves are the
experimental data, the dashed curves the result of the theoretical model. The index guide
dominates (cf. Fig. 7.3), and the profile deviates very little from the profile of the lowest-
order Laguerre-Gaussian mode LG0 of the purely parabolic index guide (both in the near
field and in the far field). The LG0 mode is shown as the dotted curve in the near field; in
the far field the LG0 profile is not shown, it would overlap with the curve of the theoretical
model.

experiment. We note that this scaling is the only arbitrary scaling factor we have applied to
our data. All other theoretical parameters are directly taken from the experiment, and have
not been adjusted to further improve agreement between theory and experiment. Note also
that a single set of values for the theoretical parameters was used to produce the full set of
mode profiles discussed below.

For mirror reflectivity Rm = 98 %, we observe only one mode in the experiment. The
modal profile changes very little as a function of detuning, both in the near field and in the far
field. The theoretical and experimental profiles at the point of lowest threshold (highest output
power) are compared in Fig. 7.6. The theory matches the experimental curve reasonably well,
both in the near and far fields. For comparison the theoretical profile of the lowest-order
Laguerre-Gaussian mode LG0 of the purely quadratic index guide (∆nR) is also shown.
Clearly, the deviations from pure index guiding are rather small.

In Fig. 7.7, the three experimental mode profiles observed at Rm = 94 % are compared
to theory. The three lowest order Laguerre-Gaussian mode (LGN , N = 0, 1, 2) of the pure
parabolic index guide are also shown. Especially for the higher order modes, there is a clear
difference between LGN on one hand, where the minima go to zero, and our theory and
experiment on the other, where the minima are nonzero. Note also that in the near field the
additional rings are generally weaker than their LG counterparts, while in the far field the
rings are generally stronger. These profiles can be interpreted as standard Laguerre-Gaussian
profile deformed under the influence of the gain guide.

For 90 % reflectivity, we have four modes with four different profiles, all shown in
Fig. 7.8. Here, the deviations from the conventional LG modes are obvious, as the direct
comparison in Fig. 7.8 shows. The near-field patterns show only very weak rings, while in
the far field the outer ring becomes quite strong, even stronger than the inner rings. In addition
the outer ring starts to merge with the inner rings. The theoretical mode profiles reproduce
these features, and match the experimental profiles quite well. The only significant difference
is that the theoretical profiles seem to be more deeply modulated.

Based on the near-field profiles in Fig. 7.7 and Fig. 7.8, a qualitatively explanation can
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Figure 7.7: Near-field (left) and far-field (right) mode profiles at reflectivity Rm = 94 %.
Three modes are found in the experiment (solid curves). These profiles match the results
from the theoretical model (dashed curves) relatively well. In contrast, both deviate from
the three lowest-order Laguerre-Gaussian TEM modes of the parabolic index guide (LGN ,
dotted curves); the near-field rings are weaker and the far-field rings are stronger than those
of the LGN modes, and the intensity between rings does not go to zero.

now be given why each of these modes appears at a narrow range of detunings, a fact that
was already noted in section 7.5.1, see Fig. 7.5. The near-field modal profiles are essen-
tially strongly deformed Laguerre-Gaussians. Each mode has the lowest threshold when the
overlap with the pump beam is maximised, i.e. when the rings are suppressed and when
the central peak has a width similar to that of the gain profile, about one third of the LG0

mode in Fig. 7.8. To deform the central peak in this way, the lowest-order mode, a deformed
LG0 mode, needs significant additional guiding. This additional guiding is provided by the
gain-related index guide for positive detuning in frequency, i.e. for negative cavity-length
detuning.

The next mode, a deformed LG1 mode, require less additional guiding, since the central
peak of the LG1 mode has a reduced width to begin with. The width of the central peak of
the third mode, a deformed LG2 mode, is similar to that of the gain profile, hence it does
not need additional focussing, and it appears near zero detuning [50]. The central peak of
the LG3 and higher-order modes actually need additional anti-guiding for maximum overlap
with the gain profile. Thus, the related deformed modes will have the lowest threshold at
negative frequency detuning (positive cavity-length detuning) where the gain-related index
guide provides anti-guiding. In summary, each deformed mode has a specific detuning where
the gain-related index guide yields maximum overlap with the gain profile. This effect is
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Figure 7.8: Near-field (left) and far-field (right) mode profiles at reflectivity Rm = 90 %.
Four modes are found in the experiment (solid curves), and the profiles agree well with
the results from the theoretical model (dashed curves), both in the near field and in the far
field. For the higher-order modes the deviations from Laguerre-Gaussian modes are large:
the near-field rings are strongly suppressed while the far-field rings become quite strong
compared to the central peak. A direct comparison with the LGN modes (dotted curves) is
shown for the first three modes.

somewhat similar to “mode pulling” in a lossy cavity, the shift of the longitudinal modes
towards line centre by the dispersion of the gain-related refractive index [1]. Hence it could
be called “transverse mode pulling”.

At 80 % reflectivity, we enter the gain-dominated regime, and only a single mode is
observed (Fig. 7.9). In contrast to the above, however, the modal profile now does change
shape, and it does so in a continuous fashion while detuning the cavity. The evolution of the
near field is not very interesting as it always shows a ringless profile, changing only in width
when detuning the cavity length. Note however, that since the profile is not Gaussian, the
word ‘width’ is actually ill-defined. Taking the standard deviation of such a profile as the
width, we find that it decreases by about a factor of two when detuning from short to long
cavity lengths over the available free spectral range. Although a longer cavity length causes
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Figure 7.9: Near-field and far-field profiles for Rm = 80 % mirror reflectivity. The ex-
perimental data (solid curves) are again reproduced well by the theoretical model (dashed
curves). The near-field profile changes only in width and we show only one profile. The
far-field profile changes much more drastically; a number of representative examples are
shown. The value of the cavity detuning 2∆L/λat (cf. Fig. 7.5) of the theoretical curves is
indicated in the graphs of the far-field profiles. The lowest-order Laguerre-Gaussian mode
LG0 of the purely parabolic index guide is also shown for comparison (dotted curves).

less focussing or even defocussing for the gain-related index guide, the mode also requires
more on-axis gain to remain at threshold, causing the field to be pulled towards the centre.
Apparently, at longer cavity lengths the imaginary part of the gain guide has more influence
on the mode formation than the gain-related index guide, causing a more narrow near field
profile at longer cavity lengths.

The far field profile changes much more dramatically than the near field. The continously
changing profile is illustrated by a number of representative examples in Fig. 7.9. The theor-
etical value for the cavity detuning 2∆L/λat is shown in the upper left corner of each graph
(i.e. these numbers correspond to the horizontal axis in the left part of Fig. 7.5). For negative
cavity-length detunings the mode profile changes only slowly, while for positive cavity-length
detunings the change is much more rapid.

Finally, at a mirror reflectivity of 70 %, the gain guide is even more dominant (see also
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Figure 7.10: Near-field and far-field profiles for mirror reflectivity Rm = 70 %. The gain
guide dominates (cf. Fig. 7.3) and is stronger than for Rm = 80 %; its behaviour shown in
Fig. 7.9 becomes even more pronounced. The near-field profile changes only in width as the
cavity detuning is changed, and only one example is shown. Representative examples of the
far-field modal profiles illustrate how the maximum intensity moves off-axis as the cavity
detuning is changed. The value of the cavity detuning (2∆L/λat, cf. Fig. 7.5), is indicated
for each far-field profile.

Fig. 7.3(b)). Again a single mode with a continuously changing profile as a function of
detuning is observed. The shape in the near field seems to be fairly constant, it remains a
more or less ringless profile (see Fig. 7.10) when the cavity is detuned. Again only the width
of the profile changes.

The profiles in the far field, also shown in Fig. 7.10, are diverse. When detuning, we see
the maximum intensity move outward continuously, while new maxima and minima form in
the centre. This is an example of a laser showing conical emission [53]. This gives us profiles



Ring modes -Combining gain and index guiding 73

that change from ringless to having three rings. Note that the outer ring is the strongest and
the minima in the profile never go to zero. Also interesting is that the highest-gain profile in
the far field has its maximum away from the centre. Once again the agreement between theory
and experiment is quite satisfying, considering the complexity of the observed behaviour.

