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CHAPTER 1

Introduction

1.1 Quantum entanglement

Since quantum mechanics was born in the early 20th century, its controversial character has
intrigued many physicists in their perception of nature. Undoubtedly, quantum mechanics
offers a precise and elegant description of physical phenomena in various disciplines, ranging
from subatomic physics to molecular physics and condensed-matter physics. In the shadow
of this success, however, counterintuitive concepts of quantum mechanics have always been
looming and have triggered several discussions on the foundations of quantum mechanics.

One of these concepts is quantum entanglement which originates from the well-known
Gedankenexperiment proposed by Albert Einstein, Boris Podolsky and Nathan Rosen (EPR)
in 1935 [1]. In this experiment, two physical systems are considered to interact with respect
to a certain observable. Due to the interaction the two systems will exhibit a strong mutual
relation with respect to this observable. This so-called quantum entanglement means that the
individual outcomes of the observables cannot be predicted with certainty for each of the two
EPR systems, but the outcomes of the observables for the two systems are always strictly
correlated. Quantum entanglement offends physical reality in the sense that the individual
measurement results are fundamentally undetermined before the measurement. According to
quantum mechanics, a measurement of a certain value of the observable in one EPR system
instantaneously determines the state of the other system, irrespective of the distance between
the systems. This latter condition implies that quantum entanglement also contradicts the
concept of locality. The EPR paper thus concluded that quantum mechanics is apparently in-
compatible with a local and realistic description of nature, and therefore cannot be considered
as a “complete theory”.

It was not until 1964 that John Bell translated the somewhat philosophical EPR discussion
into a concrete test of the conflict between local realism and quantum mechanics [2]. This
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1. Introduction

test consists of a set of inequalities which must be satisfied by any local and realistic theory.
Quantum mechanics, however, predicts violation of these so-called Bell’s inequalities for
measurements on specific quantum-entangled systems. Some years later, Clauser, Horne,
Shimony and Holt (CHSH) introduced a generalized version of Bell’s inequalities which
applies to real laboratory experiments with, for example, quantum-entangled photons [3].
By now, many of such experiments on EPR particles have shown strong violation of Bell’s
inequalities and thus confirmed the non-local nature of entanglement [4–13]. Especially in the
last 15 years, investigations on the fundamental concept of quantum entanglement have also
led to perspective applications in information science, such as quantum cryptography [14,15],
quantum teleportation [16, 17] and quantum computation [18].

1.2 Quantum-entangled photons

The first experimental proof of quantum entanglement via violation of Bell’s inequalities was
reported by Clauser and Shimony in 1978 [4]. A few years later, Aspect and co-workers [5]
performed similar experiments in a more efficient way which yielded even more convincing
results. For this pioneering work, photon pairs were used as the EPR particle systems. Ever
since this major breakthrough, these photon pairs have remained the most popular tool for
testing quantum correlations.

Despite the success of these early-generation EPR experiments [19], the employed atomic
cascade source of photon pairs has only incidentally been employed in follow-up experi-
ments [9] because of the poor pair-production rate and collection efficiency. Instead, the
production of quantum-entangled photons via the non-linear process of spontaneous para-
metric down-conversion (SPDC) in a birefringent crystal [20] became more favourable. In
fact, the first SPDC source of photon pairs was already presented by Burnham and Weinberg
in 1970 [21]. They successfully observed photon coincidences by matching the detection to
the energy- and momentum-conservation conditions of the SPDC process. The new genera-
tion of EPR experiments [19], where a SPDC source is used to test the quantum correlations
between photons, was simultaneously introduced by two groups in the late 80’s [6, 7], and
quickly adopted by others [10, 11]. The popularity of EPR photon pairs is also reflected by
the ongoing development of high-quality and high-intensity SPDC sources [8, 22–24].

As mentioned before, the entanglement of two-particle systems is always with respect to
a certain observable. For quantum-entangled photons three of such observables can be distin-
guished, being polarization, energy or time (longitudinal space), and transverse momentum
or transverse space. The corresponding types of entanglement are called polarization, time
and spatial entanglement of photons, respectively. The entanglement of photons is in prin-
ciple simultaneous in the three mentioned observables. In this respect, one can also speak
about multiparameter or hyperentanglement [25, 26].

In the first entanglement experiments [4,5] only polarization correlations of EPR photons
were measured. Since then, EPR experiments with polarization-entangled photons have al-
ways been most popular due to their practical simplicity [6–8, 23, 24]. Time entanglement
of photons has been widely investigated in several interferometric schemes [9–11, 27–29].
Somewhat less explored are the spatial correlations of entangled photons. The most notable
experiments on spatial entanglement study these correlations by conditional imaging of the
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1.3 Thesis

transverse positions of the pair-photons [30, 31].

1.3 Thesis
The contents of this thesis covers research that has been performed to gain deeper insight into
both polarization entanglement and spatial entanglement of photons. The general theme of
this work is to investigate the quality of entanglement under different experimental settings.
The explored conditions are associated with the manipulation of both the production and
detection of entangled photons. Apart from the entanglement quality, the general interest
was also focused on the yield of photon pairs under these conditions. As a kind of sidetrip,
particular attention is paid to the degradation of polarization correlations caused by time- and
space-related decoherence processes in a metal hole array (Chapter 5). Below, the structure
of the thesis is presented in some more detail.

• Chapter 2 provides a brief description of the non-linear process of spontaneous para-
metric down-conversion (SPDC) as a source of quantum-entangled photons. Starting
from the two-photon entangled state, polarization entanglement and spatial entangle-
ment of photons are introduced in an analogous way.

• Chapter 3 presents a novel method for simultaneous determination of the thickness
and cutting angle of a birefringent non-linear crystal that can e.g. be used as a SPDC
source. Although this simple method is based only on polarization interferometry, it
allows a highly accurate measurement of both the crystal thickness and cutting angle.

• Chapter 4 demonstrates how the thickness of the SPDC source determines its bright-
ness, i.e., the generated number of polarization-entangled photons pairs. This result
follows from simple scaling laws and is supported by experimental data.

• Chapter 5 addresses the question whether time- and space-related polarization- deco-
herence channels commute. These channels are created by sending entangled photons
in succession through a birefringent delay and focusing them on a metal hole array,
thereby using the thin crystal discussed in Chapter 4 to create sufficient time resolu-
tion. The experimental results are interpreted in terms of the propagation of surface
plasmons that are excited on the hole array.

• Chapter 6 shows the consequences of focused pumping on the spatial distribution of
the generated SPDC light and the obtained quality of polarization entanglement.

• Chapter 7 focuses on the polarization-entanglement attained behind single-mode op-
tical fibers. The concept of transverse mode matching, which is needed for optimal
photon-pair collection, is revised by explicit count rate measurements. The limitations
to the entanglement quality are investigated for detection behind both apertures and
fibers.

• Chapter 8 specifically treats the spatial entanglement of photons that are generated
via SPDC. The theoretical and experimental work in this chapter study the spatial co-
herence of the two-photon wavepacket under different geometries of the employed
two-photon interferometer.

3



1. Introduction

• Chapter 9 demonstrates how the same interferometer, but now with an additional image
rotator in one the two interferometer arms, allows for determination of the number of
entangled orbital-angular-momentum (OAM) modes. This mode number follows from
the OAM entanglement measured as a function of the spatial-profile rotation of the
entangled light.
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CHAPTER 2

Spontaneous parametric down-conversion and quantum
entanglement of photons

We briefly describe how spontaneous parametric down-conversion can be used to gener-
ate quantum-entangled photons and which limitations this imposes. The specific cases of
polarization entanglement and spatial entanglement are discussed.
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2. Spontaneous parametric down-conversion and quantum entanglement of photons

2.1 Introduction
Mathematically speaking, two particles 1 and 2 are said to be entangled if their joint quantum
state cannot be factorized into the quantum states of the individual particles. The physical
interpretation of entanglement is that measurement of a quantum observable on particle 1
instantaneously determines the outcome of this observable for particle 2 and vice versa, irre-
spective of the interparticle distance and without any manipulation of particle 2. Two photons
can be entangled in their polarization, transverse momentum or frequency, which implies that
their two-photon wavefunction is non-factorizable in either of these degrees of freedom.

The standard source for production of quantum-entangled photon pairs is the non-linear
process of spontaneous parametric down-conversion (SPDC) in a birefringent crystal [5, 8].
In this process, a single pump photon is split into two photons (often called signal and idler
photon) such that the energies and transverse momenta of the down-converted photons add
up to those of the pump photon. The basic scheme for generating and detecting entangled
photon-pairs is schematically shown in Fig. 2.1. The pump light is directed onto the non-
linear crystal to create entangled pair-photons that are emitted along path 1 and 2 and travel
to detectors placed in each path. The entanglement is measured via some (quantum) corre-
lations in the number of photon pairs that are counted as coincidence clicks between the two
detectors.

Figure 2.1: Basic scheme for generation and detection of entangled photon pairs.

In this chapter we will first give a description of SPDC as a source of entangled-photon
pairs. Section 2.2 contains a general representation of the biphoton entangled state together
with the phase-matching physics that governs the distribution of the emitted SPDC light. In
Sec. 2.3 we will specifically focus on the polarization-entangled state and relate its spatial
and frequency dependence to the degree of polarization entanglement. We also present, in
some more detail, a general setup for measuring polarization entanglement with photons. In
an analogous way, we will introduce the spatial entanglement of photons in Sec. 2.4. We will
end with some concluding remarks in Sec. 2.5.

2.2 Spontaneous parametric down-conversion

2.2.1 The biphoton wavefunction
In general, the two-photon state produced via spontaneous parametric down-conversion in a
nonlinear crystal can be represented by the wavefunction [32, 33]
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2.2 Spontaneous parametric down-conversion

|Ψ〉=
∫

dq1

∫
dq2

∫
dω1

∫
dω2 ∑

i=H,V
∑

j=H,V
Φi j(q1,ω1;q2,ω2)â

†
i (q1,ω1)â

†
j(q2,ω2)|0〉 .

(2.1)
The creation operators â†

i (q1,ω1) and â†
j (q2,ω2) act on the vacuum state |0〉, and create a

photon in beam 1 with transverse momentum q1, frequency ω1 and polarization i, and a pho-
ton in beam 2 with transverse momentum q2, frequency ω2 and polarization j, respectively.
The polarizations of photon 1 and 2 are labelled by indices i and j where the summation is
over the horizontal (H) and vertical (V ) polarization. Conservation of energy and transverse
momentum in the down-conversion process requires ωp = ω1 +ω2 and qp = q1 +q2.

The physics of the SPDC process and the quantum entanglement are contained in the
biphoton amplitude functions Φi j(q1,ω1;q2,ω2). In fact, these amplitude functions depend
on three different aspects that embody (i) the transverse profile of the pump field Ep(qp,ωp),
(ii) the phase mismatch built up during propagation inside the generating crystal and (iii)
the two-photon propagation from the crystal plane to the detection plane. For a convenient
description of a certain type of entanglement, one does not incorporate all three contributions
but often neglects one of them. For instance, in the study of spatial entanglement one often
assumes the crystal to be “sufficiently thin” so that the phase mismatch can be neglected [34].
This so-called thin-crystal limit is only a relative concept: the crystal is only thin enough in
relation to the spectral detection bandwidth and spatial opening angle of the detected SPDC
light.

Equation (2.1) provides a full description of the two-photon state that is in principle si-
multaneously entangled in polarization, frequency (time entanglement) and transverse mo-
mentum (spatial entanglement), i.e., non-separable in all three corresponding variables. The
quantum entanglement is contained in the threefold labeling of the biphoton amplitude func-
tion Φ. To describe one of the three types of entanglement, one isolates the relevant variable
by integrating over the other two. In the Secs. 2.3 and 2.4 we will discuss in which way the
symmetry properties of Φ contains the polarization and spatial entanglement information.

2.2.2 Phase matching in type-II SPDC
The generation of SPDC light is among others determined by the phase-matching func-
tion which is incorporated in the biphoton amplitude Φ and describes the phase mismatch
φ(q1,ω1;q2,ω2) built up in the crystal. Phase matching exists in two different forms which
are known as type-I and type-II phase matching. In type-I phase matching, the down-converted
photons have the same polarizations, i.e. i = j = H for a V -polarized pump photon. Twin
photons generated under type-II phase matching have orthogonal polarizations (i = H and
j = V , or vice versa).

In this section we restrict our description to type-II phase matching, where the crystalline
c-axis lies in the yz-plane and where the horizontal and vertical polarization are defined along
the x- and y-axis of the crystal frame, respectively (see Fig. 2.2). We consider the pump
polarization to be vertical (e→ o + e) and relabel the H- and V -polarization as the ordinary
(o) and extra-ordinary (e) polarization. The average phase mismatch, being the mismatch
for propagation over half the crystal length L/2, is then given by φ = ∆kzL/2 where ∆kz =

7



2. Spontaneous parametric down-conversion and quantum entanglement of photons

Figure 2.2: The crystal frame.

kp,z− ko,z− ke,z is the wave-vector mismatch in the z-direction parallel to the surface normal.
If detection occurs far enough from the crystal, we can replace the transverse momenta q by
external angles θ = (θx,θy) via θ ≈ (c/ω)q. The projected wavevectors can then be written
as

ki,z ≈ ni

(
ωi,

θi,y

ni

)
ωi

c
cos
(

θi,x

ni

)
cos
(

θi,y

ni

)
, (2.2)

where the index i = p,o or e and ni are the corresponding refractive indices. Considering
the paraxial approximation (|θi| ¿ 1), we can Taylor-expand Eq. (2.2) around the angles
θi = 0 to obtain the phase mismatch [35]

φ(θp,θo,θe)≈
LΩ
2c

{
−C + (n0−ne(Θc))

δω
Ω

+ ρ(2θp,y−θe,y)+

1
2n

(
θ 2

o,x +θ 2
o,y +θ 2

e,x +θ 2
e,y
)}

. (2.3)

We have used δω = Ω−ωo = ωe−Ω¿ Ω, where Ω = ωp/2 is the SPDC degeneracy
frequency. The constant C depends on material properties, the crystal tilt and the cutting
angle Θc, being the angle of the crystal axis with respect to the surface normal. In the last
“quadratic” angular terms we have neglected the (relatively small) difference between the
group refractive indices no and ne(Θc) and replaced them by the average index n. Further-
more, the internal walk-off angle is given by ρ = ∂ ln[ne(Θc)]/∂Θc [35]. It can also be
rewritten in terms of the external walk-off angle θoff (see below) as ρ = (2/n)θoff.

A closer inspection of Eq. (2.3) reveals the emission profiles of the SPDC light which are
defined by the condition φ ≈ 0. For plane-wave pumping (θp = 0) and frequency degeneracy
(δω = 0), the ordinary and extra-ordinary light are emitted along two identical cones that are
mirror-flipped images of each other and are spaced with respect to the pump over −θoff and
θoff, respectively. The opening angles of the light cones are determined by the constant C and
can be tuned by tilting the crystal. Figure 2.3 shows typical SPDC patterns that we observed
with an intensified CCD camera for different tilting angles of the crystal. The righthand pic-
ture depicts the standard experimental geometry where the perpendicularly intersecting cones
define the light paths 1 and 2 shown in Fig. 2.1. It is easy to verify that both intersections
are then also spaced by the external angle θoff with respect to the pump. In Chapter 6 we
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2.2 Spontaneous parametric down-conversion

will show that the condition of focused pumping (θp,y 6= 0) can drastically affect the emitted
SPDC pattern.

Figure 2.3: Intensified CCD images of SPDC emission for different tilting angles of the
crystal. The orthogonal crossings 1 and 2 in the righthand picture define the regions for
experimental study of polarization entanglement.

Figure 2.3 already provides a nice illustration of polarization entanglement. The ordinary
and extra-ordinary ring have a well-defined horizontal and vertical polarization, respectively,
except at the intersections 1 and 2. At these crossings, the individual polarizations of the
pair-photons 1 and 2 are undetermined but always perpendicular to each other (for the singlet
Bell state). The fact that one in principle cannot distinguish which polarization will emerge
in which crossing makes these pair-photons polarization-entangled.

As we consider SPDC emission close to frequency degeneracy and as the SPDC crossings
are the only relevant regions to study the entanglement, we can linearize the phase mismatch
of Eq. (2.3) around these points (θx =±θoff +δθx) to

∆φ = ∆kzL/2≈ π
(

δω
∆ωSPCD

+
±δθx−θy

∆θSPDC

)
, (2.4)

where the plus and minus sign refer to the linearizations around θx = +θoff and θx =
−θoff, respectively. The advantage of Eq. (2.4) is that it characterizes the phase mismatch as
a function of the local frequency detuning δω and angular displacement δθx relative to the
degenerate coordinates (Ω,±θoff). In Eq. (2.4) these local deviations are normalized to the
SPDC spectral width ∆ωSPCD and angular width ∆θSPCD, respectively, where

∆ωSPDC =
2πc

[no−ne(Θc)]L
(2.5)

∆θSPDC =
λ

ρL
, (2.6)

and λ = 2πc/Ω is the degeneracy wavelength. Equation (2.6) gives the angular width
in either the x or y direction. The real angular width in the radial directions is a factor

√
2

smaller. Above equations obviously show that both the SPDC spectral and spatial width
becomes larger for thinner crystals (see also Chapter 4).
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2. Spontaneous parametric down-conversion and quantum entanglement of photons

2.3 Polarization entanglement

2.3.1 The polarization-entangled state
For the study of polarization entanglement, we consider two-photon production via type-II
SPDC where the generated pair-photons have orthogonal polarizations, i.e., either i, j = H,V
or i, j = V,H. The two-photon state in Eq. (2.1) can now be written as

|Ψ〉=
∫

dq1

∫
dq2

∫
dω1

∫
dω2{ΦHV (q1,ω1;q2,ω2)|H,q1,ω1;V,q2,ω2〉+

ΦV H(q1,ω1;q2,ω2)|V,q1,ω1;H,q2,ω2〉} . (2.7)

Physically speaking, the pair-photons are polarization entangled if one in principle can-
not distinguish which photon (H or V ) has travelled which path (1 or 2) on the basis of the
measurement of any other variable than polarization. This is the case when the biphoton am-
plitude functions ΦHV and ΦV H overlap sufficiently well to prevent us to distinguish between
the two states |HV 〉 and |V H〉 on the basis of either frequency or spatial contents. The in-
terference between these two probability channels is quantified by the wavefunction-overlap
〈Ψ|Ψ〉 which is proportional to the coincidence count rate for simultaneous detection of one
pair-photon in each detector (see Sec. 2.3.3). As the polarization entanglement is hidden in
the interference terms (∝ Φ∗

HV ΦV H ), an experimental measure for the degree of entanglement
is given by [37]

Vpol =
〈〈2Re(Φ∗

HV ΦV H)〉〉
〈〈|ΦHV |2 + |ΦVH)|2〉〉 . (2.8)

The double brackets 〈〈· · · 〉〉 are just a shorthand notation of the six-fold integration over
the range of momentum and frequency variables determined by the two apertures and the
transmission of the two bandwidth filters, respectively. Maximal entanglement (Vpol = 1)
is obtained when ΦHV = ΦV H , i.e., when the amplitude functions are symmetric under ex-
change of labels. As soon as these functions differ due to a different momentum or frequency
dependence, labeling comes into play and the entanglement will be weaker, the more so the
larger the integration ranges. We note that the six-fold momentum and frequency integration,
acting on the rather complicated function Φ∗

HV ΦV H , makes the evaluation of Eq. (2.8) not as
transparent as one would wish. For a more convenient description of polarization entangle-
ment, the biphoton amplitude function ΦHV is often simplified as the product of the pump
field profile and the phase matching function only, thereby omitting the contribution of the
two-photon propagation. We note that this is strictly correct only in the far-field limit.

2.3.2 Limitations to the degree of polarization entanglement
In general, the entanglement in one of the three degrees of freedom, being polarization, trans-
verse momentum and frequency, will be affected by the dependence of the amplitude function
Φ on the other two degrees of freedom and the integration over these variables. The compli-
cated six-fold integration in Eq. (2.8) for example describes how the spatial and frequency
labeling information, contained in the amplitude functions ΦHV and ΦV H , affects the obtained
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2.3 Polarization entanglement

polarization entanglement. In Chapter 7 we will discuss in more detail how the four-fold mo-
mentum integration will lead to lower degrees of polarization entanglement if the integration
extends to larger apertures. As soon as detection occurs behind single-mode fibers instead
of apertures, the spatial information will be reduced to that of a single transverse mode, the
spatial labeling will thus disappear, and Eq. (2.8) will contain only a two-fold frequency in-
tegration. The degree of polarization entanglement is then no longer limited by the aperture
size but only by the detected spectral bandwidth of the filters.

2.3.3 Experimental scheme for measurement of polarization entangle-
ment

Figure 2.4: Experimental setup for measuring polarization entanglement.

In Fig. 2.4 we show the detailed experimental setup that we typically employ to generate
and detect polarization-entangled photons. A krypton ion laser, operating at 407 nm, pro-
duces a light beam that is weakly focused (typical beam waist ≈ 0.3 mm) onto a 1-mm-thick
non-linear χ (2) crystal made of β -barium borate (BBO). The perpendicular intersections of
the generated SPDC cones are realized by a proper tilt of the crystal. These intersections
form the two paths along which all optics are placed. A half-wave plate HWP, oriented at 45◦

with respect to the crystal axes, and two 0.5-mm-thick BBO crystals (cc) form the device that
compensates for both the longitudinal and transverse walk-off built up between the ordinary
and extra-ordinary light in the birefringent crystal. By tilting one of these two compensating
crystals we can set the overall phase factor of the two-photon state which allows us to operate
either in the singlet or one of the triplet states. The two light beams pass f = 40 cm lenses
(L1) at 80 cm from the down-conversion crystal and propagate over an additional 120 cm
before being focused by f = 2.5 cm lenses (L2) onto free-space single-photon counters SPC
(Perkin Elmer SPCM-AQR-14). Spatial selection of the crossings is performed by circular
apertures with variable diameter in front of the lenses L1. Spectral selection is accounted for
by interference filters IF (∆λ = 10 nm FWHM centered around 814 nm) and red filters RF
in front of the photon counters. Polarizers P are used for polarization selection. The output
signals of the photon counters are combined in an electronic circuit that registers coincidence
counts (simultaneous clicks) within a time window of 1.76 ns. This time window is suffi-
ciently small to detect the individual photons of a single pair only, but is also much larger
than the coherence time of the two-photon wavepacket, which is proportional to the inverse
bandwidth of the interference filters and typically 0.1 ps (at ∆λ = 10 nm).

The above description of the experimental setup is just a general one. Slight modifications
of this general scheme are required for specific studies on polarization-entanglement, using
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2. Spontaneous parametric down-conversion and quantum entanglement of photons

different crystal thicknesses, pump foci and fiber-coupled photon counters, as presented in
Chapter 4, Chapter 6 and Chapter 7, respectively.

In a typical measurement of the degree of polarization entanglement, we measure the co-
incidence count rates for an orthogonal and a parallel polarizer setting. These settings are
reached by fixing one polarizer at +45◦ and rotating the other to −45◦ and +45◦, respec-
tively. When we operate in the two-photon singlet state, we expect to measure a maximal
coincidence rate Rmax for the orthogonal setting and a minimum rate Rmin for the parallel
setting. In fact, the coincidence rate measured as a function of the orientation of the rotating
polarizer is a sinusoidal fringe pattern that corresponds to the two-photon interference. The
degree of polarization entanglement [see Eq. (2.8)] can now be experimentally measured by
the two-photon fringe visibility, given by

V45◦ =
Rmax−Rmin

Rmax +Rmin
. (2.9)

2.4 Spatial entanglement

2.4.1 The spatially entangled state

Figure 2.5: Transverse momenta of pair-photons 1 and 2 generated under type-I SPDC.

For the study of spatial entanglement, we consider type-I phase matching (one polariza-
tion) and monochromatic light (ω1 = ω2). The two-photon state in Eq. (2.1) then changes
into

|Ψ〉=
∫

dq1

∫
dq2Φ(q1,q2)|q1,q2〉 . (2.10)

At first sight, Eq. (2.10) does not represent a spatially-entangled state as the ampli-
tude function Φ(q1,q2) seems to lack the symmetry property shown in Eq. (2.7) for the
polarization-entangled state. The reason is that the continuous momentum variables q1 and
q2 are not limited to two discrete values, as was the case for the polarizations H and V . By
definition, the spatial entanglement is then contained in the non-separability of the ampli-
tude function, i.e., Φ(q1,q2) 6= f (q1)g(q2), rather than in the symmetry of Φ. However, the
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2.4 Spatial entanglement

symmetry of Φ(q1,q2) does emerge once we linearize the momenta around q0 and -q0, be-
ing the transverse momenta associated with the central axes of beam 1 and 2, respectively
(see Fig. 2.5). The momenta q1 and q2 are then given by q0 + ξ1 and −q0 + ξ2, respec-
tively, where |ξ1,2| ¿ |q0|. Furthermore, we define Φ12(ξ1,ξ2) ≡ Φ(q0 +ξ1,−q0 +ξ2) and
Φ21(ξ1,ξ2) = Φ12(ξ2,ξ1) ≡ Φ(q0 + ξ2,−q0 + ξ1) The pair-photons are fully indistinguish-
able in momentum, and thus spatially entangled, if the amplitude function Φ(q1,q2) is invari-
ant to the exchange of the local variables ξ1 and ξ2 [36], i.e., if Φ12(ξ1,ξ2) = Φ21(ξ1,ξ2).

Analogous to the case of polarization entanglement, the spatial entanglement is again
quantified by the overlap between the amplitude functions Φ12 and Φ21. In Chapter 8 we
will study the spatial interference of these amplitude functions in a two-photon experiment
that employs a so-called Hong-Ou-Mandel (HOM) interferometer [27]. In this interferom-
eter photon coincidences are measured only when the two incident photons are either both
reflected or both transmitted at the beamsplitter. These two probability channels are repre-
sented by Φ12 and Φ21 and, in essence, probed by a switch in beam labels. The degree of
spatial entanglement is therefore given by

Vspat =
〈2Re{Φ∗

12Φ21}〉
〈|Φ12|2 + |Φ21|2〉

. (2.11)

The single brackets now denote the integration over the local momenta ξ1 and ξ2 only.
In case of non-monochromatic light (ω1 6= ω2), double brackets should be introduced as we
then have to integrate over frequencies as well. Equation (2.11) shows that we again obtain
maximal entanglement if the biphoton amplitudes are symmetric under exchange of the beam
labels.

2.4.2 State representation in a modal basis
The spatially-entangled state in Eq. (2.10) is represented in a plane-wave basis of two-photon
states |q1,q2〉 that are expressed in the continuous momentum variables q1 and q2. As an
alternative, this entangled state can also be represented in a modal basis of discrete eigenstates
ψni with i=1 or 2 [34, 38, 39]. In this basis, Eq. (2.1) can be written as the inseparable state

|Ψ〉= ∑
n

Φn|ψn1〉|ψn2〉 , (2.12)

which represents a superposition of (separable) product states |ψn1〉|ψn2〉. The index n
refers to the modal indices of the eigenfunctions that form a complete orthonormal set of
solutions for the paraxial wave equation in a specific beam direction [40]. If we use the
set of Laguerre-Gaussian (LG) modes, we can define n as n ≡ (l, p) where l and p are the
azimuthal and radial LG polynomial indices that label the transverse profile of the light beam.
The spatial entanglement that is hidden in the inseparable character of Eq. (2.12) simply
becomes transparent from the measurement projection. The spatial mode of each individual
pair-photon is unknown beforehand, but measurement of the mode of one photon fixes the
mode of its partner photon.
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2. Spontaneous parametric down-conversion and quantum entanglement of photons

2.5 Concluding remarks
In this chapter we have described the process of spontaneous parametric down-conversion
(SPDC) as a source of quantum-entangled photons. We have used the generated two-photon
state as the basis for an analogous description of polarization and spatial entanglement in
general. Elsewhere in this thesis, we will present the specific consequences of the crystal
thickness (Chapter 4), focused pumping (Chapter 6) and fiber-coupled detection (Chapter 7)
on the polarization entanglement. For a detailed study of spatial entanglement that originates
from HOM interference we refer to Chapters 8 and 9.
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CHAPTER 3

Simple method for accurate characterization of birefringent
crystals

We present a simple method to determine the cutting angle and thickness of birefringent
crystals. Our method is based upon chromatic polarization interferometry and allows for
accuracies of typically 0.1◦ in the cutting angle and 0.5% in the thickness.

