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Chapter 1

Introduction

The fundamental issue of interaction between light and matter arises in several phenom-
ena related to the manipulation of quantum matter. This is a widely studied topic, especially
in recent years, triggered by the successful attempts of neutral atom cooling and trapping
in light fields [1-3]. While interacting with light fields, an atom exchanges momentum and
energy with the light field and experiences light forces which may confine the atom spatially
and diminish the thermal component of the atomic dynamics. The recent advances in cool-
ing and trapping techniques allow such low temperatures that the quantum features of the
atomic dynamics become crucial. Besides, the light fields serve as the main tool allowing a
high-quality control on properties of quantum matter such as neutral atoms. This has been
implemented in several applications. The most important among them remain atomic clocks
and atomic interferometers [4,5]. Cold atoms seem to be very promising candidates to build
interferometers with a sensitivity that can not be achieved by conventional, purely optical in-
terferometric schemes. Another practical implementation of cold atoms and especially cold
ions is related to their implementation in various schemes of quantum computation [6, 7].

The next step in the direction of making neutral atoms “more quantum-mechanical”’has
been done in 1995 after the first experimental demonstration of a Bose-Einstein Condensate
(BEC) [8,9]. Employing the technique of evaporative cooling one can access such low tem-
peratures that most of the trapped atoms populate the one-particle ground state, giving rise
to macroscopic population of a single quantum energy level. Thus, now the quantum prop-
erties of the matter are amplified and can be probed on a macroscopic level. Whereas most
theories describing a sample of cold atoms neglect correlations between atoms forming the
sample, one must take into account interparticle interactions between atoms forming the con-
densate and consider BEC as a truly multiparticle system. The early theoretical work on a
single-mode condensate was based on the Gross-Pitaevskii-Bogoliubov theory, which treats
the system semiclassically. This is based on analogies with the theory of superfluidity, which
suggests to observe, for instance, vortices for BEC [10, 11]. In the mean time, a BEC can
exhibit quantum features not covered by the semiclassical theory. Such features have been
predicted [12] and observed for a multimode BEC, such as a BEC trapped in an optical lattice,
in the limit where interparticle interactions are strong [13, 14]. The existence of a multimode
condensate raises the important question of the relative phase between modes [15, 16].

In this thesis, we consider some examples and physical situations where light fields are
employed to manipulate cold atomic samples or BECs with high degree of precision. We start
with a consideration of single atoms, and then extend the discussion to multiparticle systems
such as BECs.



In Chapter 2 we consider the possibilities for state preparation and state control of a single
trapped atom in a tilted periodic optical potential. Normally, a periodic optical potential is
formed as a result of interference between counterpropagating travelling waves. Here, in ad-
dition to the periodic potential, a uniform force is applied having arbitrary time dependence.
We describe the full dynamics of the atom in such a potential on the basis of an exactly
solvable model.

In the mean time, one can consider the interaction of a single two-level atom with a pulsed
periodic optical potential or a single atom diffracting on a standing wave. This is described
in Chapter 3. One can control the dynamics of the diffracted atoms by applying a succeeding
travelling wave and appropriately choosing the interaction periods. It is also shown that the
amount of momentum, that the photons transfer between the atomic internal energy levels
during the interaction with a travelling wave, may be larger than the photon momentum #Ak.

Whereas the interaction of an atom with counterpropagating travelling waves is accom-
panied by an exchange of linear momentum between the light field and the atom, interaction
with a pair of Laguerre-Gaussian (LG) beams with opposite helicity leads to a large exchange
of angular momentum. The LG beams are known to carry orbital angular momentum. The
LG beams with opposite helicity form a circular lattice configuration, which has some prin-
cipal advantages in comparison with a linear one. This suggests a novel scheme for atom
interferometry without mirror pulses. We discuss it in Chapter 4.

Starting from Chapter 5 we consider multimode BECs. As a model problem, we take a
particular physical realization in the form of a BEC trapped in a potential having a two-well
geometry. Such a potential is a simple example of a two-mode system. We compare the dy-
namics of a BEC in such a trap with the dynamics of atoms diffracting from a standing light
wave. The corresponding Hamiltonians have an identical appearance, but with a different set
of commutation rules. Some well-known diffraction phenomena are shown to have analo-
gies in the two-well case. They represent a collective exchange of a fixed number of atoms
between the wells.

Then, in Chapter 6 we continue studying properties of double-well condensates. A sen-
sitive way to probe their properties in the limit of with strong interatomic interactions is to
look for resonant behavior when an external periodic perturbation acts on the system. The
response of the system may be expected to be very sensitive to the value of the modulation
frequency in the neighborhood of a resonance. The periodic perturbation can be implemented
by modulating the form of the trapping potential. From a practical viewpoint, one can con-
trol the average number of particles in the wells by varying the parameters of the periodic
perturbation.

In Chapter 7 we consider the relative phase build-up between the modes of a multimode
BECs while observing the decay product from the modes in interference. We discuss exactly
solvable models for this process in cases where competing observation channels drive the
phases to different sets of values. We treat the case of two modes which both emit into the
input ports of two beam splitters, and of a linear or circular chain of modes.

The chapters of this thesis have been written as separate papers. In order to allow a reader
to read the chapters independently, some overlap between the chapters is unavoidable.



Chapter 2

Coherent control of atom dynamics in an optical
lattice

On the basis of a simple exactly solvable model we discuss the possibilities for state
preparation and state control of atoms in a periodic optical potential. In addition to
the periodic potential a uniform force with an arbitrary time dependence is applied. The
method is based on a formal expression for the full evolution operator in the tight-binding
limit. This allows us to describe the dynamics in terms of operator algebra, rather than
in analytical expansions.

2.1 Introduction

The energy eigenvalues of a quantum particle moving in a periodic potential form energy
bands (the Bloch bands) that are separated by band gaps. The eigenstate within a band is
characterized by the quasimomentum, which determines the phase difference between two
points separated by a period. An initially localized wave packet typically propagates through
space, leading to unbounded motion. When an additional uniform force is applied, the Bloch
bands break up into a ladder of equally spaced energy levels called the Wannier-Stark lad-
der. In this case, a wave packet of the particle extending over several periods can exhibit
bounded oscillatory motion, termed Bloch oscillation, at a frequency determined by the level
separation in the ladder. These early results of the quantum theory of electrons in solid crys-
tals [17-20] have regained interest recently due to the advent of optical lattices for atoms.
These lattices are formed when cold atoms are trapped in the periodic potential created by
the superposition of a number of traveling light waves [21-24]. In contrast to the case of
electrons in crystal lattices, these optical lattice fields have virtually no defects, they can be
switched on and off at will, and dissipative effects can be largely controlled. The phenomenon
of Bloch oscillations was first observed for cesium atoms in optical lattices [25,26]. The
uniform external force is mimicked by a linear variation of the frequency of one of the coun-
terpropagating traveling waves, thereby creating an accelerated standing wave. By applying
a modulation on the standing-wave position, Rabi oscillations between Bloch bands, as well
as the level structure of the Wannier-Stark ladder have been observed for sodium atoms in
an optical lattice [27-29]. Theoretical studies of transitions between ladders have also been
presented [30,31]. Bloch oscillations have also been demonstrated for a light beam propa-
gating in an array of waveguides, with a linear variation of the refractive index imposed by a
temperature gradient [32].
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When the applied uniform force is oscillating in time, the motion of a particle in a peri-
odic potential is usually unbounded. However, it has been predicted that the motion remains
bounded for specific values of the ratio of the modulation frequency and the strength of the
force [33,34]. Similar effects of dynamical localization, including routes to chaos, have been
studied experimentally for optical lattices, including both amplitude and phase modulation of
the uniform force [35]. Phase transitions have been predicted for atoms in two incompatible
periodic optical potentials imposed by bichromatic standing light waves [36].

In the present paper we discuss the Wannier-Stark system with a time-dependent force,
as a means of preparing the state of particles in a periodic potential. We derive an exact
expression for the evolution operator of the particle, with an arbitrary time-dependent force.
This allows one to apply the combination of delocalizing dynamics in the absence of the
uniform force with the periodic dynamics induced by a uniform force for coherent control
of the state of the particles. Exact solutions in the case of a constant uniform force have
been obtained before by analytical techniques [37,38]. The operator method allows an exact
and unified scheme to describe phenomena induced by an oscillating force. Examples are
dynamical localization and fractional Wannier-Stark ladders.

The model is described in one dimension (1D). However, this is no real restriction. Under
the assumption of nearest-neighbor interaction, the corresponding 2D or 3D problem exactly
factorizes into a product of 1D solutions.

2.2 Model system

2.2.1 Periodic potential

The quantum-mechanical motion of atoms in a periodic optical potential V' (x) with period a
is described by the Hamiltonian

P2
Hy=— . 2.1

0o=57 V(z) (2.1)
We assume that the atoms are sufficiently cooled, so that only the lowest energy band is
populated. The ground state in well n located at x = na is indicated as |n). These states
play the role of the basis of localized Wannier states. For simplicity we take the tight-binding
limit, where only the ground levels in neighboring wells are coupled. When we choose the
zero of energy at the ground level in a well, the Hamiltonian (2.1) projected on these ground
levels is defined by

Hy = %m(& +B_), Biln)=|n£1). 2.2)

The raising and lowering operators B and B_ are each other’s Hermitian conjugates, and
each one of them is unitary. The frequency {2 measures the coupling between neighboring
wells, due to tunneling through the barriers. We shall allow the coupling to depend on time.
The eigenstates of H( are directly found by diagonalizing the corresponding matrix. These
states are the Bloch states |k), with energy E(k) = 7 cos(ka). Their expansion in the
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Wannier states and the inverse relations can be expressed as

k) = ,/%Zem’wm |n>:1/%/ dk e~mka ). (2.3)

Obviously, the states |k) are periodic with period 27 /a, and the quasimomentum % can be
chosen from the Brillouin zone [—7/a, 7/a]. The integration in Eq. (2.3) extends over this
Brillouin zone. From the translation property (x|n) = (z + aln + 1) of the Wannier wave
functions it follows that the states (2.3) do indeed obey the Bloch condition (x + alk) =
exp(ika)(x|a). When the states |n) are normalized as (n|m) = d,,,, the Bloch states obey
the continuous normalization relation (k|k’) = §(k — k').

2.2.2 Uniform force

An additional uniform force is described by adding to the Hamiltonian the term

Hy = th, (2.4)
a

where the (possibly time-dependent) force of size ZA(¢)/a is in the negative direction. On
the basis of the Wannier states, this term is diagonal, and it is represented as

H1 = hAB()7 B(]"ﬂ> = ’I’L|TL> (25)
Hence the evolution of a particle occurs under the influence of the total Hamiltonian
H = Hy+ H;, (2.6)

with Hy and H; defined by eqgs. (2.2) and (2.5), in terms of the operators B and By. We
shall also need expressions for the operators B and By acting on a Bloch state. These can
be found from the definition of the operators and the expansions (2.3). One easily finds that

Bilk) = e¥*|k), e=FP0|k) = |k — B/a). 2.7)

In Bloch representation the operators have the significance By = exp(Fika) and By =
(i/a)(d/dk), which is confirmed by the commutation rules (2.8). The Wannier states may
be viewed as discrete position eigenstates, with By the corresponding position operator. The
Bloch states play the role of momentum eigenstates, and the finite range of their eigenvalues
within the Brillouin zone reflects the discreteness of the position eigenvalues.

2.2.3 Operator algebra
The basic operators B and B obey the commutation rules
[B()7Bj:] = iB:I:v [B+7B*] =0. (28)

In order to derive exact expressions for the evolution operator corresponding to the Hamil-
tonian (2.6), we need several operator identities involving these operators By and B+. The
identities

eiﬂBo Bie*iﬁBo — eiiﬁBi 2.9)
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directly follow from the commutation rules (2.8), and they lead the transformation rules
; 1 . 1 ) )
¢0B0 exp ( —iza(By + B_))e*ZﬁBO — exp ( —iza(c By + e*’f’B_)) (2.10)
for arbitrary values of « and (3. We shall also need the equalities

exp (%aBi>BO exp ( — %ozBi> =By F %aBi, (2.11)

which are verified after differentiation with respect to o, while using the commutation rules
(2.9).

2.3 Operator description of evolution

2.3.1 Evolution operator

In this section we derive expressions for the evolution operator U (¢, 0), which transforms an
arbitrary initial state | (0)) as [¥(¢t)) = U(¢,0)|¥(0)). The results are valid for any time-
dependence of the uniform force and the coupling between neighboring wells, as specified by
A(t) and Q(t). A time-dependent coupling represents the case that the intensity of the lattice
beams is varied. We express the evolution operator in the factorized form

U(tv 0) =Uy (t, O)UO (tv O)a (2.12)

where Uy (¢,0) = exp[—ip(t)By] gives the evolution corresponding to the Hamiltonian H;
alone, in terms of the phase shift

¢(t):/0 dt" A(t'). (2.13)

From the evolution equation for U with the Hamiltonian (2.6) while using the transformation
(2.9) we find the evolution equation

dU, iQ(t) 7, A

o _ KUY (e’¢(t)B+ T e’W(”B_) Uo(t). (2.14)

dt 2

Since this equation contains only the commuting operators B and B_, it can easily be
integrated. In fact, the solution is given by eq. (2.10) with the time-dependent values of the
real parameters « and (3 defined by the relations

t
a(t)e® = / dt' Q(t')e' ). (2.15)
0
Combining this solution with the definition of U; leads to a closed expression for the evolu-
tion operator U (¢, 0) for an arbitrary time dependence of the uniform force, in terms of the
parameters «, 3 and ¢ defined in eq. (2.13) and (2.15). The result is U(¢,0) = R(«, 5, ¢),
with R defined by

. 1 .
R(a, B, ) = ¢(0=9)Bo oxpy ( —isa(By + B_))e*lf’BO. (2.16)
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This defines the unitary operator R as a function of the three parameters «, 5 and ¢. The
result is valid for an arbitrary time dependence of the force and the coupling, described by
A(t) and Q(t). The characteristics of the evolution of an arbitrary initial state are determined
by the properties of the operators R as a function of «, § and ¢. Mathematically, these
operators form a three-parameter group, which is generated by the three operators B and
By.

On the basis of the Wannier states, the contribution of the operator By in eq. (2.16) is
trivial, whereas the effect of the exponent containing B can be evaluated by first expand-
ing a Wannier state in Bloch states, for which the action of this exponent is simple. Then,
reexpressing the Bloch states in Wannier states, we find

exp ( - i%a(B+ + B,)) |m) = Zi_”'“"Jn,m(oz)|n>7 (2.17)

where we used the defining expansion exp(i§ sin¢) = > exp(in¢)J, (&) of the ordinary
Bessel functions. Hence the matrix elements of the operator (2.16) between Wannier states
are

(n|R(a, B, 9)|m) = (ie”#F)=ntme=in¢ g (a). (2.18)

For the evolution operator (2.16) in Bloch representation we can just use the form of the
operators B and By, as given in Sec. 2.2.2. This leads to the result

R(a, B,0)|k) = e~'costra=D| — g /a). (2.19)

This shows that the quasimomentum as a function of time varies as k(t) = k(0) — ¢(t)/a,
with ¢(t) given in eq. (2.13). The parameter ¢ determines the shift of the quasimomentum
during the evolution. The expressions (2.18) and (2.19) clarify the significance of the three
parameters «, 3, and ¢ that specify the evolution operator.

2.3.2 Heisenberg picture

The transport properties of any initial state are conveniently described by the evolution of the
operators in the Heisenberg picture. Since any evolution operator can be written in the form of
R(a, 3, ¢) for the appropriate values of the parameters, we can view R BR as the Heisenberg
operator corresponding to any operator B. The Heisenberg operators corresponding to B
can be expressed as

RY(a,8,¢)BLR(a, B,¢) = e*"* By, (2.20)

which is directly shown by using eq. (2.9). Since B+ = exp(Fika) in Bloch representation,
this confirms the significance of ¢ as the shift of the value of the quasimomentum.

After using the transformation property (2.11), one finds the Heisenberg operator corre-
sponding to the position operator By as

Ri(a,5,6)BoR(a, §,6) = Bo + 5 (¢ B ~ ¢ B,) 221)
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This implies that the expectation value of the position after evolution is determined by

o i
(n) = (Bo) + 5 (e7(B-) — ¢'(By)), (2.22)
where the averages in the right-hand side should be taken with respect to the inital state.
Hence no displacement of a wave packet can occur whenever (B;) = (B_)* = 0. This
is true whenever the initial state is diagonal in the Wannier states |n). Conversely, average
motion of a wave packet can occur only in the presence of initial phase coherence between
neigboring Wannier states. The width of a wave packet is determined by the expectation
value of the square of the Heisenberg position operator (2.21). This gives the expression
2 2 o —2iB8/ p2 2i3 ) 2
(n”) =(Bo) + (2 —e7™(BZ) — e™(B1))
o, 3 i3
+ 7(6 <BQBf + BfB0> — € <B()B+ + B+Bo>) (223)

2.4 Localized initial states

2.4.1 Arbitrary wave packets

A fairly localized initial state |¥'(0)) = >, c,|n) with a reasonably well-defined quasimo-
mentum can be modeled by assuming that neighboring states have a fixed phase difference 6,
so that

i0
Cent1 = |encny1le”. (2.24)

Thus, the quasimomentum is initially centered around the value ko = 6/a. For simplicity, we
assume moreover that the distribution over Wannier states is even in n, so that |c,,| = |c—p|-
The initial average position of the particle is located at n = 0. In order to evaluate the time-
dependent average position and spreading of the packet, we can apply eqgs. (2.22) and (2.23).
The symmetry of the distribution implies that (Bo) = 0, while (B2) = o is the initial
variance of the position. When we introduce the quantities

Y lensrcnl = b1, Y lensacal = ba, (2.25)
n n
we obtain the simple identities
. ) 1 .
(By) =bre™ (BY) = bye * (ByBy) = —(B1Bo) = 5ble—“’. (2.26)

The last identity is proved by using the fact that the quantity fa,+1 = |cht1¢,] IS even in
its index (which takes only odd values). Therefore, Zl lfi = 0, which is equivalent to the
statement that 2(B; By) + (B4 ) = 0. The other expectation values occurring in egs. (2.22)
and (2.23) are found by taking the complex conjugates of the identities (2.26). This leads to
the simple exact results

(n) = aby sin(3 — ) (n2) = o2 + O‘; (1 —bycos2(f — 9)), (2.27)
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so that the variance of the position is found as

2
o2 = (n?) — (n)? = o2 + % (1 — b2 — (by — b?) cos2(8 — e)>. (2.28)
Notice that the parameters b; and bs are real numbers between 0 and 1. In the limit of
a wide initial wave packet, determined by coefficients c,, whose absolute values vary slowly
with n, the parameters b, and bs will both approach 1, and the width o will not vary during
the evolution. In the opposite special case that the initial state is the single Wannier state |0),
one finds that b; = by = 0, so that the width o = a/\/i.
In the special case that the particle is initially localized in the single Wannier state at
x =0, so that | (0)) = |0), the parameters by, b2, and o¢ vanish, so that

(n) =0, 0? = (n?) = a?/2. (2.29)

This shows that the average position of the wave packet does not change, and that its width
is determined by the parameter « alone. This is in line with the fact that the population
distribution over the Wannier states after the evolution is p,, = [(n|R|0)|> = J2(«), as
follows from Eq. (2.18). Hence the (time-dependent) value of v determines the spreading of
an initially localized particle.

2.4.2 Gaussian wave packet

When the initial distribution over the sites is Gaussian with a large width, we can evaluate the
full wave packet after evolution. Suppose that the initial state is specified by the coefficients

1 ) 2
e = ————e" exp ( i ), (2.30)

vV ooV2w dog

which obey the condition eq. (2.24). This state is properly normalized provided that og > 1.
When the evolution operator is expressed as in (2.16), the time-dependent state is expanded
as |¥(t)) = R|¥(0)) = >, fnexplin(d — ¢)]|n). Summation expressions for the coeffi-
cients f,, are directly obtained by using the expression (2.18) of R in Wannier representation.
We use similar techniques to those applied in Ref. [39] in the context of the diffraction of
a Gaussian momentum distribution of atoms by a standing light wave. The technique is
based on differentation of the expression for f,, with respect to n, while using the property
aJnt1(@) + Jn—1(a)] = 2nJ, («) of Bessel functions. When the width is sufficiently large,
so that the difference f,,11 — f, can be approximated by the derivative, this leads to the
differential equation

dfu

df
2%n ~ . . _ . .
20§ - (a sin(8 — 6) n) fn +iccos(8—0) o (2.31)
By solving this equation, we arrive at the closed expression
1 —n?/2 + ansin(3 — 0)
- — 2.32
In N P ( 202 —iaccos(f — 0) )’ (2.32)
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with the normalization constant determined by

a?cos?(3 — 0) )

2.
72 (2.33)

Nt=nx (208 +
We find that the distribution is Gaussian at all times, with a time-varying average position
and variance. These are given by the expressions

O42

(n) = asin(f —0), 0® =of + 802

(1 +cos2(8 — 9)). (2.34)
These results are in accordance with eqs. (2.27) and (2.28), as one checks by using the
approximate expressions b; = exp(—(?/803) ~ 1 — [2 /80, while neglecting terms of order
(1/00)* and higher. The width of the packet never gets smaller than its initial value. The
phase difference between neighboring sites is mainly determined by 8 — ¢. This shows that
a phase difference can be created or modified in a controlled way, simply by imposing a
time-dependent force that gives rise to the right value of ¢. Notice that in these expressions
(2.34) 0 and S enter in an equivalent fashion. The position and the width of the Gaussian
distribution can be controlled at will by adapting the force to the desired value of 3.