7.6 Discussion
The agreement between the theoretical model and the experiments, as compared in sec-
tion 7.5, is surprisingly good. The large variety in observed modal profiles matches well
with the model which has essentially no adjustable parameters. The only serious discrepancy
is in the range of accessible cavity detunings, which we have pragmatically removed by a
single scaling factor.

For decreasing mirror reflectivity, the modal profiles show a transition from the usual
Laguerre-Gaussian profiles for parabolic index guiding to profiles that are typical for gain
guiding. For the lowest reflectivities our observations are very similar to the predictions for
a system with only gain(-related) guiding as described by Longhi and Laporta [53]: in par-
ticular we find that the cavity detuning plays a major role, and that conical emission appears
for negative detuning in frequency. The similarities are striking, even though the actual trans-
verse gain profile considered by Longhi and Laporta (a sech2 function) is different from our
(Gaussian) gain profile. In fact, the present work seems to be the first experimental demon-
stration of the kind of conical emission predicted by Longhi and Laporta. Apparently this
behaviour is a generic feature of gain guiding once the dispersive effect of the gain medium
upon detuning from gain maximum (the gain-related index guide) is taken into account. As
was already noted [53], conical emission occurs when the gain-related index guide actually
yields anti-guiding (i.e., is equivalent to a negative lens, for negative detuning in frequency).

We now discuss the approximations made in the theoretical model, and their relevance
for the observed differences with the experimental data. The most important approximation
that was made in the theoretical model is describing the cavity as a longitudinally uniform
waveguide, i.e., we have assumed that the gain medium, the gain and the mirror curvature
are spread throughout the cavity. For this to be a reasonable approximation, the transverse
profile of the field inside the cavity must not change significantly during one round trip. To
satisfy this, the Rayleigh range of the field inside the cavity should be larger than the cavity
length. However, since the transverse modal profiles are not really (Laguerre-)Gaussian, the
Rayleigh range is not well-defined. Instead, it seems appropriate to use the waist size of
the gain, wg = 14 µm as the smallest near-field feature size expected (see also the curves
for Rm = 70 % in Fig. 7.3). This yields a lower boundary of about 0.98 mm for the
Rayleigh range, while the optical length of the cavity is n0L = 0.51 mm. Thus we expect
the approximation to be reasonable but not perfect, and the observed size of the deviations
(of order 10 %) seems reasonable. We expect this to be the main cause of the observed
deviations.

As further evidence for this conjecture, we mention here that we have done similar ex-
periments for the same configuration (e.g., also with wg/w0 ≈ 0.3) but with a more tightly
curved mirror, Rc = 25 mm. In that case, the Rayleigh range was about three times shorter,
and the agreement between experiment and theory was significantly worse, in particular in
terms of the number of observed modes.

An related theoretical approximation is that the cavity was folded out to make a wave-
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guide, neglecting saturation. In the experiment, saturation can deform the transverse gain
profile to be non-Gaussian through transverse spatial hole-burning, for example. To avoid the
effects of saturation as much as possible, the experiments were performed close to threshold
(with a pump parameter of less than 1.3), and the saturation effects on the transverse mode
profiles are thus expected to be relatively weak. However, performing the experiments close
to threshold means large intensity fluctuations as described in chapter 4. These fluctuations
have been neglected in our theory, even though they could cause complicated forms of mode
competition when combined with the saturation. There is some indication in chapter 8 that
this actually happens at mode switches.

We have also neglected all thermally-induced guiding effects. It is possible that the heat
deposited by the pump light causes an extra guide, but it will probably be weak compared to
the two strong guiding mechanisms that we have included in the calculation. For instance,
in a previous experiment [42], where the thermal guiding alone has been examined for a
configuration similar to ours, the purely thermally guided mode would have a waist size
of about 200 µm. Since our mirror curvature alone gives much stronger guiding, (the purely
index-guided mode waist is 46 µm), we can assume that the thermally induced guiding effects
are indeed negligible.

A last effect that might cause the gain profile to be deformed, probably resulting in less
deeply radially-modulated profiles, is the diffusion of excited states of the Nd3+ ions [54, 55].
The typical diffusion length of an excited state (less than 0.5 µm), is about 4 % of the waist
size of the gain, and neglecting diffusion seems justified.

We now briefly discuss the impact of these results on common microchip lasers. The
latter typically have a planar monolithic design (while we have used an external concave
mirror) and are operated far above threshold (while we have considered operation close to
threshold). For a planar cavity the well-defined parabolic index guide of the concave mirror
will be absent, and the index guide will be determined by thermal effects (thermal lensing
and thermal curvature of the surface). Although the index guide will in principle have a non-
parabolic shape, in practice approximating it as a parabolic index guide is often adequate [42]
(as already noted in 7.1). Thus our description should provide a good approximation.

A more quantitative comparison between microchip lasers and our experimental laser
can be based on the rescaled Eq. (7.7), which contains important dimensionless parameters
such as the ratio wg/w0 of the pump beam size and the size of the eigenmode of the index
profile, and the dimensionless gain per Rayleigh range z0g0 (as well as the scaled frequency
detuning ∆ω/γat). The presented results are therefore directly applicable to microchip lasers,
with their larger “index-guided” waist w0, if the size of the pump spot is increased and if the
mirror losses are reduced as compared to the values given in this chapter; this is indeed the
case in practical microchip lasers.

To describe a laser far above threshold requires a more significant extension of the present
results. Far above threshold the effects of saturation of the gain medium need to be included
in the theoretical description. The amount of saturation will depend on the local intensity
[51, 52, 56]. As a result, the gain profile will depend in the intensity profile of the lasing
mode and on how far above threshold the laser is operated. The gain profile will deviate
from the pump profile, and will generally become non-Gaussian. These complications are
beyond the scope of this chapter. The results presented here do provide a good starting point
for further work in that direction. We expect that the essential features noted here (e.g., the
role of the mirror reflectivity in determining the relative strength of the gain guide and index
guide) will remain valid far above threshold.
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7.7 Summary and Conclusions
In this chapter we have studied theoretically and experimentally the transverse-mode forma-
tion caused by combined Gaussian gain guiding and parabolic index guiding in a microchip
laser. We have used a Nd3+:YVO4 crystal and a separate curved mirror to form a plano-
concave configuration pumped by a narrow-width Gaussian beam, resulting in the emission
of an interestingly wide variety of transverse profiles.

We have shown that at higher reflectivities (Rm ≥ 90 % in our case), where we are still in
the index-guide-dominated regime, higher-order modes appear with Laguerre-Gaussian-like
profiles. The lowest-loss mode never has any rings, while the higher order modes each have
one ring more than the mode before, i.e., the laser profile is characteristic for the mode num-
ber. Also, with a decrease in reflectivity, we see an increase in the number of visible modes.
This is a consequence of the gain-related index guide, via what we have called “transverse
mode pulling”. The deformation of the Laguerre-Gaussian profiles and the effects of the gain
guide become stronger as well.

When lowering the reflectivity, there is a relatively sudden transition to the regime dom-
inated by the gain-guide (in our case, for 80 % and 70 % reflectivity), where we see only
one mode. The near-field profile is ringless, and only changes in width when the cavity is
detuned. In contrast, the far field profile changes continuously. As the cavity length is in-
creased, the maximum intensity moves outward, i.e., conical emission is observed, and rings
appear inside. The more the cavity is detuned, the farther the high-intensity rings are from
the centre. This situation is typical for gain guiding, where a single “trapped filament” is sup-
ported having a smooth amplitude profile and a rapidly varying phase profile. This near-field
phase structure leads to ring structures in the far field that strongly depend on detuning.

Theory and experiment show profiles with a similar number of rings with similar strength.
Also, the appearance of higher-order modes at high reflectivities and their disappearance at
low reflectivities is reproduced by the theory. The deviations between theory and experiment
are typically on the 10 %-20 % level. We expect that the approximation of the longitudinally
uniform waveguide is the main source of these deviations. Going beyond this approximation
would require a two-dimensional (radial and longitudinal) calculation, and hence a consider-
able additional computational effort. This is beyond the scope of this chapter.