P.S.K. Lee, J.B. Pors, M.P. van Exter, and J.P. Woerdman, Appl. Opt. 44, 866-870 (2005).
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3. Simple method for accurate characterization of birefringent crystals

3.1 Introduction
Birefringent crystals play a key role in various optical applications ranging from polarization
manipulations in linear optics to frequency conversion in nonlinear optics. As the speci-
fication of ready-made crystal slabs is often limited by manufacturing tolerances, accurate
inspection after production is usually required. Properties of birefringent materials are gener-
ally characterized by applying interferometric [41–44] or ellipsometric techniques [45–47].
All these techniques enable one to determine the axes of orientation or the refractive indices
(or both) of the birefringent material, but not its thickness (apart from [47]). We present here a
simple method for simultaneous determination of both the precise cutting angle and thickness
of a birefringent crystal. Our method uses the refractive indices of the crystal as input, since
these indices are already well-known to high precision for most of the relevant crystals [48].
We combine this input with chromatic polarization interferometry to determine precisely the
absolute order of the crystal (acting as a waveplate) at several angles of incidence.

3.2 Theory
When considering plane-wave illumination of a uniaxial waveplate, the accumulated phase
difference ∆φ between the ordinary and extraordinary light upon propagation through a bire-
fringent crystal is given by

∆φ = d(ko,z− ke,z) , (3.1)

where d is the crystal thickness and ko,z, ke,z are the internal longitudinal wavevector
components of the ordinary and extraordinary light in the (z-)direction parallel to the surface
normal. In detail, the wavevector components are given by

ko,z = k0

√
n2

o(λ )− sin2(θ) (3.2)

ke,z = k0

√
n2

e(λ ,Θ)− sin2(θ) (3.3)

where k0 = 2π/λ is the wavevector of the incoming beam, θ is the angle of incidence and
no(λ ) and ne(λ ,Θ) are the refractive indices at the specified wavelength λ and angle Θ, with

1
ne(Θ)

=

√
cos2 Θ

n2
o

+
sin2 Θ

n2
e

. (3.4)

Here, Θ = θc + θ ′ is the angle between ~ke and the crystalline c-axis, θc is the cutting
angle (= angle between c-axis and surface normal), and θ ′ is the internal refraction angle. All
relevant angles are indicated in Fig. 3.1.

Despite the simplicity of the above equations, the analysis of data obtained from chro-
matic polarization interferometry requires some thought. Experimentally, we measure the
wavelength-dependent optical transmission T of the waveplate when it is positioned between
two parallel polarizers. By fitting the measured spectral fringe pattern with the theoretical
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3.2 Theory

Figure 3.1: Definition of the relevant angles: angle of incidence θ , internal angle of
refraction θ ′, crystalline cutting angle θc, and internal angle Θ.

expression [49] T = acos2{∆φ(λ ,θ = 0)/2}+ b, with a and b constant, we can extract not
only the fractional but also the integer order of the waveplate for any specific wavelength λ0
(total order is ∆φ(λ0)/2π).

Another issue is the dependence of ∆φ on both crystal cutting angle θc and thickness d. A
single polarization-resolved transmission spectrum contains insufficient information to deter-
mine both θc and d individually, as a variation of one parameter can be largely compensated
for by a change in the other parameter. The basis for this approximate interchangeability of θc
and d is the observation that Eq. (3.4) is well approximated by its first-order Taylor expansion
(as |no− ne| ¿ no), making the refractive index difference ∆n(λ ,Θ) ≡ n0(λ )− ne(λ ,Θ) ≈
∆n(λ ,Θ = 90◦)× sin2 Θ. As a result ∆n(λ ,θc) shows a similar wavelength dependence at
various cutting angles and differences occur primarily in the prefactor.

To find the individual values of θc and d we measure a set of polarization-resolved trans-
mission spectra at various angles of incidence θ . We analyze the spectra obtained at non-
normal incidence by using the interchangeability mentioned above: we fit the polarization-
resolved transmission spectrum at each incident angle θ by that of a fictitious crystal of effec-
tive thickness deff(θ) illuminated at normal incidence, i.e., we write ∆φ(λ ,θ)≈ 2πdeff(θ)×
∆n(λ ,Θ = θc)/λ . This trick yields a single fitting parameter deff(θ) for every spectrum. As
a last step in our analysis we combine the data of all spectra, by plotting deff(θ) (or actu-
ally the phase difference ∆φ(λ0,θ) at a fixed wavelength λ0) versus θ and fitting it with the
appropriate expression to extract both the real θc and d individually.

With the above trick we avoid the problem that a single spectrum can be fitted with many
different (θc,d) combinations. The only alternative to our simplified procedure would be a
single combined fit of all measured spectra. However, such a fit is much more cumbersome.

A nasty detail of every method of analysis is the conversion from external to internal
angles; in order to find the internal angle Θ = θc +θ ′ for a given external angle θ and cutting
angle θc, Snell’s law sinθ = ne(λ ,Θ)sinθ ′ has to be solved iteratively, since Θ itself depends
on θ ′. In practice, three iterations are sufficient to find all angles with an error < 0.0001◦.
As a typical example we take θc = 24.9◦, θ = 25◦, no = 1.66736 and ne = 1.55012; we
find then on the first iteration θ ′

1 = arcsin{sinθ/ne(Θ = θc)} = 14.89◦ and Θ1 = 39.79, on
the second iteration θ ′

2 = arcsin{sinθ/ne(Θ1)} = 15.158◦ and Θ2 = 40.058◦, on the third
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3. Simple method for accurate characterization of birefringent crystals

iteration θ ′
3 = arcsin{sinθ/ne(Θ2)} = 15.164◦ and Θ3 = 40.064◦ and the same to within

0.0001◦ on the fourth iteration. The advantage of our two-step fit procedure is that these
iterations are necessary only in the final fit of ∆φ(λ0,θ) versus θ . For the alternative approach
of a single complete fit of all data an enormous amount of iterations in the 2-dimensional
(λ ,θ) space is needed.

3.3 Experimental setup
Figure 3.2 shows the experimental setup. An incandescent lamp (GE 1460X) produces a
beam which is directed through two apertures (spaced by 10 cm, each 5 mm diameter) in
order to limit its divergence. Note that no lenses have been placed in the beamline. The
birefringent BBO crystal (specified cutting angle θc = 24.9◦± 0.5◦ and specified thickness
d = 1.0 ± 0.1 mm) is positioned between two parallel polarizers and placed in a rotation
stage in such a way that the crystalline optical axis can be rotated in the horizontal plane. A
200 µm diameter optical fiber guides the collected light to a fiber-coupled miniature grating
spectrometer (Ocean Optics S2000), which contains a high-sensitivity CCD array for quick
and easy measurement of a complete spectrum.

spectrometer

polarizer

birefringent
crystalpolarizer aperture

aperture

fiber inputc

computer

Figure 3.2: Experimental setup used to measure the optical transmission spectrum
of a birefringent crystal sandwiched between two parallel polarizers. Light from an
incandescent lamp (not shown) is passed through apertures (to limit its divergence) and
the crystal before being spectrally analyzed by a fiber spectrometer. The crystalline
c-axis can be rotated in the horizontal plane with an accurate rotation mount.

In order to generate the phase difference between the ordinary and extraordinary ray,
we first orient the crystal’s c-axis in the horizontal plane, using both polarizers initially in a
horizontal-vertical crossed configuration. The polarizers are then rotated to the 45◦ setting to
get maximum fringe contrast in polarization-resolved transmission.

Since we measure at angles of incidence up to 30◦, we paid attention to position the
crystal properly along the axis of the rotation stage to avoid (partial) cut off of the light beam
by the crystal holder. The scale of the rotation stage is calibrated regarding its zero setting by
carefully observing the reflection at normal incidence. Hereby, we could get an accuracy of
the zero setting of 0.1◦, which is also the accuracy the scale offers for angle measurement.

We operate our spectrometer in the transmission mode, in which the wavelength-depen-
dent light intensity is normalized to the spectrometer signal obtained in the absence of the
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crystal. Since this latter signal is relatively weak for wavelengths below roughly 350 nm,
the measured signal in the transmission mode is very noisy in this spectral regime. For this
reason, we measure in the wavelength domain 400-875 nm, though the fiber spectrometer can
operate in the regime 200-875 nm.

3.4 Measurements and results
The experimental part of our method consists of measuring wavelength-dependent transmis-
sion spectra T (λ ,θ) of the BBO crystal for several angles of incidence θ . Figure 3.3 shows
a typical optical transmission spectrum T (λ ), measured at normal incidence (θ = 0). The
modulation depth of the experimentally observed fringes is limited to only≈ 80% for λ >800
nm and smoothly decreases to ≈ 30% at λ =500 nm. We attribute this limitation to the finite
opening angle of the light beam, which is approximately 0.7◦ and mainly determined by the
second aperture (5-mm diameter) positioned at 40 cm from the (200 µm diameter) detect-
ing fiber. Multi-beam interference [50] does not play a major role in our experiment since it
requires plane-wave illumination, whereas our light source has a finite opening angle and is
spatially incoherent.

Figure 3.3: Optical transmission spectrum T (λ ) of our BBO crystal, which is sand-
wiched between two parallel polarizers. The measured curve (solid) was taken at nor-
mal incidence (θ =0); its best fit (dotted) was found for deff = 1124 µm and θc = 24.7◦

via the expression T = acos2[∆φ(λ ,Θ = θc)/2]+ b. Note that we present only a part
of the full pattern to limit the number of displayed fringes.

Next, each transmission spectrum is fitted by using the θ=0 expression for the phase
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3. Simple method for accurate characterization of birefringent crystals

difference, i.e., ∆φ(λ ,θ) ≈ 2πdeff(θ)∆n(λ ,Θ = θc)/λ , with the thickness deff(θ) acting as
fitting parameter and θc fixed at the specified value of 24.9◦, which could differ from the
real cutting angle. For the spectrum measured at normal incidence, deff = 1124 µm gives
a perfect fit of the fringe period and phase (dotted curve in Fig. 3.3); a precise fit of the
fringe amplitudes is not relevant in our analysis. For spectra taken at non-normal incidence
(not shown) the fit is not always perfect, simply because the θ = 0 expression is just an
approximation, though a good one, for the cases θ 6= 0. To still obtain the correct order
∆φ(λ0,θ)/2π at a specific wavelength λ0, we have to fit with an effective thickness deff such
that experimental curve and fit are exactly in phase at this wavelength (fractional order), while
both curves contain an equal number of fringes (= integer order) in the wavelength domain
[λ0, ∞]. For λ0 we choose a fixed value of 644 nm, because it is located in the center of our
spectral range and accurate refractive index data at this wavelength is available [48]: no =
1.66736 and ne = 1.55012.

The described fitting procedure works well because we use accurate (at least four deci-
mals) values for the refractive indices no and ne, as tabulated for some wavelengths at T =
293 K in [48] (originally from [51]). Due to the small temperature sensitivity (≈ 10−5 K−1)
of the refractive indices, temperature fluctuations within 5 K have negligible effect on the
refractive index difference, which is of the order of 0.05. The mentioned tabulated values
for no and ne served as input to calculate data points for ∆n(λ ,Θ = θc), which are then fit-
ted with the standard dispersion relation (normally used for n) to obtain the full wavelength
dependence of ∆n(λ ,Θ = θc) necessary for fitting the observed spectral fringe pattern.

Figure 3.4(a) shows the measured order of waveplate ∆φ(λ0,θ)/2π as a function of the
incidence angle θ , where each point results from a single spectral measurement. These points
are fitted by using the full (θ 6= 0) Eqs. (3.1-3.4) with cutting angle θc and thickness d as
fitting parameters and λ fixed at λ0 = 644 nm, thereby getting the proper internal angle Θ for
each θ via iterations. The set of fitting parameters which produces the best fit (solid curve)
now gives us the real cutting angle and thickness of our BBO crystal, being θc = 24.95◦±0.1◦

and d = 1105± 5 µm. To demonstrate the influence of the fit parameters, we have also
plotted two other fits. The dashed curve shows how a change in θc (to θc = 19.95◦, keeping
d = 1105 µm) leads to something like a horizontal shift of the best fit. The dotted curve shows
how an additional change in d leads to a simple and exact scaling in the vertical direction.
The new (and incorrect) fit parameters (θc = 19.95◦, and d = 1680 µm) are chosen such that
they give the same order of waveplate ∆φ(λ0)/2π at normal incidence.

To determine the best fit of the data points shown in Fig. 3.4(a), we have calculated
the normalized χ2 = ∑N

i=1 δ 2
i /(N − 2) for various sets of fitting parameters θc and d (see

Table 3.1). Here, N is the number of data points and δi are the residuals between data points
and fit which, for the best fit, are randomly spread around zero with a standard deviation
of 0.10 [see Fig. 3.4(b)]. Besides the real cutting angle θc and thickness d of the crystal
(minimal χ2), Table 3.1 also indicates that our method allows for determination accuracies
of 0.1◦ for θc and 0.5% for d.
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Figure 3.4: (a) Order of the waveplate ∆φ(λ0,Θ)/2π at λ0 = 644 nm as a function of
the angle of incidence θ . The dots are experimental values obtained from fits like the
one shown in Fig. 3.3. The solid, dashed and dotted curves are parametric fits (see text
for details). (b) Residuals δ between experimental points and best fit shown in (a). The
residuals are randomly spread around zero with standard deviation of 0.10.

3.5 Discussion
As this chapter stresses the high accuracy of our method, we will separately discuss the
possible errors in the horizontal and vertical scale of Fig. 3.4(a). The error in the determined
angle of incidence θ comes, in the first place, from the scale accuracy of the rotation stage,
being 0.1◦. In addition, θ can exhibit a systematic error of 0.1◦ due to the limited accuracy
in the calibration of the zero setting of this scale, resulting in a total error in θ of 0.2◦. As a
consequence of Snell’s law, the error in the internal refraction angle is a factor n smaller.
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Table 3.1: Normalized χ2 as calculated for various cutting angles θc and thicknesses
d.

d(µm), θc 24.85◦ 24.90◦ 24.95◦ 25.00◦

1100 0.301 0.170 0.079 0.145
1105 0.106 0.038 0.010 0.022
1110 0.023 0.018 0.054 0.130
1115 0.050 0.109 0.209 0.351

Inaccuracy in the measured order of the waveplate ∆φ(λ0)/2π comes from improper
matching of the experimental curve and fit at λ0 in the fitting procedure shown in Fig. 3.3.
The potential mismatch is, however, not more than a few times 10−2 of a fringe, which
implies that ∆φ(λ0)/2π has its error only in the second decimal and can thus be determined
more accurately than θ . As we use a simplified fitting procedure (based on deff), there is a
small risk, particularly for large θ , that we miscount ∆φ(λ0)/2π by a full integer unit due to
a miscalculation of the number of fringes in the range [λ0, ∞]. Fortunately, such gross errors
show up immediately in Fig. 3.4(b) and can thus be easily corrected for.

As an alternative check for the cutting angle, but not for the crystal thickness, we have also
used our BBO crystal for type-I second harmonic generation. Starting from a weakly focused
laser beam at a wavelength of λL = 980 nm, we found optimum conversion to 490 nm at
a measured angle of incidence of 1.2◦ ± 0.1◦, corresponding to an internal angle of θ ′ =
0.7◦. With a free software package [52], we determined the angle Θ for optimum conversion
[phase-matched by no(λL) = ne(λL/2,Θ)]to be Θ = 24.3◦. Adding the two values mentioned
above leads to a cutting angle θc = 25.0◦, which agrees well with the value found with our
method.

As a test of our method, we have also determined the precise cutting angle and thickness
of a second crystal (with specified values θc = 41.8◦±0.5◦ and d = 200±20 µm). Table 3.2
summarizes the results of a series of spectral measurements by giving χ 2 for various θc and
d. This leads to an actual cutting angle θc = 41.0±0.1◦ and thickness d = 238.5±0.5 µm.
These small error tolerances are in good agreement with those found with our first crystal,
and once more confirm the high accuracy of our method.

We stress that the simplicity of our method is due to the use of well-known refractive
indices as input. In solid state optics, characterization of newly developed crystals cannot
benefit from this method, as their refractive indices are still unknown, and a much more ex-
tensive method is needed. Such a method has been developed by Hecht et al. [47], where
ellipsometric and polarization transmission intensity measurements are simultaneously ana-
lyzed to determine the optical properties of a specific crystal. In addition to its simplicity, our
method also allows for easy measurement of any practical crystal thickness, contrary to what
is reported in Ref. [47].
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Table 3.2: Normalized χ2 for a second crystal as calculated for various cutting angles
θc and thicknesses d.

d(µm),θc 40.85◦ 40.90◦ 40.95◦ 41.00◦ 41.05◦ 41.10◦

237.5 0.0322 0.0210 0.0124 0.0063 0.0028 0.0019
238.0 0.0183 0.0102 0.0046 0.0016 0.0012 0.0034
238.5 0.0086 0.0036 0.0011 0.0012 0.0039 0.0091
239.0 0.0032 0.0012 0.0018 0.0050 0.0108 0.0192
239.5 0.0019 0.0030 0.0068 0.0131 0.0220 0.0335

3.6 Conclusions
In this chapter, we have presented a simple method, based upon chromatic polarization inter-
ferometry, to determine the cutting angle and thickness of birefringent crystals. In spite of
its simplicity, the method allows for accuracies of 0.1◦ in the cutting angle and 0.5% in the
thickness, which are generally much smaller values than specified by the manufacturer.

In the present experiment, these accuracies are limited by the quality of the rotation
mount. This is, however, not a fundamental limitation. With a more accurate mount, in
combination with a better alignment scheme and a less divergent optical beam, even higher
accuracies are expected.
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CHAPTER 4

Increased polarization-entangled photon flux via thinner
crystals

We analyze the scaling laws that govern the production of polarization-entangled photons
via type-II spontaneous parametric down-conversion (SPDC). We demonstrate experi-
mentally that thin nonlinear crystals can generate a higher number of entangled photons
than thicker crystals, basically because they generate a broader spectrum.

P.S.K. Lee, M.P. van Exter, and J.P. Woerdman, Phys. Rev. A 70, 043818 (2004).
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4.1 Introduction
Spontaneous parametric down-conversion (SPDC) has become the standard tool to gener-
ate entangled photon pairs for experimental studies on the foundations of quantum mechan-
ics [6–8]. These photon pairs can be simultaneously entangled in energy, momentum, and
polarization (for type-II SPDC), but the use of polarization entanglement is most popular due
to its simplicity. Although the mathematical description of the generating process is well
known [20,35], we think that its physical implications are not yet fully exploited. We hereby
refer specifically to the thickness of the nonlinear crystal, which for BBO is generally chosen
between 0.5-3 mm without any further justification [8, 23]. In this paper, we will discuss the
role of the crystal thickness in terms of simple scaling laws and show that the production rate
of entangled pairs can actually be increased considerably by reducing the crystal thickness
(to 0.25 mm in our case). Our treatment is restricted to the case of a cw pump, but can be
extended to pulsed pumping.

The theoretical description of type-II SPDC is centered around the two-photon wave func-
tion Φ(qo,qe;ωo,ωe), which quantifies the probability amplitude to generated a photon pair
with transverse momentum qi and frequency ωi, for the ordinary (i = o) and extra-ordinary
(i = e) polarization, respectively. Stripped down to its bare essentials this two-photon wave
function is

|Φ(qo,ωo;qe,ωe)| ∝ Lsinc(∆φ) , (4.1)

where L is the crystal thickness, sinc(x) = sin(x)/x, and ∆φ = L∆k is the phase mismatch.
If the pump laser is an almost plane-wave beam at normal incidence, conservation of energy
and transverse momentum requires that ωo + ωe = ωp and qo + qe = 0, and ∆φ becomes
a function of one frequency and transverse momentum only. This functional dependence
is such that the two polarized components are emitted in angular cones that are displaced
with respect to the pump over an angle ±θoff and that are approximate mirror images of
each other (at ωo ≈ ωe). We consider SPDC emission close to frequency degeneracy, where
ωe ≡ ωp/2 + δωe with δωe ¿ ωp/2 and ωp as pump frequency, and linearize the phase
mismatch around an orthogonal crossing of the two SPDC cones (set by the crystal angle)
to [35, 48]

∆φ = L∆k ≈
(

∂∆k
∂ωe

δωe +
∂∆k
∂θx

δθx +
∂∆k
∂θy

δθy

)
L≈ 2π

(
− δλe

∆λSPCD
+

δθr

∆θSPDC

)
, (4.2)

where δθr measures the angle change in the radial direction. As the partial derivatives
of ∆k are determined by material constants, both the spectral width ∆λSPDC (at fixed angle)
and the angular width ∆θSPDC (at fixed frequency) are inversely proportional to the crystal
thickness L. More specifically, the product ∆λSPDC×L≈ λ 2/[ngr,o−ngr,e(θ)] (with λ = 2λp)
depends on the difference between two group refractive indices [53], whereas the product
∆θSPDC×L = λ/

√
2ρ depends on the internal walk-off angle ρ .

Typical numbers for type-II SPDC in BBO, where down-conversion from 407 to 814 nm
requires a cut-angle of about 41.2◦, are as follows. Conversion of the literature values for
the refractive indices to group indices gives ∆λSPDC× L ≈ 11.5 nm.mm. With an internal
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walk-off angle ρ = 72 mrad (corresponding to an offset angle θoff = 57 mrad), the product
∆θSPDC×L≈ 8.0 mrad.mm. Note that ∆λSPDC and ∆θSPDC are specified in terms of the width
of the SPDC signal from its peak value to the first minimum of its sinc2-shaped intensity
profile, making the full widths at half maximum (FWHMs) 0.89 times as large.

The simple equations (4.1) and (4.2) already present the essential scaling behavior of
SPDC. For a fixed and sufficiently small detection bandwidth and opening angle, Eq. (4.1)
shows that the number of detected photon pairs (∝ |Φ|2) scales as L2 and thereby increases
rapidly with crystal thickness. However, as the angular width of the SPDC rings is propor-
tional to 1/L, the useful crossing areas scale as 1/L2 and the number of photon pairs within
these areas (and within a fixed spectral bandwidth) is independent of the crystal thickness.
Furthermore, as the SPDC bandwidth is also proportional to 1/L the spectrally-integrated
power is expected to scale as 1/L, being considerably larger for a thin crystal than for a
thicker one.

The scaling behavior described above should work not only for free-space detection be-
hind apertures but also for fiber-coupled detectors, under the condition that three relevant
transverse sizes are matched [23]. Specifically, optimum collection efficiency is obtained
when the size of the backward propagated fiber mode is matched to the size of the pump spot.
Both these sizes should be roughly equal to the transverse beam walk-off Lρ to create the
best overlap between the SPDC emission and the fiber mode. Under these matching condi-
tions the spectrally-integrated photon yield for a fiber-coupled system should also scale as
1/L [54]. In this chapter, we will present experimental data for free-space detection only.

For pulsed instead of cw pumping the described scaling behavior remains basically the
same. Although the phase mismatch in Eq. (4.2) will acquire an extra term of the form
L(∂∆k/∂ωp)δωp, the scaling of the SPDC angular and spectral width remains unchanged,
making the number of useful entangled pairs again proportional to 1/L. For more sophis-
ticated experiments that require two simultaneously entangled photon pairs there is a catch:
as the two pairs should be temporally coherent the increased spectral bandwidth ∆ωSPDC can
only be capitalized on if it remains below than the inverse pulse duration. At fixed detection
bandwidth and with the proper angular scaling the SPDC yield and the production rate of
double pairs will in fact be independent of the crystal thickness.

4.2 Measurements and results
The experimental setup is shown in Figure 4.1. Light from a cw krypton ion laser operating
at 407 nm is mildly focused (spot size ≈ 0.3 mm) onto a 0.25-mm-thick type-II BBO crystal
(cutting angle 40.9◦) which is slightly tilted to generate “orthogonal crossings” (separated by
2θoff). A half-wave plate and two compensating crystals (of 0.13-0.14 mm thickness) com-
pensate for the longitudinal and transverse walk-off of the SPDC light. In the two intersection
lines of the emission cones, collimating lenses of f = 20 cm are placed at 20 cm from the
generating crystal, directly followed by apertures (diameter up to 5 mm) acting as spatial
selectors. This compact setup facilitates the collection of photons in a large space angle.
The light emerging from the apertures is focused by f = 2.5 cm lenses onto free-space single
photon counters (Perkin Elmer SPCM-AQR-14). Polarizers and interference and/or red filters
are used for polarization and spectral bandwidth selection, respectively. Finally, an electronic
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circuit receives the output signals of the photon counters and records the coincidence counts
within a time window of 1.76 ns.

Figure 4.1: Schematic view of the experimental setup. A cw krypton ion laser oper-
ating at 407 nm pumps a 0.25-mm-thick BBO crystal. The generated photon pairs are
collected with f = 20 cm collimating lenses (L1), spatially selected by apertures and
focused with f = 2.5 cm lenses (L2) onto single photon counters (SPC). Walk-off effects
are compensated for by a half-wave plate (HWP) and two compensating crystals (cc)
of 0.13-0.14 mm thickness. Polarizers (P) and interference/red filters (IF/RF) are used
for polarization and bandwidth selection, respectively.

Figure 4.2 depicts our key message in the form of two SPDC emission patterns for BBO
crystals with thicknesses of ≈1 mm (measured 0.94 mm) and 0.25 mm. These pictures were
measured with an intensified CCD (Princeton Instruments PI-MAX 512HQ) positioned at
6 cm from the BBO crystal behind an interference filter (5 nm spectral width) and two blue-
coated mirrors that block the pump beam; no imaging lens was used. The left picture shows
that the SPDC rings emitted by the 1-mm-thick BBO are relatively narrow, having a radial
width of ∆θSPDC = 10.5±1.3 mrad (FWHM). However, this value is somewhat larger than the
true width of the rings since broadening by the≈ 0.3-mm-wide pump spot is still considerable
at 6 cm from the BBO. We measured the true radial width of ∆θSPDC = 8.7±0.7 mrad for
an increased BBO-CCD distance of both 12 and 24 cm. The right picture shows that the
0.25-mm-thick BBO emits much wider rings, with a measured radial width of ∆θSPDC =
30±2 mrad (FWHM) (also for 12 cm BBO-CCD distance). Note that the area within the
small black circles drawn in this picture is the part of the crossings selected by 5 mm diameter
apertures (25 mrad), being about (25/30)2 ≈ 70% of the total crossing area. The measured
radial widths for both crystals are in good agreement with the expected values and scale well
with the crystal thickness. For comparison, we note that the angular distance between the
pump and the center of the orthogonal ring crossings is measured to be 57±1 mrad for both
crystals, which indeed agrees very well with the theoretical value of θoff (i.e., 57 mrad).

Figure 4.3 shows the spectral distribution of the SPDC light, measured for H- and V -
polarization in one of the beams (5 mm apertures). After subtraction of the dark counts
(180 s−1) and correction for the spectral efficiency of both grating spectrometer and photon
counter [55], we obtained full widths at half maxima of 51 and 44 nm for the H- and V -
polarized spectrum, respectively. These numbers are in agreement with the expected value of
46 nm, and also the observation that the H-polarized (o) spectrum is somewhat wider than the
V - polarized (e) spectrum is as expected [53]. These observed spectral widths scale roughly
with those reported in [23], as they are indeed about a factor of 8 larger than the numbers of
4.60 nm and 4.06 nm, which are measured for the two unpolarized SPDC beams emitted by
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Figure 4.2: SPDC emission patterns observed with an intensified CCD at 6 cm from
(left) a 1-mm-thick BBO crystal and (right) a 0.25-mm-thick one (no imaging lens is
used). The black circles on the right picture surround the SPDC crossing area selected
by 5 mm diameter apertures. Both pictures cover a space angle of 220×220 mrad.

Figure 4.3: Measured spectral distribution of the down-conversion light for H-(circles)
and V -polarization (dots). The dark count level of 180 s−1 is indicated by the dashed
line. After correction for the efficiency of both spectrometer and photon counter, we de-
termined the central peak wavelength to be 815 nm and the peak widths (FWHM) of the
H- and V -polarized light to be 51 and 44 nm, respectively. The resolution of the spec-
trometer is 2 nm. The solid curve (righthand scale) depicts the spectral transmission of
a 50 nm broad interference filter that we used.

a 2-mm-thick crystal in [23]. The rather prominent bump between 700 and 780 nm, which
is cut off on the low-wavelength side by a red filter (Schott Glass RG715), is probably the
first side maximum of the sinc2-function, which is enhanced by the increased spectrometer
throughput and detector sensitivity at lower wavelengths [55].

When using detection with free-space (bucket) detectors, there is always a trade-off be-
tween photon yield and entanglement quality. The finite size of the detection apertures as
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Table 4.1: Measured single count rates (sc), coincidence count rates (cc) and biphoton
fringe visibilities V45◦ for two aperture diameters and three spectral filters: red filter
RF, 50 nm and 10 nm interference filters.