We recall that the results of this section are valid for an arbitrary time-dependent force
A(t), which determines the time-dependent values of the parameters «, 5 and ¢ as specified
in egs. (2.13) and (2.15). In the subsequent sections, we specialize these expressions for
constant or oscillating values of the uniform force.

2.5 Constant uniform force and Bloch oscillations

2.5.1 Wannier-Stark ladder of states

The case of a constant force is the standard situation where Bloch oscillations occur. When
A and () are constant, the Hamiltonian is time independent, and then it is convenient to
introduce the normalized eigenstates |1),,,) of H. When we expand these eigenstates in the
Wannier states as [{,) = >, \n)c;m), the eigenvalue relation H|¢.,) = Ep|tn,) with
FE,, = hw,, leads to the recurrence relations for the coefficients

1 m m
59 (cg_)1 + C£L+)1) + Ancl™ = w,,e™. (2.35)

We introduce the generating function

Zo(k) = 1/ % 3 elmeminka, (2.36)

which is normalized for integration over the first Brillouin zone. In fact, from the expression
(2.3) of the Bloch state, one notices that the generating function Z,, (k) = (k|u,,) is equal
to the Bloch representation of the eigenstate |i,,). The relations (2.35) are found to be
equivalent to the differential equation

A d

Zm(k) = wmZm(k), (2.37)

Qcos(ka)Z,, (k) — e di ™
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with the obvious normalized solution

Zm(k) = \/gexp (%[Q sin(ka) — akwm]). (2.38)

Since the functions Z,, (k) as defined by (2.36) are periodic in k with period 27 /a, the same
must be true for the expressions (2.38). Hence, the frequency eigenvalues must be an integer
multiple of A, so that we can choose w,, = mA, with integer m. For these values of the
eigenfrequencies, the coefficients c%m) follow from the Fourier expansion of Z,,, with the
result

™ = (i) = Jmn(Q/A). (2.39)

We find that the total Hamiltonian H has the same eigenvalues as H;. Apparently, the
energy shifts due to the coupling between the Wannier states as expressed by H( cancel
each other. Since the energy eigenvalues are integer multiples of A, each solution of the
Schrodinger equation is periodic in time with period 27 /A, and the same is true for the
evolution operator U (t) given in eq. (2.16). This also implies that an initial localized state
remains localized at all times, due to the addition of the uniform external force. The eigen-
states |1, ) are the Wannier-Stark ladder of states [27-29]. They form a discrete orthonormal
basis of the first energy band, and they are intermediate between the Wannier and the Bloch
bases of states.

2.5.2 Oscillations of localized states
The definitions (2.13) and (2.15) show that

a = (2Q/A)sin(At)2), B = At)2, ¢ = At. (2.40)

In the Wannier representation, the matrix elements of U are found from eq. (2.16) as

; 2Q . At

(n|U(t,0)|m) = z‘*”+me*1m<n+m>/2Jn_m(K sin =), (2.41)
which represents the transition amplitude from an initial state |m) to the final state |n). For
the initial Wannier state |¥(0)) = |0), the time-dependent state is |¥(t)) = > . fn(t)|n)
with

; 2Q . At
fu(t) =i e A2 g (2 gin =), (2.42)
A 2

This is in accordance with Eq. (50) of ref. [37], which was obtained by a rather elaborate an-
alytical method, rather than an algebraic one. Equation (2.29) shows that the time-dependent
average position (n) of the wave packet remains zero at all times, whereas the mean-square
displacement o = |a|/ V/2 displays a breathing behavior, and returns to zero after the Bloch
period 27/ A. Moreover, according to eq. (2.42), the phase difference between neighboring
sites varies continuously with time.
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This is already quite different when only two Wannier states are populated initially. Con-
sider the initial state

w(0) =

Then the average position can be evaluated from eq. (2.22), for the values of a and (3 given
in eq. (2.40). The result is

(0} + €”]1)). (2.43)

(n) = % + %(COS@ — cos(At — 9)), (2.44)
which shows that the packet displays a harmonically oscillating behavior. The amplitude
of the oscillation is governed by the ratio /A, which is one-half the maximum amplitude
for Bloch oscillations of a wave packet with a large width (see Sec. 2.5.3). This amplitude
must be appreciable in order that interband coupling induced by the uniform force remains
negligible, as we have assumed throughout this paper.

0.3, _ CJt=0
= Con O8] M :
D,
D,
024 (@) (b)
0.3

Figure 2.1: (a) Plot of the breathing population distribution for an initial Wannier state |0).
(b) Plot of the oscillating population distribution, for two initial superpositions of Wannier
states |0) and |1}, and two different values of the relative phase 6. Both plots are evaluated
for Q/A = 6. Shaded distributions hold after one-half a Bloch period ¢t = 7/A.

The distribution p,, = |f,|? after one-half a Bloch period, both for the initial single
Wannier state and for the inital state (2.43), is illustrated in Fig. 2.1. This demonstrates that a
strong displacement can already be induced by evolution of a superposition state of just two
neighboring Wannier states, with a specific phase difference. This displacement arises from
the interference between the transition amplitudes from the two initial states to the same final
state |n).

2.5.3 Bloch oscillations and breathing of a Gaussian wave packet

The evolution of a Gaussian wave packet as discussed in Sec. 2.4.2 is specialized to the
present case of a constant force after substituting the expressions (2.40) in egs. (2.32)-(2.34).
We find for the average position (n) the identity

(n(t)) = %[cos 0 — cos(0 — At)]. (2.45)
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Figure 2.2: Periodic behavior of the width and the average position of a Gaussian wave
packet for various initial values of the phase difference 6 between neighboring states. Initial
value of the width is oo = 4 and /A = 50.

This demonstrates that the wave packet oscillates harmonically in position with frequency A
and with amplitude /A in units of the lattice distance a. The velocity of the wave packet is
found from the time derivative of eq. (2.45), with the result

v(t) = —af2sin(f — At). (2.46)

It is noteworthy that this expression (2.46) coincides exactly with the expression for the
group velocity dFE/hdk, with the derivative evaluated at the time-dependent value of the
quasimomentum (6 — At)/a, with E = 12 cos(ka) the dispersion relation between energy
and quasimomentum in the absence of the uniform force, as given in Sec. 2.2.1. Apparently,
the expression for the group velocity retains its validity in the presence of the uniform force
also. Of course, the concept of Bloch oscillations of the wave packet as a whole has signifi-
cance only when the amplitude /A of the oscillation is large compared with the width o of
the packet, which in turn must extend over many lattice sites.

The time-dependent width o of the Gaussian packet is found from eq. (2.34) in the form

2

2 2
0" =05+ —55
07 402A2

(1 — cos At) (1 + cos(At — 29)). 2.47)

Hence the variance of the position deviates from its initial value by an oscillating term.
The amplitude of this oscillation is governed by the ratio (£2/2A0¢)?. The initial width is
restored whenever one of the terms in brackets vanishes. This happens twice during every
Bloch period, except when 6 = 7/2, when these two instants coincide. This combined
breathing and oscillating behavior is illustrated in Figs. 2.2 and 2.3, for various values of
the relative phase 6. Notice that the oscillation is always harmonic with the Bloch frequency
A. This is due to the simple form of the dispersion relation for the case of nearest-neighbor
interaction. The time dependence of the variance is a superposition of terms with frequencies
A and 2A.

2.5.4 Zero external force

In the absence of an external force, we can take the limit A — 0 in the results of the previous
subsections. In particular, this gives ¢ = § = 0, a(t) = Qt. Then the evolution of an initial
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Figure 2.3: Bloch oscillation and corresponding breathing behavior of a Gaussian wave
packet in a constant uniform force. Values of o9, €2, and A as in Fig. 2.2. Left part: § = 0.
Right part: § = /2.

Wannier state |¥(0)) = |0) is given by

[W(t)) = R[yp(0)) = > i " (Qt)[n), (2.48)

which shows that the free spreading of an initial Wannier state after a time ¢ gives Wannier
populations equal to p,, = |J,,(2t)|? [40]. The mean-square displacement increases linearly
in time, as 0 = Qt/ v/2. This shows that the spreading is unbounded in the absence of an
external force. The self-propagator po(t) decays to zero for large times. The phase difference
between neighboring sites is /2 at all times. For only two coupled wells, the coupling
would give rise to Rabi oscillations with frequency 2. Equation (2.48) can be viewed as the
generalization to the case of an infinite chain of wells.
For a Gaussian wave packet with initial width o and initial quasimomentum determined
by 6, expressions (2.45) and (2.47) take the form
022
(n(t)) = —Qtsinb, o = op + W“ + cos 26). (2.49)
0
As one would expect in the absence of a uniform force, the group velocity takes the constant
value v = —af)sin#, which leads to unbounded motion of the packet (except for § = 0
or £m). Usually, the width increases indefinitely during he propagation. However, for the
special values § = +7 /2 the width is constant, and the packet propagates as a solitary wave.
Notice that such a phase difference between neighboring Wannier states arises spontaneously
when a single Wannier state spreads in the absence of a uniform force.

2.6 Oscillating force

Other situations of practical interest arise when the uniform force has an oscillating com-
ponent. Examples are the coupling between the states in the Wannier-Stark ladder [27-29],
and dynamical localization for special values of the amplitude-frequency ratio of the oscilla-
tion [33-35]. The situation of an oscillating force is also decribed by the operator description
of Sec. 2.3.1. We give some results below.
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2.6.1 ac force only

The situation of a harmonically oscillating uniform force can be expressed as
A(t) = § cos(wt), (2.50)

so that ¢ = (§/w) sin(wt). Then according to (2.15) the parameters « and (3 are specified by
the equalities

aei? = QtJo(g) +QZJn<g)£(em”t _ 1), 2.51)
n£0

where we used the expansion defining the ordinary Bessel functions, given in Sec. 2.3.1.
The first term in eq. (2.51) increases linearly with time, whereas the summation is
bounded and periodic in time with period 7' = 27 /w. The behavior of « and [ as defined
by eq. (2.51) is quite complicated in general. However, for large times the value of «, and
thereby the spreading of an initial Wannier state, is the same as in the absence of the uniform
force, with Q replaced by the reduced effective coupling 2.Jy(d/w). After one period T, the
values of the parameters become simple, and we find § = ¢ = 0, a = QT Jy(d/w). The
evolution operator U (T') during one period 7" is simply given by the operator R defined in eq.
(2.16), at these values of the parameters. The eigenstates of the evolution operator R = U(T)
are simply the Bloch states |k). The eigenvalues can be expressed as exp(—i€(k)T'/h), with

E(k) = hQJ, (g) (2.52)
the corresponding values of the quasienergy, which are strictly speaking defined only modulo
hw. The quasienergy bandwidth is reduced by the factor Jy(d/w), compared with the energy
bandwidth in the absence of the uniform force.

When the ratio 6 /w of the amplitude and the frequency of the oscillating force coincide
with a zero of the Bessel function .Jy, no unbounded spreading occurs, and an initially local-
ized state remains localized at all times, with a periodically varying mean-square displace-
ment. The quasienergy bandwidth is reduced to zero in this case. This effect of dynamical
localization has been discussed before for electrons in crystals [33,34]. The related effect
of an effective switch-off of atom-field coupling occurs for a two-level atom in a frequency-
modulated field when the ratio of the amplitude-frequency ratio of the modulation equals a
zero of the Bessel function Jy. This effect, which leads to population trapping in a two-level
atom, has recently been discussed by Agarwal and Harshawardhan [41].

2.6.2 ac and dc force

A constant uniform force creates Wannier-Stark states with equidistant energy values. An ad-
ditional oscillating force can induce transitions between these states. Therefore, we consider
the force specified by

A(t) = Ag + S cos(wt). (2.53)
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Then the values of the parameters ¢, «, and 3 are

d(t) = Aot +(d/w) sin(wt), ae™ = QZJ < ) ! )(ei(A°+"“)t—1). (2.54)

(AO + nw

In general, each term in the summation is bounded and periodic, but the different periods can
be incompatible. Moreover, whenever Ay + nw = 0, the corresponding summand attains the
unbounded form Qt.J,,(§ /w). At such a resonant value of A, the spreading of an initially lo-
calized state becomes unbounded, and the particle becomes delocalized. This delocalization
is suppressed again when the ratio d /w is equal to a zero of the corresponding Bessel func-
tion J,,. This is a simplified version of the phenomenon of fractional Wannier-Stark ladders,
which has recently been observed and discussed [42,43].

The quasienergy values are again determined by the eigenstates of the evolution operator
U(T) for one period of the oscillating force. This operator is equal to the general operator R
defined in eq. (2.16), with the parameters

a = 2Qsin(AgT/2) ZJ (6> !

Ao A0 =R0T/2, ¢(T) = AoT. (255

These expressions are correct whenever Ag 4 nw is nonzero for all values of n. Since these
values of the parameters can be directly mapped onto the values (2.40) specifying the evolu-
tion with a constant uniform force, the eigenvectors and corresponding quasienergies are also
immediately found. The eigenvectors of R can be expressed as [¢,,) = > . |n)cn (™) with
the expansion coefficients c(m) = Jm—n(C). Here the argument ¢ of the Bessel functions
must be chosen as the sum

oS ()t

which replaces the simple argument 2/A in eq. (2.39). The eigenvalues of R = U(T) are
exp(—i&,, T/h), with the discrete quasienergy values &, = hmAy (modulo hw).

In the resonant case that Ag + now = 0 for some integer ¢, one summand in the expres-
sion for o and 3 is modified, as indicated above. When T' = t, only this modified summand
is nonzero, and the evolution operator U (T') = R for one time period is characterized by the
values

a=QTJ,,, B=0, ¢ =—2mn,. (2.57)

The eigenvectors of R are the Bloch states |k), and the corresponding quasienergy values are

(k) = hQn, (g) (2.58)

2.7 Discussion and conclusions

We have analyzed the Wannier-Stark system, which is characterized by the Hamiltonian (2.6),
in terms of the operators B and Bj. The present interest in this model arises from the dy-
namics of atoms in a periodic optical potential, with an additionally applied uniform external
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force. We adopted the tight-binding limit, which implied nearest-neighbor interaction only.
This gives rise to an explicit simple dispersion relation between energy and quasimomentum,
which makes the model exactly solvable. From the commutation properties of the basic op-
erators we obtain eq. (2.16) for the evolution operator for an arbitrary time dependence of
the uniform force, where the three parameters are defined in eq. (2.13) and (2.15). As shown
in Secs. 2.3.2 and 2.4, the parameter ¢ determines the shift in the value of the quasimo-
mentum, whereas « and 3 determine the evolution of the average position and the width of
a wave packet. A particle starting in a single Wannier state has a uniform distribution over
the quasimomentum, and cannot change its average position, whereas the width of its wave
packet is simply measured by «. On the other hand, even when only two neighboring states
are populated initially, the wave packet can display an appreciable motion. In Sec. 2.4.2 it
is demonstrated that an initially Gaussian packet remains Gaussian at all times. This remains
true when the initial state has a nonzero expectation value of the quasimomentum, which is
described as an initial phase difference between neighboring Wannier states.

These results, which are valid for a uniform force with an arbitrary time dependence, unify
and extend earlier results obtained for a constant or an oscillating uniform force. A constant
force induces Bloch oscillations of a wave packet, and we obtain a simple expression for the
amplitude of the oscillation and for the time dependence of the width of the wave packet. For
an oscillating force, the operator method shows that the quasienergy bands can be evaluated
directly in terms of the value of the parameter « after one oscillation period. This produces
an exactly solvable model for dynamical localization and fractional Wannier-Stark ladders.
In general, by selecting a proper time dependence of the force or of the coupling between
wells, thereby realizing the desired values of the parameters «, 3, and ¢, we can coherently
control the width and the position of a wave packet, as well as the phase difference between
neighboring sites.






Chapter 3

Momentum transfer for an optical transition in a
prepared two-level atom

We consider the interaction of a travelling optical wave with a resonant two-level
atom, which is initially in its most general superposition state, i. e. in a superposition
state of the ground and excited internal energy levels with mutually different momentum
distributions for each of these internal energy levels. We show that the momentum dis-
tribution per atomic internal energy level periodically gets large scale changes during
the interaction. The amount of momentum that the photon transfers between the atomic
internal energy levels is, in general, more than its own momentum hk.

A special case is discussed, when the atom’s preliminary superposition state is cre-
ated as a result of interaction of the atom with a resonant standing wave. Also it is pointed
out that the phenomenon can be considered as a transformation of the resonant Kapitza-
Dirac splitting of atomic states into the Stern-Gerlach type splitting, if the interaction
periods are appropriately chosen.

3.1 Introduction

When an atom interacts with a resonant travelling wave, the changes of the total momentum
of the atom can not exceed one photon momentum hk. What can be said about the distribution
and the mean values of momentum for translational states per each atomic level? The answer
is well-known and trivial, if the atom before the interaction is on one of the internal energy
levels: the momentum distribution on the other level gets shifted by 7k and the mean value
of momentum may get shifted by Ak as well; (p.) ~ (pg) + Ak at certain time instants,
where p, and p, are mean values of momentum, corresponding to the ground and the excited
internal levels (1D case). Therefore, a photon, during an absorption or emissions, transfers
between the atomic internal energy levels an amount of momentum Ap just equal to its own
momentum hk. What would happen in a general case, that is, when the atom before the
interaction with a travelling wave is in the superposition state of ground and excited levels
with mutually different momentum distributions? Such a state can be considered as the most
general superposition state for the atom. In the further discussion this question is elucidated.
We start from a general formalism and then turn to important special cases. It is shown that in
general Ap # hk, that is a photon being absorbed or emitted by an atom, transfers between
the internal atomic energy levels the amount of momentum not necessarily equal and even
largely exceeding the photon’s own momentum.

21
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In Sec. 2 the general conditions are discussed, when one may obtain large average mo-
mentum changes at internal energy levels for an atom interacting with a travelling wave.
These redistributions are a direct consequence of interference between the amplitudes of
translational states for ground and the excited internal energy levels.

In Sec. 3 we discuss the possible connection to applications. That is when the preliminary
superposition state of the atom is realized by a coherent diffraction of the atom in the field of
a resonant standing wave, which is being often referred as the resonant Kapitza-Dirac effect.
It is pointed out, that the redistribution of momentum in the travelling wave can be considered
as a transition from the resonant Kapitza-Dirac splitting to the Stern-Gerlach type splitting.

In Sec. 4 we discuss in details the temporal behavior of mean momentum corresponding
to both of the internal energy levels. The results are summarized in Sec. 5, where also the
possibilities of experimental observation of this phenomenon are briefly sketched.

3.2 Momentum distributions and mean momenta
per atomic internal energy levels

Let’s start from the discussion of a resonant interaction of a two-level atom with a radiation
field [44,45]. For the sake of simplicity, suppose that the light field has a plane wavefront
and a linear polarization (these assumptions will be kept also for the standing wave in the
next sections). Let’s suppose that the light field amplitude is turned on instantaneously. The
internal wave functions of a free two-level atom in ground (g) and excited (e) levels are noted
respectively ¢ (', t) and ¢ (0, t), wherep is the atomic internal coordinate (the radius-
vector of the optical electron, relative to the atomic center-of-mass). The wave function of an
atom interacting with a light field can be presented as [44,45]

U =Ap,(7,t)+Be(p,t), 3.1

where A and B are the probability amplitudes of the atom to be respectively at the ground
and the excited internal energy levels.

While taking into account the translational motion of the atomic center of mass, it is
useful to separate the corresponding parts (wave functions) in A and B coefficients. For an
atom with the well-defined momentum p, the corresponding wave function is given by the
function

1 i
x(p) = NorT exp(ﬁm),

that is, by an exponential function with imaginary degree. In general, if the momentum of an
atom isn’t fixed at any energy level, the coefficients A and B can be expressed by the series
of x(p)-states

(3.2)

Alt,2) = / a(p.)x(p)dp,  B(t,z) = / b(p, )x(p)dp, (3.3)

where the probability amplitudes a(p, t) and b(p, t) represent the probability for an atom to
have momentum p at the time instant ¢ while being at the ground or excited internal energy
levels.
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Plugging the expressions (3.1)-(3.3) into the quantum-mechanical definition of average
momentum, given as

() = / VPV dz, / VU Fdz = 1, (3.4)

after standard transformations we arrive to the following expressions for the average momen-
tum

(p) =/Ia(p7t)|2pdp+/\b(p,t)IQPdp- (3.5)

Terms in the exp. (3.5) specify the contribution of translational states into the total momentum
per internal energy levels: for the ground internal energy level

(p), = / la(p, t)|? pdp. (3.6)
and for the excited one
(p), = / |b(p, t)|” pdp. (3.7)

Both momenta are time-dependent and their changes after the interaction period ¢ are ex-
pressed as

@), = [ (1a.0F ~ 0.0 F) i 68)
@), = [ (b0 = 16,0 o

When the atom interacts with a travelling wave, the internal ground level coefficient a(p, t) is
related with the excited internal level coefficient b(p + ik, t). The relation can be represented
in the form of a conserving quantity

la(p, t)|* + [b(p + Bk, )|* = const = |a(p, 0)|* + [b(p + hk, 0)|” (3.9)

(it can be checked by the eq. (3.17)). We can use the relation (3.9) to express (Ap) 4 by (Ap),
as follows

<Ap>e=/(\b(p+hk,t)\2— \b(p+hk,0)|2) (p+hk)d(p+hk) = (3.10)
=—/ (Ia(p,t)l2 - Ia(p70)|2) (p+ hk)d (p + hk) =

=~ (a0), 1k [ (Jatp.0F = . OF) dp = -
— — (Ap), + hk Any,

where An, with

Ang = —An, = [ <|a(p, H? - la(p, 0)|2) dp=— [ (|b(p, H? - la(p, 0)|2) dp (3.11)
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is the change of population for the internal ground level, or which is the same, the population
change An,. of the internal excited level with the opposite sign (see (3.20)). From the equality
of the first and the last terms in the exp. (3.10) a well known inequality follows directly
between the momentum of the photon and the atom

(Ap) = (Ap), + (Ap), = hk Any < Ik (3.12)

Let, nevertheless, note that this one photon demarcation” pertains to the total momentum of
the atom and has nothing to do with separate average momentum changes per internal energy
levels (Ap), and (Ap),. In accordance with (3.8), these quantities can exhibit arbitrary

changes depended on the distribution functions |a(p, t)|* —|a(p, 0)|* and |b(p, t)|> —|b(p, 0)|?
in the momentum space. As it follows from the exp. (3.8), the large magnitudes for (Ap) g

({Ap),) are possible, if one requires to have strictly non-symmetric distributions |a(p, H1* -
la(p,0)|? (or |b(p, t)|* — |b(p, 0)|?) relative to the replacement p — —p and the distributions
are also required to have an accumulation in the range of large values of |p|.