In conclusion, we have experimentally studied transverse mode formation where several
(anti-)guiding effects are present, and have used a relatively simple model for this intrinsically
complicated process. Considering the simplifications made as discussed in section 7.6, we
find excellent agreement between theory and experiment.
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Chapter 8

Excess noise due to combined gain and index
guiding1

The combination of gain and index guiding can lead to non-orthogonal transverse
modes and resonant excess noise. In experiments using an end-pumped Nd3+:YVO4

microchip laser, we observe excess noise factors as large as 100 when tuning the cavity
length towards mode crossings. An associated increase in relaxation oscillation damping
demonstrates that we are indeed dealing with excess noise and not with dynamic instabil-
ities. The laser displays strong self-pulsing due to mode hops at the mode crossings.

8.1 Introduction
Excess quantum noise is the enhancement of ordinary quantum noise caused by the non-
orthogonality of the cavity eigenmodes. Although all lasers have modes that are non-ortho-
gonal to some degree, the effect is usually small unless guiding due to spatially non-uniform
loss or gain is strong. Transverse excess noise theory was first developed by Peterman in 1979
[46] to explain noise effects in semiconductor lasers. Another 15 years would pass before
the Petermann K (excess noise) factor was clearly demonstrated by the group of Siegman
[57, 47]. Since then, most excess noise experiments have been performed with hard-edged
unstable cavities, even though lasers with soft edges and smooth gain profiles can also exhibit
large excess noise factors.

In this chapter we will present experiments aimed to investigate the prediction of Van
Druten et al. [45] that large excess noise factors can arise in stable cavities with tightly
focussed Gaussian gain, especially when gain and index guiding become comparable in
strength. In their theoretical treatment, the authors make the assumption that the cavity axial
loss can be tuned continuously, which would be equivalent to a continuous change in the mir-
ror reflectivity in an experimental implementation. Since this approach is highly impractical
for microchip lasers, we have instead chosen to change the modal gain by tuning the cavity
length. We will show that this creates modes that display strong resonances in the noise be-
haviour. For cavity lengths where the modal gains become equal (so-called mode crossings)
excess noise factors as high as 100 are observed.

The effect of gain and index guiding on the intensity profiles of the eigenmodes was stud-
ied extensively in chapter 7. Here we showed that the strength of the gain guide is dependent
on the relative width of the pump profile wg as compared to the width w0 of the purely index-
guided mode. It also depends on the reflectivity of the mirror (see Fig. 8.1), with the high
reflectivity mirrors displaying less gain-guiding.

1Y. Lien, E. van der Togt, N. J. van Druten, M. .P. van Exter and J. P. Woerdman,“Excess noise due to combined
gain and index guiding”, to be published.
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The reader should note that our experimental laser will be operated at non-zero detun-
ing in this chapter. Since this allows for variations in the spontaneous emission factor, we
have decided to use (and extend) the framework developed in the appendix of chapter 4. In
addition to allowing for a variations in the spontaneous emission factor, this framework also
differentiates between the different decay channels from the upper lasing level. The total
upper-level decay is therefore (γ1 + γ′

1) = 1.3(1)× 104 s−1, where γ1 ≈ 0.61(5)× 104 s−1

is the spontaneous emission rate for ions that return to the lower lasing level and γ1 is the
decay rate to all other levels. Definitions for the damping rates γ ′

n, γ′
NL and γ′

N and the new
oscillation rate ωro are to be found in this chapter as well as in the appendix 4.11.

8.2 Experimental configuration

Pump Output

Nd :YVO

Crystal

3+

4

Mirror

HR@1064nm,AR@808nm

AR@1064nm

Figure 8.1: Laser cavity configuration. The Gaussian pump beam (dotted) is tightly focussed
using a 80 mm lens. This figure shows a relatively wide Gaussian output beam (dashed),
indicating a dominant index guide. The pumping region is narrow as compared to the output.
This is indicated by the two intensity cross-sections (here drawn as Gaussian distributions).
Crystal coatings are as indicated in the diagram.

The setup is very similar to that of the previous chapter, save the noise eater, which has
been reinserted as shown in Fig. 5.1. The diagram showing the cavity configuration (Fig.
8.1) hence applies both for this chapter and the previous chapter. The pump beam is focussed
onto the 0.23(3) mm thick Nd3+:YVO4 crystal using a lens with a focal length of 80 mm
(not shown). On one side, the crystal coating is highly reflective (≈ 100 %) at 1064 nm and
anti-reflective at 809 nm. On the opposite side it is anti-reflective at 1064 nm. A convex
mirror, this time with a curvature of 200 mm, faces the anti-reflective (at 1064 nm) crystal
facet. The minimum size of the air gap between crystal and mirror was ≈ 50 µm. The crystal
has a refractive index of ne = 2.165 for light polarised along the extraordinary axis. From
this, we estimated that the optical cavity length is lopt ≈ 550 µm. The atomic doping level
was 1 % of Nd3+ .

When compared to the theoretical model outlined in the previous chapter (Eqs. 7.14a)-
(7.14c), we find an effective cavity length of L = 0.29 mm and an effective base refractive
index of n0 = 1.87. Assuming that the effect of the pump-related gain guide is small as
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compared to the index guide of the mirror, we find from Eq. 7.14c that the theoretical width
of the (purely index-guided) mode is (approximately) equal to 43 µm, which is similar to the
value mentioned in chapter 7 for a comparable cavity.

All measurements were conducted using a mirror with a reflectivity Rm of 85 %. As
gain guiding is quite strong, the eigenmodes differ significantly from the Laguerre-Gaussian
modes of a cavity with quadratic index guiding 2. The observed modes look very similar in
the near field as they are confined by the pump profile. However, in the far field, only the fun-
damental mode has a Gaussian shape whereas higher-order modes take on the characteristic
ringed profiles described in chapter 7.

We know from chapter 7 that various transverse (and longitudinal) modes can be brought
to lase by tuning the cavity length. The output power depends on which mode is lasing
in combination with the detuning of the mode from gain maximum. Fig. 8.2 shows the
detuning dependency of the output power. For these experiments, a relatively slow detector
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Figure 8.2: Average output intensity as a function of cavity detuning. Detuning is normalised
according to the laser free spectral range; the length at which maximum output is observed
is here set to zero. The top curve is measured at M = 5.0; the bottom curve at M = 3.0.
Here, ∆L is the cavity length change and λat is the spontaneous emission wavelength. The
pump parameter M is defined with respect to the point of maximum gain.

with a bandwidth of only 10 kHz − 100 kHz was used 3). This detector could not follow
the relatively fast relaxation oscillations as these have frequencies higher than 0.5 MHz.
The pump parameters M = Pin/Pthr for the two curves in the figure are normalised to the
threshold pump power at optimum detuning.

The average intensity measurements in Fig. 8.2 show several large “bumps”, where each
bump represents a separate lasing mode. While the main bump, which includes labels A,
B and C, represents the fundamental mode, the two shoulders to the right are two higher

2The guide is known as a quadratic index guide since the radially dependent refractive index is defined by n(r) =
n0 − ar2, where a > 0 is a constant and n0 is the base refractive index introduced in chapter 7.

3As in the previous chapters, we have used a Centronic OSD-15 photo-diode that was connected to a current
amplifier with a variable load resistance RL. This load resistance was set to a value between 10 kΩ and 10 MΩ,
which would lead to the 10 kHz − 100 kHz maximum response.
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order-modes (ring modes R and R2). For our later measurements in this chapter, we will
concentrate on the main bump because of the large range of detuning available. Some meas-
urements of the first ring mode R will, however, be included for the purpose of comparison.

As we saw in chapter 7, it is difficult to predict the actual shape of the structure as a
function of detuning. Also, a comparison is complicated by the fact that we have no ana-
lytical model for the transverse modes and our interpretation is, as a consequence, based on
numerical calculations.

However, it is instructive to compare the frequency detuning, in the form of the free spec-
tral range νFSR = 274 GHz (for an optical cavity length of 550 µm) with the spectral
bandwidth of the medium γat = 215 GHz/π. This comparison shows that the gain is expec-
ted to drop to 40 % of the zero-detuning gain when we detune by half a free spectral range
(i.e. by ∆L = λat/4, where ∆L is the detuning and λat is the wavelength of the spontaneous
emission), which is more or less consistent with the observation that the laser turns off for
detunings larger than half the free spectral range for M = 3 in Fig. 8.2, but remains lasing
for M = 5.