1.4 mm aperture diameter

filter sc (103 s−1) cc (103 s−1) V45◦ (%)

RF 67.0 9.7 98.4
50 nm 44.9 7.8 99.0
10 nm 13.5 2.0 99.5

5 mm aperture diameter

filter sc (103 s−1) cc (103 s−1) V45◦ (%)

RF 847 198 91.1
50 nm 560 145 96.0
10 nm 145 29.6 98.0

compared to the size of the crossing regions can lead to entanglement degradation by spatial
labeling, whereas the finite detection bandwidth in relation to the emission bandwidth can
lead to degradation by spectral labeling. The choice of our apertures (maximal diameter 5
mm) is motivated by this trade-off. In the absence of compensating crystals the combination
of small apertures (diameter 1.4 mm) and narrow filters (spectral width 5 nm) still produced
high-quality polarization entanglement: the biphoton fringe visibility [8] observed with the
fixed polarizer oriented at 45◦ was V45◦ = 96%. However, a change to either a larger aper-
ture (5 mm) or a wider filter (50 nm) seriously reduced the entanglement quality, yielding
V45◦ = 75% and V45◦ = 41%, respectively, while the combination (5 mm & 50 nm) gave
V45◦ = 32%. These numbers clearly show that compensating crystals are also needed if one
combines a thin generating crystal with wide apertures or a large detection bandwidth. The
so-called “thin-crystal limit” is a relative concept; it only applies when the crystal is thin
enough in relation to a given detection scheme.

In Table 4.1 we present the count rates and biphoton fringe visibilities V45◦ , when using
compensating crystals, measured for two aperture sizes and three different filter bandwidths
at a pump intensity of 187 mW. The table quantifies the trade-off between photon yield and
entanglement quality; higher count rates combine with lower entanglement quality. For all
2×3 presented cases the biphoton fringe visibility was measured to be > 99% for the H and
V projection (not in Table), but is generally less for the more critical 45◦ projection. Al-
though we observe a steady decrease with increasing angular detection width and/or spectral
bandwidth, V45◦ is at least 96% except for one case. Based on these numbers, we consider the
system with 5 mm apertures (25 mrad angular width) and 50 nm filters the most promising.
Under these conditions we have measured single and coincidence rates of 560×103 s−1 and
145×103 s−1, respectively.
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To demonstrate the high brightness of our thin crystal source, we compare above rates
with those obtained by us with a 1-mm-thick down-conversion crystal using 10 nm interfer-
ence filters and 4 mm diameter apertures placed at 80 cm from the crystal (5 mrad space
angle). For this setting, we measured singles and coincidence rates of 125×103 s−1 and
33×103 s−1, respectively, at V45◦ = 97.7%. As expected from the scaling laws, the 0.25-mm-
thick crystal yields roughly about a factor 4 more photons than a 1-mm-thick one.

To put the yield of our thin SPDC source (with 5 mm apertures and 50 nm filters) in
a broader perspective, we compare it with other SPDC sources reported in the literature.
The first “high-intensity” source [8] used a 3-mm-thick BBO crystal and detection behind
elliptical apertures (H×V sizes of 3×10 mm at 1.5 m from the crystal). This source produced
a coincidence rate of 10 s−1mW−1 (1500 s−1 at 150 mW pump power), which is almost 80×
lower than our obtained coincidence rate of 775 s−1mW−1. Even an “ultrabright” source [22],
based on type-I SPDC and two stacked BBO crystals of 0.59 mm thickness each, which is
claimed to be 10× brighter than the one reported in [8], is still about 8× weaker than our
source.

Instead of detecting entangled photons behind apertures, the use of fiber-coupled de-
tectors has been introduced to several experimental schemes [23, 56, 57]. The first “high-
efficiency” source based on collection with fiber-coupled detectors used a 2 mm BBO crystal
to achieve a coincidence rate of as much as 900 s−1mW−1 in the low-pump-power regime
and without polarizers. The correct comparison is, however, with the system using polarizers
for which Fig. 5 in Ref. [23] gives a coincidence rate of 225 s−1mW−1 (obtained by division
of the 90×103 s−1 fringe maximum by the 400 mW pump power). Another source [56] used
a relatively thin crystal (0.5 mm BBO) to produce entangled photons at 200 s−1mW−1, while
a compact source (2 mm BBO) [57] achieved a similar rate of 220 s−1mW−1.

To make a fair comparison between our free-space source and these fiber-coupled sources,
we have to take into account the fact that fiber-coupled detection enables capturing of a larger
area of the ring crossings. Based on our selected space angle and the actual width of the
crossings (see Fig. 4.2), we expect a potential increase of our coincidence rate by about a
factor 1.5, when switching to fiber-coupled detection. In practice, however, the profit will be
only marginal due to the limited in-coupling efficiency in the fibers and the integration over
Gaussian mode profiles instead of the sharp-edge profiles of the apertures.

4.3 Concluding discussion
In conclusion, we have discussed the scaling behavior of SPDC emission as a function of
the thickness L of the generating crystal. We have found that the photon yield scales as
1/L if the detection angle and bandwidth are matched to the SPDC emission. A quantitative
comparison of our source, with a measured coincidence rate of 775 s−1mW−1 at V45◦ = 96%,
with existing sources reported in the literature (aperture and fiber-coupled), demonstrates that
the use of thinner down-conversion crystals indeed yields considerably higher photon rates
than thicker crystals.

How far can we go with the proposed scaling? If the yield continues to scale like 1/L an
infinitely thin crystal would give an infinitely strong signal. The ultimate limitation is that the
angular widths of the SPDC rings should be smaller than their radii to allow a discussion in
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terms of SPDC rings and crossings. Before this limit is reached, there is a practical point of
concern: the compensating optics and collimation lenses have to cover the full angular width
of the rings, and all this has to be realized within a very limited opening angle (of 2×57 mrad).
This implies an ultra-compact setup, which is even more complicated by the fact that also the
beam dump for the pump laser (not shown in Fig. 4.1) has to be accommodated. In this
respect, the studied BBO thickness of 0.25 mm might well be close to the optimum.
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CHAPTER 5

Time-resolved polarization decoherence in metal hole arrays
with correlated photons

We study the combined polarization decoherence experienced by entangled photons due
to time- and space-related dephasing processes in a metal hole array. These processes
are implemented by sending the entangled photons through a birefringent delay and by
focusing them on the array. In particular, we demonstrate that compensating the tempo-
ral separation of the two polarizations after passage through the array can only partly
recover the original coherence. This shows, surprisingly, a coupling between the tempo-
ral and spatial decoherence channels; we ascribe this coupling to transverse propagation
of surface plasmons.

P.S.K. Lee, M.P. van Exter, and J.P. Woerdman, J. Opt. Soc. Am. B 23, 134-138 (2006).
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5.1 Introduction
The use of entangled photon pairs has proved to be a powerful tool for several forms of infor-
mation processing like quantum cryptography [15, 58], but also for precise optical measure-
ments in the field of quantum metrology [59, 60]. The benefits of these techniques over their
classical counterparts is based on the exploitation of the robust correlations, which are often
well-known, between the photons [59]. In this chapter, we report on the use of entangled
photons for measurements on surface plasmons in metal hole arrays [61].

Metal hole arrays (metal films perforated with a periodic array of subwavelength holes)
can exhibit extraordinary transmission of light with a certain resonant wavelength [61]. This
transmission is surface-plasmon mediated: freely propagating light incident on one side of
the metal film resonantly excites surface plasmons (SP’s), which subsequently couple through
the hole pattern to SP’s at the other side and finally reradiate into photons [62–64]. Since its
original demonstration [61], this phenomenon has been studied in different contexts [65–67],
including the survival of quantum entanglement in the mentioned conversion process [67].

The polarization properties of the extraordinary light transmission in metal hole arrays
have been a special topic of study in several papers [68–70]. Polarization- and angle-resolved
measurements in [68] have shown that propagating SP’s can act as polarization selectors,
i.e., only transmission of the polarization component aligned with this direction occurs. This
strong relation between SP propagation and the polarization properties of the extraordinary
transmission is also demonstrated in a study of the polarization decoherence as a function of
the numerical aperture of the light beam that is focused on the array [69]. This polarization
decoherence, which also depends on the incident state of polarization, is ascribed to the
propagation of SP’s in combination with the non-plane wave character of the incident beam.
The study of surface plasmon propagation via polarization properties requires an analysis [71]
that is most clearly described in terms of 4 Stokes parameters and a 4×4 Mueller matrix,
representing a black-box description of the complicated physical system.

In this chapter, we will go beyond the space-resolved polarization decoherence stud-
ied in [69]. More specifically, we additionally impose a time delay between the H- and
V -polarization components [72] before focusing on the hole array. As we measure the po-
larization correlations in the 45◦-basis, this temporal distinction leads to a lower polarization
fringe visibility, and thus to an additional polarization decoherence channel in time (on top
of the decoherence in space induced by SP propagation and focused illumination). Our key
question in this respect is whether both decoherence channels are independent from each
other, i.e., whether in the presence of focused illumination the decoherence due to the time
delay can be fully compensated for by retiming the H- and V -component behind the hole
array.

Within the context of the Mueller-matrix black-box method the answer should be posi-
tive, i.e., operations in time and space should be independent from each other and can thus be
interchanged at will. However, optical decoherence is different from most other forms of de-
coherence in the sense that the polarization information is not lost to some abstract (infinitely
large) environment, but is instead spread over the time and space coordinates within the op-
tical beam; the unpolarized component appears only after temporal and/or spatial averaging
over the full beam. As the “labeling” information remains available within the propagating
beam, it can be extracted and used in a later stage. As a result, consecutive decoherence chan-
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nels are not necessarily independent and the corresponding (4×4) matrices generally can not
be multiplied in a simple way. We will show experimentally that the decoherence channels
are indeed coupled in our black box as they are mixed by propagating surface plasmons.

As a final remark, our discussion of the observed decoherence in metal hole arrays is
qualitative in nature. The reason for this is that a sufficiently complete and simple theory of
light transmission through hole arrays does not exist yet. Several (independent) numerical
models that would allow a more quantitative analysis are around [62, 64, 70], but using these
would lead to model-dependent results. Instead we have chosen to focus on the generic
features.

5.2 Experimental methods
Figure 5.1 shows the experimental setup that provides for the generation of polarization-
entangled photon pairs via the process of spontaneaous parametric down-conversion (SPDC)
[8]. The figure caption describes in detail how our SPDC source generates a polarization-
entangled signal and idler beam, and how the time and space information in one of the beams
can be modified by a polarization-dependent (=birefringent) delay and focusing onto a metal
hole array. In order to have sufficient time resolution in the experiment, it is essential that
the spectral bandwidth of the entangled photons is larger than the spectral width of the trans-
mission resonance of the hole array. We have chosen a relatively thin crystal (0.25 mm)
in order to generate entangled photons over a large spectral bandwidth; with the properly
scaled geometry such a thin crystal can generate even more entangled photons than a thicker
crystal [24].

We use a metal hole array in which the holes are arranged in a hexagonal lattice. The
hole diameter is 200 nm and the lattice constant is 886 nm. The holes have been etched with
a focused ion beam into a 200-nm-thick film of gold, that is bonded to a glass substrate with
a 2-nm-thick titanium layer. The hole array is positioned in the focus between two lenses
that form a 1:1 telescope. In the experiment we only use different sets of these lenses behind
the apertures to vary the numerical aperture of the light incident on the array. Thereby, the
aperture diameter is fixed at 5 mm, giving a detection angle of 25 mrad which is smaller than
the SPDC ring crossings (30 mrad) [24].

A typical transmission spectrum of the hole array at plane-wave illumination is shown
in Fig. 5.2. Essential is the very sharp resonance peak of the hole array: its FWHM of only
18 nm is much smaller than the 50 nm spectral width of the interference filter (also shown),
which in turn is somewhat smaller than the FWHM of the SPDC light [24]. Please note
that in the literature FWHM values of at least 50 nm are reported for (1,1) SP resonances in
square arrays [61, 67]. We think that the resonance in our sample is so sharp because we use
a hexagonal instead of a square array: the reciprocal lattice of the hexagonal array is rotated
with respect to its direct lattice which leads to less SP scattering at the holes. Furthermore,
our sharp resonance is carried by the SP mode at the air-metal interface, which experiences
less damping than that at the glass-metal interface.

To create a time delay τ between two orthogonal polarization components of the SPDC
light, a set of quartz waveplates and a Soleil-Babinet compensator are placed in the beam. The
waveplates are oriented in the directions of the BBO axes and have thicknesses that differ by
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Figure 5.1: Schematic view of the experimental setup. Light from a cw krypton ion
laser operating at 407 nm is mildly focused (spot size ≈ 0.3 mm) on a 0.25-mm-thick
BBO crystal. Walk-off effects are compensated for by a half-wave plate (HWP) and
two compensating BBO crystals (cc) of 0.13-0.14 mm thickness. The entangled pho-
tons pass f = 20 cm collimating lenses L1 and 5-mm-diameter apertures before quartz
waveplates (WP) and a Soleil-Babinet compensator (SB) create a time delay (TD) be-
tween orthogonal polarization components in the upper beam. In this beam, the light
propagates through a metal hole array positioned in the focus of the telescope. The in-
set shows a SEM picture of our hexagonal hole array (scale bar corresponds to 2 µm).
A reverse time delay (RTD), similar to TD, is applied in some of the experiments. Both
polarizers P are fixed at 45◦ with respect to the BBO axes, and via interference filters
(50 nm FWHM) the two beams are focused onto single photon counters SPC (Perkin
Elmer SPCM-AQR-14) by f = 2.5 cm lenses (L2). Finally, the output signals of these
counters are sent to an electronic circuit which records coincidence counts within a time
window of 1.76 ns.

factors of 2 and range from 0.31 to 4.94 mm (≈ 24× 0.31 mm), corresponding to a time
delay τ range from about 9 to 145 fs. Using polarization interferometry, we have measured
the exact thicknesses of the waveplates; these agree very well with the specified values (error
in τ < 0.1 fs).

The polarization decoherence induced by a temporal separation of the H- and V -compo-
nent can be characterized by the fringe visibility of the coincidence rate scanned as a func-
tion of the time delay τ . In a typical measurement, we determine the envelope of this
fringe pattern which is defined by minimal and maximal coincidence counts. These min-
ima and maxima are measured when we fine-tune τ via the Soleil-Babinet compensator
(2λ range) such that the optical path difference between the H- and V -component is pre-
cisely Nλ and (N + 1/2)λ , respectively, since our compensated SPDC source is set to the
singlet two-photon state (|HV 〉− |V H〉)/

√
2. Here, λ is the degenerate wavelength of the

SPDC light, being 2×407 = 814 nm. We measure with the fast axes of the waveplates
both in horizontal (negative τ) and vertical (positive τ) direction. From the measured co-
incidence counts Rm at path difference mλ we calculate the polarization fringe visibilities
V via (RN+1/2−RN)/(RN+1/2 + RN). We note that negative time-resolved visibilities can be
obtained (see Fig. 5.3), as sidelobes of a sinc-profile, due to the rectangular shape of the
spectrum of the interference filter (see Fig. 5.2). Whenever possible, we scanned the Soleil-
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Figure 5.2: Transmission spectra of the hexagonal array (solid, left axis) and 50 nm
FWHM interference filter (dashed, right axis).

Babinet compensator over more than λ/2 to find the exact minima and maxima. The error in
the measured visibilities V is typically 0.01 and is caused by quantum fluctuations in RN and
RN+1/2.

5.3 Experimental results
Figure 5.3 depicts the time-resolved visibility measurements, performed with the time delay
in front of the telescope (see Fig. 5.1). We first concentrate on the solid curve in Fig. 5.3
which shows the measurement without hole array. This curve has a peak visibility of V =
0.96±0.01, which quantifies the entanglement quality produced with our SPDC source [24].
The high visibility shows that complications due to entanglement in transverse momentum
are avoided as the apertures used in the experiments are smaller than the size of the SPDC
ring crossings. The visibility decays sharply with the time delay τ; the small width of 65±2 fs
(peak-to-zero) is associated with the large spectral width of the SPDC light generated by our
0.25-mm-thick crystal [24]. This decay is still limited by the 50 nm FWHM interference
filters since the same measurement, performed without filters, yields a more narrow curve
with a somewhat lower peak visibility and no sidelobes. The width of this triangular-shaped
curve is only 50±2 fs which agrees well with the theoretically expected dispersion of 200 fs
per mm of BBO at a wavelength of 814 nm. In comparison, a (peak-to-zero) width of about
150 fs has been reported for a source using a 1-mm-thick BBO crystal [73]. The sidelobes in
the measured curve result from the sharp edges in the ‘top hat’ transmission spectrum of the
interference filter (see Fig. 5.2).

Next we positioned the hole array in the centre of the telescope (see Fig. 5.1). The three
marked curves in Fig. 5.3 show time-resolved visibility measurements with hole array for
three different numerical apertures (NA) of the light incident on the hole array. First, we
see that the peak visibility V drops from V = 0.93± 0.01 (NA=0.017), via V = 0.83± 0.01

37



5. Time-resolved polarization decoherence in metal hole arrays with correlated photons

Figure 5.3: Time-resolved polarization decoherence, measured as the polarization
fringe visibility V versus time delay τ , for a hole array positioned in the focus of a
telescope of variable numerical aperture NA. The solid curve without markers shows
the measurement without hole array as a reference. The horizontal line depicts the zero
level.

(NA=0.053) to V = 0.73± 0.01 (NA=0.15). We ascribe this reduction to polarization de-
coherence in the spatial domain due to the polarization-dependent propagation of surface
plasmons out of the limited region excited with a focused optical beam [69, 74]. Equiva-
lently, this reduction can be ascribed to the combined polarization- and angle-dependence of
the optical transmission [68]. The fact that we observe lower visibilities with increasing time
delay τ shows the additional polarization decoherence in the time domain. The decrease is
sharpest for the case of strongest focusing (NA=0.15), where we obtain a peak-to-zero width
of 76±2 fs. For the cases NA=0.053 and NA=0.017, the low-visibility values decay much
more gradual and the approximate zeros are less accurate. Therefore, we instead determine
the peak-to-2% width as 88±2 fs and 160±8 fs, respectively, for these cases.

In Fig. 5.4 the averaged absolute values of V (−τ) and V (+τ) in Fig. 5.3 are plotted on a
logarithmic vertical scale as a function of |τ |. The decay of the NA=0.017 curve is described
very well by a simple exponential aexp{−τ/τc} with a decay time of τc=38±1 fs. For this
case of weak focusing the measured decay time is just the field decay time of the surface
plasmons. At a propagation speed of ≈0.95c, the intensity decay time of 19 fs corresponds
to a propagation length of about 5.4 µm, being much smaller than the size of the spot of
excitation.

Theoretically, we expect a Fourier relation between the time-resolved visibility of Fig. 5.4
and the transmission spectrum of the hole array. The described exponential decay in time
corresponds to a Lorentzian-shaped transmission spectrum with a FWHM of 1/πτc. The
calculated value of 18.5 nm is indeed close to the FWHM of the 18 nm obtained from the
transmission spectrum in Fig. 5.2. Because of the asymmetric Fano profile of the resonance
(see Fig. 5.2), a more realistic model is obtained by inclusion of a δ (t)-response in time
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Figure 5.4: The averaged absolute values of V (−τ) and V (+τ) in Fig. 3, plotted on
a vertical logarithmic scale as a function of |τ|. The thicker curve without markers
represents the measurement without hole array. The straight solid line is a fit of the
exponentially decaying part of the NA=0.017 curve, from which a decay time τc=38±1
fs is obtained.

(uniform background in frequency) which results in a slightly (≈10-20%) wider spectrum
for the same decay rate.

The faster decay of the time-resolved visibility at larger numerical apertures, as shown in
Fig. 5.3 and 5.4, is a result of transit time effects: for large NA surface plasmons move out
of the excitation area more rapidly. Alternatively, we can interpret it in terms of a Fourier
relation: the transmission spectrum becomes broader under strong focusing conditions due to
angle-dependent spectral shifts [68].

As our final and most crucial experiment, we studied the recovery of the polarization
coherence by compensation of the imposed time delay by an additional delay behind the array.
More specifically, we have measured the time-resolved visibility with a fixed time delay of
τfix =145 fs in front of telescope (NA=0.053) and array (this τfix is large enough to completely
remove the polarization entanglement) and a variable “reverse”time delay −τfix + τ behind
the hole array. Fig. 5.5 shows the measured visibility as a function of τ (solid dots) as well as
the measurement without reverse time delay (open circles for τfix=0 copied from Fig. 5.3). We
note that both curves in Fig. 5.5 have practically the same functional shape, as the focusing
conditions are equal. For the peak visibility, however, we obtain a value of V = 0.75±0.01
for the reverse time delay measurement, whereas a value of V = 0.83± 0.01 was found in
the original measurement. In other words, the polarization decoherence induced by τfix (to
V ≈0) cannot be totally compensated for by a reverse time delay −τfix. The permanent loss
of polarization coherence shows that both decoherence channels are not independent, but
coupled in our black box. We note that, in absence of the hole array, a peak visibility of
0.96 was measured (being a measure of the entanglement quality of our SPDC source [24]),
thereby excluding the combination of delay/reverse delay in itself as a potential source of
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Figure 5.5: Time-resolved polarization decoherence at NA=0.053 with variable reverse
time delay −τfix + τ behind the telescope and fixed time delay τfix=145 fs in front of
telescope (solid dots). The measured polarization fringe visibilities V are plotted as
a function of τ . The NA=0.053 curve in Fig. 3 is also plotted for comparison (open
circles). The horizontal line depicts the zero level. The vertical error bars are smaller
than the size of the data symbols.

coherence loss.
Theoretically, the peak visibility for the reverse time delay measurement (for large τfix)

can be interpreted as the average of the visibilities measured without any time delay in the
45◦- and the σ+-basis. This is indeed the case, as we measured V45◦ = 0.83±0.01 and Vσ+ =
0.68±0.01 (see also [69]) which average to V = 0.75±0.01. The reason for the mentioned
averaging is most easily understood in the frequency domain: within the bandwidth of our
SPDC light the polarization incident on the telescope is different for every frequency ω (due
to a varying phase delay ωτfix), i.e., it changes from +45◦, via σ+, −45◦ and σ−, to +45◦

again.
To confirm that the propagation of surface plasmons plays a key role in the coupling

between the decoherence channels, we repeated the delay/reverse delay measurement for
τ=0 at low NA=0.017. We now measured a visibility of 0.90, which is much closer to its
original peak value of 0.93 (see Fig. 5.3) than for the NA=0.053 data. This stronger recovery
of polarization coherence is ascribed to the slower propagation of the surface plasmons out
of the larger excitation spot (see Fig. 5.4).

Finally, we note that our metal hole array is not as polarization-isotropic as we would like,
as production errors lead to some birefringence and dichroism of the array [69]. To study the
potential effects of these anisotropies on the (recovery of) polarization coherence, we fix the
input polarization of the upper beam in Fig. 5.1, by orienting the polarizer of the lower beam
horizontally, and used extra polarization optics to measure the Mueller matrix of the array as
in [69]. The measured Mueller matrix shows a comparable structure as in [69], i.e., dominant
(at least 0.90) diagonal elements and finite but small (≤ 0.10) off-diagonal elements, which
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quantify the slight array imperfections. By chosing convenient experimental conditions in
the decoherence experiments of Figs. 5.3- 5.5, we could remove most of the effects created
by the off-diagonal elements. If the fringe visibilities in Figs. 5.3- 5.5 would for instance be
measured by just rotating the polarizer behind the array we would face variations up to≈ 20%
in the single count rate. By keeping the polarization fixed and instead varying the birefringent
delay we did not have this problem. Furthermore, as the off-diagonal elements hardly depend
on the used NA [69], the drop in the measured peak visibilities V ≈ M22(1−M20) + M02
in Fig. 5.3 must indeed correspond to a decrease of the diagonal element M22, and thus to
polarization decoherence and not to a mere change in the state of polarization. The above
arguments show that the slight polarization-anisotropic nature of our hole array hardly affects
the measured visibilities and polarization decoherence.

5.4 Concluding discussions
In conclusion, we have performed time-resolved measurements of the polarization decoher-
ence in a metal hole array under different focusing conditions. Apart from the decoherence
induced by focused illumination of the hole array, we have shown that a temporal separation
of the incident orthogonal polarization components creates an additional decoherence that
cannot be totally compensated for by retiming of the polarization components after propaga-
tion through the array. This result demonstrates that the time- and space-related decoherence
channels (operating on frequencies and angles, respectively) are coupled via propagating sur-
face plasmons in a metal hole array.

An important result is that the Mueller-matrix black-box method, although convenient,
should be treated with care in optical decoherence; as we have observed, it can even produce
incorrect results in the analysis of a series of consecutive decoherence processes. For a com-
plete description of the polarization evolution, beyond the simple truncated form provided by
the Mueller algebra, two options are available. One option is to retain the full temporal and
spatial information of the polarization. The observed coupling between the time- and space-
related decoherence channels can then be mathematically explained by the non-commuting
behavior of the angle-dependent transmission matrix t(θ,λ ) of the hole array [θ=(θx,θy)]
and the time-dependent Jones matrix t(τ), associated with the birefringent time delay. As
t(θ,λ ) is a non-diagonal matrix whereas t(τ) is diagonal in the (H,V )-basis (axes orientation
of BBO and waveplates), it is the matrix character and not the λ -dependence of t(θ,λ ) that
frustrates the commutation. Another option is to divide the spatial/angular information over
N discrete transverse modes. However, in this multimode description the classical evolution
of our black box already requires a 2N× 2N matrix [75] for monochromatic incident light
only. If we also include the frequency, i.e., temporal information, an even larger matrix is
needed which may lead to a less transparent description.
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CHAPTER 6

How focused pumping affects type-II spontaneous
parametric down-conversion

We demonstrate that the transition from plane-wave to focused pumping in type-II down-
conversion is analogous to the transition from cw to pulsed pumping. We show experi-
mentally that focused pumping leads to asymmetric broadening of both the ordinary and
extraordinary light distribution. It hardly affects the entanglement quality if proper spa-
tial filtering is applied.

P.S.K. Lee, M.P. van Exter, and J.P. Woerdman, Phys. Rev. A 72, 033803 (2005).
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6.1 Introduction
Spontaneous parametric down-conversion (SPDC) has become the common method to gen-
erate entangled photon pairs for experimental studies on fundamental features of quantum
mechanics [6–8]. Though these photon pairs can be simultaneously entangled in energy, mo-
mentum and polarization (for type-II SPDC), the use of polarization entanglement is most
popular due to its simplicity. The general theoretical aspects of two-photon entanglement in
type-II SPDC are well known and thoroughly studied in [20, 32]. More specifically, also the
effect of the spectral properties of the pump on the down-converted light has been the topic
of investigation in several papers, including the effect of the spectral pump width on the spa-
tial coherence of the down-converted beams [76] and the spectral consequences of broadband
pulsed [77, 78] pumping in type-II SPDC.

The role of the spatial properties of the pump in type-II SPDC, and particularly that of
focused pumping [30, 31], is a less explored regime, though. Proper focusing of the pump
laser is certainly necessary when the entangled photon pairs are detected with fiber-coupled
photon counters [23, 56]. In order to optimize the collection of entangled photon pairs, both
the size of the backward-propagated fiber mode and the transverse beam walk-off in the
crystal have to match the size of the pump spot [23]. A potentially beneficial effect of focused
pumping may also arise when using “bucket” detectors behind apertures for pair detection. A
simple argument that suggests such effect is that the large wavevector spread associated with
focused pumping will generally broaden the two rings that comprise the usual SPDC pattern.
The increased area of the ring crossings might thus allow us to work with larger apertures and
enhance the yield of polarization-entangled photon pairs. To investigate the feasibility of this
scheme and check for any side effects in both the bucket and fiber-coupled detection scheme,
a better understanding of the role of focused pumping in SPDC is needed.

In this chapter, we study the effect of focused pumping on the single-photon image gen-
erated via type-II SPDC, contrary to papers that specifically treat the effect on coincidence
imaging [30, 31]. In particular, we theoretically and experimentally demonstrate that the
transition from plane-wave to focused pumping leads to the same asymmetric broadening
of both down-converted rings. Our theoretical description follows the approach that Grice
and Walmsley [78] use to analyze the difference between the ordinary and extra-ordinary
spectrum in the transition from cw pumping to broadband (pulsed) pumping, which could be
loosely called “the effects of focusing in time” (instead of space). We also study the con-
sequences of focused pumping for the measured photon yield and entanglement quality of
the polarization-entangled photon pairs. We present the experimental data that support these
consequences for bucket detection only and include the case of fiber-coupled detection in an
outlook discussion.