And now we show that the one photon absorption/emission process in the field of a trav-
elling wave actually allows such a behavior. The Hamiltonian of the system can be written in
a dipole approximation as

H = Hy—dE(t,z2), (3.13)

where H) is the free atom Hamiltonian, and d is the dipole moment operator and

—
—

E
E(t,z)= 5 exp(ikz —iwt) + c.c, t >0 (3.14)

is the frequency w of the electric field taken equal to the Bohr transition frequency wy.
From the time-dependent Schrodinger equation we arrive to the system of equations for
the amplitudes A(t, z) and B(¢, 2)

z% = —vexp(—ikz)B(t, z), e
i%?@ = —vexp(ikz)A(t, 2),

As it is well-known, the system of equations (3.15) It exhibits the Rabi-solutions [44,45]

A(z,t) = A(z,0) cosvt +iB(z,0) exp(—ikz) sin vt, (3.16)
B(z,t) = B(z,0) cosvt + iA(z,0) exp(ikz) sin vt,

where v = dE /2h represents the Rabi frequency, d = <<pa | d | <pb>.

Performing the x(p)-expansion in (3.16) (see Eq. (3.3)), we arrive to the expressions for
the atomic amplitudes in the momentum space (3.3)

a(p,t) = a(p,0) cos vt + ib(p + hk,0) sin vt, 3.17)
b(p,t) = b(p,0) cos vt + ia(p — hk,0) sin vt.
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First of all, it can be readily verified that the outcome is trivial if the atom is at one of energy
levels before the interaction. Indeed, if one takes b(p, 0) = 0, then

(Ap), = (cos? vt — 1) / la(p, 0)|? pdp = (cos® vt — 1) (p)y lt=0 (3.18)
(Ap), = (1 — cos® vt) [<p>g li=0 +hk| .

This means that the contribution to the total momentum, coming from single internal energy
levels, evolves periodically in time, and this evolution is merely caused by the periodic ex-
change of population between the internal energy levels (posed by the term (1 — cos? vt)).
Note also that in this case (b(p,0) = 0) the momentum distributions for the internal energy
levels coincide with each other after the shift hk: b(p + hk,t) = i a(p,t) tanvt, as it is
indicated in Introduction.

The situation is totally different, if the atom is initially in a superposition state of the inter-
nal ground and excited levels. Now, generally speaking, the initial momentum distributions
for the internal ground and excited levels are not required to be identical with the 7k shift :
b(p,0) # « a(p—hk,0) (« is a constant, independent on p). Then, as it follows from the exp.
(3.17), the optical transition changes not only the population on the internal energy levels, it
also introduces periodical changes in the form of momentum distribution. Thus, the atomic
amplitudes a(p,t) and b(p, t) are not mutually proportional (they do not coincide after the
constant shift).

To wash out the contribution coming from the evolution of population of the internal
energy levels, let us introduce a pair of new quantities p, and p,, which are defined by scaling
the average momentum per internal energy level by the corresponding population ng4 and 7,

Py =(p)y /Mg, Pe=(P). /e (3.19)

ny = / alp, )P dp, . = / b(p. )| dp (3.20)

Since the p,, P, are independent on the population on the internal energy levels, their possible
evolution is due to the form-deformation in the momentum distribution for the internal energy
levels. Thereby, the total momentum of the atom, in addition to (3.5), can be represented in a
more convenient form

(p) = gD, + N, (3.21)

It is easy to see that the quantities p, and p, remain constant, if the atom is initially at one of
the energy levels. They remain unchanged also when the initial distributions a (p, 0) , b (p, 0)
are mutually proportional with the constant Ak shift

b(p,0) = a a(p — hk,0). (3.22)

Indeed, plugging the exp. (3.22) in the relations (3.17) and performing simple substitutions,
we arrive to the following relation for the internal ground energy level

_ eoswvt —iasinvt|® [ |a(p,0)|” pdp
by = =

= =Dy lt=0
|cos vt — iasinvt|* [ |a(p,0)|* dp g le=0-
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and the same is true for the internal excited energy level. So, if the condition (3.22) holds,
only a population exchange takes place between the internal energy levels, and the scaled
average momenta p, and p, do not change.

Nevertheless, in the general case the state evolution forms as a result of interference be-
tween non-similarly distributed amplitudes. The atomic amplitudes distributions per internal
energy levels aren’t proportional to each other and subsequently the mean momenta p, and
D, exhibit non-trivial temporal evolution.

Now we turn to the issue of a more concrete and quantitative picture for the developed
formalism. This can be important for various applications in atom optics and interferome-
try [4,46]. As an example, we study the coherent scattering of atoms in a resonant field of
a standing wave. This example is particularly important, because it is the main routine to
prepare a widespread momentum distribution in atom optics. The probability amplitudes,
prepared in such a way, principally can not satisfy the “undesirable” condition (3.22). The
reason is well- known: any state with momentum p at one of internal energy levels is con-
nected to two states with momenta p — hk and p 4+ hk simultaneously at the other internal
energy level in the field of a standing wave. Therefore, any atom prepared by means of the
resonant Kapitza-Dirac effect is forced to change implicitly the momentum distribution at the
internal energy levels while interacting with a travelling wave.

3.3 The case of preparation of atomic superpositional states
by scattering in the field of resonant standing wave

We consider a coherent interaction of an atom with a resonant (w = wg) standing wave
[47-52] during the time interval 7, followed by the interaction with a travelling wave. We
restrict ourselves to a relatively simple case, when the interaction proceeds by the well known
scheme of mutually orthogonal atom-standing wave beams. Moreover, the Raman-Nath ap-
proximation is applied, which allows to leave out the kinetic energy term in Hamiltonian
(3.13) (note that the kinetic energy term has not been included also in eq. (3.15)). Although
the scheme of calculations is well known and presented elsewhere in details(see, for exam-
ple [4,46-52]), we find it appropriate to give here an overview of the main intermediate
formulas, too.

To describe the interaction in the preparing standing wave, the electric field (3.14) in the
Hamiltonian (3.13) must be substituted by the following one

E(t,z) = E;s coskz exp(—iwt) + c.c, — 75 <t <0. (3.23)

Now, the atomic amplitudes A;(z,t) and Bs(z,t) have to satisfy (3.15)-type equations
where the following replacements are made: v — 2v, = 2dE,/h (which is mean Rabi
frequency in the standing wave), exp(+ikz) — coskz. Allowing the atom initially (t <
—7) to be at the ground level, we arrive to the following expressions for the amplitudes
Ag(z,t), Bs(z,t) after the atom interacts with the standing wave (3.23)

Ag(z,t) = cos(2us(t + 75) cos kz), (3.24)
Bg(z,t) =isin(2v4(t + 75) cos kz).
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The multiphoton nature of the standing wave diffraction is evident, if one performs the
X (p)-expansion for the amplitudes A;(z,t) and Bs(z,t) (3.24) [53]

As(z,0) = cos(2v,Ts coskz) = Z 1™ Jom (2vsTs) exp(i2mkz), (3.25)

B(z,0) =isin(2v,7s coskz) = P2 Ty 1 (2usTs) exp(i(2m + 1)kz),

m = —0o0

where m is the number of photons reemitted from one into the other of the counterpropagating
waves, J, () is the Bessel function of m-th order.

At t = 0 the standing wave is turned off, the amplitudes (3.24) serve as initial amplitudes
for the subsequent interaction with the travelling wave. For the atomic center-of-mass motion
probability amplitudes a(p,t) and b(p,t) at ¢ > 0 the following expressions can be easily
evaluated using (3.3,3.16)

a(2mhk,t) = im [cos vt Jom (2vsTs) — sinvt Jomt1(20675)] (3.26)
b((2m + 1)hk,t) = i*™ T [cos vt Jomi1(20sTs) + sin vt Jop, (20576)],
a((2m + 1)hk,t) =b(2mhk,t) = 0.
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Figure 3.1: Probability distribution is plotted in the momentum space for the ground and
excited internal energy levels. State is prepared symmetrically in the momentum space. The
chosen parameters are 2vs7s = 40, |A(—75)|* = 1, |B(—7s)|* = 0, vt = 7 /4.

We see that the superposition state, created as a result of the interaction with the standing
wave, represents discrete manifolds of states, where the space between the adjacent values of
momentum is 2hk, herewith the manifolds for the ground and excited internal energy levels
are shifted with respect to each other by ik [47-52].

The formulas (3.26) contain explicitly the aimed result about the evolution of momentum
distribution. To demonstrate it, first of all we note, that the initial momentum distribution for
any of internal energy levels is symmetric relative to the middle point p = 0. Indeed, the
distribution functions are given by the functions i%™J,,(.) and i *1.J,,, .1 (.) respectively
for the ground and excited energy levels and remain symmetric relative to the transformation
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2m — —2m, 2m + 1 — —(2m + 1), that is relative to the value m = 0 (p = 0). This
symmetry proofs that the average momentum per each internal energy level is zero before
interacting with the travelling wave [47-52].

Nevertheless, in accordance with (3.26), the symmetry breaks down when the travelling
wave acts. So, one photon absorption/emission process transforms the momentum distribu-
tion for internal energy levels to an asymmetric form for both of the internal energy levels.
Both distributions are peaked in the opposite directions for the ground and excited internal
energy levels. The sign of asymmetry per each internal energy level changes periodically.

A typical form of the initial distribution and the subsequent transformation (due to a
single-photon process) are plotted on the Fig. 3.1 for the ground and the excited energy levels.
To be more precise, the quantities {9 = |la (2mhk, t)|* and Wi = b ((2m + 1) Bk, t)|”
are plotted on the Fig. 3.1 at two time instants, namely before and after the travelling wave.
Single-photon induced large-scale momentum changes are apparent.
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0.08 | 0.041
apsai, ¢ o &R IR
DR SN e
-50 25 0 40 20 0 I

Figure 3.2: Probability distribution is plotted in the momentum space for the ground and
excited internal energy levels. State is prepared asymmetrically in the momentum space.
The chosen parameters are 2v,7s = 40, |A(—74)|> = 1/2,|B(—7)|* = 1/2,vt = 7 /4.

Now let us notice that we obtain almost one-side distributions for conditions taken for Fig.
3.1. The translational states with positive momentum prevail at the ground internal energy
level, and the opposite ones are mostly at the excited internal level. So, the state of the atom is
split into two subgroups, where one subgroup represents the ground-level atoms with positive
momentum, and the second subgroup is related to the excited-level atoms. Obviously, this
is a Stern-Gerlach type splitting. Thus, one-photon optical transition transforms the resonant
Kapitza-Dirac splitting into the Stern-Gerlach type splitting.

The phenomenon of one-photon coherent accumulation of momentum on the internal
energy levels (OP-CAMEL) can be generalized, if the initial momentum distributions for the
atom are taken in an asymmetric form. Such distributions can also be built by a standing
wave, but only if a travelling wave precedes the standing wave [54, 55]. This is a typical
situation, if the standing wave is formed by means of reflection of a laser pulse from a mirror
(see, for example [56]). In order to keep the discussion short, we give the main features of
the asymmetric OP-CAMEL in figures.

In Fig. 3.2 we plot the evolution of a maximally asymmetric distribution for the ground
and the excited internal energy levels. As it can be seen from the figures, OP-CAMEL mani-
fests itself as an accumulation of an asymmetry for one internal energy level (ground in this
case), whereas the asymmetry of the other internal energy level (excited) is strongly sup-
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Figure 3.3: The temporal evolution of average momentum per ground and excited internal
energy level, while the atom interacts with the standing and the travelling waves. Population
changes per energy levels are plotted by dashed lines. All parameters are taken the same as
for Fig. 3.1.

3.4 Time evolution of mean momentum per ground and ex-
cited internal energy levels in the field of travelling wave

Let us now discuss the evolution of momenta p, and p, after the sequence of two pulses,

namely standing wave-travelling wave pulse sequence. Using the expressions for p, and p,

(3.6, 3.7, 3.19, 3.20), we can easily calculate the average momentum and the population of _
the internal ground energy level

<p>g = hk Z 2m [cos vt Jom (u) — sin vt J2m+1(u)]2 = (3.27)
1-— _
= —hk —JZO(2U) sin? vt + LS AC L) {11(211) sin 2vt | |

ng = Z [cos Ut Jom (1) — sin vt Jopiq (u)]® = (3.28)
= 1 + Jo(2u) cos 2vt — M sin 2vt
2 2 2
and the same for the excited one
P)o=hk Y (2m+1)[cosvt Jomi1(u) +sinvt Sy (W)’ = (3.29)
1 2 2
= hk [%(u) sin? vt + M sin 2vt| ,
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Ne = Z [cos vt Jam41(u) + sinvt ng(u)]2 = (3.30)
1 2 2
= 3~ J0(2u) cos 2vt + #sirﬂut =1-ny,

where we use a notation © = 2v,7T.

The last relations (3.27)-(3.30) are derived using Bessel function summation formulas
[57]) for the initial conditions are assumed to be (p) ; |¢=0= 0, (p), [t=0= 0, (the same is true
for p, and p,.), so their values at any time instant coincide with their changes: (Ap) = (p)
(Ap). = (p).-

On the Fig. 3.3 the temporal evolution of the average momenta is plotted, while the
atom interacts with the travelling (accumulating) wave. Population changes, which contribute
also to the time evolution of average momentum, are plotted by dashed lines. For the case
presented on the figures, the population on the internal energy levels is practically unchanged
during the interaction period with the travelling wave. Indeed, it immediately follows from
the exp. (3.28) and (3.30), if one takes u >> 1, the Bessel functions Jy 1 (2u) are negligible.
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Figure 3.4: Temporal behavior of the scaled mean momentum per ground internal energy
level (left plot) and the excited internal energy level (right plot).

Respectively, the temporal evolution of the scaled average momentum p, and p, is con-
ditioned only by the redistribution of momentum between the internal energy levels, as it is
shown in Fig. 3.4. The parameters of the preparing standing wave are the same as in Fig. 3.1,
where the distance between the left-hand and right-hand maximuma (the width of momen-
tum distribution) is about 70 2k. Such magnitudes for the resonant Kapitza-Dirac splitting
are totally in limits of experimental realization (for example [52]).

Note also, that the comparison between the deviation of p, or p, (from the Fig. 3.4) and
the width of momentum distribution (from the Fig. 3.1) shows the same order of magnitude
for them. The widespread character of the momentum distribution comes from the multipho-
ton nature of the phenomenon (multiphoton process of photon reemission from one wave into
the counterpropagating one takes place), so the large-scale variations in OP-CAMEL may be
named as “multiphoton”.

The multiphoton character of OP-CAMEL can be made more transparent, if we consider
the limit of a sufficiently wide initial momentum distribution, that is Ap > hk, then u =
2v4Ts > 1. The last estimate comes from the theory of resonant Kapitza-Dirac effect, where
the connection between momentum width dp and the number of Rabi-flops 2575 is given as



Momentum transfer for an optical transition in a prepared two-level atom 31

dp ~ 2vsTshk. Taking into account also that J; o(2u) < 1, we conclude that the terms i hk
wsin 2vt (3.27) and —% hk wsin 2vt (3.29) stand out as the prevailing terms for respectively

(p), and (p),

U . U .
(p)y ~ —th sin2vt, (p), =~ th sin 2vt.

e

Since u >> 1, the changes of (p), and (p), per Rabi period, which are in the order of u/2hk
largely exceed the momentum Ak of a single photon.

Standing Travelling
wave wave

Ground level
atom

I

Kapitza-Dirac Stern-Gerlach
diffraction splitting

Figure 3.5: The atom at a ground internal energy level with a fixed momentum (zone 1)
changes its state into a superposition while coherently interacting with a resonant standing
wave (zone 2). The next interaction with the travelling wave leads to large-scale changes in
the momentum distribution per internal energy level. Solid lines represent the atoms at the
ground level and the dotted lines represent the atoms at the excited internal energy level.

3.5 Conclusions

We presented a simple theoretical picture for an optical transition of a single two-level atom
for general conditions, when the atom is in a superposition state of ground and excited internal
energy levels. When these levels initially have different momentum distributions, the one-
photon optical transition leads to significant asymmetric changes in the form of momentum
distributions per internal energy level. In other words, the photon induces a change of the
mean momentum for each internal energy level and this change is larger than the momentum
of the photon itself.

For an important case, when the preliminary superposition state of the atom is prepared
by a coherent scattering at the resonant standing wave, the phenomenon can be considered as
a transition from the resonant Kapitza-Dirac splitting of atomic translational states into the
Stern-Gerlach type splitting. This is sketched schematically on the Fig. 3.5.

Finally, let’s make some remarks on possibilities of the experimental observation of the
phenomenon. First of all, the “non-optical” methods, which detect the atom in total (for ex-
ample, the hot-wire” method), can’t be used for our purposes. It is because the phenomenon
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deals with individual internal energy level. The momentum distribution of the total atom
doesn’t change, or rather, it changes only in limits of one-photon momentum.

Preferably, other detecting methods can be used, which deal only with one of resonantly
connected internal energy levels, such as adjacent optical transitions. Then the phenomenon
appears as asymmetry in the profile of the Doppler broadening, relative to the Bohr frequency.
The other proposal is to use long-living energy levels, so the atomic translational states can be
distinguished in space before the spontaneous emission (zone 3 in Fig. 3.5). In this case the
space-sensitive schemes of spontaneous emission collection or probe pulse absorption may
lead to the desired result.
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Diffraction and trapping in circular lattices

When a single two-level atom interacts with a pair of Laguerre-Gaussian beams with
opposite helicity, this leads to an efficient exchange of angular momentum between the
light field and the atom. When the radial motion is trapped by an additional potential,
the wave function of a single localized atom can be split into components that rotate in
opposite direction. This suggests a novel scheme for atom interferometry without mirror
pulses. Also atoms in this configuration can be bound into a circular lattice.

4.1 Introduction

It is well-known that light may carry both angular and linear momentum. When a light field
interacts with matter, exchange of momentum and angular momentum between light and
matter can occur. Laguerre-Gaussian (LG) light modes are known to carry orbital angular
momentum. If one employs the paraxial approximation for the light field, simple expressions
for the field amplitudes and its average angular momentum can be derived [58]. An easy way
to produce such beams is using spiral phase plates [59].

Another important question is the separability of the total angular momentum into ’or-
bital’ and ’spin’ parts [60]. The orbital part is associated with the phase distribution of the
light field, and the spin part is connected with its polarization. This question is essential in
the context of momentum transfer from light to the atom when one includes atomic internal
degrees of freedom. It has been shown that ’spin’ and ’orbital’ angular momentum of the
photon are transferred from the quantized light field to, respectively, the internal and the ex-
ternal angular momentum of the atom. The interaction with a LG mode is a possible way to
entangle internal and external degrees of freedom of an atom [61]. The transfer of the angu-
lar momentum of light to particles has been also experimentally demonstrated in [62], where
trapped massive particles are set into rotation while interacting with the light field. Other
authors have studied the cooling properties for atoms using LG beams [63]. Also LG beams
have been proposed as a 2D trapping potential for Bose condensates [64].

Whereas angular momentum exchange between light and matter is a relatively new topic,
the linear momentum exchange is a well-established issue [47,48, 65]. It is well-known that
two counterpropagating waves lead to a more efficient exchange of linear momentum between
an atom and the light field than a single travelling wave. Using quantum language for a
classical light field, one can describe such an interaction as a sequence of successive single
photon absorption and emission events. This suggests that one may expect more efficient
angular momentum exchange between a light field and an atom if one uses two LG modes
with opposite helicity, e.g. counterrotating waves.

33
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4.2 General framework

We start with radiation fields propagating along the z-axis with wave number %k and carrying
orbital angular momentum (Laguerre-Gaussian beams). If one considers the paraxial limit of
these waves, the expressions for the light fields are particularly simple [58]

E(p,z,¢,t) = Eo (p,2) eF* 719 4 c.c., @.1)

where p, z, ¢ are the cylindrical coordinates, w is the frequency and the integer index [ is indi-
cates the helicity of the LG beam. For two Laguerre-Gaussian beams with opposite helicity,
namely [ and —I, the total field can be written as

E(p,z,¢,t) = 2Eq (p, z) coslp e!F=w1) 4 ¢ c. 4.2)

We indicated already in the Introduction, that one expects a more efficient exchange of angu-
lar momentum between the light field and the atom in the configuration (4.2) than in a single
LG mode. This expectation is based on the corresponding situation of momentum exchange
between an atom and a standing light wave. In addition to the light field (4.2), the atomic
motion in the radial direction is assumed to be confined by an extra trapping potential U (p)
with cylindrical symmetry.

The z—dependence of the amplitude Ey (p, z) is slow and can be ignored. Properly shap-
ing the LG mode, the radial dependence of E (p, z) can be ignored on the characteristic
width of the trapping potential U (p). Thus, we assume that Ey (p, z) ~ Ej is constant. For
a two-level atom the Hamiltonian in the rotating-wave approximation can then be written as

= Ho+U (p) + 2mwncoslo (=70 [e) (g] + =70 |g) (e] ), 43)

where wp, is the Rabi frequency of each of the travelling waves that create the standing wave,
w is the laser frequency, and

~  P® hw

Ho = 5+ =2 (Je) (el - I9) {g)) (44
is the Hamiltonian for a free atom, with P the momentum operator of the atom, |g) and |e)
indicate the ground and excited states, and wy = (E.—E,)/h defines the transition frequency
of a free atom.