8.3 Laser modes and wave guiding
In our laser, the Gaussian pump-profile gives rise to an equivalent gain guide, while the mirror
curvature leads to a quadratic index guide. The eigenmodes of cavities with such combined
guiding are well-understood and their eigenfunctions can be predicted with good accuracy
(see chapter 7). The relative strength of these two guiding effects is mainly set by the mirror
reflectivity, as this determines the (modal) gain necessary to reach threshold.

When the reflectivity is high (> 98 % for this cavity ), the eigenmodes are primarily index
guided and the eigenmodes hardly differ from Laguerre-Gaussian modes, which have the
same shape in both the far- and near-fields. In all cavities with mirrors of reflectivity & 90 %,
the laser output switches from one mode to another when the cavity length is changed. The
transverse shape of each mode, however, is practically independent of detuning.

Once the reflectivity of the cavity mirrors is reduced, gain guiding becomes more import-
ant. For low reflectivity mirrors (< 80 %), the laser only lases in one transverse mode, and
there are no (transverse) mode switches. This mode, however, has a transverse profile that
changes continuously with cavity detuning. As we saw in chapter 7, the transverse profile of
such a mode hardly changes in the near field. In contrast, the far-field profile may change
from a (near-) Gaussian to ringed mode with almost no intensity in the centre.

To obtain large K-factors we have studied the intensity noise at an intermediate reflectiv-
ity. Unlike chapter 7, where we used several mirrors of various reflectivity, we now used one
mirror only with Rm = 85 %. Typical cross-sections of the cavity eigenmodes are shown in
Fig. 8.3. The measurements presented here are more noisy than the mode profiles of chapter
7 due to the lower quality of the imaging system used to obtain these profiles. In addition to
using a different camera, additional noise was due to interference effects in the extra intensity
filters. These were necessary because the measurements were conducted three times above
threshold (M ≈ 3) compared to just above threshold in chapter 7.

Note how the fundamental mode has a nearly Gaussian profile in both the near- and far-
fields. The first ring mode, however, has a large outer ring in the far field. The central peak
is still relatively strong. For higher-order modes, the rings generally become more prominent
(and numerous). The exact structure and width of each mode also varies to some extent
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Figure 8.3: The eigenmodes of the cavity. On the left, we have plotted the near-field profiles
of the three first eigenmodes. B is at gain maximum (2∆L/λat = 0), R is the lowest order
ring mode ( 2∆L/λat = 0.22(4)), and R2 is the next ring mode ( 2∆L/λat = 0.35(7)).
The far-field profiles have been plotted to the right. Measuring at the same detuning values,
the mode at optimal detuning, the lowest-order ring mode, and the next ring mode are again
labelled B, R and R2, respectively. This measurement was conducted at M ≈ 3.

depending on the detuning. We will not discuss the change in structure here, but the change
in width will be treated below.

The pump spot was measured to have a width wg = 17(2) µm (cf. Eq. 7.6) in the near
field (in the crystal). The widths of the cavity eigenmodes depend on the detuning from gain
maximum due to guiding effects of the narrowly focussed gain. This can be seen in Fig. 8.4,
where the width of the lowest loss mode has been plotted versus the detuning. As a reference,
we also determined the width of the index-guided TEM00 mode using a mirror with 98 %
reflectivity. Placing the cavity as close as possible to the mirror, this width was measured to
be w = 37(2) µm, which is a little smaller than the theoretical w0 = 43 µm width expected
from Eq. 7.14c. This is consistent with our observation in Fig. 7.6, where the near-field mode
profile also shows some narrowing due to the focussed gain. We also note that there was no
significant difference between the widths in the vertical and the horizontal directions.

Using the cavity with the 85 % mirror, several cavity eigenmodes were observed to lase.
However, the transverse width of the modes changes considerably with cavity length. In Fig.
8.4 the width of the fundamental mode has been plotted as a function of detuning. The width
was determined by applying a Gaussian fit to the near-field profile, even though the shape
is not exactly a Gaussian (see chapter 7). At maximum output, the overall 22(2) µm width
of the mode’s near-field profile is quite a lot narrower than the 43 µm of the purely index-
guided mode mentioned above. This is due to a sizable amount of gain guiding, which is
needed to provide for non-orthogonal modes. Fig. 8.4 also shows that the near-field profile
narrows towards shorter cavities and widens towards longer cavities. This can be understood
by considering the effect of detuning on the gain-related index guide in Eq. 7.6. Having in
mind that a negative ∆λ implies a positive ∆ω, we find that tuning towards negative ∆λ
creates a refractive index profile, ∆ng(r, ∆ω) that is the largest in the centre of the pump
spot, hereby focussing the eigenmodes further.

The change in mode profile upon detuning also affects the dynamics of the relaxation os-
cillations. More specifically, the relaxation oscillation rate ωro is expected to increase when
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the mode profile tightens due to enhanced atom-field coupling. A plot of the relaxation os-
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Figure 8.5: The relaxation oscillation frequency as a function of output intensity. The de-
tunings A,B and C are the same as those in Fig. 8.2. R denotes the lowest order ring mode.

cillation rate ωro is presented in Fig. 8.5. These results were obtained using a relatively fast
InGaAs DC-detector (20 MHz bandwidth) in combination with a 2712 Tektronix spectrum
analyser to measure the frequency of the main harmonic. We note that there are large differ-
ences in relaxation oscillation rate for the same output intensity Pout = hνΓcn0, with ωro

being consistently larger at the same output intensity in the A segment than in the C segment
In order to interpret these differences, we restate Eq. 4.33 as

ωro =
√

γ1Γcn0β′′, (8.1)
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where the inversion and cavity decay rates (γ1 and Γc, respectively) are constant, and β′′ is
a newly defined spontaneous emission factor that accounts for detuning and mode focussing.
Thus, at the same output intensity, the difference in relaxation oscillation rate can only be
explained by a modified spontaneous emission factor. An estimate for this change can be
obtained by applying Eq. 8.1 to the points A and C in Fig. 8.5. At the same relaxation
oscillation frequency ωro ≡ 1.75 MHz, we find that β′′

A/β′′
C = (nC/nA) = 3.5(4).

Although the above argument sounds plausible, we have some reason to believe that this
analysis may be too simplistic. From an experimental point of view, we could equally well
have argued that the spontaneous emission factor should be proportional to the gain at a
specific detuning, as the underlying spontaneous and stimulated emission rates are naturally
linked. Based on Fig. 8.2, we would then find that β ′′ is the largest at the point B and up to
a factor 2 lower in both A and C. This is clearly a contradiction with the previous prediction.
A likely explanation for this discrepancy has been given by Cheng et al. [58], who argue
that the relaxation oscillation dynamics can be very complicated in cavities with non-uniform
gain distributions. Their model, which involves time-dependent changes to both the shape
and intensity of the lasing mode, suggests that oscillation rates ωro can differ significantly
from the value given by Eq. 8.1. Because of this uncertainty, we believe that the measured
gain gives a much better estimate of β′′.

In the appendix of chapter 4 we have introduced a modified spontaneous emission factor
β′(∆ω) that also applies for cavities that are spectrally detuned from gain maximum. How-
ever, in cavities with narrowly focussed gain, we also need to consider the effect of the mode’s
spatial overlap with the gain. This lead to significant changes in the spontaneous emission
factor as the spatial overlap not only changes from mode to mode, but also depends on the
detuning within this mode as described in relation to Fig. 8.4. It is therefore convenient to
introduce a new spontaneous emission factor β ′′ that takes both these effects into considera-
tion:

β′′(w, ∆ω) ≈ β

1 + (∆ω/γat)2

[

w(0)

w(∆ω)

]2

, (8.2)

where β is the reference spontaneous emission factor for the case of zero detuning and there-
fore optimal spectral overlap of the mode with the gain. The parameter w(∆ω) refers to the
waist of the laser’s eigenmode at a specific frequency detuning ∆ω; the tighter the waist, the
larger the β′′

The effects of spatial and spectral overlap are of similar size and they both have to be
considered. Based on Fig. 8.4, we estimate the effect of spatial overlap, i.e. the effect of the
beam waist, to contribute an additional factor ≈ 1.5 to β ′′ at the position A as compared to
C of Fig. 8.4. The spectral overlap depends on the offset of the laser from the gain profile
and has the same sign for both the A and the C segment. Since we do not know the position
of zero detuning, we will not estimate what the effect will be on β ′′ at A and C. We do,
however, note again that a detuning of half a spectral range from gain maximum is equivalent
to a decrease in β′′ by a factor 2.25. From chapter 7, we also know that the point C is close
to the point of zero spectral detuning. Hence, when comparing the branches A and C, it is
reasonable to expect the two contributions to the changing β ′′ to approximately cancel out for
similar output powers. Hence, we find more evidence that comparable output powers indicate
similar spontaneous emission factors.
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8.4 Self pulsing at mode crossings
Laser oscillation switches from one mode to another at mode crossings. Since the modal gain
of the two modes is very similar at these two points, instabilities can easily arise. In our laser,
we found that the laser would usually start emitting a periodic sequence of very intense pulses
at this point. The peak intensity of these pulses is commonly more than ten times the height
of the relaxation oscillations. Immediately after this pulse, the laser switches off for a short
period and a particular cycle of relaxation oscillations is performed, before another pulse will
be emitted again.
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Figure 8.6: Typical pulsing behaviour, in which one can distinguish three regimes. The
“switching cycle” starts with a very strong pulse that is followed by a time interval where
the laser practically switches off. After this transient, slow relaxation oscillations give way
to fast relaxation oscillations in the third regime. Please note that the measured intensity of
the first strong pulse is limited by the speed of the detector.