6.2 Theory
In this section we present an analysis of the spatial properties of photons generated via type-II
SPDC under focused pumping. Grice and Walmsley [78] have analyzed the spectral prop-
erties of the generated ordinary (o) and extra-ordinary (e) photons at fixed transverse mo-
mentum qo = qe = 0 and plane-wave pumping by expressing the spectral SPDC profile as
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a frequency integral of the pump envelope function and phase matching function. We per-
form a similar integration in space to analyze the complementary problem, i.e., calculating
the SPDC emission profile for cw pumping at fixed frequency (ωo ≈ ωe ≈ ωp/2 ≡ Ω). The
angular emission profile for this case is then represented by the differential single-photon
count rate (per angular and frequency bandwidth) which, for the o-polarized emission, can
be expressed as

dRo

dθodωo
∝

∫
dθe I(θp)sinc2[φ(θe,θo)] , (6.1)

where I(θp) =
∫

dωp|Ep(θp;ωp)|2 is the pump envelope function, expressed in the pump
angle θp ≈ (c/ωp)qp. Conservation of each component of the pump transverse momentum
qp requires qp = qo + qe or, equivalently, 2θp = θo +θe. The phase mismatch φ = ∆kzL/2
built up during propagation over half the crystal length L is incorporated in the function
sinc(x)≡ sin(x)/x. The emission profile for the e-polarized photons is obtained by swapping
the o- and e-indices in Eq. (6.1).

The solution of the angular integral Eq.(6.1) is more difficult than that of the frequency
integral encountered in Ref. [78]. The reason is not so much the increase from 1 to 2 dimen-
sions, but rather the more complicated structure of the phase-mismatch function φ , which is at
least quadratic in the transverse momenta. To keep the expressions manageable we will only
consider the case of mild focusing, where the angular profile of the pump is much smaller
than the angular radii of the generated SPDC rings. Whenever possible we will also neglect
the small differences between the various refractive indices (denoted by a single parameter
n) and take the internal walk-off angle of the e-polarized pump and SPDC light identical as
ρ = (2/n)θoff. Under these conditions, the phase mismatch becomes [35, 79]

φ(θp,θo,θe)≈
(

LΩ
2c

) (
−C +ρ (2θp,y−θe,y) +

1
2n

(
θ 2

o,x +θ 2
o,y +θ 2

e,x +θ 2
e,y
))

, (6.2)

where C is a constant that depends on material properties and cutting angle, where all ex-
ternal angles |θi|¿ 1 are measured with respect to the (z-directed) surface normal, and where
the c-axis of the uniaxial crystal lies in the yz-plane. Eq. (6.2) highlights the phase-matching
physics: the two linear terms arise from the angle dependence of the extra-ordinary refractive
index (for both pump and e-ray), while the second-order terms arise from the reduction in kz
at non-normal incidence (second-order terms in θp are neglected). The angular shape of the
o-polarized emission is found by removing θe ≡ (θe,x,θe,y) from Eq. (6.2) which gives

φ(θp,θo) =

(
LΩ
2nc

) (∣∣θo +θoffey−θp
∣∣2−

(
θoff
√

2−θp,y/
√

2
)2
)

, (6.3)

for C = θ 2
off/n and vice versa for the e-profile.

For plane-wave pumping, the emission profiles are completely determined by the phase-
matching condition φ ≈ 0. The two polarized components are emitted in angular cones (=
rings in the far-field) that are approximate mirror images of each-other and are vertically
displaced with respect to the pump over angles −θoff and θoff, for the o- and e- rays, respec-
tively [32]. From Eq. (6.3) we can see that, for the chosen constant C, these rings have radii
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θr = θoff
√

2 and cross each other at 90◦ if the pump enters at normal incidence (θp = 0). For
plane-wave pumping at non-normal incidence, angle tuning in the x-direction will produce a
simple x-shift of the SPDC pattern, whereas angle tuning in the y-direction produces a y-shift
as well as a change in the ring radii [see Eq. (6.3) and Fig. 6.1]. By combining these ef-
fects in the integration over the angular pump profile we can explain the asymmetric angular
smearing observed under focused pumping.

Figure 6.1: The two-fold effect of a change in the y-component of the pump wavevector
θp on the SPDC ring: the center of the ring is shifted by θp,y (dotted arrow) while
the radius of the ring increases by θp,y/

√
2 (thin arrow). As the vector addition (thick

arrow) of both effects depends on the angular position ϕ within the ring, the angular
broadening due to focused pumping is non-uniform over the SPDC rings.

For the visual picture of the asymmetric broadening, we introduce (shifted) radial co-
ordinates θr + δθr and ϕ (see Fig. 6.1), which are defined by θx = (θr + δθr)cosϕ and
θy = (θr +δθr)sinϕ±θoff (plus and minus sign apply to the e- and o-ring, respectively). By
implementing these radial coordinates in Eq. (6.3) we can write Eq. (6.1) as

dRo

dθodωo
∝

∫
dθp exp

(
−2|θp|2/σ 2)sinc2{π[δθr−a(ϕ) ·θp]/θ̄

}
, (6.4)

where θ̄ = πnc/(LΩθr) is the radial width of the SPDC ring for plane-wave pumping and
I(θp) = exp

(
−2|θp|2/σ 2

)
is the Gaussian pump envelope function with pump divergence

σ . This expression determines the asymmetric ring smearing under focused pumping via
the vector a(ϕ) = (cosϕ,1/

√
2− sinϕ), which quantifies the “local changes in ring radius”

induced by the spread in θp. For a more direct insight in the ring smearing, it is useful to
decompose the pump angle θp into components perpendicular (θp⊥) and parallel (θp‖) to
a(ϕ). As only the component θp‖ contributes to the phase mismatch, we can easily remove
the Gaussian integral over θp⊥ and reduce Eq. (6.4) into an one-dimensional integral. The
only relevant parameter in this integral is the dimensionless ratio x(ϕ) between the projected
pump divergence (FWHM 1.18σ · |a(ϕ)|) and the ring width under planar pumping (FWHM
0.89θ̄ ). Instead of expressing this integral in terms of error functions, we have followed a
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numerical approach to solve this one-dimensional integral. As a good approximation we find
that the relative increase in the (FWHM) ring width due to focused pumping depends on the
angular position in the ring as

y(ϕ) =
√

1+ x(ϕ)2 . (6.5)

We note that Eq. (6.5) is a very good approximation; even the largest deviations (around
x = 1) between (FWHM) widths obtained from the numerically solved integral [Eq. (6.4)] and
the approximation [Eq. (6.5)] are at most 5%. The asymmetric ring smearing is now directly
quantified by Eq. (6.5) via the angle-dependent value |a|. The top of the o-polarized ring
(ϕ = π/2) remains narrow as |a|= 1−1/

√
2≈ 0.29 is small; at the bottom (ϕ =−π/2) the

smearing is much larger as |a|= 1+1/
√

2≈ 1.71 is large; in between at ϕ =0 the smearing
is proportional to |a|=

√
1.5≈ 1.22. The simple Eq. (6.5) allows us to predict the ring width

at a certain part of the ring, once we know the pump divergence σ and the ring width at
plane-wave pumping.

If we repeat the above exercise for the e-polarized ring we find that the phase mismatch
obeys the same Eq. (6.4) in the shifted radial coordinates of this ring. The e-polarized SPDC
ring will therefore be simply a displaced version of the o-polarized ring, with identical shape
and an “asymmetric smearing” in exactly the same orientation (narrow top, wide bottom).

The effect of focused pumping on coincidence imaging [30, 31] can be calculated by
performing a similar analysis as presented above. Instead of integrating over all angles θe
in Eq. (6.1), we can now fix θe and simply calculate the integrand to obtain the coincidence
image for the o-polarization, and do the opposite for the e-polarization. In the “thin-crystal
limit”, which is commonly applied [30, 31], the phase mismatch is small at φ ≈0 and the
coincidence image is just (a scaled version of) the pump profile I(θp). Going beyond this
limit, the phase mismatch function will then also lead to asymmetric coincidence images for
both polarizations. These coincidence images are only slices of the Gaussian pump profile,
with a width and orientation that depend on the polarization and the angular position in the
SPDC ring.

6.3 Measurements and results
The experimental setup is shown in Fig. 6.2. Light from a krypton ion laser operating at 407
nm is focused onto a 1-mm-thick type-II BBO crystal (cutting angle 41.2◦) which was slightly
tilted to generate orthogonal ring crossings (separated by 2θoff). The focusing conditions of
the pump light are varied by choosing different lens configurations before the crystal. A
half-wave plate (HWP) and two 0.5-mm-thick compensating BBO crystals (cc) compensate
for the longitudinal and transverse walk-off of the SPDC light. Light emitted along the two
orthogonal crossings of the SPDC cones passes apertures (for spatial selection) and f =40
cm lenses (L1) at 80 cm from the generating crystal before being focused by f =2.5 cm lenses
(L2) onto free-space single photon counters (Perkin Elmer SPCM-AQR-14). Polarizers (P)
and interference filters (IFs, 10 nm spectral width) combined with red filters (RFs) are used
for polarization and spectral bandwidth selection, respectively. Finally, the output signals of
the photon counters are received by an electronic circuit which records coincidence counts
within a time window of 1.76 ns.
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Figure 6.2: Schematic view of the experimental setup (see text for details).

In Fig. 6.3 we show the SPDC emission patterns for three different focusing conditions
of the pump beam. These pictures were captured with an intensified CCD (Princeton Instru-
ments PI-MAX 512HQ) at 6 cm from the generating BBO crystal behind an interference filter
(5 nm spectral width), a red plate and two blue-coated mirrors that are needed to block the
pump beam; no imaging lens was used. The three focusing conditions are realized by choos-
ing different lens configurations in front of the BBO crystal. For convenience, we will label
these conditions as ‘plane wave’, ‘intermediate’ and ‘extreme’, corresponding to a pump di-
vergence σ of 0.86±0.07 mrad, 12.0±0.5 mrad and 32±1 mrad, respectively. These values
were obtained by measuring the (far-field) pump size for the three focusing conditions using a
CCD camera (Apogee AP1). For comparison, we note that the external offset angle θoff ≈57
mrad.

In the plane-wave case, our analysis of Fig. 6.3(a) yields a radial width of ∆θr = 10.9±0.5
mrad (FWHM), being constant over the entire ring. However, this value is somewhat larger
than the true width of the rings as broadening by the ≈0.4-mm-wide pump spot is still con-
siderable at 6 cm from the crystal. At a BBO-CCD distance of 12 cm we obtained the better
estimate of ∆θr = 8.8±0.5 mrad; the same value was measured at larger distances [24]. The
absence of asymmetric smearing, and thus the ‘plane-wave’ condition, is not only supported
by the measured constant ring width but also by the pump divergence of σ =0.86 mrad,
for which Eq. (6.5) predicts a maximal normalized ring width (at bottom) of only y =1.02.
Furthermore, the measured angular distance between the two crossings of 2×57±1 mrad is
equal to the theoretical value of 2θoff (with θoff =57 mrad) that is needed for orthogonal ring
crossings. The same value is used for the next two cases of focused pumping.

For intermediate focusing [see Fig. 6.3(b) and 6.3(d)] we clearly observe the theoretically-
expected asymmetric broadening of both rings: the measured radial width ∆θr (FWHM) at
the top, middle and bottom of the rings was 8.3±0.6 mrad, 17±1 mrad and 27±1 mrad,
respectively. These values are already true widths as we obtained approximately the same
values at a BBO-CCD distance of 12 cm. We explain this by the less severe ring broaden-
ing by the much smaller pump spot in this case. By using the intermediate (FWHM) pump
divergence of 1.18σ =14.2 mrad and the measured (FWHM) ring width of 8.8 mrad in the
plane-wave case, which combine to x(ϕ) = |a(ϕ)| × 14.2/8.8, Eq. (6.5) predicts (FWHM)
ring widths of 9.7±0.9 mrad, 19±2 mrad and 26±2 mrad at the three positions. Within the
error margins, the measured values agree well with the predicted (FWHM) values.

The observation of the SPDC emission pattern under extreme focusing [see Fig. 6.3(c)]
was limited by the aperture of the collection optics (dark edges) and the presence of extra
(near-infrared) fluorescence that was not visible under weaker focusing conditions. The in-
tensity of this fluorescence, which seems to originate from the BBO crystal, was measured to
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Figure 6.3: SPDC emission patterns observed with an intensified CCD at 6 cm from
a 1-mm-thick BBO, for three focusing conditions of the pump beam: (a) plane wave
(σ = 0.86±0.07 mrad), (b) intermediate (σ = 12.0±0.5) and (c) extreme (σ = 32±1
mrad) with exposure times of 1 s, 1.3 s and 0.8 s, respectively. In each of these pictures,
the upper and lower ring correspond to extraordinary (e) and ordinary (o) photons, re-
spectively. Picture (d) was taken behind a polarizer to highlight the ordinary ring in (b).
All four images cover a space angle of 220×220 mrad and contain 100 accumulated
snapshots.

be roughly 4× higher than the background intensity in the other focusing conditions, making
its averaged intensity about 3.5× higher than the SPDC intensity in the rings. The measured
(FWHM) ring widths ∆θr of 10.8±0.8 mrad, 48±9 mrad, and 80±15 mrad at the top, mid-
dle and bottom of the ring, respectively, indeed reveal an even more severe and asymmetric
broadening of the rings in comparison with the other focusing conditions. From the extreme
pump divergence of σ =32 mrad, we have calculated (FWHM) corresponding ring widths
of 14±1 mrad, 47±4 mrad, 65±6 mrad, which match the measured widths within the error
tolerances.

Next, we will compare the photon yield and entanglement quality of the polarization-
entangled photon pairs that are generated under the three different focusing conditions. In
Fig. 6.4 we show the measured single count rate, quantum efficiency (= coincidence counts /
single counts) and biphoton fringe visibility as a function of the aperture diameter. All mea-

49



6. How focused pumping affects type-II spontaneous parametric down-conversion

Figure 6.4: Single count rate (a), quantum efficiency (b) and polarization fringe visi-
bility V (c) measured as a function of aperture diameter (at 80 cm from BBO crystal)
for three focusing conditions of the pump: plane wave (dots), intermediate (triangles)
and extreme (squares).
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surements were performed in the 45◦-polarization basis. Figure 6.4(a) shows how the single
count rate behind a relatively large 14-mm-diameter aperture drops from 800×103 s−1 in
the plane-wave case (circles), to 70% of this value for intermediate focusing (triangles) and
60% under extreme focusing (squares). At smaller apertures the drop is even somewhat more
pronounced. The relatively small difference between the intermediate and extreme case is
probably due to the excess fluorescence observed in the latter case. The drop in the single
count rate for stronger focusing is ascribed to the angular broadening of the ring crossings.
The asymmetric character of this broadening creates an imbalance between the ordinary and
extra-ordinary count rate at the crossings. In consistency with the SPDC patterns shown in
Fig. 6.3, we measured about 5%, 40% and 55% more ordinary than extra-ordinary photons
for the plane-wave, intermediate and extreme case, respectively.

Figure 6.4(b) shows the quantum efficiency (= coincidence counts/single counts) as a
function of aperture size. The maximum of 0.27 observed for plane-wave pumping is clearly
much larger than the maxima observes for intermediate and extreme focusing, where we
observed maxima of 0.10 and 0.02, respectively. Focused pumping thus leads to a much
stronger reduction in the coincidence count rates than in the single count rates. Figure 6.4(b)
also shows that the aperture diameter at which 50% of the maximum quantum efficiency is
reached increases from ≈3 mm (=3.8 mrad) for the plane-wave case to 7.5 mm and 8.1 mm
(≈ 10 mrad) for the intermediate and extreme case, respectively, although the true maxima
of the latter cases might not be reached yet. These numbers demonstrate the increase of the
“transverse coherence area” of the down-converted beams, i.e., the angular range in one beam
that corresponds to a fixed angle in the other beam, as observable in coincidence imaging
[30, 31]. Focused pumping thus breaks the approximate one-to-one relation between the
transverse positions of the twin photons observed under plane-wave pumping. This justifies
the analogy to the transition from cw to broadband pumping where the exact anticorrelation
in frequency between the two beams is destroyed [78].

Figure 6.4(c) shows the biphoton fringe visibility V , as measured by fixing one polarizer
at 45◦ and rotating the other [8]. For plane-wave pumping V decreases from 98.7±0.2% at
2-mm-wide apertures to 74.7±0.5% at 14-mm-wide apertures. Virtually the same behavior
is observed for both intermediate and extreme focusing, where the measured visibility is at
most 2-3% lower than in the plane-wave case. The entanglement quality is thus not drastically
affected by focused pumping. On the other hand, although focused pumping produces wider
rings and increased crossing areas, we apparently cannot profit from these increased areas due
to a combined spatial/polarization labeling of the photon pairs. By reducing the aperture size
we effectively remove this labeling and increase the entanglement quality, but this reduces
the photon yield, the more so the stronger the focusing. For the considered geometry of
bucket detectors behind apertures, focused pumping has no clear advantages. Mild focusing
is expected to lead to a slightly increased yield in coincidence imaging [30, 31].

We will end with a discussion of the effects of focused pumping on the optical spec-
trum, thus removing the restriction of narrow-band spectral detection. For the geometry with
bucket detectors behind small apertures the width of the optical spectrum is determined by
the combination of the ring size and the “angular dispersion”, i.e., the change in ring diame-
ter with wavelength. Since the two ring sizes differ at the crossings due to asymmetric ring
broadening, and since the angular dispersion is a material property [32], focused pumping
should lead to a different o- and e-spectrum, and thus to spectrally labeled photons at the
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crossings. The same argument applies to the single-mode geometry based on fiber-coupled
detectors. The focusing used by Kurtsiefer et al. [23] must have been just mild enough to
miss the predicted effect. We predict that stronger focusing would have lead to the men-
tioned spectral difference, thus enforcing the use of spectral filters in order to obtain a high
polarization visibility.

A quick glance at Fig. 6.3 shows that the e-ring is wider than the o-ring at the crossing,
making the e-spectrum at this fixed collection angle wider than the o-spectrum. Interestingly
enough, the asymmetry in this type of spectral widening is just opposite from the spectral
asymmetry predicted by Grice and Walmsley for pulsed pumping [78], where the o-spectrum
is wider than the e-spectrum. Proper balancing of focused pumping and pulsed excitation
could thus remove the spectral asymmetry, and all spectral labeling.

6.4 Concluding discussion
We have investigated the effects of focused pumping on type-II SPDC. In particular, we have
shown that focused pumping leads to an asymmetric broadening of both the SPDC emis-
sion cones. This is similar to asymmetric spectral broadening discussed in [78] for pulsed
pumping of “focusing in time”. For pair collection with two bucket detectors behind aper-
tures, focused pumping seems to have no clear advantages; the polarization entanglement at
fixed pinhole size is virtually unaffected, but the single and especially the coincidence count
rates are reduced. For detection with fiber-coupled photon counters, where focused pump-
ing is necessary for efficient single-mode generation, severe focusing is predicted to produce
polarization-unbalanced spectral broadening which leads to a reduced entanglement quality.
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CHAPTER 7

Polarization entanglement behind single-mode fibers: spatial
selection and spectral labeling

We study the limitations to the polarization entanglement of photon pairs that are gener-
ated via type-II spontaneous parametric down-conversion (SPDC). By employing single-
mode detection behind optical fibers, we demonstrate the incompleteness of the mode-
matching concept presented in Ref. [23]. Using free-space detection behind apertures as
well, we demonstrate that the higher entanglement quality obtained behind single-mode
fibers is due to the removal of the spatial labeling. In addition, we show that the residual
spectral labeling after selection with fibers is due to imperfect phase matching.
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7.1 Introduction
Type-II spontaneous parametric down-conversion in a nonlinear birefringent crystal provides
for a popular source of polarization-entangled twin photons in the field of experimental quan-
tum optics and quantum information [8, 11, 15, 58]. In this generation process, one un-
avoidably encounters both longitudinal and transverse walk-off effects that are caused by
the birefringent nature of the crystal. These make the polarizations of the twin photons dis-
tinguishable through their temporal and spatial information, respectively. This is also known
as labeling. In order to restore the indistinguishability and thus the degree of polarization en-
tanglement, Kwiat et al. [8] introduced a simple compensating device. It consists of one half-
wave plate and two additional crystals, identical to the down-conversion crystal but of half the
length. This device is now commonly used in several experimental schemes [23, 24, 56, 81].

The described compensating device is not perfect. With its frequency- and angle-depen-
dent birefringence it can make the phase factors of the two contributing biphoton amplitude
functions identical. The amplitude factors can however still be different, which implies that
the obtained degree of polarization entanglement may still suffer from labeling, even when
compensating crystals are used. In this chapter we study the limitations that spatial and
spectral labeling impose on the attainable quality of the polarization entanglement.

Spatial labeling information, which is dosed by the detected angular width of the SPDC
light, can be erased by transverse mode selection via single-mode fibers before photon de-
tection. Kurtsiefer et al. [23] successfully pioneered this detection method to obtain both a
large photon-pair collection and a high quality of polarization entanglement (≈ 96 %). How-
ever, the geometric requirement mentioned in Ref. [23], being the matching of pump and fiber
mode, is not sufficient. We will show that an optimal yield of photon pairs needs extra match-
ing with a third spatial parameter. Moreover, the benefit of fiber detection above the more
conventional detection behind apertures was not highlighted in [23]. In this chapter we ex-
plicitly demonstrate that spatial labeling plays a crucial role in the comparison between these
two schemes, especially in relation to the polarization entanglement quality. Furthermore, we
show how pump beam properties can affect the entanglement measured behind single-mode
fibers.

7.2 Theory
The theoretical description of polarization entanglement created under type-II SPDC can be
found in Chapter 2. As a reminder, we mention that the polarization-entangled state at the
intersections 1 and 2 of the two emitted SPDC light cones is given by the complete biphoton
wavefunction [see also Eq. (2.7)]

|Ψ〉=
∫

dq1 dq2 dω1 dω2 {ΦHV (q1,ω1;q2,ω2) |H1,q2,ω1;V2,q2,ω2 〉+

ΦV H (q1,ω1;q2,ω2) |V1,q1,ω1;H2,q2,ω2 〉} , (7.1)

where integration is over the transverse wavevectors q1 and q2 and frequencies ω1 and
ω2. The state |H1,q1,ω1;V2,q2,ω2 〉 corresponds to the presence of one H-polarized pho-
ton with wavelength ω1 and transverse wavevector q1 in beam 1 and its V-polarized partner
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photon with wavelength ω2 and transverse wavevector q2 in beam 2. A potential difference
between the biphoton amplitude functions ΦHV and ΦV H is denoted as labeling and reduces
the quality of the polarization entanglement. For free-space detection with bucket detectors
behind apertures the degree of polarization entanglement is given by the biphoton visibility
[see also Eq. (2.8)]

V =
〈〈2Re(Φ∗

HV ΦV H)〉〉
〈〈|ΦHV |2 + |ΦV H |2〉〉

. (7.2)

The double brackets 〈〈· · · 〉〉 denote the six-fold integration over the momenta q1 and q2
and frequencies ω1 and ω2, determined by the two spatial apertures and the transmission
spectra of the two bandwidth filters, respectively.

In this chapter we also study the polarization entanglement observed behind single-mode
fibers using fiber-coupled detectors [23, 56, 82]. In this case, the above equations remain
basically the same; only the biphoton amplitude functions Φi j will change into the projected
amplitude functions

αi j(ω1,ω2) =
∫ ∫

dq1 dq2 Φi j (q1,ω1;q2,ω2) ψ∗
fiber1(q1)ψ∗

fiber2(q2) . (7.3)

Here, ψfiber1(q1) and ψfiber2(q2) are the transverse mode profiles of the single-mode fibers
in beam 1 and 2. Similar to Eq. (7.2), the degree of polarization entanglement can now be
expressed as

Vfiber =
〈2Re(α∗

HV αV H)〉
〈|αHV |2 + |αV H |2〉

, (7.4)

where the single brackets denote a two-fold integration over the frequencies ω1 and ω2
only, over ranges determined by the transmission windows of the spectral filters in beam 1 and
2. It is obvious that Eq. (7.4) contains no spatial labeling information as the amplitude func-
tions αi j(ω1,ω2) depend only on frequency. In comparison with detection behind apertures,
detection behind single-mode fibers should thus result in a higher degree of polarization en-
tanglement. The sole limitation that can now potentially affect the polarization entanglement
is spectral labeling.

7.3 Experimental results

7.3.1 Experimental setup
The experimental setup is schematically depicted in Fig. 7.1. Light from a cw krypton-ion
laser, operating at 407 nm, is focused on a 1-mm-thick birefringent β -barium borate (BBO)
crystal. The two cones of light that are emitted at 814 nm under type-II SPDC intersect
each other perpendicularly, thereby defining two slightly diverging light paths which are both
spaced at an angle of about 3◦ with respect to the pump beam. One half-wave plate and
two 0.5-mm-thick BBO crystals (one in each arm) compensate for walk-off effects in the
down-conversion crystal. After passing through apertures the light is imaged by a f = 40
cm lens, positioned at 80 cm from the down-conversion crystal, to an intermediate focus,
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Figure 7.1: Experimental setup. Lens LP focuses the pump beam on a birefringent BBO
crystal. A half-wave plate HWP and two compensating crystals cc form the standard
compensating device. Flip-mirrors allow for an easy switch between two detection
schemes. Mirrors flipped up, solid paths: detection with fiber-coupled detectors F1 and
F2. Lenses L1 and L2 are used to direct parallel beams onto the fiber-coupling lenses.
Mirrors flipped down, dashed paths: detection with bucket detectors B1 and B2. Both
schemes have apertures ap, polarizers P1 and P2, and interference/red filters IRF.

where we have an one-to-one image of the generating area on the BBO. Flip-mirrors placed
at this focus allow for easy switching between our two detection systems. When the mir-
rors are flipped up, light is directed into 2-m-long single-mode fibers, via imaging lenses
and f = 11 mm collecting lenses, before being detected by fiber-coupled counting mod-
ules (Perkin Elmer SPCM-AQR-14-FC). Spatial selection is now obtained mainly from the
fibers, but also somewhat from the extra apertures that are positioned between crystal and
flip-mirrors. When the mirrors are flipped down, photons propagate directly to bucket de-
tectors (Perkin Elmer SPCM-AQR-14) and only the mentioned apertures account for spatial
selection. In both systems polarizers and interference filters (∆λ =10 nm) are used for polar-
ization and frequency selection, respectively. A very fast electronic coincidence circuit with
a time window of 1.76 ns receives the detector signals and measures the rate of entangled
photon pairs.

7.3.2 Mode matching
Detection of SPDC light behind single-mode fibers will generally result in a relatively low
yield of entangled photon pairs since the detectors per definition observe only one of the many
generated transverse modes. The characterization of the fiber-coupling efficiency in terms
of experimental parameters has been studied in [56, 82]. The optimal collection of photon
pairs behind single-mode fibers has been experimentally demonstrated by Kurtsiefer et al.
[23], who showed that transverse matching of the pump mode and the fiber-detected mode is
necessary. We will now demonstrate that his discussion of mode matching is incomplete and
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Table 7.1: Measured count rates and visibilities for different geometries of the fiber-
detection scheme.

wp(µm) w f (µm) Rs(103s−1) Rmax(103s−1) V45◦(%) V135◦(%)

280±10 65±5 10.5 1.53 97.5 99.2

68±2 65±5 247 58.9 98.3 98.4
33±1 154 20.7 95.3 95.6

30±1 65±5 294 40.9 98.2 97.4
33±1 223 23.3 95.8 96.5

support this statement with explicit measurements.
According to Kurtsiefer et al. [23], mode matching only refers to the matching of the

pump waist wp and the width w f of the back-traced image of the fiber on the down-conversion
crystal: wp ≈ w f . If wp > w f near-field losses will occur as some of the produced photon
pairs are invisible to the back-traced fiber image. The condition wp < w f creates compara-
ble losses as this corresponds to a situation where the angular spread of the SPDC light is
certainly larger than the far-field size of the fiber mode. The underlying reason for the joint
near-field and far-field match is that the fiber selects a true single transverse mode in both r-
and k-space, in contrast to the mode selection in r-space performed by apertures.

The matching condition wp ≈ w f is not sufficient. Full mode matching requires additional
matching to a third spatial parameter, namely the (maximum) internal transverse walk-off ww
between the ordinary and extra-ordinary beam (equivalent to ρL in Sec. 2.2.2), making the
full matching condition wp ≈ w f ≈ ww. If (wp ≈ w f ) < ww the fiber cannot simultaneously
match the different near-field profiles of the ordinary and extra-ordinary light. On the other
hand, the condition (wp ≈ w f ) > ww implies a limited observation of the SPDC pattern in
the far field, as ww is Fourier-related to the angular width of the SPDC light [see Eq. (2.6)].
We will now experimentally demonstrate the mode matching of the above three parameters
to obtain an optimal yield of photon pairs behind single mode fibers.