The dynamics of the atom is rather simple if the laser is far detuned. We assume that

|A] > wrg, 4.5)

where the detuning A is defined as A = wy — w. For an atom in the ground state, the excited
state can be adiabatically eliminated, which leads to an effective Hamiltonian in the well-
known form

-~

~ P2
H=—+U \%4 4.6
o TU (P +V(9), (4.6)
where the light-shift potential is specified by
V (¢) = —hQcos® I 4.7

with Q = w%/A.



Diffraction and trapping in circular lattices 35

4.3 Trapping in counterrotating fields

Some general conclusions on the bound states of the Hamiltonian (4.6) directly follow from
its symmetry properties. We introduce the unitary translation operator 7" defined as

Tlg)=|o+7), (45)

where |¢) indicates the states with fixed azimuthal angle. Since the Hamiltonian (4.6) is
invariant for rotation about an angle 7 /I, it follows from a rotational version of the Bloch
theorem that the eigenstates of this Hamiltonian are also eigenstates of T. The eigenvalue
relation can be expressed as

TIW,), =e " T1[T,) (4.9)

i J’
where ¢ is referred to as angular quasimomentum and j identifies the energy band. We
consider a single energy band, and we suppress the index j. We can restrict q to the first

Brillouin zone given as
-1 <qg<l (4.10)

The eigenstates |¥,) should be periodic in ¢ with period 27, because a rotation over 27 must
leave the wave function invariant. The finite range of ¢ leads to a discretization of angular
quasimomentum. On the other hand, a rotation over 27 is equivalent to the action of the
operator 72! Since it follows from Eq. (4.9) that

T2|0,) = e 2™ |1,),

we conclude that the only possible values of the angular quasimomentum are determined
from the condition

e¥m = 1,

Hence g must be integer, and each band contains 2/ Bloch states. For example, for [ = 2 the
first Brillouin zone contains only the four values ¢ = —2, —1,0, 1 of the angular quasimo-
mentum.

Also, in analogy to the case of an infinite linear lattice, one can introduce localized Wan-
nier states |©,,) in the usual manner, as Fourier transforms of the Bloch states

1 — iqTn
= — = A
[q) ‘/Z":Z_le 1©5) .
Obviously, the number of Wannier states within an energy band is equal to 21, just as the
number of Bloch states.

In Fig. 4.1 we plot the trapping potential (4.7) V (z,y) /A for | = 2,4 in Cartesian
coordinates. When the potential is sufficiently deep, atoms can be bound in the angular
wells, and the Wannier states are confined to a single well. An additional confining potential
U (p) is required to trap particles in the radial direction, and to avoid their escape. Then the
potential (4.7) can create a circular lattice, where particles are located near the minima of the
periodic potential. A circular optical lattice has many applications, as discussed recently by
several authors [66-68].
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Figure 4.1: Circular lattice structure due to the trapping potential V (z,y). The plot shows
V (z,y) /B for | = 2,4 in Cartesian coordinates.

4.4 Diffraction in counterrotating fields

Since the potentials have a cylindrical symmetry, it is convenient to express the kinetic energy
in cylindrical coordinates, and we write

P? (92 19 9 1 0
7= salazt 5Pt =sa3 - (4.11)
2M 2M \ 0z pOp Op  p? ¢

The dynamics along the z axis is completely free. For simplicity, we assume that the radial
potential U(p) is narrow, so that the radial motion is restricted to a ring with radius pg, and
we ignore radial dispersion in the present Section. We return to it in Sec. VI, where the effect
of the radial dispersion is estimated. The motion of an atom in the angular direction is then

described by the one-dimensional Hamiltonian

= h* o2 O cos?
H__ﬁ%_h cos” l¢, 4.12)
which has the azimuthal angle as the only coordinate. The quantity I = Mp? is the mo-
ment of inertia. This Hamiltonian is the circular counterpart of the Hamiltonian for simple
linear diffraction. The main difference is that the coordinate ¢ is periodic, which forces
the angular wave number [ to be integer. Diffraction of a single atom described by such a
linear Hamiltonian has been extensively studied theoretically and experimentally by several
groups [47,48,65].

Just as is usually done for linear diffraction, we consider the situation that an initially
localized atom interacts with the optical potential during a small interaction interval [—T, 0],
where the atom picks up momentum from the lattice. The transition from the near field
immediately after the interaction and the far field is described by free evolution. We assume
the atom to be initially in its ground state and situated in a small segment of the ring. Since
the angular wave function ®(¢) of the atom must be periodic at all times, we cannot represent
a localized wave packet by a Gaussian. The initial state at the beginning of the interaction
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interval is taken as

® (¢, —7) = Oy cos?V g (4.13)
with N to be a large natural number, and C'y is the normalization constant
22N
Cy = ——. 4.14)

o 4N
2N
The state (4.13) can be written as a Fourier series, which is just an expansion in the angular-
momentum eigenstates. This gives

N
1 .
(7)) =——= > ime 4.1
(¢, —7) \/%M}Nwme ; (4.15)
with
1 2N
wng(Nﬂn). (4.16)

(a)

The initial state (4.13) is localized around ¢ = 0, which is clear from the asymptotic form

N 2
cosV % ~ exp {—T¢ } , “4.17)

for large N. The half width in the azimuthal angle is of the order of y/2/N. From the
asymptotic form of the binomial coefficient

2N 2N 1 m2
~ 92N -
(Wam) =2z (-

we find the asymptotic expression of the Fourier coefficient

2 1/4 2
b = (W—N) exp (—%) . (4.18)

This demonstrates that the half width in angular momentum is of the order of /N /2.

If we take the duration 7 of the light pulse short and the moment of inertia I is large, so
that #2127 /(21), no propagation occurs, and the kinetic-energy term can be neglected during
the interaction. This is the equivalence of the standard Raman-Nath approximation applied
by Cook et al [47]. Then the final state at time O after the interaction is

®(¢,0) = @ (¢, —7) exp (iQ7 cos® ) . (4.19)
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This state can be expressed as an expansion in angular-momentum eigenstates, in the form
Fourier series, which is just an expansion in the angular-momentum eigenstates. This gives

1 )
_ E imeo
(I) (¢7 O) \/% — Cme b (420)
where
Cm = exp (iQ7/2) E " Ym—oniJn (Q7/2), 4.21)

n

in terms of the ordinary Bessel functions.

States with large angular momentum |m| > N are initially not populated, whereas all
angular momentum states get populated after the interaction. Thus, the configuration with
two LG modes leads to more efficient exchange between the light field and the atom than
a single LG beam. The physical interpretation is the same as for diffraction in the field of
classical counterpropagating waves: an atom picks up a photon from the light beam with one
helicity and emits a photon into the opposite one.
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Figure 4.2: Probability distribution of angular momentum m before (left figure) and after
the pulse (right figure). Here the helicity of the circular lattice is I = 10, the initial state is
determined by N = 10 and the pulse duration 7 is given by {27 = 6.

In Fig. 4.2 we present a typical diffraction pattern calculated for the case that! > N. More
precisely, we plot the angular-momentum coefficients |¢m|2 before the interaction, and the
coefficients |Cm|2 after the interaction with the circular lattice, for 27 = 6. In the latter case,
the momentum peaks correspond to different values of n. The distance between neighboring
peaks is equal to 2. The half width of each peak is of the order of \/N/2.

4.5 Free evolution on a ring

As shown above, the angular-momentum distribution of an atom after the interaction with
a pair of counterrotating LG beams can be broad. However, as a result of the Raman-Nath
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approximation, the angular distribution of the atom has not been modified during the inter-
action, so that |®(¢, —7)|° = |®(¢,0)| . In this chapter we investigate the spatial form of
the atomic distribution in the far field, i. e. after free evolution of the atom over the ring.
As before, the motion along the z axis is completely free and the radial motion is restricted
on a ring. The initial state of this free evolution is given by Eq. (4.19), with the expan-
sion in angular-momentum states given by Eqs. (4.20) and (4.21). For positive times, the
atomic motion is still restricted to the ring with radius po by the confining potential U (p),
and the evolution of the angular wave function ®(¢) is governed by the Hamiltonian (4.12)
with 2 = 0. With the initial state (4.20), the time-dependent wave function is given by the
expansion

D (p,t) = \/Lz_w > Gmexp (img — igtm?) (4.22)

where £ = /i/(21), and the coefficients ¢, are given in Eq. (4.21). As displayed in Fig. 4.2,
the distribution \Cm|2 typically separates in a number of peaks centered at 7w = 2nl, where
n = 0,%1, £2,.. .which are separated by 2/. Thus, the superposition state (4.22) can be
considered as a series of elementary wave packets centered at 2nl, in the angular-momentum
space. Each of these peaks gives a separate contribution to the wave function that moves
with its own angular group velocity 2ém = 4énl = v,,. The angular separation between
neighboring wavepackets is given by 4£I¢, which is proportional to [. Since wave packets
with opposite angular-momentum values will move in opposite directions, i. e. clockwise
and anticlockwise, they will eventually meet again at some time ¢ = 7" and start to interfere.

In order to estimate the time value that interference sets in, we use the fact that for not too
small arguments 27 /2 the Bessel function J,, (€27 /2) with the maximal value is the one with
N = Nmax =~ 7/2. Hence, the meeting time of the pair of the strongest counterpropagating
packets is

™ s
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The exact expression for the time-dependent wave function can be expressed in an integral
form by using the mathematical identity [4]

1 o0 ;. / N 2
imé — ictm?) = e ¢m9 '(— ) act| 423
exp (imo — igtm?) = Lo [~ ao' e o i(0-6) pagt| . @2y
which can be checked by performing the integration. When substituting this identity in the
right-hand side of Eq. (4.22), and using the expansion (4.20), we arrive at the exact expression

(o) = —— [ g o', 0pexp |i (6- ) jaet]. (4.24)
VATt /,OO ( >

A similar equation is well-known to describe the free evolution of a quantum particle in one
dimension. In the present case it is crucial that the integration be performed over all values
of ¢', while using that the wave function ®(¢’, 0) is periodic. Because of this periodicity, we
can express the integral in (4.24) as a sum of bounded integrals
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s e , N
P00= g 3 / a6’ B(,0) exp [ (6-4) /45:5] (4.25)

— 00

By a shift of variables the integrations can be performed over the interval [0, 27], which leads
to an integral expression over a single interval

®(60= s > e [i(o-2m)’
0% d¢' ® (qs’, t) exp [_i (6 — 27p) & /257:} : (4.26)

Here we introduced the modified wave function ® which is just the initial wave function,
modified by a phase factor, defined by

o (qﬁ/,t) = &(¢',0) exp [ms’ 2 /4@5} . 4.27)
In order to emphasize its physical significance, we write Eq. (4.26) in the form
B (1) = — i exp [z (6 — 2mp)> /454 p(o=2m (4.28)
’ 2i€t e he 28t ’ ’

where the function F’ is the Fourier transform of the modified wave function defined over a
single period

F(z) = \/% /0 o ¢’ @ (qs’, t) exp [—mqﬂ . (4.29)

For a freely evolving quantum particle in one dimension, the time-dependent wave func-
tion has the same form as the term with p = 0 in (4.28). The other terms can be understood
from the periodic nature of the dynamics on the circle, where each period of the initial wave
function serves as an additional source that contributes to the wave function ¥ (¢, t) in the
relevant interval [0, 27]. Because of the finite range of the integration in Eq. (4.29), the dis-
tinction between the modified wave function and the initial wave function vanishes for times
t obeying the inequality ¢ > 1/(¢N), when we find in a good approximation

o (¢’,t) ~ (d,o) : (4.30)

In this limit, the function F' is just the Fourier transform of the initial wave function ®(¢, 0),
and ®(¢,t) is simply determined by the Fourier transform F' of the initial wave function
(¢, 0) multiplied by a phase factor. The equation (4.28) has the flavor of the far-field picture
of the time-dependent wave function. The Fourier transform of the initial state determines
not only the momentum wave function, but also the asymptotic form of the coordinate wave
function, scaled by a factor that varies linearly with time. Characteristic for the present case
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of evolution on a circle is that each interval of length 27 serves as a separate source, each
giving a contribution to ®(¢, t). Since the Fourier transform of the wave function determines
the angular-momentum amplitudes, we may conclude that the wave function for not too small
times has the same form as the initial distribution of angular momentum, scaled by the factor
2¢t. Tt is clarifying to follow the temporal evolution of |® (¢, t) |2 by distinguishing two time
regions, namely 0 < ¢ < T'and t > T. In the region 0 < ¢t < T, the wave function has
not yet spread beyond a single period of length 27, and only a single term in eq. (4.28) (or
(4.26)) differs from zero.

.1
1
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-1 -m/2 0 /2 o ™

Figure 4.3: Angular distribution |® (¢, )|? is plotted versus the azimuthal angle ¢ before the
left and right rotating components cross. Here £t = 37 x 1073, the value of N determining
the width of the initial state, the helicity [ and the pulse duration 7 are the same as in Fig.
4.2.

The contribution to the wave function coming from different sources do not overlap yet, so
that one can neglect the interference term between them. At later times ¢ > T, the diffraction
pattern on the interval [0, 27] is formed as an interference pattern between two and more terms
in the superposition state (4.25). This picture is confirmed by numerical calculation of the
diffraction pattern for the two time regimes. In Fig. 4.3 the angular probability distribution
|® (¢, )| is shown for a time ¢ < T’ The spatial pattern resembles the angular momentum
distribution shown in Fig. 4.2. Figure 4.4 displays the same probability distribution for a later
time £ > T'. One notices that the counterrotating components give rise to clear interference
fringes. These fringes will be quite sensitive to any perturbation in one of the arms. This
suggests to use the present scheme as an atomic interferometer [4]. Usually, interferometers
have two key components, namely a beam splitter and a mirror. A coherent incoming atomic
beam is split into spatially separated components by the beam splitter. Two arms are getting
formed, which freely propagate and may undergo different phase shifts, which are probed by
recombining the two arms. The interference pattern contains the information of the phase
perturbation in one of the arms. Recombination usually requires atomic mirrors. In atom
optics, beam splitters and mirrors are commonly realized by using light pulses, with carefully
selected duration and shape.

In the present case, only a single pulse is required that splits the initial atomic wave
packet into components rotating to the left and to the right. No mirrors are employed in this
scheme. Instead, one uses the radial potential U (p), to constrain the atomic motion to a ring.
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Radial potentials can be realized by hollow light beams, which are widely used in atomic
interferometric schemes.

0.5
[o@.0f
0.3
0.1
{1
0 /2 715 3n/2 I 21

Figure 4.4: Angular distribution |® (¢, t)|? is plotted versus the azimuthal angle ¢ after the
left and right rotating components cross. Here &t = 67 x 102, the value of N, the helicity
[ and the pulse duration 7 are the same as in Fig. 4.2.

4.6 Radial dispersion

In this chapter we consider the radial dynamics of the diffracted wave function during its free
evolution, after the passage of the circular lattice. We assume that the wave function at time
t = 0, after the diffracting pulse, is factorized as

U(p,9,0) = Q(p,0)2(9,0), (4.31)

where the radial part () of the wave function is sharply peaked at p = pg, and the angular wave
function is specified by Eq. (4.20). The radial function () is normalized ( fooo dpQ?(p)p = 1).
We wish to study the possible deformation of the wave packet, when the radial dispersion is
included during the stage of free evolution. We take the simplest possible trapping potential,
which allows radial dispersion, and we take for the confining potential U (p) an infinitely
deep cylindrical box with radius a, as defined by

U (p) =0forp <a, and U (p) = oo for p > a. (4.32)

This potential models a hollow light beam. With this potential, the normalized eigenfunctions
of the Hamiltonian for the cylindrical coordinates during the free-evolution stage take the
form

1 )
—cm, (4.33)

where the radial functions R,,,, are solutions of the equation

R /10 0 m?
|:_m (;8_[) a_p - p_2> + U(p):l an(p) - gnman(p)v (434)
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with &,,,,, are the corresponding eigenenergies. The radial functions are proportional to the
Bessel function of order m

Rom(p) o< I (anmp/a), (4.35)

with R,,,, normalized in the interval 0 < p < a. In order that the wave function vanishes at
the edge p = a of the cylindrical well, we have to take the numbers «,,, for various values
of n as the subsequent zero’s of the Bessel function .J,,,. This determines the corresponding
eigenenergies as

Enm = hAa?, . (4.36)

with A\ = %/(2Ma?). For each value of the angular momentum m, the set of functions
R,m(p) is complete. An expansion of the initial state (4.31) in the energy eigenfunction is
found when we expand the initial radial wave function @(p,0) in the radial eigenfunctions
(4.35), so that

while substituting Eq. (4.20) for the initial angular state ®(¢,0). For the time-dependent
state we find
1

where the m-dependent radial wave function @, is

m

Qm(p,t) = Z CnmBnm (p) exp(—iEpmt/h). (4.39)

From Eq. (4.37) one notices that Q,,,(p,0) = Q(p,0), independent of the angular mo-
mentum m. It is obvious from the radial Schrodinger equation (4.34) and the initial condition
(4.31) that the normalized radial wave function obeys the identity Q.. (p,t) = Q_m(p,t)
for all m. Moreover, since the total wave function before diffraction is even in ¢, it must
remain even for all times. This implies that (,,, = (_,, for all m. So just as discussed in
Sec. IV, the angular distribution separates in different wave packets that are counterrotating.
Since the phase of (,,,@,, is even in m, its derivative with respect to m will be odd, and the
angular group velocities of packets with opposite values of m will be opposite. This leads
to interference after the packets have traversed the entire ring. The initial radial function is
taken as a narrow Gaussian

Q(p,0) xexp (= (p = po)? /212, (4.40)

Here L is the width and pg represents the initial position of the wave packet within the
box. The normalized wave function Q,,(p, t) describes the radial dynamics for each value
of the angular momentum m. As an example, we evaluate the time behavior of the average
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Figure 4.5: Time behavior of the average radial distance (p (¢)),. /a for the angular momen-
tum m = 10. N is the same as in Fig. 4.2, the width of the initial Gaussian is L = 0.01a,
and the initial average radial distance is po = a/2.

radius for each angular momentum, with the given initial radial state (4.40), according to the
expression

o (), = / a0 |Qu(p ) 0.

The result is displayed in Fig. 4.5, in the special case that m = 10. The average radius
displays oscillations, which can be understood as arising from the outward motion due to the
centrifugal potential, followed by reflection at the hard wall of the cylinder. The oscillations
display collapse, followed by a revival. These may be viewed as arising from the initial de-
phasing of the contribution from the radial eigenfunctions R,,,, with different values of n,
due to their energy difference. The revival of the oscillation can be understood from the dis-
crete nature of the contributing energy eigenvalues, when the phase factors due to neighboring
eigenenergies have built up a phase difference 27. Because of the conservation of angular
momentum, the probability density near the origin remains zero. The interference between
the counterrotating wave packets is illustrated in Fig. 4.6, for the ring at radius p = pg = a/2.
Fig. 4.6a shows the short-time separation of the angular wave packets. Fig. 4.6b displays
the interference that arises as soon as overlap occurs around ¢ = 7 between the clockwise
and the anti-clockwise rotating packets. This demonstrates that the radial wave functions
Qm(p,t) for different values of m have sufficient overlap, so that the angular interference
survives the effect of radial dispersion.

4.7 Conclusions

In this paper we describe the diffraction of an atomic wave by a circular optical lattice. Such a
lattice can be formed by the superposition of two Laguerre-Gaussian beams with opposite he-
licity, which gives rise to a standing wave in the angular direction. Such a light field will split
a single localized atom into clockwise and anticlockwise rotating components. If the system
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Figure 4.6: Angular distribution |¥ (po, ¢, ¢)|? in the presence of radial dispersion, at the
ring p = po = a/2. The time values are determined by A1 = 7 x 1072 and M2 =
21 x 1073, N, 1, Q7 are the same as in Fig. Fig. 4.2.

is in a trapping potential in the form of a ring or in a cylindrical box, these counterrotating
components give rise to interference. We express the spatial pattern in the far diffraction
field in terms of the Fourier transform of the near-field diffraction pattern. The periodic na-
ture of the circular motion modifies this relation compared with the case of diffraction by
a linear standing wave. The general conclusions are backed up by numerical calculations.
Characteristic for the circular case is that the wave packets corresponding to opposite angular
momentum will cross each other, even without applying light pulses to reverse their motion,
as in more common interferometric schemes. The scheme is reasonably robust to changes in
the radial confining potential.






Chapter 5

Analogy between a two-well Bose-Einstein
condensate and atom diffraction

We compare the dynamics of a Bose-Einstein condensate in two coupled potential
wells with atoms diffracting from a standing light wave. The corresponding Hamiltonians
have an identical appearance, but with a different set of commutation rules. Well-known
diffraction phenomena as Pendellosung oscillations between opposite momenta in the
case of Bragg diffraction, and adiabatic transitions between momentum states are shown
to have analogies in the two-well case. They represent the collective exchange of a fixed
number of atoms between the wells.