A typical example of pulsing is presented in Fig. 8.6. The initial, strong pulse, which
is seen on the left, was too fast and too strong to be measured by the 20 MHz (InGaAs)
photodiode used here. Therefore, we made additional measurements using a 6 GHz AC-
coupled detector (NewFocus 1514 fiber-coupled photo-receiver with a bandwidth of 2 MHz−
6 GHz). This revealed that each pulse has a duration of 9(2) ns with little fluctuations. The
peak height was measured to be roughly 30 times the average intensity of ordinary relaxation
oscillations which, in the case of the deep oscillations in Fig. 8.6, is equivalent to about 10
times the height of the oscillation peaks that directly follow.

The initial pulse of Fig. 8.6 is followed by a very low output region, in which we think
that the laser has actually switched off. After approximately 1.5 µs the laser starts operating
again with a relaxation oscillation frequency of ≈ 3.2 MHz. After a short period it switches
to a much higher oscillation frequency, 6.2 MHz. This whole scenario takes 10 − 100 µs,
where the large range in period is caused by variables such as the pump power [59]. For a
certain pump and cavity configuration, however, the period was found to be quite stable and
would only fluctuate by 5− 10 %.

Although pulsing was observed at all mode crossings, we note that no pulsing behaviour
was observed for M . 2. Also, the pulsing region widens for larger pump values, resulting
in relatively wide pulsating detuning regions at each mode crossing.
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Fig. 8.7 demonstrates that the observed intensity pulsing is related to a mode switch. This
figure depicts simultaneous time traces of the total output of the experimental laser (bottom
dashed curve) and the output of the fundamental mode (top solid curve) as selected with a
stationary Fabry-Perot cavity. Similar Fabry-Perot traces of the first ring mode (not shown)
exhibit no pulses, only regular relaxation oscillations. From this we conclude that the laser
emits in the fundamental mode both during the initial strong pulsing and during the slow
relaxation oscillations After these events, the laser will switch back from the fundamental
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Figure 8.7: Experimental demonstration of the link between pulses and mode hops. The
bottom curve shows a time trace of the total intensity of the laser. The solid top curve shows
a simultaneous measurement of the intensity of one of the modes only, as measured behind
a stationary Fabry-Perot cavity that acts as a spectral filter and mode selector. The peak
height of the strongest pulse is (again) limited by detector speed. It is also the slowness of
the detector that leeds to the pulse overshooting in the bottom curve. The vertical axis has
an arbitrary scaling.

mode to the lowest order ring mode. This switch occurs without pulse although the laser
may sometimes stop lasing again for a short period. The laser emits in the ring mode before
another pulse is emitted when switching back to the fundamental mode. Note that this figure
shows somewhat different behaviour from Fig. 8.6. While the latter figure shows a direct
switch from the fundamental mode to the first ring mode, Fig. 8.7 indicates that there is a
short period between oscillations where the laser oscillates only weakly or switches off.

Mode hopping also explains the changes in relaxation oscillation period observed in Figs.
8.6 and 8.7. The period change corresponds roughly to jumps between C and R in Fig. 8.5
and is probably due to a difference in the spontaneous emission factor β ′′ between the two
modes (as discussed in section 8.3).

Pulsing behaviour similar to this has been observed by Otsuka et al. in three-mode
Nd3+:YVO4 lasers [60]. Using the Fabry-Perot cavity, we found no evidence of a third
mode except when pumping the experimental laser far above threshold (M & 10). Neverthe-
less, we can not exclude that a third mode is involved in the mode switching process. Such a
mode should then, however, be very weak or present only shortly as it was not observed. We
would also like to comment that the near-degeneracy of the modes may be another cause for
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pulsing as it might facilitate coupling of the modes.
Another possibility is that the pulses are related to self-focussing caused by the Kerr effect

[61, 62, 59], or that they are caused by local transverse gain buildup. In either case, we believe
that the sudden releases of energy are caused by slight (inter-mode) differences in the modal
widths (see [59] and chapter 7). In addition, since pulses can be interpreted as extremely
strong relaxation oscillations [63], relaxation-oscillations could be a plausible trigger for the
pulses.

We also used the planar Fabry Perot in a further experiment, where we measured the fre-
quency splitting between the fundamental mode and the first ring mode. This was done in
order to observe frequency degeneracy as predicted by theory [45]. By tuning the laser to-
wards mode crossings, we expected to observe a decrease of the frequency difference between
the two adjacent lasing modes when tuning towards mode crossings. This was not observed.

8.5 Excess quantum noise
Excess quantum noise enhances the spontaneous emission into the lasing mode. It manifests
itself as an additional multiplicative factor K in the laser rate equations. Referring back to
the appendix of chapter 4, we see that the photon damping is changed to:

γ′
n = K

Γc

n0
, (8.3)

where a large factor K leads to enhanced photonic damping as there is more spontaneous
emission in the lasing mode. Non-linear damping should remain as derived in chapter 4, but
its value would depend on the changing β ′′ as discussed on page 83. This damping can be
restated as

γ′
NL =

Γcγ1β
′′n0

γ2
, (8.4)

which is expected to change much less than photonic damping γ ′
n.

Since the lower-level decay rate is much smaller than the cavity decay rate, the inversion
decay, γ′

N , is neglected. The total damping rate is now 2γro ≈ γ′
n + γ′

NL, and the intensity
fluctuations are given by

g2(0) − 1 = Q2 ≈ [1 + (γ′
NL/γ′

n)]
−1

=

[

1 +
β′′

K

γ1

γ2
n2

0

]−1

, (8.5)

where the prefactor 1/K contains the effect of the excess noise, whereas β ′′ still exhibits a
mild dependence on detuning and modal width.

In previous chapters, we measured g2(0) as a function of the pump parameter M . How-
ever, because of the ambiguous definition of the latter parameter (it changes with detuning),
it is more convenient to measure g2(0) in terms of output power (Pout = Γchνn0). This
was done by pumping the laser with constant pump power, while the laser was detuned to
move from point A to C via B in Fig. 8.2. Thus on the A and C segments we obtained a set
of points for which g2(0) could be compared for the same output power. Although such a
noise-comparison is relatively straight-forward, one must be aware that in addition to K, also
the gain (or equivalently β′′) changes when detuning the cavity (see Eq.8.5).

The noise in the two segments A and C has been compared in Fig. 8.8 for a pump of
M = 3 (M = 1 was defined as the threshold of the laser at optimal detuning, i.e., point B).
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Figure 8.8: The second order correlation function g2(0) versus output power Pout for a
pump power M = 3. The points A,B and C denote the same the regimes as outlined in the
discussion of Fig. 8.2. The curves correspond to different K factors: (i) K = 1; (ii) K = 4;
(iii) K = 16; (iv) K = 64. The open circles corresponds to the first ring mode.
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Figure 8.9: The second-order correlation function g2(0) plotted as a function of output
power Pout. This measurement was conducted for a pump power M = 5. The points A,B
and C are equivalent to those in Figs. 8.8 and 8.2. Every theoretical curve corresponds to a
different K factor: (i) K = 1; (ii) K = 4; (iii) K = 16; (iv) K = 64. No measurement for
the ring mode has been conducted at this pump power.