Table 7.1 shows the typical single count rates Rs, coincidence count rates Rmax and vis-
ibilities V that are measured for different geometries in the fiber-detection scheme (aperture
fully open at d = 17 mm). The pump waist wp is realized by the choice of the proper pump
focusing lens Lp. The two fiber-detected waists w f = 33 µm and w f = 65 µm are obtained
with f = 10 cm and f = 20 cm imaging lenses L1, respectively (see Fig. 7.1). The transverse
walk-off in our 1-mm-thick BBO crystal is ww ≈ 70 µm.

In the case of wp = 280 µm and w f = 65 µm, where the pump waist wp is neither matched
to w f nor to the walk-off ww, we measure a coincidence rate of Rmax = 1.53× 103 s−1. If
we now reduce the pump waist to wp = 68 µm but keep the same w f , such that all three
parameters are matched, we measure an almost 40 times higher rate of Rmax = 58.9×103 s−1.
Table 7.1 obviously shows that a further reduction of the pump waist to wp = 30 µm destroys
the complete matching and therefore yields a lower rate of Rmax = 40.9×103 s−1. If we also
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switch to a smaller fiber-detected waist of w f = 33 µm in the latter case, such that again wp
≈ w f , we obtain an even lower coincidence rate of Rmax = 23.3×103 s−1. This clearly shows
that the matching condition wp ≈ w f is not sufficient for an optimal collection of photon pairs.
Instead, we have hereby demonstrated that a joint matching of all three parameters is needed
to obtain the maximal pair rate of Rmax = 58.9× 103 s−1. Operating at a pump power of
207 mW, this rate corresponds to a slope efficiency of Rmax×2×1.7/207 = 970 s−1mW−1.
The factors 2 and 1.7 correct for the use of polarizers and interference filters, respectively
(see discussion around Fig. 7.4). Our measured efficiency then compares well to the value of
900 s−1mW−1 that was obtained by Kurtsiefer et al. [23] in absence of both polarizers and
interference filters .

7.3.3 Free-space detection versus fiber-coupled detection
Next we compare both the degree of polarization entanglement and the coincidence rate ob-
tained with free-space detection behind apertures on the one hand and with fiber-coupled de-
tectors on the other hand (see Fig. 7.1 for setup). The degree of polarization entanglement can
be deduced from the maximum coincidence count rate Rmax and the minimum coincidence
count rate Rmin, measured upon rotation of polarizer 2 at fixed orientation ϕ1 of polarizer 1.
The degree of entanglement is then given by the coincidence fringe visibility

Vϕ1 ≡
Rmax−Rmin

Rmax +Rmin
. (7.5)

In the natural crystal basis we measure typically V0◦ ≈ V90◦ = 99.4± 0.3%. Only the
visibilities V45◦ and V135◦ are closely related to the experimental implementation of Eq. (7.2)
and Eq. (7.4).

Table 7.1 shows a measured visibility of V = 98.4% for the best-matched geometry of
the fiber-detection scheme. In contrast, free-space detection yields only V = 80.0% under
the same conditions (d = 14 mm and wp = 68 µm). We can, however, improve the entan-
glement quality attained with free-space detection to that of the fiber-detection scheme, if
we detect behind sufficiently small apertures. For instance, we already measure a visibility
of V = 90.0% behind 9 mm apertures, whereas we even obtain a value of V = 97.0% be-
hind 4 mm apertures. In Figure 7.2 we show the visibilities V45◦ and V135◦ measured as a
function of the aperture diameter d for both detection schemes, using wp = 68± 1 µm and
w f = 65± 5 µm. For free-space detection, we clearly observe the “dramatic” increase in
visibility with decreasing aperture sizes mentioned above. For fiber-coupled detection, we
measure (much) higher visibilities of at least V = 97.5% for all considered aperture sizes.
We ascribe this strong contrast in entanglement quality between the two detection schemes to
the removal of spatial labeling by the mode-selective character of the fibers. In fact, the fibers
select a pure fundamental transverse mode in both r and k-space, irrespective of the aper-
ture size, which explains the constantly high visibilities shown in Fig. 7.2. Instead, apertures
perform mode selection only in the transverse r-space, which leads to enhanced polarization
distinguishability and thus lower visibilities for larger apertures.

Unfortunately, the improvement of the entanglement quality for detection behind smaller
apertures (see Fig. 7.2) is unavoidably accompanied by a drastic loss of signal strength.
Whereas the visibility increases from V = 80.0% at 17 mm apertures to V = 90.0% at 9
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Figure 7.2: Visibilities V45◦ (filled marks) and V135◦ (open marks) measured as a func-
tion of aperture diameter d (at 80 cm from the crystal) for detection behind single-mode
fibers (squares) and apertures (circles) at wp = 68 µm and w f = 65 µm. The arrow
at d = 7.5 mm marks the typical size of the fiber mode in the aperture plane, being the
diameter at which the single count rate was reduced to 50% of its maximum value.

mm apertures and V = 97.0% at 4 mm apertures, the coincidence rate drops from Rmax =
156× 103 s−1 to Rmax = 90.0× 103 s−1 and Rmax = 10.6× 103 s−1, respectively. We can
enhance the photon yield somewhat, without suffering in the entanglement, by increasing
the pump size. For a pump waist of wp = 280 µm instead of wp = 68 µm, we measure
a higher rate of Rmax = 33×103 s−1 behind 4 mm apertures, thereby obtaining a visibility
of V = 97.7%. This improvement in coincidence counts is explained by the smaller SPDC
diffraction angle, i.e., the angular spread in one of the two beams that corresponds to a fixed
angle in the other beam, as also observed in coincidence imaging [30, 31]. Under this wide-
beam condition, free-space detection seems to be favorable above fiber-coupled detection,
where we measured only Rmax = 1.53×103 s−1 using the same wp = 280 µm. However, the
best-matched geometry of the fiber-detection scheme still remains most beneficial as it com-
bines a high visibility of V = 98.4% with a high coincidence rate of Rmax = 58.9× 103 s−1

(see Table 7.1).
To summarize, free-space detection is most useful when a large yield of photon pairs

is necessary while a high polarization entanglement quality is less crucial. If one wants
to improve the degree of entanglement obtained behind apertures, one will inevitably loose
some of the generated coincidence pairs. In this respect, we have demonstrated that the best-
matched geometry (using wp = 68 µm and w f = 65 µm in our case) in the fiber-coupled
detection scheme is most promising when both high entanglement quality and high count
rates are accounted for.

7.3.4 Spectral labeling
We will now focus on the limitations to the polarization entanglement that is measured via
fiber-coupled detection; these limitations must be attributed to frequency labeling only [see
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Eq. (7.3)]. A detailed look at Fig. 7.2 shows that the visibility measured with this scheme is
not perfectly 100% and even drops very slightly with increasing aperture sizes. Moreover,
we obtain similar visibilities when using 10 m fiber instead of the usual 2 m, which confirms
the complete removal of spatial labeling and the presence of spectral labeling only.

Mathematically speaking, the reduction of entanglement quality due to spectral label-
ing can only be explained by differences between the two projected amplitude functions,
i.e., αHV (ω1,ω2) 6= αV H(ω1,ω2). As the projected amplitude functions can be written as
αi j(ω1,ω2) = Ep(ω1 + ω2) · φi j(ω1,ω2), the frequency labeling must be contained in the
asymmetry of the phase-matching functions, i.e., φHV (ω1,ω2) 6= φV H(ω1,ω2); the spectral
pump profile Ep(ω1 + ω2) does not contain any polarization labels. Below we will discuss
experimental results that specifically show that phase matching indeed causes the spectral
labeling and thus the limited entanglement quality.

First of all, Table 7.1 shows that the visibility decreases from roughly V = 98% to V =
96%, for both the focusing conditions wp = 30 µm and wp = 68 µm, when the size of the
observed pump region is reduced from w f = 65 µm to w f = 33 µm . The reduction in this
near-field size corresponds to an increase of the fiber-detected SPDC crossing area in the far
field. As a larger observation angle also implies a larger detected spectral bandwidth [23],
we will operate further from the thin-crystal limit. In this respect, it is not surprising that the
degree of entanglement will suffer even more from the above phase-matching asymmetry.

A second contribution to the spectral labeling could be a (slight) misalignment of the op-
tical fibers. If the fibers are not properly centered around the degeneracy points of the cross-
ing area, the H- and V -polarized spectra will be different because of the frequency matching
(ω1 + ω2 = ωp) that is associated with the energy conservation. This again leads to differ-
ent phase-matching functions φHV and φV H which creates labeling of the two polarizations.
Furthermore, even if the fiber alignment is perfect, the degree of entanglement may still suf-
fer from the slightly different bandwidth of the H- and V -polarized light, which we have
measured and discussed in Chapter 4 [53].

Intriguingly, we have also observed a limitation of the degree of entanglement due to the
power of the pump laser. In Fig. 7.3 we show the visibility measured as a function of the pump
power in the fiber-detection scheme, either using ∆λ =10 nm (FWHM) interference filters
(dots) or no filters (squares). Here, the apertures are fully open (at d = 17 mm), wp = 68 µm
and w f = 65 µm. With interference filters we measure visibilities of V ≈ 98% at low pump
powers which drop to V ≈ 97% at a power of ≈ 300 mW. When these filters are removed,
the reduction from V ≈ 96% to V ≈ 92% in the same power range is more drastic. The
observed visibility drop is probably related to a modified pump profile as a result of changes
in the temperature and gain guiding in our Kr+ laser with increased output power. Using a
shear interferometer (Melles Griot Wavealyzer) we have observed that an increase in pump
power is accompanied by both a larger beam divergence and a transition from a circular
to an elliptical cross-section with V/H ratio ≈ 1.2. This modified pump profile changes
the biphoton amplitude function Φi j [see Eq. (7.3)] and thereby its spatially-integrated form
αi j(ω1,ω2) and the corresponding phase-matching function φi j(ω1,ω2). The exact analysis
of the observed behaviour in Fig. 7.3 in relation to the beam profile goes beyond the scope of
this chapter.

In Fig. 7.4 we show the measured coincidence rates Rmax as a function of the pump power,
obtained with and without interference filters in the best-matched fiber-detection geometry. In
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Figure 7.3: Averaged visibility (V45◦ +V135◦)/2 measured as a function of the pump
power, with ∆λ = 10 nm interference filters (dots) and without interference filters
(squares) in the best-matched geometry of the fiber-detection scheme.

Figure 7.4: Coincidence rates Rmax measured as a function of the pump power, with
∆λ = 10 nm interference filters (dots) and without interference filters (squares) in the
best-matched geometry of the fiber-detection scheme.

absence of the filters we measure 1.7 times higher coincidence rates, which we mainly ascribe
to the signal gain of 1/(0.8)2 = 1.56 that we calculate from the T = 80% peak transmission
of both filters. The residual gain of 1.7/1.56≈1.1 agrees well with the expected bandwidth
increase by a factor of 1.15 which is based on the natural SPDC bandwidth of ∆λSPDC =
11.5 nm (see Chapter 4) that we detect without ∆λ = 10 nm filters. The smaller detection
bandwidth of ∆λ = 10 nm, which is associated with less spectral labeling, also explains the
somewhat higher visibilities obtained with interference filters (see Fig. 7.3). On the other
hand, the fact that ∆λ is just smaller than ∆λSPDC indicates that we are not yet operating
sufficiently far in the thin-crystal limit and phase matching could thus still limit the attainable
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entanglement quality.
Finally, Fig. 7.4 shows a clear saturation of the coincidence rate at higher pump powers,

which was also observed by Kurtsiefer et al. [23]. This saturation is probably caused by the
increased pump divergence mentioned above. As a larger pump divergence implies a larger
SPDC diffraction angle, the photon-pair collection within the same aperture will be reduced
and saturation will occur. We note that the presented count rates are still low enough to keep
saturation effects due to detector deadtimes below the few-percent level.

7.4 Conclusion
We have investigated the limitations to the polarization entanglement in a type-II SPDC setup
that employs both free-space detection behind apertures and single-mode detection behind
optical fibers. We have demonstrated that optimal photon-pair collection with the latter
scheme requires matching to a third parameter, being the birefringent walk-off, apart from
the matching of the pump waist and the fiber-detected waist [23]. We ascribe the higher en-
tanglement quality that is measured with the fiber-detection scheme to the erasure of spatial
labeling by the single-mode fibers. The remaining spectral labeling comes in essence from
imperfect phase matching.
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CHAPTER 8

Spatial labeling in a two-photon interferometer

We study the spatial coherence of entangled photon pairs that are generated via type-I
spontaneous parametric down-conversion (SPDC). By manipulating the spatial overlap
between the two down-converted beams in a Hong-Ou-Mandel interferometer we observe
the spatial interference of multiple transverse modes for an even and an odd number
of mirrors in the interferometer. We demonstrate that the two-photon spatial coherence,
which is quantified in terms of a transverse coherence length, differs completely for the
two mirror geometries and support this result by a theoretical and experimental explana-
tion in terms of photon labeling.

P.S.K. Lee and M.P. van Exter, Phys. Rev. A 73, 063827 (2006).
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8.1 Introduction
In the last two decades, the use of entangled photon pairs has become a popular tool for
several experimental studies on both the foundations [5, 8, 27] and applications [15, 59] of
quantum mechanics. One of the most fascinating among these experiments has been intro-
duced by Hong, Ou and Mandel in order to measure the coherence length of a two-photon
wavepacket produced under spontaneous parametric down-conversion [27]. In this original
two-photon interference experiment, which we will simply call the HOM experiment, two
entangled photons that arrive simultaneously at the two input ports of a beamsplitter will
effectively ’bunch’ and together exit one of the two output ports. As a consequence, no co-
incidence events are measured between photon detectors placed in each output channel. As
soon as the two photons become distinguishable due to a time delay between the two input
beams, the coincidence rate will reappear. Therefore, the coincidence rate measured as a
function of the relative time delay shows a minimum at zero delay, which is now known as
the HOM dip.

Pittman et al. [83] showed that HOM interference is also possible if the two photons
arrive at different times at the beamsplitter, provided that the detectors can not distinguish one
probability path from another; the interference actually occurs between the two probability
paths of the photon pair and not between the individual photons. Rarity and Tapster [84]
demonstrated that two-photon (HOM) interference is even possible between two uncorrelated
photons from independent sources. This experiment, which has been repeated by several
groups [85,87], is however only possible if the two photons are completely indistinguishable.
More precisely, these photons have to arrive at the same time (within the inverse detection
bandwidth) and in the same spatial mode. Experimentally, this requires pulsed pumping [84]
and single-mode (fiber-coupled) detection, respectively. In case of cw pumping, the existence
of two-photon interference is in fact a proof of time entanglement; while the individual arrival
times of the photons in the generated pairs are undetermined, these two times are strongly
quantum-correlated. If the detectors observe many transverse modes, a similar argument
shows that two-photon interference is only possible if the two photons are spatially entangled;
while the spatial profiles of each of the photons is undetermined, a measurement on one
photon co-determines the position and momentum of the other.

Since its initial demonstration in 1987, the HOM interferometer has been employed in
several experimental schemes. Like the original experiment, most of these HOM experi-
ments focus merely on the temporal coherence of the two-photon wavepacket [86–88]. Only
recently, some papers have reported on the spatial aspects of the HOM experiment [89–91].
Walborn et al. [89] have demonstrated how the transverse spatial symmetry of the pump
beam affects the two-photon interference: for a symmetric two-photon polarization state, one
can make the transition from a HOM dip to HOM peak by changing the pump profile from
even to odd. Caetano et al. [90] and Nogueira et al. [91] have performed coincidence imag-
ing experiments, measuring the coincidence rate behind two small detectors as a function
of their transverse position. Using an anti-symmetric pump profile, they observed spatial
anti-bunching of the two photons in the coincidence image.

So far, all reported experiments have used perfect spatial overlap between the signal and
idler beams and studied the two-photon interference mostly as a function of the temporal
delay in the HOM interferometer. Spatial aspects of a HOM interferometer, in a collapsed
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type-II collinear geometry, have been studied via the shape, size and displacement of the
detection apertures, but the generated beams remained unchanged [26]. The effect of a pos-
sible size difference between two non-overlapping beams has been studied theoretically in
few-photon interference [92], but beam displacements were not considered. In this paper, we
will present the first experimental results on two-photon interference under the influence of
a physical separation of the signal and idler beams in the transverse plane. For this purpose,
we have used a more general HOM interferometer which employs not only a longitudinal and
but also a transverse displacement of one beam with respect to the other.

By measuring coincidences as a function of the beam displacement we determine the
transverse coherence length of the two-photon wavepacket for different detection geome-
tries, i.e., different numbers of interfering transverse modes. The key question is how the
two-photon spatial coherence manifests in an interferometer with either an even or an odd
number of mirrors in the combined signal and idler path. We find that the mirror geometry of
the interferometer does indeed play a crucial role. When the total number of mirrors is even,
the observed spatial interference is sensitive only to the sum of both coordinates and thereby
to the profile of the pump. In case of an odd number of mirrors, one probes the two-photon
coherence in the difference coordinate, and thereby basically observes the spherical wave-
fronts of point sources. Most of our experiments have been performed with an odd number
of mirrors, a geometry that has not been studied before.

This paper is organized as follows. In Sec. 8.2 we present a theoretical description of
two-photon (HOM) interference for both an even and an odd mirror geometry, including both
temporal and spatial degrees of freedom. Our experimental results can be found in Sec. 8.3,
which is split into the following subsections. After introducing the experimental setup in
Sec. 8.3.1, we present our experimental results on temporal labeling in Sec. 8.3.2 and on
spatial labeling in Sec. 8.3.3. In Sec. 8.3.4 we analyze the spatial aspects from a different
perspective, using a discrete modal basis. We end with a concluding discussion in Sec. 8.4.

8.2 Theoretical description

8.2.1 The generated two-photon field
The calculation of the two-photon interference observed in a general HOM interferometer,
with a combined temporal delay and transverse spatial shift in one of the arms, is mainly a
matter of good bookkeeping. This bookkeeping deals to a large extent with the coordinate
changes between two reference frames. The lab frame, having its z-axis along the pump beam
and the surface normal of the crystal, is the natural choice for the generated field. The two
local beam frames that are oriented along the two beam directions are the natural coordinate
systems at the detectors. To simplify the notation we will display only one spatial direction,
being the x coordinates in the plane through the signal and idler beam.

We consider two-photon emission by spontaneous parametric down-conversion (SPDC)
in the so-called thin-crystal limit, where the detected space angle and spectral bandwidth have
to be much smaller than the generated SPDC ring size and bandwidth, respectively. In this
limit, the generated two-photon wave function is [34]
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8. Spatial labeling in a two-photon interferometer

ψz(xs,xi;∆ω) =
∫

Ep(x)h(xs,x;ωs)h(xi,x;ωi)dx (8.1)

where Ep(x) is the field profile of the pump beam at z = 0, and xs and xi are transverse
coordinates in the lab frame. The one-photon propagators h(xs,x;ωs) = 1/(iλLs)

2 exp(iksLs)
and h(xi,x;ωi) = 1/(iλLi)

2 exp(ikiLi) describe the propagation of the signal and idler photon
from the crystal to the detection plane. They contain the wavevector amplitudes ks,i = ωs,i/c
and the path lengths Ls,i. We will consider almost frequency-degenerate SPDC, where the
frequency difference ∆ω ≡ ωs−ωi and where the sum ωs + ωi = ωp = ckp is fixed by the
quasi-monochromatic pump.

Next we introduce “beam coordinates” δxs and δxi that are defined with respect to the
two beam axes in the signal and idler direction, which themselves are oriented at angles −Θ
and Θ with respect to the pump laser (see Fig. 8.1). Beam coordinates are more convenient to
evaluate the effect of beam reflections and translations and have the extra advantage that the
coordinates δxs,i remain relatively small. Substitution of δxs,i for xs,i in Eq. (8.1) immediately
yields the generated two-photon wave function in beam coordinates. Working in the paraxial
limit, we expand the path lengths as Ls,i ≈ L+ |δxs,i−x|2/2L±xΘ. The term ±xΘ describes
how a displacement at the crystal leads to a change of the signal/idler path on account of the
viewing angle.

By comparing the combined propagator of the two-photon field with the one-photon prop-
agator of the pump field to a detection plane at a distance L behind the crystal, we can solve
the integration in Eq. (8.1) to obtain the relatively complicated expression

ψ(δxs,δxi;∆ω)≈ Ep,z

(
1
2
(δxs +δxi)− γ

)
×

exp
[

ikp

8L

(
|δxs−δxi|2 +4γ(δxs +δxi)−4γ2

)]
, (8.2)

where Ep,z is the pump profile in the detection plane [31] and γ = LΘ∆ω/ωp is a transverse
displacement that appears only for ∆ω 6= 0. The approximation is almost perfect and only
refers to the removal of a small phase term (¿ 1) of the order of (∆ω/ωp)

2 times the Fresnel
number NF of the detected system.

Equation (8.2) gives a full description of the spatial and temporal coherence of the gen-
erated two-photon field in the considered thin-crystal limit. It shows among others that this
field has a completely different spatial coherence in the sum coordinate δxs +δxi than in the
difference coordinate δxs− δxi. Whereas the former is dictated by the profile of the pump
laser, the latter is characterized by the field curvature of a point source. This difference is
of vital importance in the rest of our discussion and causes the very different behavior of
two-photon interferometers with an even or odd number of reflecting mirrors (see Sec. 8.2.3).

If the detection bandwidth is too large to satisfy the quasi-monochromatic limit, we
should include the effects of γ 6= 0 in our discussion of Eq. (8.2). These effects are discussed
in Sec. 8.2.4. For the moment we will simply explain their origin. The extra phase terms
originate from the comparison of the [exp(ikL) terms in the] propagators of signal, idler and
pump beams. The argument of the pump profile Ep,z depends on ∆ω , because this argument
can also be written as the weighted sum (ksxs + kixi)/kp of the signal and idler positions xs
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Figure 8.1: Optical-path geometry of a HOM interferometer with one mirror in the
signal beam and two mirrors in the idler beam, which also contains a displacement ∆x.
The five circles denote the pump spot and four possible images thereof. These are used
to explain the occurence of spatial labeling (see Sec. 8.3.3 for details).

and xi in the lab frame [31]. In the non-monochromatic limit, the spatial and spectral degrees
of freedom become mixed, basically because the transverse momenta of the signal and idler
photon depend both on their emission angle (≈∓Θ) and photon frequency ω .

8.2.2 Two-photon interference
In a standard (HOM) two-photon interferometer the signal and idler beam are combined on
a beamsplitter of which the two output beams are filtered spectrally and spatially, before
being detected by two photon detectors. The observed two-photon interference is most easily
described in the beam coordinates x1 and x2 of the two local coordinate systems that are
centered around the two axes at detectors 1 and 2, respectively. We thus need to express the
detected two-photon field ψdet(x1,x2;∆ω12) (with ∆ω12 = ω1−ω2) in terms of the generated
field. As coincidence counts in a HOM interferometer can be generated by two possible
routes, being either a reflection of both signal and idler photon at the beamsplitter or a double
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8. Spatial labeling in a two-photon interferometer

transmission, we can symbolically express the detected two-photon field as

ψdet(x1,x2;∆ω12) =−Rψrr(· · ·)+T ψtt(· · ·) , (8.3)

where the intensity reflection R and transmission T are equal to 1
2 only for the ideal beam-

splitter. The coordinates in the two-photon fields ψrr and ψtt are left out on purpose. One
reason for this is that the transformation from detector to crystal coordinates is different for
the two possible routes. Another reason is that the actual transformation also depends on the
number of mirrors and on the time delay ∆t = ∆L/c and transverse displacement ∆x imposed
in one of the interferometer arms.

The coincidence count rate Rc observed behind spatial apertures and spectral filters is
found by integrating |ψdet(· · ·)|2 over the corresponding spatial and spectral coordinates, as

Rc =
∫

dω1dω2dx1dx2 |ψdet(x1,x2;∆ω12)|2 . (8.4)

The interference between the two-photon fields ψrr and ψtt is contained in the cross-terms
of |ψdet|2. This interference is only present close to zero delay and perfect spatial overlap,
but disappears when either ∆t or ∆x are sufficiently large. In general we can thus write the
coincidence count as

Rc(∆t,∆x) = Rc,∞

(
1− 2RT

R2 +T 2 VHOM(∆t,∆x)
)

. (8.5)

In the rest of the discussion we will concentrate on the temporal and spatial dependence
of the visibility function VHOM(∆t,∆x), which contains the interesting physics. The factor
VRT = 2RT/(R2 + T 2) just specifies the “intensity unbalance” between the two probability
channels. The visibility function

VHOM ≈
Re [2〈ψrr|ψtt〉]

〈ψrr|ψrr〉+ 〈ψtt |ψtt〉
, (8.6)

basically measured the spectral overlap between the two-photon fields ψrr and ψtt , where
we have used the shorthand notation 〈· · · 〉 = ∫

dω1dω2dx1dx2. Alternative, one could say
that VHOM measured the overlap between one two-photon field (ψrr) and a modified version
thereof (ψtt), and can thereby provide information on the spatial and/or temporal coherence
of this field. The physical interpretation of the visibility function VHOM is that it quantifies
the amount of temporal and/or spatial labeling of the two photons. If any properties of the
detected photons 1 and 2 allow one to decide which photon took the signal path and which
photon took the idler path, this so-called labeling will remove the interference between the
two probability channels.

8.2.3 Why the number of mirrors matters
In this subsection we will highlight the difference between two-photon interferometers with
an even or odd number of reflecting mirrors in the combined signal and idler path by pre-
senting detailed expressions of V (∆t,∆x) for both cases. Based on these general expressions,
Secs. 8.2.4 and 8.2.5 will separately treat the occurrence of temporal labeling (VHOM(∆t) at
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∆x = 0) and spatial labeling [VHOM(∆x) at ∆t = 0], again using the distinction between an
even and odd number of reflections.

Figure 8.1 depicts a possible HOM interferometer, which in this case has one mirror in
the signal path and two mirrors in the idler path and thus falls in the “odd” category. It
is also a sketch of the experiment, where we use 1 + 4 mirrors. The idler path contains an
adjustable transverse displacement ∆x (as shown) and an additional longitudinal displacement
∆L = c∆t (shown only in the experimental setup of Fig. 8.2). The beams are labeled such that
the doubly-reflected path links the coordinate indices (s↔ 1) and (i↔ 2), making ∆ω =
∆ω12, whereas the doubly-transmitted path links (s↔ 2) and (i↔ 1), making ∆ω =−∆ω12.
The crucial point to note, and the whole reason for the “odd/even” distinction, is that every
additional reflection in either signal or idler path leads to an inversion of the corresponding
beam coordinate δx↔−δx.

We will first consider an interferometer with one mirror in the signal and one mirror in the
idler path, i.e., with an even number of mirrors. For this balanced interferometer the relation
between the detected and generated two-photon field (Eq. 8.3) is

ψeven(x1,x2;∆ω12) =−Rψ(x1,x2 +∆x;∆ω12)eiω2∆t

+T ψ(−x2,−x1 +∆x;−∆ω12)eiω1∆t , (8.7)

where the longitudinal delay ∆t and transverse displacement ∆x are both imposed on
the idler beam. Note that the arguments in the two contributions ψrr and ψtt are related
through a swap of the labels 1↔ 2 in combination with an inversion x j↔−x j (for j = 1,2).
Substitution into Eq. (8.2) shows that the two contributions have the dominant part of the
exponential factor in common, as δxs− δxi = x1− x2−∆x for both terms, but differ in the
argument in the pump field. For this “even” geometry, the visibility function VHOM thus
becomes

Veven(∆t,∆x)≈
Re
[

2
∫

ei∆ω12∆te(ikp/L)γ12∆xE∗
p,z

(
−α +

1
2

∆x
)

Ep,z

(
α +

1
2

∆x
)]

∫ ∣∣∣∣Ep,z

(
−α +

1
2

∆x
)∣∣∣∣

2

+

∣∣∣∣Ep,z

(
α +

1
2

∆x
)∣∣∣∣

2 , (8.8)

where the integration runs over x1,x2,ω1 and ω2 and where we have introduced α =
− 1

2 (x1 + x2) + γ12 as help variable, with γ12 = LΘ∆ω12/ωp. The sensitivity of Veven to a
transverse displacement ∆x is thus found to be determined mainly by the shape of the pump
beam, in combination with the limitations set by the finite integration range over the detection
apertures. Especially the symmetry of the pump beam under reflection in the yz plane plays
a crucial role. If this beam is symmetric under reflection, the two-photon interference will
result in the familiar HOM dip (VHOM > 0), if this beam is anti-symmetric a HOM peak
(VHOM < 0) will result instead [89].