5.1 Introduction

The most common approach to the description of a trapped Bose-condensed gas is based on
the mean-field approximation, which yields the Gross-Pitaevski equation for the macroscopic
wave function. This wave function, which depends on the number of atoms, plays the role
of the mode function for the Maxwell field. This approach is reliable when the condensate
is trapped in a single quantum state in a potential well. However, when the condensate is
separated into two or more parts, so that more than one quantum state is populated, the mean-
field approach is not evidently justified. It has been shown by Javanainen and Yoo [15] that
two originally separate parts of a condensate that are initially in a Fock state and that are
brought to overlap will reveal an interference pattern that varies in position from one real-
ization to another. This effect, which has also been observed experimentally [69, 70], cannot
be described by a single macroscopic wave function. A simple model for a condensate in
a double potential well is defined by a field-theoretical Hamiltonian for a boson-Hubbard
dimer [71,72], which can be expressed in terms of SU(2) angular-momentum-type operators
with a quadratic term. This latter term represents the interaction between atoms in a well. The
mean-field approximation is basically equivalent to classical equations of motion for the ex-
pectation values of the SU(2) operators [73,74]. The quantum regime has mainly been studied
numerically, leading to collapse and revival [73], and to nonclassical dynamics arising from
the periodic modulation of the coupling between the wells [75]. The formation of a two-well
condensate by the raising of the barrier has been analyzed theoretically [76]. The situation of
a Bose-Einstein condensate (BEC) in a two-well trap is also studied experimentally [77,78].

A very similar Hamiltonian describes the situation of an atom diffracting from a standing-
wave optical potential. This problem has received attention already in the early days of
laser cooling [47—49, 65]. More recent work has developed the band structure of the energy

47
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spectrum [79], and a number of regimes have been distinguished that allow an analytical
description [80]. In a simple version of the model, the Hamiltonian is identical in form as in
the two-well problem mentioned above. Now the quadratic term represent the kinetic energy
of the atom. The only difference between the two cases is that the commutation rules for
the operators in the diffraction case are slightly simplified compared to the case of SU(2)
symmetry.

In this paper, we discuss the analogy and the differences between these two systems. We
point that a number of analytical solutions known for the diffraction problem can be carried
over to the two-well system. The physics of these cases is discussed.

5.2 BEC in a double potential well

We consider a potential consisting of two wells. When the barrier between the wells is not
too low, the ground state and the first excited state |g) and |e) of a single atom are well
approximated as the even and odd superposition of the lowest bound states in the two wells.
Therefore, these states can be described as

1 1

l9) \/5(|1> +12)): le) \/5(\1> —12)), 5.1

with |1) and |2) the localized states in either well. When the energy separation between the
excited and the ground state is indicated as %4, the off-diagonal element of the one-particle
Hamiltonian H; between the localized states is

(1| Hy |2) = —ho /2.

At the low energies that are of interest here, the two particle interaction is well approximated
by the standard contact potential U(7,7) = (4wh?a/m)§(F — ), with a the scattering
length. The second-quantized field operator is now

T(F) = gty (7) + Getbe (F) = Grbs (7) + aatba(7), (52)

in terms of the wave functions 1; and the annihilation operators a; of the single-particle
states. The annihilation operators and the corresponding creation operators obey the standard
bosonic commutation rules. The corresponding Hamiltonian is

i- /df@f(f)Hl@(F) + % /dFdF’ BT YU AT, 53)

The wave functions 1)1 and 15 of the localized states have the same form, and we assume that
they do not overlap. Then the interaction term can be expressed exclusively in the parameter
k defined by
4mh%a
m

hk =

/ dF 41 (P, (5.4)

which measures the strength of the interatomic interaction. Performing the integrations in eq.
(5.3) leads to the expression for the Hamiltonian

~ hé /o Ak [5G0 g
H = - (alaz + a;Cll) + 3 (a]{aialm + a;a;a2a2) ) (5-5)
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where we took the zero of energy halfway the two energy levels of a single atom. This is also
known as the boson-Hubbard dimer Hamiltonian [71].

The Hamiltonian (5.5) can also be expressed in terms of SU(2) operators by applying the
standard Schwinger representation of two modes. This leads to the definition

~ 1l ~

Jo = 3 (a{al — a;ag) , Jy = a]{ag, J_ = agal. 5.6)
These operators are related to the Cartesian components of angular momentum by the stan-
dard relations Ji =J, + zJ and JO = 1. They obey the commutation rules for angular

momentum operators
[Jo, Ja] = £Tx, [T1, J-] = 2J, (5.7)

which generate the SU(2) algebra. The Hamiltonian (5.5) can be rewritten in the form
~ ho , ~ ~ hik [~ ~
H:—E(J++J,)+hh;fg+f(N2—2N), (5.8)

with N = 6{51 +6;62 the operator for the total number of particles. Obviously, Hamiltonian
(5.8) commutes with N, and it is block diagonal in the number of particles N. For each value
of N, the Hamiltonian (5.8) can be expressed as

- h
Hy + f(Nz —2N),

with the N-particle Hamiltonian
. B o~ o~
Hy = % (J + J) + hkJZ, (5.9)

where the operators are now restricted to the N + 1 Fock states |n, N —n) with n =
0,1,... N, with n particles in well 1 and N —n particles in well 2. In the language of angular
momentum, this manifold of states corresponds to the angular-momentum quantum number
J = N/2, and the 2J + 1 Fock states are eigenstates of Jy with eigenvalue 4 = n — N/2
with p = —J, —J 4+ 1,...,J. Note that p is half the difference of the particle number in the
two wells. For an even number of particles, the angular-momentum quantum number J as
well as the “magnetic”’quantum numbers are integer, whereas these number are half integer
in case of an odd number of particles. The action of the operators Jy and J+ on the Fock
states has the well-known behavior

Jolw) = plu), Tolp) = Fupr lu+1), T |y = f, ln—1), (5.10)

with f, = V/(J + ) (J — i+ 1). The u dependence of the strength of the hopping oper-

ators fi reflects the bosonic accumulation factor, which favors the arrival of an additional
bosonic atom in an already occupied state.

When the quadratic term in eq. (5.9) would be replaced by a linear term, the evolution
would be a uniform rotation in the (2.J + 1)-dimensional state space with angular frequency
V62 + k2. The presence of the quadratic term makes the dynamics considerably more com-
plex. Therefore, we compare this dynamics with another well-known case in which a similar
quadratic term appears.
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5.3 Standing-wave diffraction of atoms

The translational motion of a two-level atom in a far detuned standing-wave light field is
described by the effective Hamiltonian
2 92 2

ﬁd:_;_m%_ h“f cos? kz, (5.11)
with A = wy — w is the difference of the resonance frequency and the optical frequency, and
wr is the Rabi frequency of each of the traveling waves that make up the standing wave. The
Hamiltonian takes a particularly simple form in momentum representation, since the kinetic-
energy term is diagonal in momentum and the potential energy changes the momentum by
+2hk. Therefore, we introduce momentum eigenstates |u) which have the momentum 2pfik.
Then apart from an irrelevant constant, Hamiltonian (5.11) can be represented in the algebraic
form

ﬁd:_% (§++1§_) + heB2, (5.12)

where £ = 2hk?/m determines the Kinetic energy term and § = w%/2A the atom-field
coupling. The operators occurring on the right-hand side are defined by the relations

Bolp) = plu), Bilp) = |+ 1). (5.13)

They differ from the corresponding relations (5.10) in that now the strength of the hopping
operators is uniform.

This Hamiltonian (5.12) has the same form as eq. (5.9), even though they describe com-
pletely different physical situations. The difference is mathematically characterized by the
commutation relations. The SU(2) relations (5.7) are replaced by the simpler set

[Bo, B+] =+ Bx, [By,B_] =0, (5.14)

which is easily found from their explicit expressions (5.13). The two operators §i are found
to commute. A result of this difference is that the state space in the two-well case has a
finite dimension 2J 4+ 1 = N + 1, whereas the momentum space has an infinite number of
dimensions.

A mathematically identical set of operators occurs in the description of the dynamics of
the Wannier-Stark system, consisting of a particle in a periodic potential with an additional
uniform force (Chapter 2). In that case, the eigenstates of By represent the spatially localized
Wannier states, rather than the momentum states.

We recall three approximate solutions of the evolution governed by Hamiltonian (5.12),
which are valid in different situations, and which allow analytical solutions.

The Raman-Nath regime is valid for interaction times that are so short that the atom
has no time to propagate. Then the quadratic term in eq. (5.12) can be neglected, and the
evolution is determined by the atom-field coupling §(¢). The evolution operator is simply
U = expli¢(By + B_)/2], where ¢ = | dté(t) is the integral of the coupling constant over
the evolution period. The matrix elements of the resulting evolution operator for the pulse
can be found by operator algebra in the form (Chapter 2)

(WO |y = " 1 T u(9), (5.15)
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in terms of Bessel functions. For an initial state |;1) with a well-determined momentum, the
time-dependent state following the pulse can be expressed as

[W() = 3 e ) (| O ) (5.16)

w

This leads to explicit analytical expressions for diffraction experiments [47-49, 65]. The
probability of transfer of n units of momentum is proportional to |.J,, (¢)|?.

The Bragg regime is valid when the coupling § between neighboring momentum states
is small compared to the kinetic-energy separation a~ 27 of the initial state |u) from its
neighboring states |+ 1) . This initial state leads to an oscillating time-dependent state
between the two states |u) and | — u) with the same kinetic energy

Qut Q,t
|¥ (t)) = cos T“ ) —&—isinT“ [—p) s (5.17)

apart from an overall phase factor. This can only occur when the momentum transfer 2u
(in units of 2Ak) is an integer, which corresponds precisely to the Bragg condition. The
Pendellésung frequency is given by 2, = 6(6/2k)*71/ [(2u — 1)1]? [80]. This expression
is fully analogous to the effective Rabi frequency for a resonant multiphoton transition, with
nonresonant intermediate states [81, 82].

The regime of adiabatic coupling arises for a time-dependent atom-field coupling §(t)
that varies sufficiently slowly, so that an initial energy eigenstate remains an eigenstate. The
adiabaticity condition in the present case reads

dé

7 < KO. (5.18)
When an atom passes a standing wave with a sufficiently smooth variation of the intensity,
and the Bragg condition is fulfilled, the presence of two initially degenerate eigenstates | 4 1)
leads to interference after the passage, which produces two outgoing beams. Because of the
similarity between the two Hamiltonians (5.9) and (5.12), these well-known diffraction cases
can be expected to have analogies in the dynamics of the two-well problem.

5.4 Symmetry considerations of generic Hamiltonian
The Hamiltonians (5.9) and (5.12) can be represented in the generic form
H = —hdL, + hxL?, (5.19)

with L, = (Z+ + E,) /2, L. = Lo, where the operators L; represent J; or B;, depending
on the commutation rules and the corresponding algebra that they obey. In the two-well case,
the eigenstates |u) of the operator L, represent number states in the two-well case, with the
eigenvalue 1 half the number difference between the wells. In the diffraction case, the states
|¢) are momentum eigenstates. In this latter case, the coupling between neighboring momen-
tum states is independent of i [eq. (5.13)], whereas in the two-well case the ;1 dependence of
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the hopping operator indicated in eq. (5.10) reflects the bosonic accumulation effect. A con-
sequence of this is also that the Hamiltonian in the diffraction case couples an infinite number
of states |u), whereas in the two-well case the number of coupled states has the finite value
N + 1. In the diffraction case, we restrict ourselves to the situation that the Bragg condition
is respected. Therefore, both in the diffraction case and in the two-well case y attains either
integer or half-integer values. The action of L is the same in both cases.

Hamiltonian (5.19) is invariant for inversion of 4. In order to demonstrate this, we intro-
duce the inversion operator P, defined by the relation P|u) = | — ). In the diffraction case,
the operator P corresponds to inversion of momentum, which does not change the kinetic
energy. In the two-well case, the operator p represents interchanging the particle numbers in
the two wells, which has no effect on the interparticle interaction. The commutation rules of
the i 1nvers1on operator w1th the operators L; are specn‘ied by PL pP= —L PLiP LJF,
so that P inverts L and Lz, and commutes with L It follows that Hamiltonian (5.19) com-
mutes with P, so that it is invariant for inversion of . Therefore, Hamiltonian has vanishing
matrix elements between the even and the odd subspaces, which are the eigenspaces of P
with eigenvalue 1 and —1, respectively. For half-integer p values, these spaces are spanned
by the states

= By < =l

for positive values of p. In the case of integer u values, the state | = 0) also belongs to the
even subspace. The even and odd subspace evolve independently from one another. This
symmetry property of H depends on the fact that it is quadratic in the operator L.

The action of the quadratic term in Hamiltonian (5.19) on the new basis is simply given
by the relation LZ|u)+ = p?|u)+. The action of the coupling term in the Hamiltonian can be
expressed in a general form by introducing coefficients F, for non-negative values of p. In
the case of the SU(2) algebra, we define F}, = f,,, whereas in the diffraction case we simply

(5.20)

have F,, = 1. The matrix elements of Lx can be fully expressed in terms of the coefficients

F),, for positive ;. Within the even or the odd subspace, the operator L\x has off-diagonal
matrix elements only between two states for which the values of i differ by one, and we find

~ 1
s (nt1|Laf 1) = 5B, (5.21)

provided that the value of w is positive. These matrix elements coincide with those on the
basis of the states | ). For the state | = 0), which belongs to the even subspace of a manifold
of states with integer 1 values, the matrix element is

+(1|L.

On the other hand, in a manifold of states with half-integer y« values, Lz has a single nonzero
diagonal element for . = 1/2, that is given by

0> = F1/V2. (5.22)

£ (1/2| Ly [1/2), =+ Fypo. (5.23)
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Hence, in the case of half-integer ; values, the Hamiltonian projected on the even and the
odd subspace differ exclusively in the diagonal matrix element for y = %, for which we find

~ he 1
For integer values of u, the Hamiltonian for the odd subspace is identical to the Hamiltonian
for the even subspace with p = 1. The only difference is that the even subspace also contains

the state |0), which is coupled to the other states by the matrix element

N <1 ‘H‘ o> - <o ‘H‘ 1>+ = —h6FY V2. (5.25)
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Figure 5.1: Energy levels in units of ix for the double well with N = 100 particles, for
various values of /. The levels are labeled by the quantum number p.

In both cases, the difference between the Hamiltonian parts on the even and odd subspaces
are proportional to §. These differences are responsible for the energy splitting between the
even and the odd energy eigenstates. Moreover, since these differences in the Hamiltonian
parts occur for low values of u, we expect that for a fixed value of 4/, the even-odd energy
splittings decrease for increasing ypvalues. This is confirmed by numerical calculations. In
Figs. 5.1 and 5.2, we display the energy levels of the Hamiltonian, for a few values of §/k,
both for the double-well case (with N = 100), and for the diffraction case.

The energy levels are found to be alternatingly even and odd, with increasing energy. In
the two-well case, the energy shifts and splittings due to the coupling are larger for the same
value of §/x and the same value of p. This arises from the factor F),, which is unity in the
diffraction case, whereas in the two-well case it decreases from ~ J = N/2 at u = 0 to zero
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Figure 5.2: Energy levels in units of /ix for the diffraction case, for various values of §/k.

at u = J. In fact, the condition for weak coupling is that matrix elements coupling the states
|y and | — 1) are small compared with their unperturbed energy separation. This condition
can be expressed as

5 F,

=" 5.26
B ok —1 (5.26)

This confirms that for a given value of §/x, the region of weakest coupling occurs for the
highest values of . In the two-well case, the lowest-energy states start out to be nearly
equidistant for low y values as long as A, is large.

5.5 Pendellosung oscillations

The energy splittings between the even and the odd eigenstates give rise to time-dependent
states that oscillate between the states |+4). In the diffraction case, they correspond to the
well-known Pendellosung oscillations in the Bragg regime. Here we show that similar os-
cillations can occur for the two-well problem, and we give an analytical estimation of the
oscillation frequencies. For the generic Hamiltonian given by eq. (5.19), the Bragg condition
is fulfilled when inequality (5.26) holds.

The energy differences between the even and odd states to lowest order in )\, can be

found from the effective Hamiltonian for two degenerate states that are coupled via a number
of nonresonant intermediate states. This situation occurs for the states |£u), with their 2p — 1
intermediate states. In this case, the intermediate states can be eliminated adiabatically, as
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demonstrated in Sec. 18.7 of ref. [81]. The resulting effective Hamiltonian for these two
states |+4) has an off-diagonal element that is the ratio between two products. The numerator
contains the product of the successive 2/ matrix elements —AdF), /2 of the Hamiltonian
coupling neighboring states, and the denominator is the product of the 2; — 1 unperturbed
energy differences of the degenerate states |+u) with the successive intermediate states. In
the diffraction case, this result coincides with the calculation given in ref. [79], which was
obtained by diagonalizing a tridiagonal matrix and keeping only the lowest order in §/ k.

Generalizing this result to the present case of the two states |£), we find that the effective
Hamiltonian has the diagonal element

(p| Hepp|£p) = hip?, (5.27)
and the off-diagonal element

(Ful Hepy |p) = —hQ,/2, (5.28)
with €2, an effective oscillation frequency given by

1 8% 1
= F.
22p—1 2p—1 [(2u—1)!]

Q, = (-1)**! (5.29)
The factor I is just the product of the coefficients F}, successively coupling the states inter-
mediate between |u) and |—p). In the diffraction case, we simply have F' = 1, whereas in
the case of SU(2) symmetry, applying to the double well, we find

F= M (5.30)
(J — !

These expressions are valid both for integer and half-integer values of p. The eigenstates
of the effective Hamiltonian are the even and odd states, and the eigenvalue equations are
Hepp|p)y = (hkp® F 18y, /2) |p) . For integer values of 4, the frequency €2, is negative,
so that the even states |u)  are shifted upwards and the odd states are shifted downwards in
energy. The opposite is true for half-integer values of p. In both cases, the ground state is
even, and the energy eigenstates for increasing energy are alternatingly even and odd. In view
of the results of the numerical calculation mentioned above, one may expect that this alter-
nating behavior of the even and odd eigenstates is valid for all finite values of the ratio 6 /x. It
is interesting to notice that in the special case that u = J = N/2, eq. (5.29) for the two-well
case coincides with the ground-state energy splitting of two coupled quantum anharmonic
oscillators, which model two coupled vibrational degrees of freedom in a molecule [83].

For an initial state |p), the effective Hamiltonian H. s leads to a time-dependent state
that is given by eq. (5.17), apart from an irrelevant overall phase factor. This shows that the
oscillating solution (5.17) corresponding to the Bragg regime of diffraction can be generalized
to the case of a condensate in a double well. The same expression (5.17) remains valid,
while the oscillation frequency (2, is determined by eqs. (5.29) and (5.30). This describes
a state of the condensate atoms in the double well in the weak-coupling limit. In this case,
the state oscillates between the Fock states |nq,ne) = [N/2+ u, N/2 — p) and |ny,ng) =
IN/2 — u, N/2 + p).
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Obviously, when the initial state is given by |x)_, the system is in a stationary state, and
no oscillations occur. In this case, Pendellosung oscillations can still be induced by including
in the Hamiltonian a term that is linear in L,. In the diffraction case, there is no obvious
physical realization of such a term. For the Wannier-Stark system, where the quadratic term
in L? is absent, the linear term can be realized by imposing a uniform force, which gives rise
to I}loch oscillations [25,26] and Chapter 2. In the case of the BEC in a double well, a term
h&L, in the Hamiltonian can be realized by imposing an energy difference h¢ between the
single-particle ground states in the two wells. When this term is periodically varying, it can
be used for coherent control of the condensate [84]. The additional term couples the even and
odd subspaces, thereby breaking the symmetry of the Hamiltonian. On the basis of the states
|11) ., the effective Hamiltonian attains the off-diagonal element

o (ul Hepp )5 = hep/2. (5.31)

When we assume that both § and £ are small compared with the splitting due to the inter-
particle interaction x, so that we remain in the Bragg regime, the two states |+u) remain
decoupled from the other number states, and we have an effective two-state system. In prac-
tice, the parameter £ can be easily controlled, so that many effects of two-state atoms [45] can
also be realized for these two states. For example, in analogy to the excitation of ground-state
by an adiabatic sweep across the resonance, one could create an effective transfer from the
state |u) to the state |—p) by varying the parameter £ adiabatically from a positive to a nega-
tive value that is large compared to £2,,. This gives an effective collective transfer of n = 2u
atoms from one well to the other one.

5.6 Time-dependent coupling

When the coupling J(¢) varies with time, the time-dependent eigenstates of the Hamiltonian
are coupled to each other. The eigenstate that correlates in the limit § — 0 to the state |u)
is denoted as |<pff> Note that even eigenstates are only coupled to other even eigenstates,
and odd eigenstates to odd eigenstates. The coupling results from the time dependence of the
eigenstates. In fact, the term in the Schrodinger equation coupling |<pff> to |¢F) is propor-
tional to

h§(t)

(v )] 5 I 0) = = (e O] L o 0) g

uw# v (5.32)
This coupling is ineffective in the case that the r.h.s. of eq. (5.32) is small compared with
(EF — Ef) /h. In this case, an initial eigenstate remains an eigenstate at all times. This is the
standard case of adiabatic following, which has been discussed in the diffraction case [80].
Since within the even or the odd subspace there are no degeneracies, the dynamics of adia-
batic following is particularly simple. When the coupling coefficient § is smoothly switched
on, with the system initially in the state |1) = (|p) . + |p)_)/V/2, the time-dependent state
is obviously

| (1)) = e ?® (\%t) e~ M/2 4y e“?(”/?) /V2, (5.33)
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with 9(t) = ft dt' (E;f (t') + E,; (t')) /2h the average phase and

n(t) = / “ar [} () — E; (t)] /A (5.34)

the accumulated phase difference of the two eigenstates.

In a time interval that the coupling ¢ is constant, the phase difference 7)(¢) increases lin-
early with time, and state (5.33) gives rise to expectation values oscillating at the single fre-
quency [Ej () —E )] /h. When the coupling is switched off again, the phase difference
approaches a constant limiting value 77 = 7 (00).