As is clear from the graph, the C segment lies much higher than the A segment, suggesting
larger K factors for this segment. The curves (i), (ii), (iii) and (iv) are defined by g2(0)−1 =
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[1 + (a/K)P 2
out]

−1, which is a rewrite of Eq. 8.5.
Curve i is a fit of this function to the A segment. This fit yields a = (β ′′γ1/γ2) ×

(hνΓc)
−2 = 0.45 mW−2. Taking reasonable estimates of Γc = −c/2lopt ln R = 4.4 ×

1010 s−1, γ1 = 0.61(5)×104 s−1, γ2 = 1.6(1)×109 s−1 and K = 1, yields β′′ ≈ 3×10−6,
which is in excellent agreement with previous observations for the spontaneous emission
factor in a similar cavity with zero detuning ∆ω [5], at least when considering the difference
between the upper level decay rates (see section 4.11). The curves (ii), (iii) and (iv) are similar
to curve (i), but the values for K are 4, 16 and 64, respectively. The position of some of the
points on the C segment indicates that K factors may come close to 100. Note that also the
ring mode, marked with R in Fig. 8.8 seems to experience excess noise.

For comparison, we have also included equivalent measurements at a higher pump power,
M = 5. The result of this was very similar to the above measurement. However, in this case
even larger excess noise factors are observed. The curves (i), (ii), (iii) and (iv) are the same
as those plotted in Fig. 8.9 with a = 0.45 mW−2.

At this point the reader should note that we have not (yet) considered how changes in the
spontaneous emission factor affect the curves (i) to (iv) in Fig. 8.8. Although we have good
reason to believe that the effects of spatial and spectral overlap may approximately cancel
out in the two segments, we do expect to see some variations within the segments, with
β′′ becoming smaller further away from the point B. However, this is expected to deliver
only small changes to the noise as compared to the change in the excess noise factor K.
Hence, noise enhancements that are attributable to changes in β ′′ are only observed in the
very detuned part of the A segment for M = 5 (see Fig. 8.9). Assuming that the two
segments have the same β′′ for the same output power, we find excess noise factors that
approximate 100.

Based on measurements of g2(0) only, we cannot be sure that the increase in intensity
fluctuations is due to an increase in (spontaneous emission) noise and not due to decreases
in damping. The latter suggestion is plausible because of the proximity of a mode crossing,
where this non-linear system might become dynamically unstable. To distinguish between
these theories we note that this competing theory predicts a reduced damping, whereas one
distinctive feature of excess noise is the fact that the noise increase is accompanied by in-
creased damping of the relaxation oscillations. This is seen the easiest from Eq. 8.3, where
photon damping increases with K, and Eq. 8.5 where noise actually increases with increased
photon damping.

The role of damping is demonstrated in Fig. 8.10, where the RF-spectra are compared
for the two different segments. Especially Figs. 8.10b and 8.10d are important as these were
taken for the same output power (Pout = 6.7 mW). From these two (sub)figures we see
that the relaxation oscillation damping γro has increased from 8.4(9) × 105 s−1 in (b) to
3.3(3) × 106 s−1 in (d). This is almost a factor four increase in damping.

We note that also the relaxation oscillation damping rate can be affected by variations in
β′′ through Eq. 8.4 since 2γro ≈ γ′

n + γ′
NL. That the observed change in γro is not due to

a changing β′′ is illustrated by the fact that the relaxation oscillation rate only changes by a
factor of 1.4, from 5.27(5) × 107 s−1 to 3.7(1) × 107 s−1, which is considerably smaller
than the change in relaxation oscillation damping. Furthermore, this quantity confirms that
changing β′′ cannot explain the huge increase in noise seen for the two Figs. 8.8 and 8.9.
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Figure 8.10: RF-spectra of the laser at M=5. The four figures are represented according to
detuning, with (a) being the shortest cavity and (d) being the longest. The laser output power
is (a) Pout = 2.9 mW (A segment), (b) Pout = 6.7 mW (A segment), (c) Pout = 8.3 mW
(C segment), (d) Pout = 6.7 mW (C segment).

8.6 Concluding discussion

Observing the intensity dynamics of an experimental system with combined gain and index
guiding showed that tuning the cavity towards mode crossings can induce mode switching as
well as excess noise factors.

At mode crossings, we observed pulsing accompanied by switching between different
eigenmodes of the laser cavity. We believe that this behaviour is related to self-focussing of
the modes [59, 62] in the cavity. This effect probably combines with rapid changes in the
mode pattern [59] made possible by gain degeneracy of the cavity eigenmodes.

However, outside the mode crossing region, we observed no evidence of dynamical in-
stabilities. Instead, we measured enhanced noise levels that correspond to 100-fold enhance-
ment of the fluctuations. Although also a modified spontaneous emission factor can induce
enhanced noise, these changes would be negligible as compared to excess noise. Strong
evidence for excess noise was given by the fact that relaxation oscillation damping increased
with increased fluctuations. This indicates a photonic origin for the fluctuations (cf. Eq.4.11).

Our experimental system shows resonant behaviour as two modes become degenerate.
This is similar to experiments with unstable hard-edged resonators [64]. However, unlike
these experiments, we see no evidence of non-resonant excess noise, where many subthreshold
(non-orthogonal) modes are involved.

In conclusion, we have demonstrated experimentally that large excess noise factors can
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occur in lasers with a narrowly focussed Gaussian pump and weak index guiding. Observing
both excess noise and modal instabilities, we differentiate between the two causes of fluc-
tuations by measuring the relaxation oscillation damping rate, which increases for enhanced
excess noise. At this stage, we have not yet made a thorough, quantitative comparison with
theory [45], but we do plan to do so in the near future.
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Samenvatting

Deze samenvatting is een populair-wetenschappelijke uitleg van dit proefschrift en de ach-
terliggende fysica. Het proefschrift behandelt meerdere aspecten van de quantumruis in een
laser, met nadruk op de effecten van trage emissie en ruisoverdaad. Een uitleg van deze
concepten volgt na een korte behandeling van de principes van de laser.

De laser

Een van de meest centrale vragen van de laserfysica is wat het verschil is tussen het door de
laser en door andere lichtbronnen (zoals gloeilampen) uitgezonden licht. Het antwoord ligt
in het ontstaan van het licht: terwijl bij een lamp bijna enkel spontane emissie produceert,
domineert gestimuleerde emissie het uitgezonden licht van een laser.

In het kort gezegd is spontane emissie het spontaan uitzenden van een foton (een licht-
deeltje) door een aangeslagen atoom (zie linksboven Fig. 1). In dit geval vindt de emissie
van een foton plaats zonder invloed van buitenaf. Wanneer dit precies gebeurt wordt he-
lemaal door toeval bepaald, net zoals de uitkomst van een dobbelsteen. (Dit toevalsprincipe
kan wel wat vreemd lijken. Zelfs Einstein had er enige bezwaren mee, vandaar zijn beroemde
uitspraak “God does not play dice”).

Gestimuleerde emissie treedt op wanneer een foton een aangeslagen atoom passeert met
het gevolg dat dit atoom nog een foton uitzendt. Dit tweede foton is volledig identiek aan het
inkomende foton (een soort kloon dus) en neemt de zelfde ruimte in, heeft dezelfde richting
én dezelfde golflengte als het oorspronkelijke foton. Deze twee fotonen kunnen zich nu weer
vermenigvuldigen bij het passeren van andere aangeslagen atomen (zie onderaan Fig. 1). Op
deze manier zouden dus oneindig veel identieke fotonen kunnen ontstaan, als tenminste er
geen verliezen zouden zijn.

Het vermenigvuldigingsproces wordt tegengehouden door twee soorten verliezen. Eén is
de absorptie van fotonen in het medium. De ander is het verlies ten gevolge van fotonen die
uit de zijkanten van het versterkende medium gaan verdwijnen. Dit laatste is te verhelpen
door spiegels neer te zetten zodat de fotonen terug het medium ingaan.

In het geval waar het ontstaan van identieke fotonen door gestimuleerde emissie gro-
ter dan de verliezen is, hebben wij het over lasers. Omdat zo goed als ieder foton in een
laser identiek is, heeft dit licht zeer bijzondere eigenschappen die ideaal zijn in veel hoog-
technologische toepassingen.