The above result applies to any geometry where the total number of mirrors in the signal
and idler beam is even. Officially, one should still distinguish two subclasses, but these give
basically the same result. If both signal and idler beam contain an odd number of mirrors
we obtain expressions identical to the ones found above for the case of “1+1 mirror”. If both
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signal and idler beam contain an even number of mirrors all positions x j should be inverted,
but Veven is again described by Eq. 8.8 with a new α =− 1

2 (x1 + x2)− γ12.
Next we consider the interferometer of Fig. 8.1, which contains one mirror in the signal

path and two mirrors in the idler path, and thus falls in the “odd” category. For this unbalanced
interferometer, the relation between the detected and generated two-photon field (Eq. 8.3) is

ψodd(x1,x2;∆ω12) =−Rψ(x1,−x2−∆x;∆ω12)eiω2∆t

+T ψ(−x2,x1−∆x;−∆ω12)eiω1∆t , (8.9)

which differs from Eq. (8.7) only by a sign in the idler coordinate δxi. Substitution into
Eq. (8.2) shows that the two terms now have slightly different exponential factors, but almost
identical arguments in the pump field, as the combination δxs +δxi is the same for both ψrr
and ψtt . For this “odd” geometry, the visibility function VHOM is

Vodd(∆t,∆x)≈
Re
[

2
∫

ei∆ω12∆te−(i2kp/L)γ12β e−(ikp/2L)(x1+x2)∆xE∗
p,z(β − γ12)Ep,z(β + γ12)

]

∫ ∣∣Ep,z(β − γ12)
∣∣2 +

∣∣Ep,z(β + γ12)
∣∣2

,

(8.10)
where the integration again runs over x1,x2,ω1 and ω2 and where we have now introduced

β = 1
2 (x1− x2−∆x) as help variable. The sensitivity of Vodd to a transverse displacement ∆x

is mainly determined by the exponential factor in Eq. (8.2), again in combination with the
limitations set by the finite integration range over the detection apertures and pump profile.
The “odd” geometry thereby probes the two-photon coherence in the difference coordinate
δxs− δxi, whereas the “even” geometry probed its coherence in the sum coordinate δxs +
δxi. The above result again applies to all geometries with an odd number of mirrors in the
combined signal and idler paths; Eqs. (8.9) and (8.10) remain basically the same, apart some
trivial minus signs and a possible redefinition of β .

8.2.4 Temporal labeling
In this section we will discuss the temporal labeling in a HOM interferometer with perfectly
aligned beams (∆x = 0), but unbalanced arm lengths (∆t 6= 0). The calculated VHOM(∆t) is
different for the two generic cases, where the total number of mirrors is either even or odd.
Whereas the even case exhibits only temporal labeling, the odd geometry also exhibits a
combined temporal and spatial labeling, which can reduce VHOM even further.

We will start by analyzing the even case for a symmetric pump (Ep,z(x) = Ep,z(−x)). Sub-
stitution of ∆x = 0 in Eq. (8.8) and removal of the spatial integration (under the assumption
that the shift γ12 doesn’t affect this integration in any serious way) yields

Veven(∆t) =

Re
[∫

dω1ei(2ω1−ωp)∆tT1(ω1)T2(ωp−ω1)

]

∫
dω1T1(ω1)T2(ωp−ω1)

, (8.11)
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where T1 and T2 are the intensity transmission spectra of filters located in front of the detectors
1 and 2, respectively. We thus obtain the well-known result that the HOM dip has the same
shape, but is twice as narrow, as the Fourier transform of the product T1(ω1)T2(ωp−ω1) [88].
For identical filters with a sharp block-shaped transmission spectrum of width ∆ω f centered
around 1

2 ωp, Eq. (8.11) yields

Veven(∆t) =
sin(∆ω f ∆t)

∆ω f ∆t
. (8.12)

The full width at half maximum (FWHM) of this visibility function is 1.21× π/∆ω f =
1.21×λ 2/(2c∆λ f ). If the transmission spectra of the filters are not properly centered, the
product T1T2 will sharpen up and the temporal coherence of the detected two-photon field
will increase.

If the combined number of mirrors in the signal and idler path is odd, we should substi-
tute ∆x = 0 in Eq. (8.10) instead of Eq. (8.8). It is now in general not possible to separate
the spatial and spectral integration, because the displacement γ12 ∝ ∆ω12 appears both in the
argument of Ep,z and in the exponential factor exp[−(i2kp/L)γ12β ]. Separation is only pos-
sible in two cases: if either the detection apertures are small enough to sufficiently limit the
integration range over β , or if the displacement γ12 is sufficiently small, we retain the result
we had for the even case [Eq. (8.12)].

We will first discuss the physical origin of this combined labeling, before quantifying
what we mean with “sufficiently small”. In general, the visibility V (∆t) decreases when
the time difference between the photons arriving at detector 1 and 2 allows one (even only
in principle) to distinguish which photon took the signal path and which one took the idler
path. The important point to note is that this time difference is only equal to the set value
∆t = ∆L/c for photon pairs that originate from the center of the pumped region. Photon pairs
that originate from the outer parts of the pumped region can experience an additional temporal
delay of typically ∆textra = ±2Θwp/c between their signal and idler photon, for a Gaussian
pump beam of waist wp. This delay alone doesn’t reduce the visibility, as the contributions
on either side of the pumped area can compensate each other, and actually do so for the even
case. For the odd case, this extra term can lead to a degradation of the visibility, but only
if the integration in Eq. (8.10) is large enough, i.e., if the apertures are opened wide enough
in comparison to the pump divergence. The degradation will be small only if ∆ω f textra¿ π .
This criterium roughly translates into ∆ω f /ωp¿ θp/Θ, θp being the far-field opening angle
of the pump laser.

From an experimental perspective, the extra term in Vodd makes two-photon interferome-
ters with an odd number of mirrors more difficult to operate than interferometers with an even
number of mirrors. In practice, great care has to be taken to avoid the mentioned additional
labeling. A two-photon interferometer with an odd number of mirrors will only provide a
good visibility for apertures much larger than the pump size if three conditions are satisfied:
(i) the spectral filters should be narrow enough, (ii) the opening angle Θ should be small
enough, and (iii) the pumped region should be compact enough. Together these three con-
ditions translate into the requirement that the dimensionless ratio of the detection bandwidth
over the pump frequency should be much smaller than the ratio of the pump divergence over
the opening angle, i.e., ∆ω f /ωp ¿ θp/Θ. If this is not the case, the combined spatial and
spectral labeling will lead to a reduction of Vodd(∆t = 0) and a widening of the Vodd(∆t)
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profile as compared to Eq. (8.12). The precise amount of which depends mainly on the di-
mensionless product

(
∆ω f /ωp

)
(Θ/θp) and to a lesser extent on the position of the detectors

in relation to the near/far field of the pump.

8.2.5 Spatial labeling
Next we will discuss spatial labeling in a HOM interferometer with balanced arms (∆t = 0)
and sufficiently narrow spectral filters to validate the quasi-monochromatic (∆ω = 0) limit.
We again distinguish between interferometers with an even and odd number of mirrors.

For the “even” case, Eq. (8.8) can be easily solved if the integration range over x1 and x2
is large enough to change it into an effective integration of x1 + x2 and x1− x2 over [−∞,∞].
The integration simplifies even further when one realizes that the overlap 〈ψ|φ〉 between two
wave functions |ψ〉 and |φ〉 does not change upon propagation, due to the unitary character
of the propagator h(x,x′). The visibility Veven(∆x) is thereby found to be a direct measure
for the overlap of the pump profile with a displaced version thereof. If this pump profile is a
fundamental Gaussian function with beam waist wp, we obtain the simple result

Veven(∆x) = exp
(
−1

2
∆x2/w2

p

)
. (8.13)

For the “odd” case, we have to substitute ∆t = 0 and ∆ω = 0 in Eq. (8.10) instead of
Eq. (8.8) to obtain

Vodd(∆x)≈
Re

[∫ ∫
dx1dx2

∣∣∣∣Ep,z

(
1
2
(x1− x2 +∆x)

)∣∣∣∣
2

exp
(

ikp

2L
(x1 + x2)∆x

)]

∫ ∫
dx1dx2

∣∣∣∣Ep,z

(
1
2
(x1− x2 +∆x)

)∣∣∣∣
2 (8.14)

If the aperture diameters are much larger than the size of the pump beam in the detection
plane, we can again rewrite the integrations over x1 and x2 into integrations over x1 + x2 and
x1− x2 and use x1 ≈ x2 as the outcome of the latter integration to obtain

Vodd(∆x) ≈
Re
[∫

dx1dy1 exp
(

ikp

L
x1∆x

)]

∫
dx1dy1

≈ 2J1 (πd∆x/(λpL))

πd∆x/(λpL)
. (8.15)

In the final step, we have expressed the integration over a circular aperture with diameter
d in terms of the first-order Bessel function J1. We define the typical transverse coherence
length ∆xcoh as the full width at half maximum (FWHM) of Vodd(∆x), which is 1.16 times the
peak-to zero width of ∆x = 1.22L(λp/d). The sensitivity of a two-photon interferometer with
an odd number of mirrors to transverse displacement is thus found to be determined solely
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by the size of the detecting apertures. More specifically, Vodd(∆x) has the same shape, but
is just twice as narrow, as the diffraction limit at the crystal found for a uniform but focused
illumination of one of the detecting apertures with the detected wavelength 2λp.

To arrive at Eq. (8.15) we had to assume that the aperture sizes were large as compared
to the size of the pump beam. If only one of the two apertures satisfies this criterium, we
can still conveniently replace the integrations over x1 and x2 by integrations over x1 + x2 and
x1−x2 and solve the latter. For this case of asymmetric aperture sizes, the resulting Eq. (8.15)
thus remains valid. If the apertures have equal sizes, but are not very large as compared to
the size of the pump beam, the aperture diameter in Eq. (8.15) should roughly be reduced
from its physical size d to an effective size deff ≈ d−w to account for the reduced detection
efficiency of photon pairs that fall close to the edge of either aperture. Here, w is the size of
the pump beam in the detection plane and thereby half the positional spread in one photon
for a fixed position of the other photon.

8.3 Experimental results

8.3.1 Experimental setup
Our experimental setup, representing a two-photon (Hong-Ou-Mandel type) interferometer,
is shown in Figure 8.2. A cw krypton ion laser operates at a wavelength of 407 nm and
emits 70 mW in a pure TEM00 mode. This light is mildly focused (measured opening angle
typically θp ≈ 0.50 mrad and waist wp ≈ 260 µm) on a 1-mm-thick type-I BBO crystal
(cutting angle 29.2◦). The crystal is tilted such that the emitted SPDC cone extends over
a full opening angle of 2× 1.6◦ around the pump direction. Two entangled beams s and i
(signal and idler), selected from this light cone by apertures behind a broadband beamsplitter
at 1.20 m from the crystal, serve as input channels of the beamsplitter. In one of the two input
beams, a reflecting open prism is placed on top of two perpendicularly mounted translation
stages to enable accurate control of both the path-length difference ∆L and the transverse
beam displacement ∆x, using motorized actuators. In most of the experiments, the output
beams of the beamsplitter are focused onto free-space single photon counters (Perkin Elmer
SPCM-AQR-14) by f = 6 cm lenses located at 1.50 m from the crystal. We note that these
counters still operate as good buckets under typical transverse beam displacements of ∆x = 1
mm in our experiments as the demagnified displacement at the detector is then still only
6/150×∆x = 40 µm whereas the active area of the detector is typically 200 µm in diameter.
Though omitted in Fig. 8.2 for simplicity, our scheme allows an easy switch between free-
space and fiber-coupled counters (Perkin Elmer SPCM-AQR-14-FC), connected to single-
mode fibers (NA = 0.12) and 10x objectives. Bandwidth selection is done by interference
filters (10 nm FWHM) in combination with red filters (Melles Griot RG715). An electronic
circuit records coincidence counts within a time window of 1.76 ns.

In order to achieve the precise temporal alignment that a HOM interferometer requires,
i.e., simultaneous arrival of entangled pair-photons at the beamsplitter, we use a similar trick
as presented in [93]. We employ a flip-mirror to inject light from a diode laser (visible
wavelength ≈ 640 nm) into the setup, such that its emitted light virtually covers both signal
and idler paths (see Fig. 8.2). By tuning this laser below threshold, where it acts as a bright
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Figure 8.2: Schematic view of the experimental setup (see text for details).

LED with a limited coherence length, the path-length difference can be set to within a few
µm. Final fine-tuning of the path-length difference and the angular alignment between the
two beams (within a few µrad) is done by motorized actuators (Newport LTA-HL; submicron
stepsizes) attached to both translation stages and beamsplitter.

In our main experiments, we measure the coincidence count rate as a function of the time
delay ∆t = ∆L/c and relative beam displacement ∆x between the signal and idler beam, in
order to quantify the two-photon temporal and spatial coherence, respectively. We have em-
ployed both an even and an odd number of mirrors to demonstrate the essential role of the mir-
ror number in two-photon HOM interference. Most of our measurements are however done
with the odd configuration (see Fig. 8.2) as this is the most unexplored case. Furthermore,
we have applied free-space detection behind both 4 mm and 14 mm apertures, corresponding
to detection angles of θdet = 1.7 mrad and θdet = 5.8 mrad, respectively. These values are
well within the angular width of the SPDC ring of θSPDC = 18 mrad that we calculate and
observe for our (type-I) geometry. In addition, we use spectral filters with bandwidths that
are much narrower than the generated SPDC bandwidth (> 50 nm). These two conditions
ensure operation in the thin-crystal limit.

8.3.2 Temporal labeling
In Figure 8.3(a) the measured coincidence count rate behind 14 mm apertures is plotted versus
time delay ∆t. Fitting the data points with Eq. (8.12) yields a full width at half maximum
(FWHM) of 133±2 fs. For 4 mm apertures we obtain the same value. These values agree very
well with the theoretical coherence time of 133 fs, calculated for a block-shaped transmission
filter with a measured spectral bandwidth of ∆λ = 10 nm centered around λ =814 nm. The
observed sidelobe structure is Fourier-related to the spectral cut-off produced by the sharp-
edged interference filters. Slight deviations between data points and fits are attributed to the
non-perfect block-shape of the filter transmission function.

The quality of the two-photon interference can be quantified by the measured peak visi-
bilities, being V = 85.0±0.5% and V = 81.0±0.5% for 4 mm and 14 mm apertures, respec-
tively. For fiber-coupled detection, we measure a much higher visibility of V = 94.0±0.5%.
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Figure 8.3: Two-photon temporal coherence, measured as the coincidence count rate
(dots) versus time delay ∆t, for (a) free-space detection behind 14 mm apertures and
(b) fiber-coupled detection. Sinc-shaped fits and the measured single count rates (solid
curves; righthand scale) are plotted as well.

This value is very close to the theoretical limit of VRT = 95% of our beamsplitter, having a
measured T/R-ratio of 58/42. Fig. 8.3b shows the temporal coherence measured with fiber-
coupled detectors scheme but now with a better high-quality 50/50 laserline beamsplitter.
We again obtain a FWHM of 133±2 fs, but the peak visibility is considerably higher at
V = 99.3±0.2%. The lower peak visibilities obtained with free-space detection is attributed
to the spatial labeling observed by the bucket detectors (see Figs. 8.5 and 8.6).

Apart from the coincidence dips, Fig. 8.3 also shows prominent dips in the measured sin-
gle count rates. The occurence of a ‘single dip’ has first been reported by Resch et al. [94].
This extra dip occurs as a result of the limitation of a photodetector to record two simultane-
ously arriving pair-photons as two single clicks. As these arrivals are more numerous for a
balanced HOM interferometer than for an unbalanced one, a dip will show up in the measured
single count rate as well.

In Fig. 8.4 we highlight the single dip that we measured behind 14 mm apertures [data
copied from Fig. 8.3(a)]. This data is of much higher quality than the one presented in
Ref. [94]; though sampling only 10 s for each data point, we obtain a statistical error of
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8. Spatial labeling in a two-photon interferometer

Figure 8.4: Single count rate measured in a HOM experiment (dots) with sinc-shaped
fit [detail of Fig. 8.3(a)]. The solid curve shows the sum of the single count rates mea-
sured when either the signal or the idler path is blocked. All displayed count rates are
corrected for 50 ns deadtime of the detector.

<0.1% that is even too small to display. This allows us to observe the clear sinc-shaped
profile identical to the coincidence dip with a FWHM of 133±2 fs. Based on measured rates
of 7.13×105 s−1 and 7.81×105 s−1 at zero and infinite delay, respectively, we determine a
dip visibility of Vsc ≈ 9%. A calculation from Vsc = V η/(4−η) [94] yields the same value,
thereby using V =81% and an overall detection efficiency of η = 0.40, as deduced from
the measured quantum efficiency (=coincidences/singles ratio) of ηq = 0.20. All count rates
shown in Fig. 8.4 have been multiplied by a factor of 1/(1− τdRdet) ≈1.04 to correct for the
detector deadtime of τd =50 ns and compare with the calculation mentioned above.

To further illustrate the origin of the single dip, we have also plotted the sum of the
measured single count rates in absence of HOM interference as the solid curve in Fig. 8.4.
This rate of 8.54×105 s−1 shows no dip as it is obtained by adding the individual signal
and idler rates of 5.00×105 s−1 and 3.54×105 s−1, where the rate imbalance is due to the
beamsplitter ratio T/R = 58/42. We thus measure a single count rate reduction of 16.5% for
the balanced interferometer (∆t = 0), but also obtain an 8.5% reduction in absence of HOM
interference (∆t = ∞). This latter reduction of course results from a random 1/4 probability
that both photons arrive at the detector under study. At a finite detection efficiency η we
expect the single count rate to be reduced by a factor (1−η /4) and (1−η /4(1+V )) in an
interferometer off and on resonance, as compared to the sum of the individual rates. For our
conditions of V = 81% and η = 0.40, we expect reductions of (1+V )η/4 = 18% and η/4 =
10% for the balanced and unbalanced interferometer, respectively, which agree reasonably
well with the measured values.

As an aside we note that our count rates are large enough to experience some visibility
reduction through the influence of double photon pairs. We estimate this reduction to be
∆V = 8Rcτcc(1/η2− 1/2η), based on a generated pair rate R = 2Rc/η2 and a coincidence
time window τcc. Our measured visibility of V = 78% for 17 mm apertures is expected to
suffer from a reduction of only ∆V ≈ 1%, based on a measured coincidence rate of Rc =
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Figure 8.5: Measured peak visibility Vodd versus aperture diameter (at 1.2 m from crys-
tal) for ∆λ = 10 nm interference filters and three different pump sizes: wp = 260 µm
(dots), wp = 400 µm (triangles) and wp = 700 µm (squares). The dashed horizontal
line at V = 95% indicates the visibility limit set by the beamsplitter T/R ratio of 58/42.

2.0×105 s−1 and η = 0.40. To check that higher coincidence rates lead to larger reductions,
we have also used a 4 mm crystal. At a measured rate of Rc = 8×105 s−1 we measure a lower
visibility of V = 73%, which is indeed compatible with the expected reduction of ∆V ≈ 5%.

The theory in Sec. 8.2.4 predicts that the peak visibility in a HOM interferometer with
an odd number of mirrors can be limited by a combined temporal and spatial labeling that
depends on three different parameters: the aperture size, the pump size at the crystal and the
detected spectral bandwidth. The first two limitations are demonstrated in Fig. 8.5, which
shows the measured visibility as a function of the aperture diameter for three pump sizes
wp, using a ∆λ = 10 nm interference filter. The largest pump spots yield the lowest visibili-
ties, as expected. Note how the visibilities increase steeply for the smallest apertures where
diffraction removes the spatial labeling.

An increase of the pump spot not only leads to a reduction of the peak visibility but also to
a widening of the VHOM(∆t) curve. At an aperture size of 14 mm we measure (FWHM) coher-
ence times of 133 fs for wp = 260 µm, 147 fs for wp = 400 µm, and 180 fs for wp = 700 µm,
all at ∆λ =10 nm. For these three geometries the dimensionless quantity (∆ω f /ωp)(Θ/θp)
that quantifies the extra labeling increases from 0.34 to 0.49 and 0.86.

The limitation of the visibility by the detected spectral bandwidth is shown in Fig. 8.6,
where the measured visibility is plotted versus aperture size for both ∆λ = 5 nm and 10 nm
interference filters, and a pump waist of wp = 260 µm. The narrower filters yield higher
visibilities. All observations made in relation to Figs. 8.5 and 8.6 are compatible with the
prediction made in Sec. 8.2.4 on combined temporal and spatial labeling. For an even number
of mirrors in our interferometer (with one extra mirror in signal path; see below) we have
observed none of these combined-labeling effects, again in agreement with Sec. 8.2.4.
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8. Spatial labeling in a two-photon interferometer

Figure 8.6: Measured peak visibility Vodd versus aperture diameter for ∆λ = 5 nm
(solid dots) and ∆λ = 10 nm interference filters (triangles), and a pump size of wp =
260 µm. The dashed horizontal line at V = 95% indicates the visibility limit set by the
beamsplitter T/R ratio of 58/42. The error margins of 0.005 in the vertical scale are
too small to display.

8.3.3 Spatial labeling
As our key experiment we have measured the spatial coherence of the generated two-photon
wavepacket. Figures 8.7(a) and 8.7(b) show the coincidence count rate measured as a function
of the relative transverse beam displacement ∆x for 4 mm and 14 mm apertures, and perfect
temporal coherence (∆t = 0). Fitting the data points with Eq. (8.4) yields (FWHM) trans-
verse coherence lengths of ∆xcoh = 184±10 µm and ∆xcoh = 54±4 µm, respectively. These
values are only slightly larger than the values of ∆xcoh = 175 µm and 50 µm, expected from
Eq. (8.15). We ascribe these minor deviations to a reduced detection efficiency of photon
pairs close to the aperture edges, which leads to effectively smaller aperture sizes and thus in-
creased coherence lengths. This correction disappears if we employ the asymmetric geometry
of a 4 mm aperture in one arm and a 14 mm one in the other, and perform the same mea-
surement [see Fig. 8.7(c)]. We then indeed obtain a somewhat smaller transverse coherence
length of 166±10 µm that is solely determined by the smallest aperture. Our measurements
clearly demonstrate that two-photon interference measured behind smaller apertures results
in a larger spatial coherence length, and vice versa.

The observations that a transverse displacement in one of the beams leads to a reduction
of the two-photon interference can be easily understood in terms of spatial labeling. This
is schematically shown in Fig. 8.1, where the upper circle depicts the pumped area at the
crystal. The four lower circles depict images of this pumped area that can potentially be made
at both detectors if the appropriate lenses are used (for simplicity we assume perfect imaging
without inversion). These images are represented by solid and dashed circles corresponding
to whether the photons have travelled the signal (solid) or idler (dashed) path, respectively.
Consequently, a solid circle at detector 1 matches a dashed circle in detector 2, and vice versa.
The transverse displacement ∆x of the idler beam is shown as light-dashed lines.
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Figure 8.7: Two-photon spatial coherence, measured as the coincidence count rate
(dots) versus relative transverse displacement behind (a) 2×4 mm, (b) 2×14 mm and
(c) 4+14 mm apertures. The solid curves represent the measured single count rates and
fits of the coincidence count rates. Especially, the fit in (b) is of excellent quality. The
lower single count rate in (c), which was measured behind the 4 mm aperture, has been
multiplied by a factor of 10 in order to visualize the dip-structure. Note the differences
in the horizontal scales.
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Now suppose we detect a photon at detector 1 at the lower-left cross-mark. Tracing this
photon back results in two different birth positions (cross-marks in upper circle) separated by
∆x at the crystal plane. Tracing its partner photon back to detector 2 then yields two possible
imaging positions (lower-right cross-marks) in circle s2 and i2, separated by 2∆x. If the res-
olution of our imaging system is good enough to distinguish between these two possibilities,
the “which-path” information provided by this spatial labeling will destroy the two-photon
interference. As diffraction by the apertures limits the distinguishability, larger transverse co-
herence lengths will be attained with smaller apertures, and vice versa. As we need the com-
bined positional information of both photons to decide upon their paths, the diffraction limit
of the smallest of the two apertures will largely determine the observed coherence length. As
an aside, we note that a similar reasoning can be applied to the results in Ref. [26], where
large apertures correspond to a small diffraction limit, good distinguishability between the
two probability paths, and a low HOM visibility.

We will next focus our attention on Fig. 8.7(c), which refers to an asymmetric interfer-
ometer with apertures of 4 mm and 14 mm in front of the two detectors. At first thought, one
might expect the single dip to follow the coincidence dip, irrespective of the aperture geome-
try. This is however not the case: we measure different widths (FWHM) of 190±10 µm and
54±4 µm for the ‘single dips’ behind the 4 mm and 14 mm aperture, respectively, whereas
the coincidence width is 166±10 µm. These values are practically the same as the widths of
the single and coincidence dips observed for a symmetric setup with 2×4 mm and 2×14 mm
apertures, respectively [see Figs. 8.7(a) and 8.7(b)].

The intriguing asymmetry in the single dips can be understood as follows. Pair-photons
originating from those parts of the signal and idler beam that are captured by the 14 mm
aperture but not by the 4 mm one, will be registered only by the detector behind the larger
aperture. Simultaneous arrivals of these photons due to bunching will therefore affect only
the single dip measured with this detector, but will not contribute to the coincidence dip.
As photon bunching occurs within a smaller range of transverse displacements for larger
apertures, the measured single dip for the 14 mm aperture in Fig. 8.7(c) is as narrow as
the coincidence dip that would be measured with 14 mm apertures in both output channels.
Consequently, the 4-mm-aperture single dip in the same figure is almost as broad as the
measured coincidence dip.

To demonstrate that the two-photon spatial coherence is very different for interferome-
ters with an even or odd number of mirrors, we have added a second mirror in the signal
path, using now six (2+4) mirrors in total. In Figs. 8.8(a) and 8.8(b) we have plotted the
coincidence rate versus the transverse displacement ∆x, measured in this even geometry for
2×4 mm and 2×14 mm apertures, respectively. The coincidence dips are fit with the profile
aexp

[
−(∆x)2/b2

][
1− cexp(∆x)2/2v2)

]
, where the fit parameter v is expected to yield the

same near-field waist wp of the Gaussian pump profile for both aperture sizes. We indeed
obtain similar widths of v = 253 µm and v = 237 µm for 4 mm and 14 mm apertures, re-
spectively. These values agree well with the measured pump waist of wp ≈ 260 µm. The
exponential prefactor roughly quantifies how the observed coincidence rates decreases when
very large beam displacements shift the light outside the active area of the detectors. For this
even geometry, we have measured 20% lower single count rates as compared to the odd ge-
ometry (see Figs. 8.7(a) and 8.7(b)] because of the increased crystal-aperture distance from
1.20 m to 1.37 m.
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Figure 8.8: Two-photon spatial coherence for an even number of mirrors. The coin-
cidence count rate (dots) is plotted versus relative transverse displacement behind (a)
4 mm and (b) 14 mm apertures. Coincidence counts fits and single count rates (solid
curves) are plotted as well.

In contrast to the odd geometry, the above result clearly shows that the two-photon spatial
coherence for an even number of mirrors is only determined by the pump beam profile and is
insensitive to the aperture size. The picture of spatial labeling, shown in Fig. 8.1 for the odd
geometry, can also be applied to the even geometry. If we observe a certain photon position
at detector 1 (lower-left cross-mark), we can again reconstruct two similar birth positions
of this photon at the crystal (upper cross-marks). However, we now find only one position
for the corresponding photon at detector 2, as the s2 and i2 positions lie precisely on top of
each other. This means that, irrespective of the aperture size, one cannot distinguish which
probability channel (double reflection or double transmission) the pair-photons has travelled
by judging from the detected positions of the partner photon. As the spatial labeling is only
contained in the different birth positions for this even geometry, the ‘which-path’ information
comes now from the pump beam profile and is no longer determined by the aperture size if
the later is much larger than w. Only the spatial symmetry of the pump beam and a possible
transverse displacement ∆x matter.
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Figure 8.9: Measured quantum efficiency ηq versus aperture diameter for equal aper-
tures (solid dots), and for a geometry with one aperture fully open (open circles). The
fit (solid curve) yields an asymptotic value of A = 0.217 and a pump beam waist at the
aperture plane of w = 0.63 mm.