State (5.33) at later times corresponds to a linear superposition of the states |4u) pro-
portional to |u)cos(7j/2) + |—pu)sin(7/2). Again, as we see, this effect that is known
in the diffraction case also has a counterpart for the double-well problem, where adiabatic
switching of the coupling between the wells leads to a linear superposition of the Fock states
|n1,n9) = |N/2 4+ u, N/2 — p) and |ny,ng) = |N/2 — p, N/2 + p). By proper tailoring of
the pulse, the final state can be made to coincide with either one of these Fock states, with the
even state |u) , or with the odd state |1) _, depending on the precise value of the accumulated
phase difference 7, which in turn is determined by the energy difference E:[ — E,, between
the even and the odd eigenstate. In Fig. 5.3, we plot this energy difference in the two-well
case, for N = 100, and for a few values of §/k. This shows that these splittings decrease
monotonously for increasing quantum number p. When §/ is not small, the decrease starts
out to be slow, and then falls rapidly to zero .

24 —o— 8/x=0.1

R _ —a— O/x=1

E-E — 5/k=5
hix

16

Iy g 12 'Hlé

Figure 5.3: Even-odd energy splittings for the double well as a function of the quantum
number p, for various values of ¢/« and for N = 100 particles.

In contrast, when the coupling term 6(¢) has the form of a short pulse around time zero,
such that the action of the quadratic term can be neglected during the pulse, the initial state
|p) couples to all other states |p) . The state vector has exactly the same form (5.16) as
for diffraction in the Raman-Nath regime. For the two-well problem, the evolution operator
takes the form U = exp(i¢L,) with ¢ = [ dté(t), which has matrix elements that can be
expressed in the Wigner rotation matrices [85] by

(WU |p) =i =1d, (o), (5.35)
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with J = N/2. A comparison with Eq. (5.15) shows that for the two-well-problem, the
Wigner functions play the same role as the Bessel functions in the diffraction case.

5.7 Conclusions

In this paper, we have analyzed both the similarity and the difference between the dynami-
cal behavior of atom diffraction from a standing wave and a Bose-Einstein condensate in a
double-well potential. In both cases, the Hamiltonian is given by the generic form (5.19), the
only difference being in the commutation rules for the operators L;with ¢ = z,y, z. Well-
known diffraction phenomena as Pendelldsung oscillations between opposite momenta in the
case of Bragg diffraction, and the result of adiabatic transitions between momentum states
have counterparts in the behavior of the atom distribution over the two wells, in the case that
the coupling between the wells is weak compared to the interatomic interaction or slowly
varying with time. A common underlying reason for these effects is the symmetry of the
Hamiltonian for inversion y «<» —u, and the energy splitting between even and odd states
arising from the coupling term. In these cases, effective coupling occurs between the states
|n1,n2) and |ny, nq) with opposite imbalance between the particle numbers in the two wells.
These states are coupled without population of the intermediate states, so that a number of
n1 — ng particles oscillate collectively between the two wells. The interparticle interaction
is essential for this effect to occur. A simple analytical expression is obtained for the Pen-
delldsung frequency. An initial state |n,ns) with a well-determined number of atoms in
each well can be transferred to a linear superposition of |n1,n9) and |ne,n;), which is a
highly entangled state of the two wells. A similar analogy is obtained to diffraction in the
Raman-Nath regime. For the double-well problem this requires that the coupling is suffi-
ciently short to ignore dynamical effect of the atomic interaction during the coupling. The
well-known diffraction pattern in terms of the Bessel function is replaced by elements of the
Wigner rotation matrix for the double well. These effects do not show up in the mean-field
approximation, where the Gross-Pitaevski equation holds.
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Resonances for coupled Bose-Einstein
Condensates

We study some effects arising from periodic modulation of the asymmetry and the
barrier height of a two-well potential containing a Bose-Einstein condensate. At certain
modulation frequencies the system exhibits resonances, which may lead to enhancement
of the tunneling rate between the wells and which can be used to control the particle
distribution among the wells. Some of the effects predicted for a two-well system can be
carried over to the case of a Bose-Einstein condensate in an optical lattice.

6.1 Introduction

Since the experimental realization of Bose-Einstein condensates (BEC) one has considered
the possibility of extending one-mode models to two or more modes [69, 70]. This raises
the issue of the relative phase between modes. As indicated by several authors [74, 86], a
two-well BEC may exhibit features that are not covered by the semiclassical description in
terms of the Gross-Pitaevski equation. These features are significant at low particle numbers
and for strong interactions. In previous work, we discussed some aspects of the dynamics of
a two-well BEC in the strong-interaction regime Chapter 5. This is close to the experimental
situation for a BEC in a double-well trap, designed in Ref. [78].

A sensitive way to probe the properties of a BEC in a double-well potential with strong
interatomic interactions is to look for resonant behavior when a parameter of the system is
periodically modulated. The response of the system may be expected to be very sensitive to
the value of the modulation frequency in the neighborhood of a resonance. A periodic pertur-
bation can be implemented in various ways. One example would be periodically modulating
the trapping potential. Salmond et al [75] study a numerical model of a double-well potential
with periodically modulated coupling between the wells. This semiclassical analysis reveals
the existence of uncoupled regions with chaotic and regular motion. The inclusion of the
quantum nature of the evolution leads to transitions between these regions. Another type
of periodic perturbation can be imposed by periodically modulating the energy difference
between the ground states in the two wells.

Periodic modulations are known to give rise to dynamical localization in some cases. This
effect has been widely discussed in the literature in the case a particle in a periodic potential,
such as an electron in a crystal or an atom in an optical lattice [87] and Chapter 2. When the
particle also feels a uniform force in addition to the lattice potential (a tilted optical lattice), it
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is found to have an infinite discrete set of equidistant energy levels, with a level separation that
is determined by the strength of the uniform force Chapter 2. A variation of the magnitude
of the uniform force affects the phase of the state. So, when this magnitude is periodically
modulated, resonances may be expected. The population in one well is described by adding
the amplitudes for arriving at this well from various other wells, each one with a different
phase shift. In the long time limit, when the time of observation is long compared to the
period of the modulation, this gives rise to destructive interference, leading to a suppression
of the net tunneling rate. Hence, the asymptotic distribution over the wells coincides with the
initial one, and dynamical localization has been realized.

Another example of dynamical localization arises for a single two-level atom in a driving
field with a periodically modulated detuning [88]. For certain ratios of the modulation fre-
quency and the strength of the field, the atom is localized in its ground state. The time scale
is restricted by the modulation frequency.

In the present case of a BEC in a two-well potential with a fixed total number of atoms,
the state space is finite dimensional. In the SU(2) representation of the operator algebra, the
Hamiltonian has a quadratic term due to the interatomic interactions. So, in this sense the
system is quite different from that of an atom in a tilted lattice, with its infinite number of
states and a Hamiltonian that is linear in the SU(2) operators. Still, there are some obvious
similarities: the discrete structure of the energy and the presence of interatomic interactions
and tunneling between wells as competing processes. Therefore, we expect interesting ef-
fects also in the two-well case when the energy difference or the hopping between wells is
periodically modulated. From a formal point of view, the analysis in the present paper may
be regarded as a generalization of the process of dynamical localization for the Hamiltonian
with a quadratic term. Specifically, this paper considers the possibilites of coherent control
of a BEC in a double-well potential by using any kind of time-periodic perturbation.

6.2 BEC in a double potential well

We describe a BEC in a double potential well in terms of a one-particle Hamiltonian H (*)
and a two-particle interaction U (7, 7). The states |1) and |2) are the the localized ground
states in either well, with wave functions 1 (7) and 12 (7). On the basis of the states |1) and
|2), the one-particle Hamiltonian has the matrix elements

AHW 1) = -2/ HW |2) = he/2, (| HV |2) = 2/ HD [1) = —hs/2.  (6.1)

In the case that ¢ = 0, the coupling between the wells lifts their degeneracy, and creates an
energy splitting 71 between the even ground state |g) and the odd excited state |e), defined
by
1 1
=—(1)+12)); le) = —=
l9) \/5(|> 12)); le) 7
When we restrict ourselves to these two states, the field operator in second quantization has
the standard form

(11) = 12)) . 6.2)

U(7) = @191 (F) + Gotha(F), (6.3)
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with @; the one-particle annihilation operator in the two states, which together with the cor-
responding creation operators obey the bosonic commutation rules. When we substitute this
expression in the formal expression

b= /dr@' VHOG (7 /drd'@') BHFUE ) B(T)B(T). (64)

for the second-quantized Hamiltonian, we find

= . SUSGR | ) ft
H= Z B (| H® k) a;fak + 3 Z R{i, k|U|l,m) /ii,kvlymazaltalam, (6.5)
i,k ik,l,m

where the indices i, j, k, [ = 1 or 2, and the matrix elements are taken between the states 11
and 5. .

At sufficiently low energy, the two particle interaction is well approximated by the contact
potential U (7, 7") = (4wh%a/m)d§(7 — ), with a the scattering length. The function ¢); and
1o states have the same form, and we assume that they do not overlap. So we obtain the
following expression for the Hamiltonian

~ he /. PN ho RE [dods o i
H= 5 (aial — agag) -3 ( 1 + a§a1) + 5 (aiaiaﬂh + a§a£a2a2) . (6.6)

where the parameter ~ defined by

4 2
b — Thea

/Mwﬁw ©6.7)

measures the strength of the interatomic interaction.
For convenience we express the Hamiltonian (6.6) in terms of SU(2) operators by apply-
ing the standard Schwinger representation of two modes. This leads to the definition

~ 1/ 4. R ~ PN -~ N
J, = 3 (a}al — a;ag) , Jy = (ZIGQ , Jo = a;al. (6.8)

These operators are related to the Cartesian components of a fictitious angular momentum
by the standard relations Ji = J + zJ They obey the commutation rules for angular
momentum operators

[T, Je) = £Js , [Ty, J-] =27, , (6.9)

which generate the SU(2) algebra These operators commute with the operator for the total
number of particles N= alal + a2a2 The Hamiltonian (6.6) can be rewritten in the form

= HW~+%I(N2—2N>, (6.10)

where the N -particle Hamiltonian H n is defined by

Hy = hed., — 6, + hrJ?. (6.11)
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For a given number of particles N, the last term in Eq. (6.10) is a constant, and it suffices
to consider the dynamics of the subspace of the N + 1 number states |n, N — n), with n =
0,1,... N, with n particles in well 1, and N — n particles in well 2. This subspace has the
structure of the angular momentum states, with J = N/2, and the 2J + 1 magnetic quantum
numbers = n— N/2, with p = —J,—J+1,...,J. Note that 4 is half the difference of the
particle number in two wells. For a given particle number /N we represent the number states
by the quantum number y, so that |u) = |n, N — n). The action of the operators Jy and Ji
on the Fock states has the well-known behavior

Tolpy =plp) , Jelpw) = VT Fp) (J£p+1)jpt1). (6.12)

This also determines the action of the Cartesian operators .J,, and j_y

6.3 Quantum states in two wells

The Schwinger representation of the operators occurring in the Hamiltonian suggests in a
natural way various possible choices of states of NV atoms in the two wells. Arecchi et al [8§9]
introduced the spin coherent states (SCS) [90], in analogy to the Glauber coherent state of a
mode of the quantum radiation field. The SCS follow from applying an arbitrary rotation to
the state |) with = J. As rotation operator we take

R(8, ) = exp(—ipJ.) exp(—ifJ,) exp(ip.].) = exp[—if(J, cos ¢ — J, sing)], (6.13)

which represents a rotation over an angle #, around an axis in the zy-plane, specified by the
angle ¢ with the y-axis. The SCS |0, ¢; J) is

10,6;.J) = R(6,¢)|J) (6.14)

which is also the eigenstate with eigenvalue J of the component u - 7 of the angular-
momentum vector in the direction % specified by the polar angle 6 and the azimuthal angle
¢. Just as the Glauber coherent states of a mode with annihilation operator € can be obtained
by acting with a displacement operator D () = exp (¢¢' — (*¢) on the vacuum state, the

SCS follows by a rotation R(0, ¢) = exp (Cj_ - (j*j+> with ¢ = (0/2) exp (i¢), acting on

the state |./). When we view this state |.J) as the ground state, the operator ./ is analogous
to the annihilation operator, since j+ |J) = 0. An essential difference between the two
cases is, of course, that the state space of a radiation mode has infinite dimensions, while the
dimension of the angular-momentum state space is 2J + 1.

In our case, the analogy is carried one step further, since the SCS defined by (6.14) do not
represent angular-momentum states, but refer to the states of NV atoms, distributed over two
potential wells. The ground state |J) represents the state with all particles in the first well.

N
When we substitute the identity |.J) = (6{) |vac) /v N! with N = 2.J into the right-hand
side of (6.14), we obtain an expression for the SCS in the language of the two wells, in the

form

0 + . 0\
|6, ¢; J) = cos — al + ¢ sin 2 a2) lvac) . (6.15)

(s
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We can interpret (6.15) as a state with N atoms in the one-particle superposition state
0 - 0
- n $gin = |2
cos2|>+e Sln2|>

of the two wells. A special case arises for § = /2, when the average populations of the two
wells are the same. Then the state (6.15) describes a collective mode from two interfering
sources of equal intensity, and its expansion in number states is given by

1 N N /2
|m/2,¢; J) = N7 Z (n ) N8 | N —n) (6.16)
n=0

Such a state can be considered as a state with a well-defined phase difference ¢. The atom
distribution over the two wells is binomial, and they have been termed phase states (PS) of a
two-mode boson system in Ref. [91]. For simplicity, we suppress the value /2 in this case,
and we simply denote the PS as |¢; J) . Upon rotation around the z-axis, a PS transforms as

exp(—iat.) |¢; J) = exp(—ia) ¢ + o3 J) (6.17)

The concept of Glauber coherent states of a radiation mode has been generalized by de
Oliveira et al [92], who introduced so called displaced coherent states defining them as a dis-
placed number state, rather than a displaced vacuum state. The corresponding generalization
of a SCS is found when the rotation operator (6.13) acts on a number state |u1). The resulting
displaced spin coherent states (DSCS) are

10, 6; 1) = R(0,6) ). (6.18)

They are the eigenstates of the angular-momentum component u - 7 with eigenvalue p. In
the special case that § = 7/2 and ¢ = 0, we find that R(6, $) = exp(—inJ,/2), and this
component is simply J,. Its eigenstates are denoted as

I7/2,0; 1) = |} -

and they obey the eigenvalue relation .J,, ), = p|p),- The state |p) , describes a state with
J + p atoms in the even state |g), and J — p atoms in the odd state |e). These states are
coupled by the ladder operators

JE = eXp(—iﬂ'j;/Q)ji exp(mjy/Q) =—J, + @':f\y, (6.19)

according to the relations

TElw, =V Fm) (T Ep+1)|pE1),.

When 6 = 7/2 and ¢ = 7 /2, the DSCS are indicated as

/2,72 ) = 1)y »
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which are eigenstates of u - 7 = jy, as specified by the relation jy | ,u>y = ulw) - The
corresponding ladder operators are

JE = exp(inJ, /2) ]y exp(—ind,/2) = J, F iJ.. (6.20)

In the special case that = J, the DSCS ), and |u), become the SCS |J), and |J)

Y Y’

which are also the PS with ¢ = 0 and ¢ = 7/2, respectively.

6.4 Evolution in limiting cases

For a given number N of atoms, the evolution is characterized by an evolution operator that
is governed by the Hamiltonian (6.11), and that obeys the Schrodinger equation

dUu
dt
In order to get an intuitive insight into the evolution, we first consider two extreme cases,
which are simple to understand. We assume that the two wells have equal energy, so that

e = 0. If the interatomic interactions are negligible, the quadratic term in (6.11) can be
skipped. For a possibly time-dependent coupling strength &, the evolution operator is

ih HyU. (6.21)

~

U(t) = exp (in (t) jm) : (6.22)

withn (t) = fot §(t')dt’ the area of the coupling pulse. In the language of angular momentum,

U represent a rotation over an angle —7 around the z-axis. In this case, the states |u),
are eigenstates of the evolution operator, so that these states acquire only a phase factor
exp (in (t) u). An initial state in the form of a single number state |u) state gets rotated
by the operator (6.22) and evolves into a superpostion of number states. At the instant that
7 (t) = 7/2 an initial number state has evolved into an eigenstate of the operator J,.

Conversely, when the interatomic interactions are strong enough on the scale of tunneling,
the hopping between the wells can get suppressed Chapter 5. Now, a single number state |u)
only acquires a phase factor exp(—ixu>t). The evolution operator takes the form

U (t) = eI, (6.23)

which cannot be conceived as a rotation in the angular-momentum space. Since the eigen-
values of j? are discrete, the evolution (6.23) has revivals. First we consider the situation
that the number of particles IV is even, so that the eigenvalues y of jz are integer. Then the
eigenvalues of U are exp(—ikpu2t) = 1 when t = mT, with m an integer, and T = 27/ . At
these times the initial state is reproduced, which proves that the evolution of any initial state
is time periodic, with period T'. For a time ¢t = T'/2, which is half the period, the eigenvalues
of U (T/2) are exp(—imu?) = (—1)*, which proves that the evolution operator at this instant
is equal to

U(T/2) = exp(—inJ.).
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For an initial PS |¥(0)) = |¢; J), we find that the state at the time ¢ = T'/2 is
(W(T/2)) = exp(—inJ) |¢ + ;)

which is just the opposite PS. At other instants of time, that are a simple rational fraction of
T, an initial PS can be transformed into a linear combination of a few PS. For ¢t = T'/4, the
relevant eigenvalues of U can be rewritten as

1 . ~ .
exp(—im?/2) = 5 (7 4 exp(-imTL)e! ™)

The corresponding expression for the evolution operator is then

~ 1 : , ~
U(T/4) = — [6_1”/4 + e/t exp(—im, } .
(T/4) 7 p( )
For the same initial state |¥(0)) = |¢; J), we apply Eq. (6.17), and arrive at the result for the
state at t = T'/4

|U(T/4)) = \/% [e*”/‘* | ) + €™ e |p + J)] , (6.24)

which is the linear superposition of two PS’s. For times ¢ that are equal to other simple
rational fractions of the period T' (¢t = T'/3, T//5,..) a superposition of more PS’s is found.
One may use the fact that the eigenvalues exp(—iku t) of U are periodic in p with some
integer period p. Therefore these eigenvalues can be expressed as a finite Fourier series in
powers of exp(2miu/p), which is equivalent to expressing the evolution operator U (¢) as a _
finite sum of rotations around the z-axis.
When the number N of particles is odd, so that the values of J and y are half-integer, full
revival of the initial state is again found after one period ¢ = T'. In fact, since 2y is an odd
number, (4u? — 1)/4 is always an even integer, and it follows that both at time T’ and T/2,
the evolution operator is just a phase factor

U(T) = exp(—in/2),U(T/2) = exp(—ir/4).

Hence, apart from a phase factor, full revival is found already at half the time 7. In order to
obtain the evolution operator at the time ¢ = T/4, it is convenient to use the identity for half

integer values of p
1 . . .
exp(—z'w,u2/2) — —_im/8 (6“7#/2 + 6_“7“/2) )

V2

For the evolution operator this gives the expression
N 1 ~ ~
U(T/4) = Ee_”/g [exp(iﬂ'Jz/Q) —I—exp(—iﬂJZ/Z)} .

For the initial PS |¥(0)) = |¢; J), we obtain for the state vector at time 7'/4
1. . _
—im/8 |: imJ/2 . 2: J) + —inJ/2 + 2. J
—e e w/2; e /2, J)| .
v 6= m/27) 64 7/2:.7)

Revivals of the state of a BEC have been observed in an optical lattice [16].

W(T/4)) =
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6.5 Periodic modulation of energy difference

A simple example of a periodic modulation of the two-well system is to include a time-
varying energy difference between the two wells. This is realized by substituting in the
N -particle Hamiltonian (6.11) the harmonically varying parameter ¢ (¢) = €1 cos wt, while &
and k remain constant. It is convenient to describe the evolution in an interaction picture that
removes the diagonal terms in the Hamiltonian. We introduce the transformed state vector
|T’(t)) by the relation

v (1) =Tt) |’ @), (6.25)

where the state vector | (¢)) obeys the Schrodinger equation with the Hamiltonian (6.11),
and the transformation operator 7T'(t) is defined by

~

T(t) = exp {—ie (t) T, — mtfj} , (6.26)

with 0(t) = fot dt'e (t,) = ¢ (sinwt) /w. Notice that the transformed state |¥’(¢)) has

the same distribution over the number states |u) as the actual state |¥(¢)). The transformed
Schrodinger equation has the standard form

z‘hCW — H'(1) ’q/ (t)> . 6.27)

An explicit form of the transformed Hamiltonian

H'(t) = —hoT (t) T, T(t) (6.28)
follows from the general transformation rule [93]

FI) Ty = Ty f(T. +1). (6.29)

Ths relation (6.29) holds for any analytical function f of the operator jz After substituting
(6.29) into (6.28), we arrive at the result

~

') = _%‘5 |:j\+ei9(t)+mt(2jz+l) + H.c.} )

After a Fourier expansion of the exponentials, we find

ﬁ’(t):—%é ARG (j+eit[“(2jz+l)+”w]+H.c.). (6.30)

n=—oo

The form (6.30) of the operator H (t) allows a clear physical interpretation. The oscillating
energy difference €(t) is equivalent to a series of harmonic couplings between the wells with
equally spaced driving frequencies nw. The amplitude for each harmonic is proportional to
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the Bessel function of the corresponding order. So the effective coupling between the number
states |u) depends strongly on the frequency.

The Hamiltonian H’ (t) contains only non-vanishing elements coupling neighboring num-
ber states |p) and |p + 1). A resonance occurs for the nth harmonic when

nw+k(2u+1) =0, (6.31)

which requires that x (2i 4+ 1) /w is an integer.
The strength of this coupling is —,,J,,(¢1/ew) /2, with

Qu=06V(J—p)(J+p+1). (6.32)

The effective coupling by the nth harmonic is measured by the parameter

n __ QH €1
Un = nw + k(2p + 1) In (w ) ’ (6.33)

which is the ratio of the coupling strength and the detuning from resonance for the transition.
Whenever ‘U [}’ < 1, the coupling is weak.