Het is hier misschien verhelderend op te merken dat het bouwen van een laser uit een
gewone gloeilamp niet mogelijk is, zelfs wanneer spiegels worden neergezet om de gestimu-
leerde emissie terug in het medium te kaatsen (het medium is in dit geval de gloeidraad). Dit
komt doordat de absorptie van gestimuleerde emissie in het medium van de gloeilamp altijd
(veel) groter zal blijven dan de creatie van identieke gestimuleerde fotonen. Het licht van een
gloeilamp bestaat dus bijna uitsluitend uit spontane emissie.
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S Epontaneous mission S Etimulated mission

L A S E Right mplification by timulated mission of adiation

Spontane emissie Gestimuleerde emissie

Licht versterking door gestimuleerde emissie van straling

Figuur 1: Linksboven: Een atoom in een aangeslagen toestand zendt licht uit zonder invloed
van buitenaf (spontane emissie). Dit licht kan allerlei richtingen en golflengtes hebben.
Rechtsboven: Een aangeslagen atoom zendt een foton uit dat identiek is aan het inkomende
foton (gestimuleerde emissie). Onderaan: meer gestimuleerde emissie leidt tot meer iden-
tieke fotonen. De identieke fotonen worden in het medium gehouden door het neerzetten van
spiegels.

Quantumruis

Wanneer fotonen dezelfde golflengte en richting hebben, zoals in het geval van gestimuleerde
emissie, wordt gezegd dat zij in dezelfde toestand zijn. Fotonen die ontstaan door spontane
emissie hebben allerlei verschillende golflengtes en richtingen, en deze verkeren dus in ver-
schillende toestanden. Sommige spontane emissie fotonen verkeren toevallig in dezelfde
toestand als het gestimuleerde laserlicht in de laser.

Quantum ruis komt doordat het tijdstip van dit soort emissie helemaal door toeval bepaald
wordt. Deze ruis leidt tot fluctuaties in het uitgezonden laserlicht. Er zijn twee verschillende
types fluctuaties: fase- en intensiteitsfluctuaties. Fasefluctuaties zijn kortstondige veranderin-
gen in de golflengte van de laser; intensiteitsfluctuaties treden op wanneer het aantal fotonen
in de trilholte niet stabiel is. Ik behandel hier alleen de intensiteitsfluctuaties.

Doordat een lamp bijna uitsluitend spontane emissie uitzendt, zal het licht van een lamp
heel veel intensiteitsfluctuaties bevatten. In laserlicht, waar bijna alle laserfotonen klonen
van elkaar zijn, zit meestal heel weinig ruis, zowel wat betreft golflengte als intensiteit. Dat
lamplicht veel meer ruist dan laserlicht is (in principe) met een snelle intensiteitsmeter te
zien.
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Trage spontane emissie
We weten dat het tijdstip van spontane emissie door toeval bepaald wordt, maar dat betekent
niet dat spontane emissie even vaak in alle soorten atomen optreedt. Men kan zich afvragen
hoe dit kan als spontane emissie door toeval bepaald wordt. Het werpen van een dobbelsteen
geeft hier een goed analogon. Als spontane emissie zou plaatsvinden bij de uitkomst 1 van
het gooien van een dobbelsteen, zou je een zestigzijdige dobbelsteen gemiddeld 10 keer meer
moeten gooien dan een zeszijdige dobbelsteen. Spontane emissie treedt dan niet zo vaak op
en dit wordt dus trage spontane emissie genoemd.

In de laser van dit proefschrift is de spontane emissie heel traag. Dit heeft tot gevolg
dat alles wat gebeurt in de laser, heel langzaam is. Een van de belangrijkste gevolgen van
de trage dynamica is dat de demping van de intensiteitsfluctuaties ook veel trager wordt,
waardoor deze fluctuaties veel groter worden. De laser, die zich kenmerkt door heel weinig
fluctuaties, wordt op deze manier veel ruiziger dan normaal.

De sterkte van de fluctuaties van een laser met trage spontane emissie is niet uitsluitend
afhankelijk van de traagheid van de emissie, maar ook van de grootte van de laser. Wij
nemen waar dat hoe kleiner de laser is, des te meer fluctuaties er zijn. Dit komt doordat er
gemiddeld precies één spontaan uitgezonden foton in de laser toestand voorkomt, terwijl het
aantal gestimuleerde uitgezonden fotonen in het algemeen evenredig met de grootte van de
trilholte is.
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Figuur 2: Foton waarschijnlijkheidsverdeling. De verticale as toont de waarschijnlijkheid
om een bepaald aantal fotonen, af te lezen op de horizontale as, aan te treffen op een wil-
lekeurig moment. De gestippelde curve is de intensiteitsverdeling van een laser met snelle
spontane emissie, de doorgetrokken curve is die van een gloeilamp. Het histogram laat
experimentele data voor een laser met trage emissie zien.

In dit proefschrift wordt onder andere aangetoond dat een laser met trage spontane emissie
in veel opzichten van een gewone gloeilamp lijkt. In Fig. 2 heb ik een grafiek gemaakt van de
waarschijnlijkheid van verschillende intensiteiten. Kleine fluctuaties zijn herkenbaar aan een
smalle distributie, zoals in het geval van lasers met een snelle emissie. Als er meer fluctuaties
zijn, is het verschil tussen het minimaal en het maximaal aantal te verwachten fotonen nog
extremer, zodat de verdeling zeer breed is. Zowel de gloeilamp als een laser met trage emissie
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hebben een zeer brede distributie, zoals in de grafiek te zien is.

Ruisoverdaad
Tot nu toe hebben we het gebruikelijke geval van een laser besproken, waarbij er altijd één
spontaan uitgezonden foton per toestand is. Er zijn niettemin gevallen waarin er meer dan
één spontaan uitgezonden foton in de laser aanwezig is. Dit geval, dat ruisoverdaad wordt
genoemd, vindt plaats wanneer het verlies of de versterking in de trilholte ruimtelijk beperkt
is.

Ruimtelijke
uitbreiding

fotontoestand

nauw
versterking-

gebied

Spiegels

Figuur 3: Trilholte met een nauw versterkgebied. De pijltjes tonen de richting van de fo-
tonen in de laserende toestand aan. Zoals te zien is, wordt dichtbij het beperkte verster-
kingsgebied wordt de fotontoestand smaller, wat er verder weg toe leidt dat de fotontoestand
divergeert (grofweg kan men zeggen dat het licht verandert van dat van een platte golffront
naar dat van een divergerende puntbron). Bij opeenvolgende rondes neemt deze divergentie
verder toe totdat je beperkt wordt door de eindige reflectie van de spiegel. De fotonen in de
adjoint toestand zijn convergent en lopen tegen de fotonen in de hoofdtoestand.

In dit soort lasers wordt de ruis in de fotontoestand met het gestimuleerde licht, hier de
laserende toestand genoemd, beinvloedt door een zogenoemde “adjoint” toestand. Spontane
emissie in de adjoint toestand is aanvankelijk convergent, maar na een paar rondes in de
trilholte eindigen deze adjoint fotonen eveneens in de divergente, laserende toestand. In de
loop van dit proces wordt de spontane emissie versterkt, waardoor de quantum ruis veel groter
kan woerden.

In het experiment bekijken we trilholtes waar het licht slechts in een heel klein gebied
versterkt wordt. Wij passen de breedte van de versterking zo aan dat wij een soort “ruisre-
sonantie” vinden waar de adjoint fotonen tot honderd keer versterkt worden voordat zij in
de laserende toestand komen. Hoe dit experiment werkt is verder te lezen in de laatste twee
hoofdstukken van dit proefschrift.



Sammendrag

Dette sammendraget er ment som en populærvitenskapelig beskrivelse av de emner som blir
behandlet i denne doktorgradsavhandlinga. Hovedemnet i avhandlinga er kvantestøy i lasere.
Jeg konsentrerer meg spesielt om treg spontan emisjon og eksess kvantestøy (=excess quan-
tum noise), to fenomén som begge kan lede til store fluktuasjoner. Før jeg begynner med disse
konseptene vil jeg først forklare de fundamentale prinsippene bak lasere.

Hva er en laser?