8.3.4 Modal analysis of spatial entanglement
Next we will analyze the two-photon field in terms of a finite number of discrete modes. The
shape of the pump laser defines a natural basis for this discrete modal analysis. This natural
size will show up in an experiment where one fixes the position of one photon and measures
the positional spread θdiff = 2θp of its partner photon in coincidence imaging [30, 31].

To determine this natural size, we have performed a different experiment instead, where
we vary the size of both apertures, working in a symmetric situation at (much) higher count
rates. The solid dots in Fig. 8.9 depict the measured quantum efficiency ηq, being defined
as the ratio of the coincidence count rate over the single rate, as a function of the aperture
diameter d. The sharp decrease in ηq at small apertures results from the positional spread
within the photon pair that was mentioned above. This spread is solely determined by the
shape of the pump profile and can be fit with the expression [95]

ηq(d) =
A

1+2w2/d2


1−

√
πerf

(√
1+d2/(2w2)

)

2
√

1+d2/(2w2)


 , (8.16)

where the asymptotic value A and the pump beam waist w at the aperture plane (1.2 m
from crystal in our case) are fitting parameters. The diameter of ddiff = 1.8 mm where the
measured quantum efficiency is 50% of its asymptotic value (see Fig. 8.9) gives the typical
size of the fundamental transverse mode. The solid curve is a fit based on A = 0.217 and
w = 0.63 mm. The latter value agrees well with a calculated waist at the aperture plane of
w = 0.65 mm, that is based on a Rayleigh range of zR = 0.52 m, a near-field pump waist of
wp = 260 µm, and a pump opening angle of θp = 0.50 mrad; these numbers are obtained from
a measured pump waist of wz = 1.8 mm at z = 3.6 m from the crystal. The SPDC diffraction
angle θdiff = 2θp (SPDC wavelength λ = 2λp) will be used below for the calculation of the
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mode number.
The number of transverse modes detectable behind a far-field aperture of radius a and

angular size θdet = a/L is N = N2
1D, where the one-dimensional mode number

N1D ≈
θdet

θdiff
= π

apa
λL

, (8.17)

ap being the radius of the pump spot at the crystal, i.e., the near-field radius of the SPDC ra-
diation. The approximation sign is related to the precise definition of the mode size (FWHM,
Gaussian or sharp-edge).

The second equality of Eq. (8.17) enables an easy link to a different measure for the
number of interfering transverse modes, being the well-known Fresnel number NF given by

NF =
a2

λL
≈ a

2.8∆xcoh
. (8.18)

Here ∆xcoh is the (FWHM) transverse coherence length that we defined below Eq. (8.15),
and the prefactor 1/2.8≈ 1.16×1.22/4 results from our definition of ∆xcoh. For a one-photon
field the Fresnel number denotes the number of Fresnel zones that contribute, with alternating
signs, to the field transmitted through a rotational symmetric aperture. A comparison between
the two quantities defined in Eq. (8.17) and Eq. (8.18) yields NF = N(L/zR)(2/π), where
zR = 1

2 kpw2
p is the Rayleigh range of the pump. As we typically work at L/zR ≈ 2.3, the

numbers N and NF should be comparable.
From our experimental results we can estimate the mode number N and Fresnel number

NF in three different ways. First of all, we can use Eq. (8.17) and divide the detection angle
θdet by the measured diffraction angle θdiff to find N ≈ 3 and N ≈ 34 for 4 mm and 14 mm
apertures, respectively. Secondly, we can use Eq. 8.18 and compare the measured transverse
coherence length ∆xcoh to the aperture size to obtain Fresnel numbers NF ≈ 4 and NF ≈ 46 for
4 mm and 14 mm apertures, respectively. The third measure for the transverse mode number
can be deduced by comparing the single count rates shown in Figs. 8.3(a) and 8.3(b). As
fiber-coupled detection per definition addresses a single transverse mode, division of these
mentioned count rates yields a mode numbers of N = 34. A similar exercise for a 4 mm
aperture (not shown) yields N = 7× 104/2.1× 104 ≈ 3. These numbers compare well with
the mode numbers N from the first estimate. All estimates show that our experiment addresses
typically 4 or 40 modes for the 4 or 14 mm apertures, respectively.

8.4 Concluding discussion
We have investigated the two-photon spatial coherence of entangled photon pairs by mea-
suring the coincidence rate in a Hong-Ou-Mandel interferometer as a function of the relative
transverse beam displacement for different aperture sizes. The calculated and observed co-
herence is completely different for an interferometer with an odd or even number of mirrors.
For the odd case we have demonstrated that the transverse coherence length is inversely pro-
portional to the aperture size. We also observed a well-defined dip in the single count rate
and demonstrated the existence of a combined temporal and spatial labeling that can lead to a
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reduction of the HOM visibility under certain conditions. For the even case, we have shown
that the transverse coherence length is basically determined by the pump waist.
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Appendix

8.A A frequency non-degenerate two-photon interferome-
ter

In this chapter we have observed the two-photon temporal coherence by measuring the co-
incidence rate as a function of the relative delay ∆t between the two interferometer paths.
The obtained coincidence patterns (see Fig. 8.3) exhibit a profile that is given by the function
sinc(x)=sin(x)/x and determined by the sharp-edged transmission spectrum of the interfer-
ence filters. This profile is however only sinc-shaped if the filter spectrum is block-shaped
and the interference is frequency degenerate, i.e., if the transmission spectra of the filters
are both centered around the degeneracy frequency ωp/2. Below we will show that non-
degenerate spectra cause an additional modulation of the coincidence pattern. This effect has
been studied before for different detection arrangements of photon pairs [96]. The spatial
analogue of this modulation effect, which is caused by non-perfect angular beam overlap in
the same two-photon interferometer, has been demonstrated in Ref. [97]. A slightly different
two-photon interferometer for measuring a similar modulation of the spatial interference has
been proposed in Ref. [98].

Consider the even mirror-geometry under perfect spatial coherence (∆x = 0), where the
two-photon visibility is given by Eq. (8.11). In the measurements presented below, we will
again use sharp-edged filters but add a (narrower) Gaussian filter in one of the two interfer-
ometer arms to remove the frequency degeneracy. For T1(ω1) = exp[−(ω1−ωc1)

2/2∆ω2]
and T2(ω2) = 1 Eq. (8.11) now translates into

Veven(∆t) =

Re
[∫ +∞

−∞
dω1ei(2ω1−ωp)∆te−(ω1−ωc1)2/2∆ω2

]

∫ +∞

−∞
dω1e−(ω1−ωc1)2/2∆ω2

= cos(ω̃∆t) · e−2(∆ω∆t)2
. (8.19)

Equation (8.19) shows an interference pattern which exhibits a Gaussian envelop and a
cosine modulation. The modulation or beat frequency ω̃ = 2(ωc1−ωp/2) is exactly twice
the frequency detuning of the 2 nm filter from degeneracy.

We have demonstrated this modulation effect by measuring the two-photon temporal co-
herence via fiber-coupled detection. In a “quick-and-dirty” way, we add a single 2-nm-wide
(FWHM) Gaussian filter in front of one of the present 10-nm-wide sharp-edged filters. We
rotate this 2 nm filter over an angle α from the incident beam to blue-shift its spectrum by
∆λ = λ0α2/2n2, where n is the refractive index of the filter. The spectrum of the frequency-
entangled photons observed in the other arm is then automatically red-shifted by the same
∆λ . In Fig. 8.10 we show both these non-degenerate spectra (dashed curves) and the mea-
sured transmission spectra of the 2 nm and 10 nm filters under normal beam incidence (solid
curves). We note that the 2 nm filters are centered at λ0 = 813 nm, while the sharp-edged 10
nm filters are centered at λ0 = 811.5 nm.

In Fig. 8.11 we show the measured coincidence rate for α = 5◦± 1◦ and α = 9◦± 2◦.
We use Eq. (8.19) to fit these coincidence patterns and obtain modulation frequencies of
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Figure 8.10: Measured transmission spectra of the 2 nm and 10 nm interference filters
under normal beam incidence (solid curves). The left-dashed curve represents the ex-
pected spectrum of the 2 nm filter under an angle α while the right-dashed curve shows
the expected spectrum of the frequency-entangled photons in the other arm.

ω̃ = 9.4×1012 rad/s and ω̃ = 2.0×1013 rad/s, which correspond to (double) wavelength de-
tunings of 2∆λ = λ 2

0 ω̃/2πc = 3.3 nm and 2∆λ =7.0 nm for α = 5◦ and α = 9◦, respectively.
These values agree reasonably well with the expected detunings of 2∆λ = 2.8±0.6 nm and
2∆λ = 8.9±2.0 nm, which we calculate from α and a filter refractive index of n≈ 1.5. De-
spite the “quick-and-dirty” approach our results are accurate enough to demonstrate that the
modulation frequency is indeed twice the frequency detuning. Furthermore, the filter band-
widths of ≈1.7 nm (FWHM), obtained from the envelope fits of the measured coincidence
patterns, are close to the measured filter bandwidth of 2 nm.

Besides higher modulation frequencies we have also observed lower coincidence rates
for larger angles α . For normal beam incidence (α = 0) we measure a coincidence rate of
Rc = 530 s−1 while we obtain only Rc = 330 s−1 and Rc = 260 s−1 for α = 5◦ and α = 9◦,
respectively. We can illustrate this drop in coincidences from Fig. 8.10. The detuning ∆λ at
larger angles α shifts the non-degenerate spectrum of the frequency-entangled light (right-
dashed curve) towards the edge of the 10 nm filter spectrum, which obviously causes a gradual
loss of coincidences. For the depicted ∆λ = 3.5 nm, which corresponds to the measured value
for α = 9◦, the 2-nm-wide spectrum is shifted to the very edge of the 10-nm-wide spectrum.
The described coincidence loss could have been avoided if the accompanying 10 nm filter
would have been removed.
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Figure 8.11: Coincidence count rate versus delay ∆t measured behind single-mode
fibers in a frequency non-degenerate system. The center frequency of the narrow 2 nm
interference filter was blue-shifted by rotating it (a) α = 5◦ and (b) α = 9◦ away from
the incident beam.
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CHAPTER 9

Mode counting in high-dimensional orbital angular
momentum entanglement

We study the high-dimensional orbital angular momentum (OAM) entanglement con-
tained in the spatial profiles of two quantum-correlated photons. For this purpose, we
use a multi-mode two-photon interferometer with an image rotator in one of the interfer-
ometer arms. By measuring the two-photon visibility as a function of the image rotation
angle we measure the azimuthal Schmidt number, i.e., we count the number of OAM modes
involved in the entanglement; in our setup this number is tunable from 1 to 8.

M.P. van Exter, P.S.K. Lee, S. Doesburg, and J.P. Woerdman, submitted to Phys. Rev. Lett.
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The most popular variety of quantum entanglement involves the polarization degree of
freedom of two photons; in this case we deal obviously with two (polarization) modes per
photon [7, 8, 23]. Recently, there has been a lot of interest in spatial entanglement of two
photons; in this case the number of modes per photon can be much larger than two so that
entanglement is correspondingly (in fact, exponentially) richer [89–91, 99–103]. This in-
terest is motivated, fundamentally, by the desire to understand the nature of quantum en-
tanglement in a high-dimensional Hilbert space. From the point of view of applications the
high-dimensional case is important since it holds promise for implementing high-dimensional
alphabets for quantum information, e.g. for quantum key distribution [104]. A popular ba-
sis for the spatial modes is the basis in which the modes are distinguished on account of
their orbital angular momentum (OAM) [100–102]. An issue of much discussion in high-
dimensional entanglement, OAM or otherwise, is how many modes are involved, beyond
the statement that this number is (much) larger than 2 [39, 99–102, 105]. In this chapter we
demonstrate a practical method to quantify the number of OAM spatial modes involved in
biphoton entanglement; in our experiment this number has been varied in a controlled way
from 1 to 8. This result has been achieved by using a special two-photon interferometer.

Our two-photon interferometer contains an image rotator in one of its arms (see Fig. 9.1).
Similar interferometers with built-in rotation have only been tested at the one-photon level,
where the rotation has been linked to a topological (Berry) phase [106]. A one-photon in-
terferometer with an image reversal has been shown to act as a sorter between even and odd
spatial modes [107, 108]. We will instead consider two-photon interference in an interferom-
eter with built-in rotation.

In two-photon interference experiments, two photons are combined on a beamsplitter,
before being detected. These experiments, which have been pioneered by Hong, Ou and
Mandel (HOM) [27], demonstrate an effective bunching between the photons in each pair,
but only if the optical beams have good spatial and temporal overlap. More recent versions of
these “HOM” experiments study the generation of spatial anti-bunching [90], and the effect
of a modified pump profile (TEM01 versus TEM00) on the interference pattern (bunching
versus anti-bunching) [89, 91].

The key question that we will address is what the observed two-photon interference in
our two-photon-interferometer-with-built-in-rotation tells us about the spatial entanglement
between the two multi-mode beams. As our geometry leads to an effective separation of
the radial and azimuthal degrees of freedom, the experiment provides information on the
entanglement between the orbital angular momenta (OAM) of the two photons [100–102].
We will show that the experiment allows to measure the azimuthal Schmidt number, i.e., it
allows to count the number of entangled OAM modes.

Figure 9.1 shows a schematic overview of our two-photon interferometer. We mildly
focus light from a krypton ion laser (λ=407 nm, θp = 0.50 mrad divergence) onto a 1-mm-
thick β -barium borate (BBO) crystal to generate quantum-entangled photon pairs at 814 nm
via (type-I) spontaneous parametric down-conversion. These twin photons travel along the
individual interferometer arms, one of them through an image rotator, before they are com-
bined at a beam-splitter. Two-photon interference is observed by recording the number of
coincidences as a function of the delay ∆t between the two arms with single-photon counters
(SPC). The limited detection bandwidth (5 nm) and detection angle (< 7 mrad) assure oper-
ation in the so-called thin-crystal limit [34], where phase-matching is automatically fulfilled.
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Figure 9.1: Schematic view of the experimental setup, representing a two-photon inter-
ferometer with an image rotator R(θ ) in one arm. The image rotator R(θ) consists of
four out-of-plane mirrors.

In this limit, the spatial properties of the detected two-photon field are solely determined by
the pump profile.

We study the effect of an image rotation R(θ) on the two-photon interference under a
symmetric TEM00 pump profile and for different aperture sizes, positioned approximately in
the far field at L = 1.5 m from the crystal. The apertures allow us to control the detected
number of entangled spatial modes which, together with the rotation angle θ , are the essen-
tial parameters in our experiment. We typically use an asymmetric configuration, where one
circular aperture is much larger than the other and thereby effectively “fully open”. We call
the setup depicted in Fig. 9.1 “even”, as it has an even number of mirrors in the interferom-
eter (M1 and M2). The experimental results depicted in Figs. 9.2-9.4 have, however, been
obtained with an “odd” number of mirrors (see below).

Figure 9.2 shows the measured coincidence rate as a function of the time delay ∆t at a
fixed rotation angle of θ =−30◦. The reduced coincidence rate around ∆t = 0 demonstrates
how two-photon interference produces an effective bunching of the two incident photons in
either of the two output channels [27]. The shape of the interference pattern is the same
for both geometries: its width of ≈ 260 fs (FWHM) is Fourier-related to the transmission
spectrum of our filters (not shown in Fig. 1) and agrees within a few percent with the value
expected for a ∆λ = 5 nm bandwidth. The modulation depth or so-called HOM visibility,
however, is quite different, being 89.5±0.5 % for the 1 mm aperture and only 15.5±0.5 %
for the 10 mm aperture, the other aperture being “fully open” in both cases.

The reduced visibility implies a loss of entanglement and indicates the presence of spatial
labeling. If the aperture size and image-rotation angle allow one to decide which of the two
photons exiting the beamsplitter travelled which path in the interferometer, the two-photon
interference will disappear. This discrimination can be realized by any possible imaging de-
vice (between beamsplitter and detector) and even does not need to be applied; it is sufficient
if it can be done “only in principle”. Experiments with an even number of mirrors always
yielded visibilities close to 100% irrespective of rotation angle; apparently labeling occurs
only when the total number of mirrors in the interferometer is odd.

Coincidence measurements like those presented in Fig. 9.2 were repeated for various
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Figure 9.2: Two-photon coincidence rate versus the time delay ∆t between the two
interferometer arms, measured at a fixed rotation angle of θ = −30◦ behind a 1 mm
aperture (dots) and a 10 mm aperture (squares). The coincidence rate measured for the
1 mm aperture has been multiplied by the area ratio (≈ 100×) for a direct comparison
with the other geometry.

aperture sizes. Combining these results lead to Fig. 9.3, which shows the HOM visibility at a
fixed rotation angle of θ =−30◦ as a function of the aperture diameter. The drop in visibility
at larger apertures illustrates the above discussion on spatial labeling. The diffraction limit
imposed by the smaller apertures frustrates the observation of such labeling.

Figure 9.3: Two-photon visibility versus the aperture diameter 2a, measured at a fixed
rotation angle of θ = −30◦. The solid curve represents a fit. The two encircled data
points correspond to the interference patterns shown in Fig. 9.2.

By repeating the measurements shown in Fig. 9.3 for a series of fixed rotation angles
we obtain a two-dimensional table of visibilities V (a,θ). By interchanging the rows and
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Figure 9.4: Two-photon visibility measured as a function of the rotation angle θ be-
hind different aperture geometries (specified by the azimuthal Schmidt number Kaz) and
behind single-mode fibers (Kaz = 1). The three dashed lines have been calculated from
Eq. (9.1).

columns in this table, we now also obtain the visibility V (θ) as a function of rotation angle
θ for various fixed detection geometries. Figure 9.4 shows these results for four different
geometries, which are specified by their azimuthal Schmidt number Kaz (see below). All
curves are symmetric under the operation θ ↔−θ (θ = 0◦ corresponds to no image rotation)
and periodic in θ ↔ θ +180◦.

For detection behind single-mode fibers (labeled as Kaz = 1) the obtained visibilities of at
least 98%, independent of θ . As the fundamental mode detected by these fibers is rotationally
symmetric, spatial labeling and thus loss of interference will not occur under any image
rotation. For free-space detection behind small apertures (small Kaz) we observe a relatively
mild effect of image rotation on the spatial entanglement. For larger apertures, this effect
is much more drastic and leads to a visibility as low as 4% at θ = 90◦ for Kaz = 8. The
reason for this reduction is that free-space detectors also monitor the higher-order modes. As
linear combinations of these higher-order modes are no longer invariant under rotation, the
correlated images at the two detectors now provide labeling information that allows one to
distinguish between the interference paths followed by the two photons; a lower visibility
results.

The fits in Figs. 9.3 and 9.4 are based on the following analytic expression that can be
derived for the “asymmetric odd” configuration with hard-edged apertures [109]

V (asinθ) = (1− exp(−ξ ))/ξ , (9.1)

where ξ = 2(a/wd)
2 sin2 θ and a is the aperture radius. The diffraction waist wd = 2Lθp, or

angular spread of one photon at a fixed position of the other, is twice the size of the pump in
the (far-field) detection plane [31]. The solid curve in Fig. 9.3 is a fit based on wd = 1.4 mm,
in agreement with the mentioned values of L and θp. The three dashed curves in Fig. 9.4 are
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based on the same value.
We now come to the essence of this chapter, being the question “How can we count

the number of orbital angular momentum (OAM) modes involved in the high-dimensional
entanglement”. The answer follows directly from an expression of V (θ) in terms of OAM
(or l) modes,

V (θ) = ∑
l

Pl cos(2lθ) (9.2)

(we will derive this expression at the end of the chapter). Here Pl (with ∑l Pl = 1) is the
probability to detected a photon pair with orbital angular momenta (l,−l) (with−∞ < l < ∞).
Equation (9.2) shows that the observed visibility V (θ) is a weighted sum over contributions
from each group of l-modes that oscillate, with their own angular dependence, between Vl = 1
(HOM dip) and Vl = −1 (HOM peak). A Fourier transformation of V (θ) directly yields the
modal distribution Pl .

In order to convert the modal distribution Pl into a single number that counts the effective
number of entangled OAM modes, we use the azimuthal Schmidt number as Kaz ≡ 1/∑l P2

l ,
in analogy with the general form for modal decompositions [110,111]. The relation between
the azimuthal Schmidt number Kaz and the full 2D Schmidt number K2D, where the summa-
tion runs over both azimuthal and radial mode numbers, depends on the size of the detecting
apertures. For small apertures we find Kaz ≈ K2D; for large apertures we find Kaz ≈ 2

√
K2D

with a shape-dependent prefactor.
Based on the above description, we count the number of entangled OAM modes in our

experiment in the following way: For the three lower curves in Fig. 9.4 we first performed
a Fourier analysis of the normalized V (θ)/V (0) to obtain the probability distribution Pl for
each curve. The azimuthal Schmidt numbers that we calculated from these distributions
ranged from Kaz = 1.13 for the 1 mm aperture, to Kaz = 2.9 for the 4 mm aperture, and
Kaz = 8 for the 10 mm aperture, with many values in between. The aperture clearly allows us
to tune the effective number of entangled modes.

We have repeated our measurement series for a symmetric configuration, with equal aper-
ture sizes in front of both detectors. The general appearance of this new set of visibilities V (θ)
(not shown) was similar to that measured with one aperture fully open. The small broadening
of the new V (θ) profile as compared to Fig. 9.4 indicates a slight reduction in the effective
mode number Kaz.

It is instructive to also consider apertures with Gaussian instead of hard-edged trans-
mission profiles (T (r) = exp(−2r2/ã2)), as this allows for a complete (radial and azimuthal)
analytic Schmidt decomposition of the detected field, assuming two identical apertures [112].
This decomposition yields the simple Airy profile [109]

V (θ) =
1

1+(K2D−1)sin2 θ
, (9.3)

where K2D = 1+ 1
2 (ã/wd)

2 is the 2D Schmidt number. The Airy profile has almost the same
shape as the function described by Eq. (9.1).

We conclude now with the promised derivation of Eq. (9.2). This is based on a description
of the two-photon field as a sum over discrete spatial modes, instead of an integral over a
plane-wave continuum. In this so-called Schmidt decomposition [14], the two-photon field is
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represented by the pure state:

|Ψ〉= ∑
i

√
λi|ui〉⊗ |vi〉 , (9.4)

where |ui〉 and |vi〉 are two sets of orthonormal transverse modes. The Schmidt number
K = 1/

(
∑i λ 2

i
)
, with ∑λi = 1, quantifies the effective number of participating modes.

Generally, the Schmidt decomposition of the generated field is very difficult to calculate,
as its spatial extent depends both on the pump geometry and on phase matching [39, 105].
We instead consider only the relevant detected field, being the two-photon field behind the
detection apertures. The Schmidt decomposition of this field is quite different and can often
be done analytically [112] when the apertures are small enough to neglect phase-matching,
as is the case in our experiment. The inclusion of the aperture transmission in the detected
two-photon field is the key element in our present analysis.

For the rotationally-symmetric (l = 0) pump that we use, the symmetry of the two-photon
field is such that the Schmidt decomposition of the detected field factorizes as

|Ψ〉in = ∑
l

∑
p

√
λl,p|l, p〉′⊗|− l, p〉′′ , (9.5)

where l and p are the azimuthal and radial quantum numbers and |l, p〉′ and | − l, p〉′′ are
the Schmidt eigenmodes of the detected field. The mentioned symmetry restricts these
modes to “Laguerre-Gaussian-like” field profiles of which the precise radial distribution is
co-determined by the detection apertures. As our amplitude coefficients

√
λl,p already con-

tain the effects of aperture filtering, they will decrease rapidly both for high p and high l
values (high l-states are quite extended even for p = 0). A summation over the radial mode
number p yields the OAM probability Pl = ∑p λl,p.

As a last step, we propagate the two-photon field of Eq. (9.5) through our interferom-
eter and calculate the expected two-photon visibility V (θ). This propagation will modify
the two-photon field in the following ways: every mirror reflection changes the handedness
by inverting the OAM of each l-state from l to −l. The image rotation R(θ) adds a phase
factor exp(ilθ) to each l-state. The relevant beamsplitter operations are the double transmis-
sion, which leaves the l-states unaffected, and the double reflection, which swaps the labels
and changes the handedness. None of these operations affect the radial component. As the
detected (l, p) states form a complete orthogonal basis, two-photon interference is only ob-
served between states with identical (l, p) labels in the detection channels. The final result is
Eq. (9.2).

For a more general input state, the calculated visibility V (θ) for an interferometer with
an odd number of mirrors contains terms of the form cos [(l1− l2)θ ], which translate into
cos(2lθ) if we apply the conservation of OAM (l1 =−l2 = l). For an interferometer with an
even number of mirrors, V (θ) contains terms of the form cos [(l1 + l2)θ ] instead. Our obser-
vation that V (θ)≈ 1 at any angle θ in the “even-mirror geometry”, can thus be interpreted as
a proof of the existence of OAM entanglement; any photon pair with l1 6= −l2 would make
V (θ) angular dependent.

In summary, we have demonstrated how the high-dimensional entanglement of orbital an-
gular momentum (OAM) can be characterized with a two-photon interferometer that contains
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an odd number of mirrors and an image rotator in one of its interferometer arms. We have
shown how a Fourier analysis of the observed angle-dependent visibility V (θ) profile yields
the full probability distribution over the OAM modes involved in the entanglement. Finally,
we have calculated the azimuthal Schmidt number Kaz corresponding to the effective number
of entangled OAM modes.

This work has been supported by the Stichting voor Fundamenteel Onderzoek der Materie
(FOM).
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Summary

In this summary, we will introduce light waves and light particles, and explain the aspects
of quantum mechanics that are hidden behind the entanglement of light. The specific
research on polarization and spatial entanglement of light, that is presented in this thesis,
will be highlighted.
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Light: waves or particles?
In everyday life one can consider light as a wave phenomenon. A light wave is composed
of an electric and a magnetic field, both exhibiting the same wave behaviour. A light wave
is therefore also known as an electromagnetic wave. Some characteristics of a light wave
are the direction of propagation, the wavelength and the polarization. In Figure 1 we show
(the electric field of) a light wave at two different times together with the three mentioned
wave characteristics. The physical description of light as a wave phenomenon is called wave
optics.

The wavelength is defined as the distance between two subsequent wave peaks. In the
case of ‘visible light’, or just ‘light’ for convenience, the wavelength determines the color of
the light. Blue light has the smallest wavelength of about 400 nm (nm = nanometer = one
billionth of a meter). Red light has the largest wavelength of about 750 nm. Light from the sun
is ‘white’ since it contains all possible colors, as demonstrated by the well-known rainbow.
White sunlight is captured by raindrops after which each color will exit the raindrops via a
separate direction. All colors will then be resolved which results in the rainbow effect. Other
electromagnetic waves (‘invisible’ light) have a much smaller or a much larger wavelength
than that of light. For instance, the wavelength of x-rays is about 10.000 times smaller,
whereas the wavelength of radio signals is millions times larger, varying from a few meters
to several kilometers.

The polarization is the direction in which the electric field of light oscillates. Figure 1
shows a possible polarization; the polarization perpendicular to this one would be associated
with an electric field that oscillates inside and outside this sheet of paper. As sunlight contains
all possible polarizations, it is also called unpolarized light. By using polarizing materials,
one can convert unpolarized light to polarized light which has only one single polarization.
These materials are applied in polaroid sunglasses.

Figure 1: The electric field of a light wave at a certain time and somewhat later
(dashed).

So far, we have considered light as a wave phenomenon. Under certain circumstances,
light can be described as separate light particles rather than as light waves. These light par-
ticles, which are also known as photons, are like small packets of energy which contents is
solely determined by the wavelength of the light. A smaller wavelength hereby corresponds
to a higher photon energy. ‘Blue’ photons therefore contain more energy than ‘red’ pho-
tons. The theory that explains the behavior of photons is called quantum mechanics, which is
also applied to study the behavior of physical objects like atoms and molecules. These latter
quantum objects are the building blocks of all matter around us.
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Quantum mechanics

Quantum superposition
The state of a classical object at an arbitrary moment in time can be given by the object’s
position and velocity at this specific moment. As an example, we consider a mass that is
sliding down an incline without friction. As time goes by, the mass will be lower on the
incline and will continuously have a different position. Moreover, the velocity of the mass
will increase steadily due to the gravitational acceleration and will therefore have different
values at different moments in time. At an arbitrary moment in time, however, classical
mechanics imposes a well-determined state upon the mass, being a position and a velocity.

The above state description is not valid anymore in quantum mechanics. A quantum
object can be in more than one state at an arbitrary moment in time. The object is said to
be in a superposition of states. If our mass would be a quantum object, it could be located
somewhere at the top of the incline having a low velocity and, at the same time, somewhere
down under having a high velocity. This concept of superposition is hardly to imagine in
everyday life, but is needed to understand the entanglement of photons.