When the oscillation frequency w is large compared with the maximal diagonal frequency
splitting x(2.J + 1), all the time-dependent couplings are weak, and the dominant coupling
term is the static one with n = 0. The effect of the modulated energy difference is then that
the coupling term is reduced by the factor Jy(e1/w). In the high-frequency limit w > &4,
this factor is one, and we recover the case of a static and symmetric double-well potential
with e; = 0.

A simple isolated resonance between two number states can occur involving the states | )
with 4 = —J or u = J, since these can be coupled to only one other state. Suppose that at
t = 0 all atoms are in one of the two wells, so that

(W (t=0)=|-J). (6.34)
1 1
P—./ P—J+1
0.6 0.6
0.4 0.4
0.2 0.2
0 0

2 4 6 8 St 12 2 4 6 8 St 12
Figure 6.1: Time dependence of the populations P, for the state |u) = |—J) and |pu) =

|—J + 1) . The parameters are taken as §/k = 0.25,e1/k = 14,w/k = 3, N = 2J = 16.

If one chooses the frequency w such that the resonance condition (6.31) holds at cer-
tain integer ng, the corresponding harmonic can be made dominant. Indeed, provided that
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’U ;Z| < 1 for p = —J + 1, for all n, coupling to other states is weak, and we have an effec-
tive two-level system. This is possible provided that at resonance w is large compared with x,
which in turn is large compared with the coupling parameter §. This is demonstrated in Fig.
6.1, where oscillations between the states |—.J) and |—.J + 1) are displayed for the initial
state (6.34). This means that a single atom out of N atoms resonantly oscillates between the
wells. Upon decreasing the coupling between the wells, the rate of off-resonant coupling is
decreasing, so one approaches ideal Rabi oscillations between resonant levels. Weaker cou-
pling implies a larger oscillation period. The two-level behavior can only occur for a system
with a nonlinear term j?, since for a linear system the various transitions are simultaneously
in resonance [87] and Chapter 2.

In the case that the modulation frequency w is of the same order as x, resonances on the
different transitions can coincide, and the initial state (6.34) can spread out over many number
states. For example, in the simple case that w = &, the resonance condition (6.31) shows that
for each value of p, there is a harmonic n = —(2u + 1) that is resonant, and the population
spreads out over all number states.

(@ (b)

0.2
4
AJ? AJ?
2 0.1
1 0.05
0 2 4 6 8 5t 12 0 2 4 6 8 S5t 12

1\ 2 ~
Figure 6.2: Time dependence of the fluctuation <Jz> of operator J, at resonance (a) w = K

and out of resonance (b) w = 6. The other parameters are taken the same as in the previous
figure.

The difference with the high-frequency case is demonstrated in Fig. 6.2, where we plot
the fluctuations AJ 22 of J, as a function of time, for the initial condition (6.34), for w = k (a)
and w = 6k (b). In the first case, a resonance occurs on each transition, and A.J 22 continues to
increase. In the second case, the fluctuations remain limited. Even for a very small coupling
between wells, resonances designed in such a way can lead to enhancement in the tunneling
rate. This is close to the experimental situation for the double-well trap presented in Ref. [78].
Again, this situation is specific for a system with a non-linear term J7 in the Hamiltonian,
since for a linear system various transitions have the same effective coupling. Since the
coupling is proportional to J,, (¢1/w), a resonant transition can be turned off by setting the
ratio €1 /w equal to a zero of the Bessel function.

This can be used to restrict the evolution to a limited number of states, thereby locating a
desired number of particles in one of the wells. We demonstrate this idea in Fig. 6.3. There
we start from the same initial condition (6.34) and see that 11 atoms out of 16 are localized in
the left well if one chooses the ratio £ /w such that J7 (¢1/w) = 0 (Fig. 6.3a). Then, taking
Ji1 (e1/w) = 0, 0or Jy5 (61 /w) = 0, one can localize 13 or 16 particles in one of the wells, as
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demonstrated on fig. 6.3b and 6.3c).
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Figure 6.3: Time dependence of the expectation value of J. operator is plotted at resonance
w = k. The ratio €1 /w is chosen such that (a) e1/w = 24.26918 (J(13(e1/w) = 0),
(b) e1/w = 23.2759 (J11 (e1/w) = 0) (¢) e1/w = 24.93493 (J7 (e1/w) = 0). The total
number of particles is chosen N = 16.

6.6 Generalization to an optical lattice

The discussion of the previous section for two wells with an energy difference can be gen-
eralized to the case of a multimode system, consisting of a chain of potential wells. As a
model, we take a BEC in a tilted optical lattice Chapter 2. As usual, we neglect the higher
bands in the lattice, and we consider only a BEC trapped in the lowest energy band, that
roughly speaking is composed of the ground states in all the wells [12,94-96]. If one takes
the Wannier states |I) with [ = ... — 2, —1, 0, 1, 2, .. .as the basis of one-particle states, the
Hamiltonian in second quantization is a direct generalization of Eq. (6.6) for two wells, and
it takes the form

o =10 (ajﬂal + ajam) + % zl:ajajalal + he (t) Zl: lala;, (6.35)

2
!

where a; (6;) are bosonic annihilation (creation) operators in a single Wannier state, § and

are the obvious multimode generalizations of two-mode definitions for the nearest neighbor
coupling and interaction constant (6.1, 6.7), € is the energy difference in frequency units
between neighboring Wannier states, which determines the uniform force. This Hamiltonian
defines the so-called Bose-Hubbard model.
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The time evolution in a lattice is governed by the time-dependent Schrodinger equation

A1 (2)

= Hpn [V (1)). (6.36)

The uniform force and the interatomic interaction can be eliminated by the substitution
Wsn () = Ton(t) |ny (1))
with
1Kt

Tpu(t) = exp (-ie ()Y laja - - a}aja@>
l l

and 6 (t) = fot dt'e (t,> is the area of pulse. The Schrodinger equation for the transformed

state ‘\II'B i (t)> follows by using the transformation properties of the annihilation operator

T (aTsn(t) =G exp (—ue(t) —int (aj G — 1)) = exp (—ue(t) — inta) a,) a,

which leads to the identity
T (0l @1 (0) = Gl exp [1000) + it (101 — afa +1
B )az+1al pH(t) A 1A €XP | (t) +ir ap 1 Q+1 — apap + .

We obtain the evolution equation

AW, (t o~
m% = Hpp [W5n (1)), (6.37)
with the effective Hamiltonian

~, i) SUTIN . YSTEEN PSR
Hpy = Y (agﬂal exp {z@(t) + ikt (aLlalH — a;fag + 1)] + H.c.) . (6.38)
1

For the case of a periodically modulated uniform force, described by ¢ (t) = &1 coswt, this
Hamiltonian can be put in the form

~7 ho €1 ~t A~ . . ~ ~ ~t~

Hpy = D) ;; Jn (;) (alﬂal exp {mwt + Kt (aj+1al+1 —a;a; + 1)} + H.c.) .
(6.39)

This Hamiltonian couples collective number states ’ﬁ> = |...,N_1, Ny, Ny,...) where

two neighboring wells [ and [ + 1 have exchanged one particle. The coupling between states
with N; = p, Ni41 =qand N; =p — 1, N;11 = g + 1 is resonant for a harmonic n when

nw+k(g—p+1)=0, (6.40)
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which is analogous to the resonance condition (6.31). At small tunneling rate we can exclude
non-resonant coupling terms while assuming that their effective coupling rate is negligible.
When the uniform force also contains a constant term, so that £(t) = e + €1 cos wt, we have
to add a term £¢? to 6(t), and the resonance condition is modified into

nw+eo+r(g—p+1)=0. (6.41)

When p — ¢ = 1, this condition is independent of x, and a resonant oscillation can occur
between states with N; — N;41 = £1.

Another interesting case is a Mott insulator state, with the same number of particles Ny
in each well. Such a state has been predicted in [12] and has been recently experimen-
tally realized in ( [14]), where one (two) atoms have been put in a single lattice site. So,
| (t=0)) =|...,No, No, Ny, ...,). This state is directly coupled to the collective Fock
state which arises if a boson escapes to a neighbouring well, so it has Ny + 1 atoms in one
lattice site, and Ny — 1 in the neighboring one. Then the resonant condition is nw+ecg++x = 0.

Just as in the case of two wells, resonances coincide when w is of the same order as
k. When w = &, there is always a harmonic that resonantly couples neighboring wells.
In the absence of the constant term ¢, the resonance condition takes the universal form
n+q—p-+ 1= 0. So, if in the Mott insulator phase the number fluctuations are suppressed
between wells, we obtain their increase at resonances.

6.7 Periodic modulation of coupling

In this Section we consider the effects of a periodic modulation of the coupling coefficient
0(t) between the wells. As a simple model, we assume that ¢ contains a harmonic component,
so that

0 (t) = g + 01 coswt. (6.42)

In order that the even state |g) = (|1) + |2))/+/2 is the ground state, we keep 6(t) positive
at all times, and we choose d; to be smaller than §y. Hence we assume that 55 > 6; > 0.
Moreover, we take the energy of the two wells to be equal, so that ¢ = 0. The Hamiltonian in
the form of (6.11) with the coupling coefficient (6.42) can be easily implemented in practice.
It describes a BEC in a two-well configuration with a periodically modulated barrier height.
Precise calculations of the coupling coefficient are given in [75].

Since in the Hamiltonian (6.11) the term proportional to .J, is periodically modulated,
we expect that the basis of states 1), which are eigenstates of the operator .J,, is the nat-
ural basis to describe the evolution. Then it is convenient to describe the Hamiltonian in
terms of the operators .J, and .J*, which are defined in Eq. (6.19). By using the identities
J. = —(Jf +J;7)/2and JHJ; + J7JF = 2[J(J + 1) — J2], we rewrite the N-particle
Hamiltonian (6.11) in the form

By = —hs () T, + %” (J+1) - T2) + % (72 +7.2). (6.43)

This expression demonstrates that a state |1), is coupled only to its next nearest neighbors
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|pu £ 2) .. The coupling strength is measured by the matrix element

K ~ K
Q= Ja 4212 )y = VT +p+ DT+ p+2) (= p=1) (] - p), 644)
which depends on the interparticle interaction coefficient « and the particle number N = 2J.

In order to get a closer insight to the role of periodic modulation and its resonances, we
again eliminate the diagonal part of the Hamiltonian, now with respect to the basis of states
1) .- The time-dependent state is expressed

W (1)) = S(t) |9 (1)), (6.45)

with

5(t) = exp {m (t) T, — %mt (J(J +1)— f};)] , (6.46)

andn (t) = fot dt's (t,) is the integrated coupling coefficient. In order to obtain the Schrodinger

equation for the transformed state |¥” (¢)), we need the transformation property of the off-
diagonal operators J,72? and J 2. The transformed state |¥"'(¢)) obeys the Schrodinger equa-
tion with the effective Hamiltonian

. Fite ~ ~ ~ N A
() = fsf(t) (Jf + J;2) S(t).

In analogy to Eq. (6.29), we now apply the general transformation rule
9(Ja) T = T2g(J, +2), (6.47)

for an arbitrary analytical function g of j; After making a Fourier expansion we obtain for
H"(t) the explicit expression

~ Ik —
H"(t) = —
()=

n—=—oo

g, (251> [j;r 26—it(50+2n(jm+1)+nw) +H'C'} (6.48)

The form of the Hamiltonian H” (t) resembles the Hamiltonian H'(t), as specified in Eq.
(6.30). In the present case, the basis states are the states |z) ., which are now coupled by the
square of the corresponding ladder operator JA;t 2. Asin (6.30), the coupling term is a series
of harmonics with equidistant frequencies nw, with an amplitude proportional to the Bessel
function of the corresponding order.

In the high-frequency limit, when the modulation frequency w is large compared with the
diagonal frequency splittings of the Hamiltonian (6.43), the effect of the static term propor-
tional to Jy(261 /w) in Eq. (6.48) will be dominant, and the Hamiltonian will be effectively
constant. Just as in precious sections, the physical reason is that a rapidly modulated field,
which has a negligible average pulse area, also has a negligible influence.

On the other hand, Eq. (6.48) immediately shows that the coupling between the state |1) ,
and |y + 2),, of the nth harmonic is resonant when

nw + 2k(p+ 1) + 09 = 0. (6.49)
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The other coupling terms are negligible when the coupling strength is small compared with
the oscillation frequency, which leads to the weak-coupling criterion

L, J, (2—61>‘<<1 (6.50)
nw+2k(p+1)+6 "\ w ' '

1 1
B B
0.6 0.6
0.4 0.4
0.2 0.2
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2 4 6 8 Kt 2 4 6 8 Kt

Figure 6.4: Time dependence of the populations Pff”) of the state |u)  with 4 = J and
1 = J — 2. The other parameters are taken as 01 /k = 14, do/k = 16, w/k = 20, N = 14.

So, if the initial state |¥ (0)) = |.J), is resonantly coupled to |J — 2)_, while further cou-
plings of this alter state are negligible, we have an effective two-level system. This is demon-
strated on the figure 6.4, where besides the resonant oscillations, one obtains non-resonant
escape of population to the rest of manifold. Upon decreasing the coupling between the state
|14) ,.» only the resonant states are involved and they exhibit clear Rabi oscillations. This shows
how resonances lead to an escape of population from the initial state to the other states in the
manifold of states |4),. The similarity with the response to the periodic modulation in the
form of a periodically modulated energy difference between the wells. Recall that the state
| J),, is the state in which all particles are in the even state |g) = (|1) + |2))/+/2, which is the
one-particle ground state. In the state |J — 2) , two particle have been transferred to the odd
excited state.

6.8 Conclusions

A BEC trapped in a two-well potential can be expected to be very sensitive to the frequency of
any applied periodic perturbation. We test this idea by periodically modulating the asymmetry
or the barrier height of such a configuration. Compared with the analogous situation of a
single atom trapped in a light field with a periodic modulation, the many-particle nature of
the BEC gives rise to some new effects. For both types of modulation, two-state resonances
may be observed, where a single atom out of the BEC oscillates between the wells. It is also
possible to enter a regime of parameters where more than two states are resonantly coupled,
with more than one particle oscillating between the wells. Using such resonances, one can
manipulate the average number of particles in the wells by varying the relevant parameters,
such as the magnitude and the modulation frequency of the energy difference. This effect
can be considered also as a means to resonantly enhance the tunnelling rate between wells.
We generalize the basic ideas developed for two-wells to a multiwell system, such as a BEC
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in an optical lattice. Whereas the periodic modulation of the energy difference is related to
coupling between number states in the two wells, the periodic modulation of the height of the
barrier leads to coupling between number states in superposition states of the two wells with
specific values of the relative phase.
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Phase dynamics of a multimode Bose condensate
controlled by decay

The relative phase between two uncoupled Bose-Einstein condensates tends to attain
a specific value when the phase is measured. This can be done by observing their decay
products in interference. We discuss exactly solvable models for this process in cases
where competing observation channels drive the phases to different sets of values. We
treat the case of two modes which both emit into the input ports of two beam splitters and
a linear or circular chain of modes. In these latter cases, the transitivity of relative phase
becomes an issue.

7.1 Introduction

Since the first observation of Bose-Einstein condensation, the formation and the nature of
the relative phase between two condensates has been a central issue of many theoretical and
experimental studies. It has been predicted by Javanainen and Yoo [15] and observed by
Andrews et al. [69] that two interfering Bose-Einstein condensates exhibit a clear spatial in-
terference pattern. This shows that in a single run of an interference experiment, they manifest
themselves as being coherent. Furthermore, it was predicted in [15] that two cases should be
distinguished. When a cold cloud of atoms is first split into two modes, which are separately
cooled further into two condensates ( “cut then cool”), two independent condensates arise.
Alternatively, two correlated condensates arise when a single condensate is split into two
parts (’cool then cut”) [69,70]. The interference pattern from two independent condensates
can be different for each realization of interference experiment, while correlated condensates
show the same interference pattern for each run. Cirac et al [97] showed by analytical argu-
ments that a system consisting of two independent Bose-Einstein condensates evolves into
a state with a fixed relative phase if one detects the emitted bosonic atoms while observing
their spatial interference pattern.

A number of authors have studied the possible manipulation of phase coherence and en-
tanglement between two or more Bose-Einstein condensates, with tunneling interaction as
the key mechanism [98—-100]. A scheme has been proposed to use an interferometric scheme
including an atomic beam splitter to recombine two modes in order to reconstruct the state
of a two-mode condensate [101]. The buildup of a relative phase between two independent
condensates has also been investigated in the situation that the atoms emitted from the two
condensates are mixed in a 50% — 50% beam splitter [91, 102]. Two initially independent
bosonic modes, described by a factorized state, have a uniform distribution over the relative

75
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phase. Hence all values of this phase are equally probable as the outcome of a phase measure-
ment. After a large number of detections in the output ports of the beam splitter the system
evolves into an entangled state of the two modes. An exactly solvable analytical model has
been discussed [102] which allows one to get closed expression for the particle detection
statistics over two output channels of the beam splitter for a fixed total number of detections.
It is remarkable that even though both detection channels are identical, in a typical detection
history the detections are unevenly distributed over the two output ports. This is obviously
connected to the bosonic nature of the particles, for which boson accumulation applies. After
the first few emissions, the subsequent particles have a tendency to choose the same port as
the majority of their predecessors, and the relative phase of the modes converges to one of
the phases imposed by the beam splitter. This can also be viewed as an example of sponta-
neous symmetry breaking [103]. The role of interparticle interaction is also discussed, and it
has been shown that it leads to collapse and revival of the relative phase distribution, thereby
reflecting the discrete nature of the states of the system [91].

We recalled that in the presence of a single beam splitter, after a large number of detec-
tions, the relative phase converges to a single value. It is interesting to consider cases where
more detection channels are present which tend to project the relative phase on different val-
ues, so that a detection from one beam splitter favors phase values that are incompatible with
the setting of another one. In the present paper we consider a number of model cases where
such a conflicting tendency arises. This raises the question whether in the end the system
simply settles down in one of the possible phase values or whether it continues to shift be-
tween values, without ever coming to a final decision. We consider cases where the detection
statistics can be solved analytically. Also we study the effect of a direct Hamiltonian coupling
between the condensates on both the detection statistics and the corresponding behavior of
the relative phase. Examples of such couplings are tunneling between condensates in two
spatially separated potential wells or stimulated Raman coupling between two condensates
corresponding to two different internal states [104]. We treat the condensates just as modes of
bosonic particles, so that most of the considerations hold just as well for photons in cavities.

7.2 Quantum states of two boson modes

It will be convenient to express the states of two boson modes in terms of spin-coherent
states (SCS’s), which is normally defined for the (2J + 1)-dimensional manifold of states
with angular momentum J [89]. The spin-coherent state |0, ¢) is the eigenstate of the com-

ponent w - 7 of the angular momentum vector with the maximal eigenvalue J, where
U = Zcos¢sind + ysinpsinf 4 Zcosf is the unit vector in the direction specified by
the spherical angles 6 and ¢. This state is obtained from the eigenstate of J, with eigen-
value J after performing the appropriate rotation. In the context of two boson modes (or two
harmonic oscillators), an SU(2) representation arises by introducing the fictitious angular-
momentum operators

1

7.= 5 (@9+51), 7, = . (a5 -1a), 7. = ; (a'a—515), (7.1)

| =
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where @ and b are the annihilation operators for modes A and B. This is the well-known
Schwinger representation. These operators obey the standard commutation rules of angular
momentum ([J;, J,] = J, etc.), so that the matrix form of the operators (7.1) on the eigen-

—

~ —
vectors of J, and J attains the shape that is well known from angular-momentum algebra.

—~2

Notice that J = (N/2)(N /2 + 1), with N = @' + b'b the number operator. The eigen-
2

~ —
vectors of J, and J are just the double Fock states |n,,np). A given number of particles,

N, corresponds to the value J = N/2. The eigenstate of .J, with this same eigenvalue is the
Fock state | N, 0), so that the SCS with direction & can be defined by the rotation

6,6) = R(8,0) N, 0), (7.2)
with the rotation operator
R(6,¢) = exp(—i¢.J.) exp(—iﬁjy) exp(ipJ,) = exp[—i@(jy cos ¢ — J,sin@)]. (7.3)

The SCS can be represented as a point on a sphere of radius J, specified by the polar angle
0 and the azimuthal angle ¢. This sphere generalizes the Bloch sphere, describing the state
of a spin 1/2, or the Poincaré sphere which describes the polarization state of a light beam
or a photon. In the present case, the radius specifies the number of particles, N = 2.J. An
explicit expansion of the SCS (7.2) in the Fock states follows then from the transformation of
the creation operators:

R(0,8)a" R (6, ¢) = af cos g + bl sin gw =210, ¢). (7.4)

The SCS (7.2) is found after operating N times with the operator ¢f (6, ¢) on the vacuum
state, which leads to the explicit result

N A\ 2 0 Nl e
_ n’ —n 2 _i(N—n .
16, 0)y = E (n ) cos™ 5 sin 5 € |n, N —n). (7.5)

n=0

This demonstrates that the SCS |6, ¢) ,; can be viewed as a number state in the mode that is
a linear combination of the modes A and B and for which the operator ¢f (6, ¢), defined in
eq. (7.4), is the creation operator. In the SCS, the distribution of the /N particles over the two
modes is binomial, and the angle @ specifies the average partition by (n,) = N cos?(6/2)
and (ny) = Nsin?(0/2). The azimuthal angle ¢ represents the relative phase between the
modes. This quantity is complementary to the number difference a'a — bTb. Number states
with all particles in the mode A are represented by the north pole of the Bloch sphere (6 = 0),
while the south pole represents the SCS with all NV particles in mode B. Points on the equator
(6 = 7/2) stand for states with equal population of the modes. Since the state (7.2) [or (7.5)]
is eigenstate of N , the absolute phase is fully undetermined.