De fleste har nok hørt om lasere og vet at de har enkelte egenskaper som skiller dem fra
andre lyskilder som for eksempel ei vanlig lampe. Men hva er disse forskjellene, og hvordan
oppstår de? Disse spørsmålene er nok best besvart ved å se på hvordan lyset blir til. Her skiller
vi mellom spontan emisjon, som gir sitt opphav til vanlig lampelys, og stimulert emisjon som
gir laserlys.

Spontan emisjon finner sted når et eksitert atom gir ifra seg et foton uten påvirkning u-
tenfra. Tidspunktet for slik emisjon er kun gitt ved tilfeldighet, noe som igjen har gitt sitt
opphav til Einsteins berømte utsagn “God does not play dice” (Gud spiller ikke med ternin-
ger). Selv om Einstein ikke likte dette tilfeldighetsprinsippet, mener de aller fleste av dagens
vitenskapsmenn (og kvinner at det virkelig blir “kastet terning”. Fotoner fra spontan emisjon
er alle forskjellige og kan ha alle slags retninger og forskjellige bølgelengder.

Stimulert emisjon finner sted når et foton passerer et eksitert atom med den følge at dette
atomet gir ifra seg et foton før det går til den ikke-eksiterte tilstanden. Dette andre fotonet er
helt identisk med det første fotonet og kan derfor betegnes som en slags klon. Der hvor de
identiske fotonene kommer i kontakt med flere eksiterte atomer, kan en kjedereaksjon oppstå,
der et stort antall identiske fotoner blir skapt.

Det er naturligvis en grense for hvor mange identiske fotoner som kan bli til. I en laser
finnes det også fotontap. Denne begrensninga kan være at noen fotoner blir absorbert i det
forsterkende mediumet, eller ved at fotoner forsvinner ut mediumets sider. Absorbasjonen er
gitt av mediumet og dette tapet kan man ikke gjøre noe med. Tap ut sidene kan forhindres
ved å bruke speil som reflekterer lyset tilbake inn i det forsterkende mediumet.

I en laser oppstår identiske fotoner fort nok til å gjøre opp for tapene. Her er sågodt som
alle fotoner identiske og dette lyset har derfor meget spesielle egenskaper som gjør det ideelt
i mange “høyteknologiske” anvendelser.

For å vike litt fra hovedtråden, vil jeg her bemerke at det ikke er mulig å bygge en laser fra
ei vanlig lyspære, selv om man skulle bruke speil til å reflektere lyset tilbake inn i mediumet
(som i dette tilfellet vil være glødetråden). Grunnen til dette er at absorbasjon i slike medi-
um alltid vil forbli større enn forsterkningsevnen ved stimulert emisjon. Siden mediumet til
lamper ikke er tilpasset for stimulert emisjon, kommer spontan emisjon alltid til å dominere.
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S Epontan misjon S Etimulert misjon

L A S E Right mplification by timulated mission of adiation

Lysforsterkning ved stimulert emisjon av straling

Figur 1: Spontan emisjon finner sted på et vilkårlig tidspunkt uten påvirkning utenfra. Ved
stimulert emisjon er det det innkommende fotonet som utløser emisjonen av et nytt foton.
Hvis fotontapet er lite, begynner en kjedereaksjon hvor flere identiske fotoner blir skapt.

Kvantestøy
Når to fotoner har samme bølgelengde og retning, slik som ved stimulert emisjon, sier man
at de er i samme fotontilstand. Dette betyr videre at spontant emitterte fotoner er å finne i
mange forskjellige fotontilstander da disse kan ha forskjellig retning og bølgelengde. Fordi
spontant emitterte fotoner har alle slags forskjellige tilstander, hender det også at fotoner fra
spontan emisjon ender opp i fotontilstanden med stimulert emisjon.

Tidspunktet for slik emisjon er tilfeldig, og det er dette som gjør at spontan emisjon fører
til fluktueringer i antallet fotoner inne i laseren. Vi kaller dette kvantestøy; og effekten kan
måles i laserens avgitte lys.

Det må presiseres at kvantestøy som oftest har en veldig liten effekt i lasere, da nesten
alt lys er skapt gjennom stimulert emisjon. I ei lampe derimot, er det en masse fluktueringer
siden lamper nesten bare avgir spontan emisjon. Denne forskjellen kan man måle med en
veldig snar detektor.

Treg spontan emisjon
Selv om det spontane emisjonsforløpet er tilfeldighetsbetinget, betyr det ikke at den spontane
emisjonen foregår like hyppig i alle typer atomer. For å gå tilbake til terningkast kan man
si at en får tallet 1 (eller 2 eller 3) mye snarere med en sekssiders terning enn, la oss si, en
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sekstisiders terning. Når den spontane emisjonen er lite hyppig, sier vi at laseren har treg
inversjon.

Laserene i denne avhandlinga har alle utrolig treg spontan emisjon. Dette har til følge
at alt som skjer i denne laseren, foregår veldig langsomt. En av de største følgene av denne
tregheten er at dempingen av fluktueringene blir mye tregere. Dette fører til at fluktueringene
blir mye større enn i lasere med snar spontan emisjon.

Hvor mye fluktueringer det er i en laser er ikke bare avhengig av hvor treg inversjonen er,
men det kommer også an på størrelsen til laseren. I denne avhandlinga viser jeg at jo mindre
laseren er, desto mer fluktueringer. Grunnen til dette er at det (i gjennomsnitt) alltid er ett
spontant emittert foton i alle lasere uavhengig av størrelsen, mens antallet stimulerte fotoner
er proporsjonal med laserstørrelsen. Spontan emisjon har derfor større effekt i små lasere.
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Figur 2: Forventet sannsynlighetsfordeling for antallet fotoner med sannsynligheten vist
på den vertikale aksen. Antallet fotoner er på den horisontale aksen. Striplekurven viser
fordelinga for en laser med snar emisjon og den gjennomtrukne kurven tilsvarer lys fra ei
lampe. Histogrammet viser målingene for en laser med treg spontan emisjon.

Jeg har videre vist at en liten laser med treg inversjon ligner på en vanlig lampe på mange
måter. I figur 2 har jeg tegnet inn sannsynlighetsfordelingene for forskjellige typer lyskilder.
Et system med små fluktueringer kan man gjenkjenne ved at fordelinga er helt smal som
i tilfellet med lasere med snar emisjon. Ved større fluktuasjoner blir fordelinga veldig bred
som vist for lasere med treg inversjon og for vanlige lamper.

Eksess kvantestøy
Inntil nå har vi antatt at det alltid vil være gjennomsnittlig ett spontant emittert foton i hver
tilstand. Selv om dette vanligvis er tilfelle, finnes det lasere hvor det er mange spontant e-
mitterte fotoner. Dette, som vi kaller eksess kvantestøy, finner man i lasere som har en svært
begrenset område med fotontap eller forsterking.

I en slik laser blir støyen i fotontilstanden med det stimulerte lyset, det jeg kaller hoved-
tilstanden, påvirket av en såkalt “adjoint” fotontilstand. Spontan emisjon i adjointtilstanden
konvergerer og går til å begynne med imot lyset i hovedtilstanden. Likevel, etter noen runder
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mellom speilene, ender fotonene i adjointtilstanden opp i den divergerende hovedtilstanden.
Som en del av denne prosessen blir dette lyset forsterket, noe som kan lede til en uvanlig
sterk kvantestøy. Herav betegnelsen eksess kvantestøy.

Speil

Begrenset
forsterknings-

omrade

fotontilstand

Figur 3: Et smalt forsterkningsomåde fører til eksess kvantestøy. Pilene viser retningen til
fotonene i hovedtilstanden. Fra figuren kan man til venstre se at det begrensede forsterknins-
området fører til at lasertilstanden blir mye smalere. Dette fører igjen til at denne tilstanden
divergerer (man kan si at tilstanden er forandret fra en flat bølgefront til en sterkt diverge-
rende punktkilde). Etter flere rundturer frem og tilbake i laseren, hvor lyset divergerer mer
og mer, inntrer en slags likevekt hvor divergeringen blir holdt igjen av tap gjennom speilene.

I vårt eksperiment behandler vi lasere hvor fotonene bare blir forsterket i et veldig lite
område. Vi tilpasser områdets bredde slik at en slags “støyresonans” oppstår hvor vi får vel-
dig mye forsterkning av adjointtilstanden. Ved å gjøre dette, oppnår vi å forsterke spontan
emisjon i adjointtilstanden omtrent hundre ganger før den ender opp i hovedtilstanden.
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