In analogy to the classical state, we have supposed that the (superposition) state of a
quantum object can be given by a well-determined position and velocity as well. However,
quantum mechanics teaches us that one cannot simultaneously determine the position and the
velocity of an object with full certainty. If one measures the position with high accuracy, the
measured velocity will exhibit a large uncertainty, and vice versa. Therefore, the position and
velocity that define the state of our quantum mechanical mass should be read as a position
distribution and a velocity distribution.

Observation in quantum mechanics
If we want to know the state of a classical object, we can observe the object by performing
a measurement. In the case of our mass we can stick some measuring tape along the incline
and attach a velocity meter on the mass. By taking a photograph of the system at a certain
moment, we can distillate both the position and the velocity of the mass from the photograph,
and thus the state of the mass at this specific moment in time. It is not surprising that the mass
would again have the same position and velocity at the same moment, if we would not have
made the photograph. In other words, an observation, being a measurement in this case, does
not affect the state of an classical object at all.

How different is the quantum mechanical world, where an observation does drastically
affect the state of a physical system. If we do not observe our quantum mechanical mass
(no photoshooting), the mass could be in the mentioned superposition state: the mass has
two or more positions and two or more velocities at one single moment in time. This state
changes as soon as we perform a measurement by photoshooting. Then, our mass may be
either somewhere at the bottom of the incline with a high velocity, or somewhere else with
another velocity. As a result, our measurement forces the mass to choose for a certain state.
In general, a measurement performed on a quantum object automatically ‘projects’ its su-
perposition state onto one of the possible substates. This property of quantum mechanics is
called the ‘projection postulate’.
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Quantum entanglement
We now consider a system that contains two quantum objects. For convenience, we imagine
two table tennis balls, which are classical objects in reality. Both these table tennis balls can
be of low and high quality, which we label with one star and three stars, respectively. The
two balls are now separated from each other by putting them each in a closed box to prevent
any observation. Let us consider the following superposition state for our two-ball system
[see Figure 2(a)]: with a probability of 50% ball 1 is of 1-star quality and ball 2 is of 3-
star quality, but simultaneously and with equal probability the opposite holds (3-star quality
for ball 1 and 1-star quality for ball 2). As long as both boxes remain closed such that the
balls are not observable, the system will stay in the same superposition state and the qualities
of the balls are fully undetermined. If we now, for instance, open box 1 and observe ball
1, the superposition will immediately vanish due to the projection postulate and the system
will choose one of the two possible states [see Figure 2(b)]. If the 1-star quality is observed
for ball 1, then we immediately and with full certainty know that ball 2 is of 3-star quality,
without opening the box 2! On the contrary, observation of the 3-star quality for ball 1 will
automatically force ball 2 to have the 1-star quality. The bizar thing of this experiment is
the determination of the quality of ball 2 without any manipulation of ball 2 itself. After
all, both balls are strictly separated. This example shows that two quantum objects that are
separated by an arbitrary distance can act as one single object. This connection is called the
entanglement of quantum objects.

Of course, classical table tennis balls will not be entangled easily in reality; we have used
them only to illustrate quantum entanglement. Photons are quantum objects and can therefore
be in an entangled state. In the above example, two entangled photons would play the role
of the two table tennis balls whereas the ball quality would correspond to a certain property
of the photons. By measuring this property for one of the two photons, we immediately
know the outcome for the other photon, without any manipulation of this latter photon and
irrespective of the distance between the photons.

As mentioned earlier, this thesis presents the research that has been done on the entan-
glement of light. A better understanding of this physical phenomenon comes also from the
scientific progress in several laboratories around the world. For example, entanglement of
photons that are separated by tens of kilometers has already been demonstrated. The ulti-
mate challenge of entanglement research is the development of a quantum computer which
would outclass the performance of the current computer by several orders of magnitude. In
particular, such a quantum computer would be ideal for code-breaking (cryptography).

Making entangled photons
Entangled photons are usually generated in a particular crystal (a small glass-like plate),
where a ‘mother photon’ is split into two identical ‘daughter photons’. The daughter photons
are like twins: observation of one of the two photons directly determines the character of
the other, though both photons are separated. Entangled photons are therefore also called
twin photons. The mentioned generation process, named spontaneous parametric down-
conversion, is shown in Figure 3 and described in Chapter 2. As energy is conserved in
this proces, the energy of each twin photon is exactly half the energy of the mother photon.
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Figure 2: (a) Two virtually quantum mechanical table tennis balls are each in a closed
box, being in the following superposition state: ball 1 has the 1-star quality and ball
2 has the 3-star quality (upper halves) but, simultaneously and with equal probability,
ball 1 has the 3-star quality and ball 2 has the 1-star quality as well (lower halves). The
individual ball qualities are thus fully undetermined. (b) By looking inside box 1, ball 1
will immediately have either the 1-star or the 3-star quality. Without opening box 2, ball
2 will then automatically have either the 3-star or the 1-star quality, respectively, as if it
is directly connected to ball 1 (dashed arrow). This connection is called entanglement.

In practice, it is usual to split a beam of blue mother photons into two beams, each containing
one of the corresponding red twin photons. We can insert a detector in both beams, which
‘clicks’ whenever a twin photon arrives. If both detectors click simultaneously, we know
that we have observed a photon pair and that entanglement of light can be measured. The
generated twin photons are simultaneously entangled with respect to three variables. Below
we discuss these three types of entanglement, being entanglement in polarization, time and
space.

The individual polarization of the generated twin photons can be in any direction and is
therefore fully undetermined. However, measurement of an arbitrary polarization for one of
the twin photons immediately forces the polarization of the other twin photon to be in the
perpendicular direction, without any manipulation of this photon. This is called polarization
entanglement of photons. As the polarization of light is relatively easy to handle (for instance
with polarizing elements), research on this type of light entanglement is most popular.

The two entangled photons are generated in the crystal at the same time. At an arbitrary
time after their birth, these photons will have travelled the same distance from the crystal (see
Figure 3). By detecting a photon in only one of the two beams, at a certain distance from
the crystal, we know for sure that its partner in the other beam is located at the same distance
from the crystal. As this distance is related to the time passed by after the birth of the photon
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Figure 3: Two entangled photons are generated as twins from a mother photon. Both
twin photons are located at the same distance from the crystal and their locations are
each other’s mirror image with respect to the central axis. Although the twin photons
are separated, observation of one photon immediately determines the character of the
other photon. This so-called entanglement can be measured by inserting a detector in
both paths.

pair, we here speak of time entanglement of photons.
Twin photons are generated not only at the same time but also at the same transverse

position in the crystal. The transverse position is the position measured in the direction
perpendicular to the incoming beam of mother photons, or perpendicular to the central axis
(see Figure 3). The measurement of a certain transverse position for a photon in one of
the emitted beams immediately determines the transverse position of its partner in the other
beam. This latter position is simply the mirror image of the measured transverse position
with respect to the central axis. This type of entanglement is called entanglement of photons
in their transverse position, or spatial entanglement of light.

This thesis
The research presented in this thesis covers both polarization and spatial entanglement of
light. In Chapter 3 we present a novel method for high-accuracy determination of the thick-
ness and cutting angle of the generating crystal. The effect of the crystal thickness on the
production rate of polarization-entangled photons is discussed in Chapter 4. We have demon-
strated that, under certain circumstances, the production rate is inversely proportional to the
crystal thickness: a 0.25 millimeter thick crystal surprisingly yields four times more photon
pairs than a 1 millimeter thick one.

In Chapter 5 we compare the degree of polarization entanglement that we have measured
in two different experiments. In the first experiment, a metal hole array (hole size smaller than
wavelength) is positioned in one of the two beams. In the second experiment, the photons
are ‘torn apart’ by decomposing their polarization in front of the hole array, and ‘recovered’
again in a reverse way behind the hole array. The latter scheme, seemingly identical to the
first one, surprisingly yields a significantly weaker polarization entanglement. This result is
ascribed to the propagation of specific waves along the surface of the metal hole array.

In Chapter 6 we study the effect of the spatial character of the mother beam on the spatial
character of the two daughter beams. In addition, we investigate the consequences for the
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degree of polarization entanglement. In Chapter 7 we show that the measured degree of
polarization entanglement strongly depends on the way the twin photons are detected.

In the experiment described in Chapter 8, both twin photons have the possibility to travel
along two different paths. We explore whether the measured transverse position of one photon
can reveal which path the other photon has travelled. The answer to this question depends
on the symmetry of the experimental setup. Chapter 9 treats a similar experiment in which
one of the beams is rotated around its own axis. Again, the symmetry of the setup determines
whether the degree of spatial entanglement decreases with the amount of rotation. Moreover,
this experiment allows us to quantify the size of the spatial structure of the entangled light.
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Samenvatting

In deze samenvatting wordt uitgelegd wat lichtgolven en lichtdeeltjes zijn, en welke as-
pecten van de quantummechanica onder de verstrengeling van licht schuilen. Het spe-
cifieke onderzoek naar lichtverstrengeling in polarisatie en de ruimtelijke vrijheidsgraad,
dat beschreven staat in dit proefschrift, wordt nader toegelicht.
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Lichtgolven of lichtdeeltjes?
In het dagelijkse leven kunnen we licht vaak opvatten als een golfverschijnsel. Een lichtgolf
bestaat uit een elektrisch en een magnetisch veld, die elk hetzelfde golvende karakter ver-
tonen. Een lichtgolf wordt daarom ook wel een elektromagnetische golf genoemd. Enkele
kenmerken van een lichtgolf zijn de voortplantingsrichting, de golflengte en de polarisatie. In
figuur 1 is (het elektrische veld van) een lichtgolf op twee tijdstippen weergegeven met de drie
genoemde eigenschappen. De natuurkundige beschrijving van licht als een golfverschijnsel
is de golfoptica.

De golflengte is de afstand tussen twee opeenvolgende golftoppen. In het geval van ‘zicht-
baar licht’, dat hier voor het gemak ‘licht’ wordt genoemd, bepaalt de golflengte de kleur van
het licht. Blauw licht heeft de kleinste golflengte van ongeveer 400 nm (nm = nanometer =
een miljardste van een meter). Rood licht heeft de grootste golflengte van ongeveer 750 nm.
Zonlicht is ‘wit’ omdat het alle kleuren bevat. De welbekende regenboog is hiervan het spre-
kende bewijs. Het witte zonlicht wordt door de regendruppels ingevangen waarbij elke kleur
via een afzonderlijke richting de druppels verlaat. Hierdoor worden alle kleuren geschei-
den en onstaat het regenboog-effect. Andere elektromagnetische golven (‘onzichtbaar’ licht)
hebben een veel kleinere of veel grotere golflengte dan die van licht. De golflengte van bij-
voorbeeld röntgenstraling is zo’n 10.000 maal kleiner, terwijl de golflengte van radiosignalen
miljoenen malen groter is, variërend van enkele meters tot vele kilometers.

De polarisatie is de richting waarin het elektrische veld van het licht op en neer golft.
In figuur 1 is een mogelijke polarisatie aangegeven. Een andere polarisatie is de polarisatie
loodrecht hierop, welke in dezelfde figuur correspondeert met een elektrisch veld dat als het
ware in en uit het papier golft. Zonlicht bezit alle mogelijke polarisaties en wordt daarom
ongepolariseerd licht genoemd. Door gebruik te maken van zogenaamde polariserende ma-
terialen kan ongepolariseerd licht omgezet worden in gepolariseerd licht, dat nog een enkele
polarisatie heeft. Dit gebeurt onder andere bij polaroid zonnebrillen.

Figuur 1: Het elektrische veld van een lichtgolf op een zeker tijdstip en even later
(gestippeld).

Hierboven hebben we licht beschouwd als een golfverschijnsel. Onder bepaalde om-
standigheden laat licht zich echter beter beschrijven als afzonderlijke lichtdeeltjes die ook
wel fotonen worden genoemd. Een foton is als het ware een energiepakketje; de hoeveelheid
energie van een foton wordt alleen bepaald door de golflengte van het licht. Hierbij geldt dat
hoe kleiner de golflengte van het licht, des te groter de energie van het foton. ‘Blauwe’ foto-
nen bezitten dus meer energie dan ‘rode’ fotonen. De natuurkundige theorie die onder andere
het gedrag van fotonen verklaart, is de quantummechanica. Verder beschrijft de quantum-
mechanica het gedrag van natuurkundige objecten zoals atomen en moleculen. Dergelijke
quantumobjecten zijn de bouwstenen van alle materie om ons heen.
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Quantummechanica

Quantumsuperpositie
De toestand van een klassiek object op een willekeurig tijdstip kan worden gegeven door
zijn positie en snelheid op dat tijdstip. We beschouwen een blokje dat wrijvingsloos van een
helling afschuift. Het blokje zal zich in de loop van de tijd steeds lager op de helling bevinden
en zodoende voortdurend een andere positie innemen. Daarnaast zal de snelheid van het
blokje geleidelijk toenemen als gevolg van de zwaartekrachtsversnelling en elk tijdstip een
andere waarde hebben. Echter, de wetten van de klassieke mechanica leggen het blokje op
een willekeurig tijdstip een welbepaalde toestand op, die gegeven wordt door een positie en
een snelheid.

In de quantummechanica is deze toestandsbeschrijving niet meer geldig. Een quantumob-
ject kan zich op een willekeurig tijdstip in meerdere toestanden bevinden. Het object bevindt
zich dan in een zogenaamde superpositie van toestanden. Als het hiervoor genoemde blokje
quantummechanisch zou zijn geweest, kon het zich op één tijdstip zowel bovenaan de helling
bevinden met een lage snelheid als onderaan de helling met een grote snelheid. Dit idee van
superpositie is in de alledaagse wereld nauwelijks voor te stellen, maar is essentieel om de
verstrengeling van fotonen te verklaren.

Voor de analogie met de klassieke toestand hebben we aangenomen dat ook de toestand
van een quantumobject, al dan niet in een superpositie, gegeven kan worden door een com-
binatie van een welbepaalde positie en snelheid van het quantumobject. Echter, volgens de
quantummechanica kunnen de positie en de snelheid van een object nooit tegelijkertijd met
100% zekerheid worden bepaald. Wanneer de positie heel precies wordt gemeten, zal de
gemeten snelheid een grote onzekerheid vertonen, en andersom. Voor de toestand van ons
quantummechanische blokje is het correcter om voor de combinatie van positie en snelheid
een combinatie van positiespreiding en snelheidsspreiding te lezen.

Waarnemen in de quantummechanica
Wanneer we de toestand van een klassiek object willen weten, kunnen we een waarneming
doen door een meting aan het object uit te voeren. In het geval van het blokje kunnen we
een meetlint langs de helling plakken en een snelheidsmeter op het blokje plaatsen. Door op
een bepaald tijdstip met een camera een foto van het systeem te maken, kunnen we uit de
gemaakte foto zowel de positie als de snelheid van het blokje, en daarmee de toestand van het
blokje op dat ene tijdstip bepalen. Het zal ons niet verbazen dat het blokje op dat ene tijdstip
wederom dezelfde positie en snelheid zou hebben gehad als we de foto niet hadden gemaakt.
Met andere woorden, de waarneming in de vorm van een meting heeft geen enkele invloed
op de toestand van een klassiek object.

In de quantummechanica heeft een waarneming juist wel drastische gevolgen voor de
toestand van een natuurkundig systeem. Wanneer ons blokje een quantumobject zou zijn
geweest en niet wordt geobserveerd, door bijvoorbeeld geen fotometing te doen, zou het
blokje zich in de eerder genoemde superpositie-toestand kunnen verkeren: het blokje neemt
op één tijdstip twee of meerdere posities in en heeft twee of meerdere snelheden. Deze
toestand verandert echter als we wel een fotometing zouden uitvoeren. Het blokje blijkt zich
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dan bijvoorbeeld ergens onderaan de helling te bevinden en een grote snelheid te bezitten.
De fotometing dwingt het blokje dus een bepaalde toestand te kiezen. In het algemeen geldt
dat een meting aan een quantummechanisch systeem de superpositie-toestand in een van
de mogelijke deeltoestanden wordt ‘geprojecteerd’. Dit wordt het projectiepostulaat van de
quantummechanica genoemd.

Quantumverstrengeling
We beschouwen nu een systeem bestaande uit twee quantumobjecten. Voor het gemak nemen
we twee tafeltennisballen die in werkelijkheid klassieke objecten zijn. De tafeltennisballen
kunnen elk van lage en hoge kwaliteit zijn die we respectievelijk aanduiden met één ster en
drie sterren. We doen de ballen ieder afzonderlijk in een afgedekte doos zodat ze gescheiden
en niet waarneembaar zijn. Laten we zeggen dat dit quantummechanische tweeballensysteem
zich nu in de volgende superpositie-toestand bevindt [zie figuur 2(a)]: met een kans van 50%
heeft bal 1 de 1-sterkwaliteit en bal 2 de 3-sterrenkwaliteit, maar tegelijkertijd en met dezelfde
kans geldt ook het omgekeerde (bal 1 van 3-sterrenkwaliteit en bal 2 van 1-sterkwaliteit).
Zolang we beide dozen dichthouden en de ballen niet kunnen zien, blijft het systeem in
deze superpositie-toestand verkeren en is de individuele kwaliteit van beide ballen volledig
onbepaald. Door nu bijvoorbeeld doos 1 te openen en bal 1 waar te nemen, zal het systeem
vanwege het projectiepostulaat onmiddellijk zijn superpositie verliezen en in een van de twee
mogelijke toestanden vervallen [zie figuur 2(b)]. Zien we de 1-sterkwaliteit voor bal 1, dan
weten we onmiddellijk en met 100% zekerheid dat bal 2 van 3-sterrenkwaliteit is zonder doos
2 te openen! Zien we daarentegen de 3-sterrenkwaliteit voor bal 1, dan was bal 2 automatisch
van 1-sterkwaliteit geweest. Het bizarre van dit experiment is dat de kwaliteit van bal 2
bepaald kan worden zonder ook maar enige invloed op deze bal uit te oefenen. Immers,
beide ballen zijn strict gescheiden. Dit voorbeeld laat zien dat twee willekeurig ver van
elkaar verwijderde quantumobjecten de mogelijkheid hebben om zich als één object voor te
doen. Deze relatie noemen we de verstrengeling van quantumobjecten.

Uiteraard hebben we klassieke tafeltennisballen alleen maar gebruikt om quantumver-
strengeling te illustreren, en zullen ze in werkelijkheid niet snel verstrengeld zijn. Fotonen
zijn quantumobjecten en kunnen daardoor wel in een verstrengelde toestand verkeren. In het
bovenstaande voorbeeld zouden twee verstrengelde fotonen de rol van de twee tafeltennisbal-
letjes innemen en correspondeert de balkwaliteit met een bepaalde eigenschap van de fotonen.
Door deze eigenschap aan een van de twee fotonen te meten, weten we onmiddellijk wat de
uitkomst voor het andere foton is, zónder iets te doen met dit laatste foton en ongeacht de
afstand tussen beide fotonen.

Het onderzoek dat gepresenteerd wordt in dit proefschrift gaat zoals eerder gezegd over
lichtverstrengeling. Ook elders op de wereld wordt wetenschappelijk onderzoek verricht om
dit natuurkundig verschijnsel beter te begrijpen. Zo is onder andere verstrengeling van foto-
nen aangetoond die tientallen kilometers van elkaar verwijderd zijn. Het ultieme doel van het
onderzoek naar verstrengeling is het ontwikkelen van een quantumcomputer die vele malen
sneller zou kunnen rekenen dan de huidige computers, en onder andere uitermate geschikt is
voor het kraken van codes (cryptografie).
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Figuur 2: (a) Twee zogenaamd quantummechanische tafeltennisballen bevinden zich
ieder in een afgedekte doos en in de volgende superpositie-toestand: bal 1 is van 1-ster-
kwaliteit en bal 2 van 3-sterrenkwaliteit (bovenste balhelften), maar tegelijkertijd en
even waarschijnlijk is bal 1 van 3-sterrenkwaliteit en bal 2 van 1-sterkwaliteit (onderste
balhelften). De individuele kwaliteit van beide ballen is dus volledig onbepaald. (b)
Door nu in doos 1 te kijken verdwijnt de superpositie en is bal 1 onmiddellijk van 1-
ster- òf van 3-sterrenkwaliteit. Zónder doos 2 te openen zal bal 2 dan respectievelijk
van 3-sterren- òf van 1-sterkwaliteit zijn, alsof het in directe verbinding (gestippelde
pijl) staat met bal 1. Deze relatie wordt verstrengeling genoemd.

Het maken van verstrengelde fotonen
Verstrengelde fotonen worden doorgaans in een speciaal kristal (een glazig plaatje) gemaakt,
waar een ‘moederfoton’ wordt gesplitst in twee identieke ‘dochterfotonen’. De dochterfoto-
nen vormen als het ware een tweelingpaar: het waarnemen van een van de twee fotonen geeft
direct uitsluitsel over het karakter van het andere foton, ook al zijn beide fotonen gescheiden.
Verstrengelde fotonen worden daarom ook wel tweelingfotonen genoemd. Het genoemde
splitsingsproces, dat spontaneous parametric down-conversion wordt genoemd, is in figuur 3
weergegeven en wordt in hoofdstuk 2 beschreven. Aangezien er geen energie verloren mag
gaan in dit proces is de energie van elk tweelingfoton precies de helft van die van het moeder-
foton. In de praktijk wordt vaak een blauwe bundel van moederfotonen gesplitst in twee rode
bundels die elk een van de bijbehorende tweelingfotonen bevat. We kunnen in beide bun-
dels een fotondetector plaatsen die ‘klikt’ zodra er een tweelingfoton op valt. Wanneer beide
detectoren tegelijk klikken, weten we dat we een fotonpaar ‘gezien’ hebben en lichtverstren-
geling kunnen meten. De geproduceerde tweelingfotonen zijn tegelijkertijd in drie opzichten
met elkaar verstrengeld. We bespreken hieronder deze drie mogelijke vormen van lichtver-
strengeling in polarisatie, tijd en ruimte.
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Figuur 3: Twee verstrengelde fotonen worden als een tweelingpaar uit een moeder-
foton gemaakt. Beide fotonen bevinden zich even ver van het kristal en hun locaties
zijn elkaars spiegelbeeld ten opzichte van de centrale as. Hoewel de tweelingfotonen
gescheiden zijn, legt een waarneming van één foton onmiddellijk het karakter van het
andere foton vast. Deze verstrengeling kan worden gemeten door in beide paden een
detector te plaatsen.

De individuele polarisatie van de geproduceerde tweelingfotonen neemt alle mogelijke
richtingen aan en is zodoende volledig onbepaald. Echter, meten we een willekeurige po-
larisatie voor een van de tweelingfotonen, dan staat onmiddellijk vast dat het andere twee-
lingfoton de polarisatie loodrecht op deze gemeten polarisatie bezit, zonder ook maar iets
te doen met dit laatste foton. We spreken dan over polarisatieverstrengeling van fotonen.
Aangezien de polarisatie van licht eenvoudig te manipuleren is (met onder andere polari-
serende elementen) geniet deze vorm van lichtverstrengeling de meeste populariteit in het
wetenschappelijk onderzoek.

De twee verstrengelde fotonen worden op hetzelfde moment in het kristal aangemaakt en
zullen op een willekeurig tijdstip na hun geboorte dezelfde afstand vanaf het kristal hebben
afgelegd (zie figuur 3). Door in een van de twee bundels een foton te detecteren op een
zekere afstand van het kristal, weten we zeker dat zijn partner in de andere bundel zich op
dezelfde afstand van het kristal bevindt. Aangezien deze afstand gekoppeld is aan de ver-
streken tijd na de geboorte van het fotonpaar, noemen we deze vorm van verstrengeling ook
wel tijdsverstrengeling van fotonen.

Tweelingfotonen worden niet alleen op hetzelfde moment maar ook op dezelfde dwars-
positie in het kristal aangemaakt. Hiermee bedoelen we de positie in de richting loodrecht
op de invallende bundel van moederfotonen, ofwel loodrecht op de centrale as (zie figuur 3).
Het meten van een zekere dwarspositie van een foton in één van de uittredende bundels legt
onmiddellijk de dwarspositie van zijn partner in de andere bundel vast. Deze laatste positie is
namelijk het spiegelbeeld van de gemeten positie ten opzicht van de centrale as. We spreken
hier over de verstrengeling van fotonen in hun dwarspositie, ofwel ruimtelijke verstrengeling
van licht.

Dit proefschrift
Het onderzoek in dit proefschrift omvat zowel de polarisatie- als de ruimtelijke verstrengeling
van licht. In hoofdstuk 3 wordt een nieuwe methode gepresenteerd om de dikte en de snijhoek
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van het genererende kristal heel nauwkeurig te bepalen. De invloed van de kristaldikte op het
aantal geproduceerde polarisatieverstrengelde fotonen wordt in hoofstuk 4 behandeld. We
hebben aangetoond dat onder bepaalde omstandigheden deze productie omgekeerd evenredig
is met de kristaldikte: een 0.25 millimeter dik kristal levert gek genoeg vier keer zoveel
fotonparen op als een 1 millimeter dik kristal.

In hoofdstuk 5 worden twee experimenten beschreven waarin de gemeten sterktes van
polarisatieverstrengeling met elkaar worden vergeleken. In het eerste experiment wordt in
een van de bundels een metalen gatenrooster (met gaten kleiner dan de golflengte) geplaatst.
In het tweede experiment worden de fotonen vóór het gatenrooster afzonderlijk ‘uit elkaar
getrokken’ door hun polarisatie te ontbinden, en worden ze ná het gatenrooster op omge-
keerde wijze weer ‘hersteld’. Hoewel deze laatste situatie identiek lijkt aan die van het
eerste experiment, meten we verrassend genoeg een aantoonbaar zwakkere polarisatiever-
strengeling. Dit kan worden verklaard door de voortplanting van bepaalde golven over het
oppervlak van het metalen gatenrooster.

In hoofdstuk 6 wordt het effect van het ruimtelijke karakter van de moederbundel op
de ruimtelijke karakter van de twee dochterbundels bestudeerd. Verder wordt onderzocht
welke gevolgen dit heeft voor de sterkte van de polarisatieverstrengeling. In hoofdstuk 7
wordt aangetoond dat de gemeten sterkte van de polarisatieverstrengeling sterk afhangt van
de wijze waarop de tweelingfotonen gedetecteerd worden.

In het experiment dat in hoofdstuk 8 beschreven is, hebben beide tweelingfotonen de
mogelijkheid om twee verschillende paden te volgen. We onderzoeken of we op grond van
de gemeten dwarspositie van één foton kunnen beslissen welk pad het andere foton heeft
gevolgd. Het antwoord op deze vraag blijkt af te hangen van de symmetrie van de meetop-
stelling. Hoofdstuk 9 behandelt een soortgelijk experiment waarin één van de bundels om
zijn eigen as wordt gedraaid. Ook hier bepaalt de symmetrie van de meetopstelling of de
sterkte van de ruimtelijke verstrengeling afneemt met de hoeveelheid verdraaiing. Tevens
hebben we met dit experiment de grootte van de ruimtelijke structuur van het verstrengelde
licht kunnen vaststellen.
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van Anneke hebben we, tot onze droefenis, al in het derde jaar van mijn promotie moeten
missen.

De afgelopen jaren heb ik prettig mogen samenwerken met de studenten Bart-Jan Pors,
Rakesh Partapsing, Yung-Chin Oei en Sander Doesburg. Tijdens hun stages in de vakgroep
hebben zij niet alleen een concrete bijgedrage geleverd aan de voortgang van mijn onderzoek,
maar heeft hun, soms kritische, nieuwsgierigheid mij zeker ook scherp gehouden.

Ik ben dankbaar voor de aangename sfeer waarin ik mijn promotieonderzoek heb mo-
gen verrichten. De ontspanning binnen en buiten het lab, weerspiegeld in onder andere
de koffiepauzes, filmavonden en groepsetentjes, was uiteraard niet mogelijk geweest zon-
der de aanwezigheid van mijn collega’s, te weten de stafleden, de promovendi Yngve Lien,
Jos Dingjan, Sumant Oemrawsingh, Hayk Haroutyunyan, Javier Loaiza, Jorrit Visser, Erwin
Altewischer, Thijs Klaassen, Nikolay Kuzmin, Graciana Puentes, Eduard Driessen, Steven
Habraken, Bart-Jan Pors en Wouter Peeters, de postdocs Andrea Aiello, Cyriaque Genet en
Dirk Voigt, en alle studenten.

Tot slot wil ik mijn broer, mijn zus en mijn ouders bedanken, die mij te allen tijde hebben
gestimuleerd en onvoorwaardelijk hebben gesteund.

127



128