The relation between the SCS and the more common Glauber coherent states (GCS) is
easily found by representing the latter ones in the form

—i —i —(rZ+r; 1 —iga s —igy P
ree” 0 rpeT i) = e~ (ratTh)/2 Z m(rae Poat + e " PN jvac).  (7.6)
N
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These states are eigenstates of @ and 3, and they are obviously factorized, so that they carry
no entanglement between the modes. It is easy to check that they are related to the SCS by
the expansion [97]

—iba . =ity _ ,~R*/2 L N —iNg,
‘rae , Tpe > =e Z R%e CAINS (7.7)
~ VN!

with the parameters R, 6 and ¢ determined by R? = r2 + rZ, tan(0/2) = r,/r,, and
¢ = ¢, — ¢p. This indicates that the GCS has a Poissonian distribution of the total particle
number N, with average value (N) = R2, while the absolute phases ¢, and ¢, of both
modes are well specified. For bosonic atoms, states with a different total number of particles
do not superpose, according to the superselection rule, so that we have to restrict ourselves to
density matrices that are diagonal in /N. Since the particle number is conjugate to the overall
phase, we introduce the density matrix

1 2m
pR0.0)= 5 [ do,

Tae—i¢a7rbe—z’(¢a—¢)> <rae—i¢a7 L)) (7.8)

as the uniform mixture of the GCS (7.6) over the overall phase ¢,, for a given value of the
relative phase ¢ = ¢, — ¢p. Applying eq. (7.7) leads to an expansion of this same density
matrix in the SCS in the form

2 1
PR 0,0) =e™ Ty SRV 10,6y v (6, 0] (7.9)
N

The density matrix p(R, 0, ¢) is therefore diagonal in the particle number N.
In this paper we shall use density matrices that can be represented as a superposition of
the states (7.9) for a single value of the strength parameter R in the form

/ 00 (6. 6)(R, 6,0), (7.10)

where we use the abbreviation [ dQ = [7 d¢ [T dfsin 6 for the integration over the Bloch
sphere. When we express p(R, 6, ¢) as in eq. (7.8), it becomes clear that eq. (7.10) is just
the two-mode version of the Glauber-Sudarshan diagonal coherent-state representation of the
initial density matrix [106], where the P distribution is uniform in ¢ 4, and is nonzero only
for a single value of R. This state is normalized as soon as the distribution f is, which we
shall assume. Another special case arises when the function f is nonzero only for a single
value of § and uniform in ¢. Then the density matrix (7.10) can be written as

/ d67(R, 0, 8)/2r. (7.11)

It follows from the coherent-state representation (7.8) that in this case the density matrix
factorizes into a product of separate density matrices for the two modes, implying that the
state (7.11) is not entangled. The phase of both modes is uniformly distributed, and the state
is diagonal in both particle numbers n, and ny,.
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7.3 Decay and detection statistics of two boson modes

7.3.1 Master equation and detection histories

We assume that particles are leaking out of the two boson modes A and B at a total loss rate
I'. The emitted particles are detected after passing through a beam splitter. For simplicity, we
assume perfect detection efficiency and lossless beam splitters. Moreover, the mode evolution
is governed by a Hamiltonian H that is supposed to commute with the number operator N
and which describes the energy per particle and possibly tunneling between the modes. Since
the two modes form an open system, their evolution can be described by a quantum master
equation [105, 106] for the two-mode density matrix p, which we formally express as

o~

d ~

P — (Lo +L1) P (7.12)
dt

Here L describes the coherent evolution of the system, which is determined by the Hamil-
tonian evolution, and the loss of the probability of states due to the emission of particles. Its
explicit form is given by its action on a density matrix

Lop = —% [ﬁ,ﬁ} - %F (ﬁﬁ+ ﬁﬁ) , (7.13)

while the compensating probability gain is accounted for by
Li5=T (aﬁaT +Bﬁ3f). (7.14)

For simplicity the loss rate of the two modes is taken to be the same. The solution of eq.
(7.12) describes the evolution of the system averaged over all possible detection histories.
In fact, we are interested in the conditional evolution for specific histories, where the arrival
times for particles at each detector are specified. Depending on the specific setup, we have
to separate the total gain term (7.14) in terms corresponding to each detector separately,
in accordance with the method of quantum trajectories [91,97, 102]. For instance, when a
detector is directly coupled to each mode, the term apa' describes the effect of the detection
of a particle from mode A, which corresponds to the annihilation of a particle from this mode.
Now we consider the setup sketched in Fig. 7.1, where each mode emits particles into the
input port of two different beam splitters.

Detections in the two output ports of beam splitter I correspond to the detection operators
¢y = (a+ 3) /v/2, and detections in the output ports of beam splitter II correspond to the
detection operators dy = (a+ e’igg) /v/2. The relative phases can be set either by using
dephasers or by differences in the path lengths of the channels. Notice that the detection
operators are annihilation operators corresponding to a spin-coherent state that is represented
by points on the equator of the Bloch sphere. For this setup the gain operator £ can be
separated into four terms corresponding to the four detectors as

4 4
PO RSO L ~ r PP ~
Lip = 3 (c_,_pcl Jrc_ch_ +d+pc’l1 + d_pc/fr_) =3 cspci = E Lisp. (7.15)
s=1

s=1
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Figure 7.1: Sketch of setup with two decaying boson modes A and B. Each mode emits
particles into the input port of two beam splitters I and II. Output ports are coupled to particle
detectors 1-4.

The integral form of the master equation (7.12)
T
5(T) = e“T 5(0) + Z/ dt e“oT=0 L5 (1) (7.16)
— Jo

allows us after iteration to express the density matrix as a summation and integration over de-
tection histories. The contribution to p (T") from the history with detections at the successive
time instants t; <ty < ... < ty, by the detectors sy, Sa, ..., sy, in the time interval [0, T is
described by the operator

pr ({ti, s}, T) = e“olT—tes) g, efolte—te—n)  p,  oLolif(Q). (7.17)

The effect of the detection operators £1; is a sudden change in the density matrix, which
indicates the quantum-jump nature of a detection.

Since eqs. (7.14) and (7.15) are different representations of the same gain operator, the
unitarity of the evolution is guaranteed. The separated form (7.15) represents the physical
situation that the emitted particles from each mode can go into two different input channels,
with equal rate constants I"/2.

7.3.2 Detection statistics and phase distribution

As the initial state p(0) of the system we take a density matrix of the form (7.10), so that
0) = [ d2f(6.0)5(R.0,0). 7.18)

When the Hamiltonian only attributes a fixed energy per particle, its form is H = hwN. Since
all density matrices that we shall encounter are diagonal in the total number of particles, the
Hamiltonian has no effect and can be ignored. The coherent evolution of the density matrix
is easily obtained from the identity Lg |¢,0) yn (6, 0| = —T'N |9, 0) 5 (0, ¢|, which when
substituted into eq. (7.9) gives the result

e“TH(R,0,0) = exp[—R3(1 — e TT)|p(Re~TT/2 0, ¢). (7.19)
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This shows that the evolution of the density matrix during a detection-free period of time
only gives a damping of the strength parameter R, without changing the distribution over
the Bloch sphere. The action of the detection operators on the density matrix is most easily
obtained by using eq. (7.8). The action of the annihilation operators on the SCS is found to
be given by

~ 0 N . 0 i
al0,¢)y = VN cos 3 10,0) y_1,010,¢) y = VNsin 5¢ 210, 6) y_; (7.20)

We observe that to each pair of spherical angles 6 and ¢ or equivalently, to each real
Cartesian unit vector u corresponds a density matrix p(R, 0, ¢) given in eq. (7.9) and an
annihilation operator ¢(6, ¢) as defined in eq. (7.4). Now consider the annihilation operator
¢(6y, ¢o), corresponding to the unit vector w o. Then a direct calculation shows that

1 S
&(00, 60)B(R, 0, $)¢' (B0, ¢o) = S R* (1 + 0 - Wo)p(R, 0, 0). (7.21)

The unit vectors u and 7 in eq. (7.21) are defined to point in the directions specified by the
angles (6, ¢) and (6, ¢o) respectively. This indicates that for these operators ¢pe! is propor-
tional to p. The proportionality factor takes the maximal value R? when the two directions
o and W coincide, and it is zero when the directions are opposite. It is noteworthy that this
factor depends only on the inner product of the two unit vectors and thereby on the distance
between the two points on the unit sphere. This indicates that the effect of a detection on the
density matrix is determined by the relative geometry on the Bloch sphere.
Application of eq. (7.21) leads to the expression

‘Clsﬁ(R7 07 ¢) = FR2gS (0, ¢)ﬁ(R7 07 ¢)a (722)

where the functions g; for the detectors 1 and 2 are given by

0:(0,6) = S(1+ sinfcos ), ga(0,6) = +(1 —sinOcos ), (7.23)

and for the detectors 3 and 4 by

93(0,0) = i[l + sinf cos(¢ — £)], ga(0,0) = i[l —sinf cos(¢p — &£)]. (7.24)

The functions are determined by the inner product of the unit vector %, indicated by # and ¢,
and the unit vectors w0 ( corresponding to the detection operators ¢. These four unit vectors
are all defined by 6, = 7/2, whereas ¢g = 0 and 7w for s = 1 and 2 and ¢9 = £ and
& 4+ mfor s = 3 and 4. The functions g, add up to 1, so that the total gain operator £,
when acting on p(R, 0, ¢) just gives the factor I'R?, as it should. According to eq. (7.22),
the effect of the ith detection at time ¢; by detector s; is that the distribution over the Bloch
sphere is multiplied by the factor gs,, while an overall factor I' R? exp(—I't;) has to be added.
In brief, the detection-free periods produce a damping of R and the detection modifies the
distribution over the Bloch sphere by a multiplication with a function g,,. For a given value
of the ratio (n,) / (ny), as specified by the angle 6, the factors g5 modify the distribution
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over the relative phase ¢, with a contrast that is maximal when both modes contain the same
number of particles (0 = 7/2).

The equations. (7.19)-(7.24) allow one to evaluate explicitly the density matrix (7.17)
corresponding to a given detection history, with the initial state determined by eq. (7.18).
The contribution (7.17) to the density matrix is then found as

L
pr ({ti;si},T) = exp[-R e )] H (DR%e~Tt)

/de (0, 6) [Hg & e T2 9, ), (7.25)
with n the total number of detections in channel s (with Y ns = L). This contribution
(7.25) does not depend on the specific order of the detections in the various channels. The
trace of eq. (7.25) specifies the probability distribution of the detection history {¢;, s;} in the
factorized form

L
L ({ti,5:},T) = F({ns}) exp|—R e " [[(TR%e ") (7.26)
=1
with
4
F({ny) = [ ds6.6) [[ o2 0.0 (7.27)
s=1

the probability that L successive detections occur in the specific order (s1, So,...,s1,). This
factor F' only depends on the number of detections ns for each channel, not on the time
ordering of the detections. The remaining time-dependent factor in eq. (7.26) is the prob-
ability density for detections at the specified instants of time, irrespective of the detection
channel. The conditional density of the system, given the detection history {¢;, s;}, is equal
to pr. ({ti,s:},T) /wr ({ti,s:},T), which is the normalized version of eq. (7.25). From
the expression (7.26) of the probability density one obtains the probability p({n,},T") that
in the time interval [0, T'] there were ng detections in channel s, (s = 1,...,4), irrespective
of the order of the detections. This requires an integration over the ordered detection times
and a multiplication with the number of possible orderings of the L detections over the four
detectors, given the partition {n}. The result can be expressed as

p({ns}, T) = PL(T)pr({ns}), (7.28)

where Py, (T) gives the probability that precisely L detections occurred in the time interval
[0, T, irrespective of the detection channel. This distribution is Poissonian with average
R2(1 — e7'T). The factor pr,({ns}) is the probability that the L detections are distributed
over the four detectors by the partition {n} and takes the form

L!
ny 'TLQ 'n3 ’n4

pr({ns}) = F({ns}). (7.29)
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This distribution is independent of the strength factor R, the detection time 7" and the decay
rate I". Notice that both the distribution Py, (T") over the total number L of detections and the
distribution py, ({ns}) of the L detections over the partitions are normalized.

In summary, we notice that the decay process only has the effect that the strength factor
R is damped. The effect of a detection is that the distribution over the Bloch sphere is mul-
tiplied by one of the factors g,, which changes both the distribution over the relative phase
and the probability distribution for subsequent detections. The probability distribution of L
detections over the four detection channels is given by (eq. 7.29). After a detection series
given by the partition {n}, the normalized distribution function over the Bloch sphere is
given by f(0,¢) [], g7 (6, ¢)/ F({ns}). The detection statistics is invariant when both the
distribution function f and the detection functions g, are changed by the same rotation over
the Bloch sphere.

7.3.3 Special cases

When the detections in channels 3 and 4 are ignored and M detections have occurred in
channels 1 and 2, the distribution of these detections over the two channels can be evaluated
in the same fashion. The result is

M

par(ni,ng) =2M <
ni

) [ d2r0.0)50.0)53° 0.9, (7.30)

with ny +no = M. The factor 2 is needed to ensure normalization, since g1 + g2 = 1 /2 in
this case. This expression is a simple generalization of the result of [102] for the case of two
decaying modes observed through a single beam splitter. The generalization consists in the
fact that the populations of the two modes need not be the same in eq. (7.30). Intuitively it
is obvious that the partial statistics of detections in channels 1 and 2 is not affected when for
some reason the detections in channels 3 and 4 are simply added without distinguishing them.
This situation is equivalent to the case that beam splitter II is missing and a single detector is
just collecting particles in both of its input channels.

We have noticed that the effect of detections on the phase distribution is strongest when
the average number of particles is the same in both modes, so we consider the case that the
polar angle is § = /2 orr, = r, = R/ V2 = r. For this situation, the two-channel
distribution (7.30) has been evaluated in ref. [102]. When the relative phase ¢ has a well-
defined value ¢, the two-channel distribution is binomial:

M
pu(ny,ng) = (m) cosZ™ % sin?"? %, (7.31)

where the most probable detection history has the values
ny = Mcos*(¢o/2), ny = Msin*(¢o/2). (7.32)

When the phase distribution is uniform, the two-channel distribution was found as [102]

1 2n 2n
pur(n1,n2) = oo37 ( nll) ( n22>. (7.33)
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This displays boson accumulation, and in a typical detection history the numbers n; and
ng of detections in the two channels are quite different. In fact, the most probable history is
specified by (nq,n2) = (M, 0) or (0, M). After such a history, the relative-phase distribution
is proportional to cos*M (¢/2) or sin?™ (¢/2), which peaks at the positions corresponding to
the output channels of the beam splitter /. The width of this distribution is significant, so that
for large detection numbers M the probability of these most probable histories is quite small
in absolute terms. Nevertheless, they do characterize typical detection histories as being in
their neighborhood.

Now we turn to the detection statistics over the four channels when the initial density
matrix is specified by eq. (7.11), with equal population of the two modes and initial uniform
relative phase. Then the initial density matrix is equivalent to the factorized form p(0) =
ﬁa & f/)\b’ with

Po = % /d(ba ’re_i¢“> <re_i¢“ , (7.34)

and a similar expression for p,. Both modes have a density matrix that is diagonal in the num-
ber state, with a Poissonian distribution. In order to characterize the statistics, we look for the
detection histories with the largest probabilities. A typical detection history can be expected
to be in the neighborhood of these maxima. First we notice that the emission probability onto
both beam splitters I and II is the same, so that for a total of L detections a most probable
history must have nq + ne = ng + ngy = L/2. (We assume that L is even for simplicity.) If
nothing is specified on the distribution of the L/2 detections in channels 3 and 4, the distri-
bution over the two channels 1 and 2 is given by eq. (7.33) with M = L /2, with the most
probable partitions (n1,n2) = (L/2,0) or (0, L/2). The relative phase has then converged to
the value ¢ = 0 or ¢ = 7, which makes the distribution over the L/2 detections in channels
3 and 4 binomial. For example, for the partition (n1,n2) = (L/2,0), the partition over the
two other detectors has maximal probability for (n3,7n4) = (L/2)(cos?(£/2),sin?(£/2)).
Since the pair of detectors 1 and 2 is fully equivalent to the pair 3 and 4, another history with
the same maximal probability occurs for the partition (ng,n4) = (L/2,0), with (n1,ng) =
(L/2)(cos?(£/2),sin?(£/2)). This corresponds to a relative phase converging to the value
¢ = £. In summary, we expect four most probable histories for L detections. The partitions
over the four detectors attain the values (11, na, n3,n4) = (L/2)(1,0, cos?(£/2),sin?(£/2)),
(L/2)(0, 1, 5in(€/2), cos?(£/2)).(L/2) (cos®(¢/2), sin* (&/2),
1,0) and (L/2)(sin?(£/2), cos?(£/2),0,1), while the phase has converged in these cases to
the values ¢ = 0, 7, £ and £ + 7, respectively. These considerations are backed up by a
numerical calculation of the probability distribution py,({n}), for L = 40, equal population
of the two wells (§ = 7/2), and uniform distribution over the relative phase ¢, while the
setting of the two beam splitters is maximally different (§¢ = 7/2). The distribution for equal
number of detections through both beam splitters is plotted in Fig. 7.2.

The most probable histories are marked. The gradual transition between the two dis-
tributions (7.31) and (7.33) is noticed along the axis n1, when ng varies from 0 (binomial
distribution over n; and ny = L/2 — ny) and L/2 [bunching distribution (7.33)].
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Figure 7.2: The probability distribution pr.({ns}) as a function of n1 and ng, for equal
particle numbers in the modes. The total detection number is L = 40, with 20 particles
going into each beam splitter. The phase difference between the beam splitters is equal to
& = /2. The most probable detection histories are marked.

7.4 Detection statistics of two coupled boson modes

7.4.1 Pulsed coupling between modes

In this secton, we consider the case that the particles emitted by the two boson modes A and B
are detected directly, without the use of beam splitters, as sketched in Fig. 7.3(a). Therefore
we separate the gain operator in the master equation (7.12) as £1 = L1, + L1, corresponding
to the two terms in eq. (7.14). The coherent-evolution operator Ly is given by eq. (7.13),
where the Hamiltonian H describes coupling between the two modes by tunneling, in the
form

_ ~t NI —
i 5 (a b+ab ) R, (7.35)

In realistic cases we can imagine that the coupling can be switched on during a time interval
7, which is sufficiently small so that decay during the coupling is negligible. This means that
the initial state for the decay process is found by applying the pulse evolution operator

Uy = exp(—iHTt/h) = exp(i67.J,). (7.36)

In the picture of the Bloch sphere, this is a rotation about the x axis in a negative direction
over an angle 7. When the initial state before the coupling is given by eq. (7.10), the state
after switching off the coupling at the beginning of the detection period is

5(0) = / d0F (0, 6)T0(R, 0, 6)T1. (7.37)

The contribution to the density matrix from a given detection history {t;, s; } is expressed by
eq. (7.17), where now the indices s of the jump operators L1, can take the values a or b and
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where eq. (7.37) specifies the initial density matrix. The evolution during the detection-free
periods is given in eq. (7.19). The effect of the jump operators on the rotated density matrix
can be expressed using the identity

L1aUopUl = TUqe,pel U
and a similar express1on for L1, where we introduced the counterrotated operators ¢, =
anUo and ¢, = U0 bUO Their explicit expressions are then
PN (ST+,/()\,5T,\ ,A,67'+3 T
Cq = G COS — + tbsin —, ¢, = iasin — cos —.
@ 2 2 2 2

They correspond in the sense of eq. (7.4) to the two unit vectors Ua = —ysin 07 + Z cos 0T
and ', = 7sin d7 — Z cos §7, which arise when the opposite rotation is applied to 2. By
using eq. (7.21), the action of the jump operators £1, and L4, in a detection history is given
by the relation

L1,U0p(R, 0, ) U} = TRg, (0, 9)Uop(R, 0, 6)U{,

Elbﬁoﬁ(Ra 0, d))(/jg = FRQ.gb(07 (Zs)ﬁoﬁ(R, 05 d))ﬁga (738)
with
1 — = 1 — —
9a(0,0) = 5(1+ U W), gu(0,¢) = 5(14‘ U up). (7.39)

Notice that these factors add up to ' R?. The contribution to the density matrix arising from
the history {¢;, s;} is now easily found in the form

L
pr ({ti;si},T) = exp[-R e 1) H (TR2e Tt)
i=1
< [ 497600536, 057" (6.0)Tupl e T2,6, )T (7.40)

which looks quite similar as eq. (7.25). The probability distribution for detection histories is
given by the trace of eq. (7.40), and the detection statistics can be obtained in the same way
as above. In analogy to eq. (7.28), the probability p(n,, ny, T') that in the time interval [0, T']
there were n, detections in channel a and n; in channel b, irrespective of their order, is now

p(na, mT) = Pr(T)pr(na, ns),

where, as before, Py, (T) is the Poissonian distribution of the total number L = n, + n; of
detections in the interval [0, T|. The factor py,(n4, ns), which represents the probability that
the L detections are partitioned over the two detectors as (n4, 1), is

L
pr (g, np) = (n )F(na,nb), (7.41)
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with
F(na,ny) = / 40 (6, 6)g™ (6, 6)g™ (6. 9). (7.42)

As an example, we consider the case that before the coupling period the two modes are
fully decoupled, with equal population, so that the function f is uniform over the equator of
the sphere. The density matrix before coupling has then the form (7.11), with § = /2. When
moreover the pulse duration is chosen such that §7 = 7/2, we find &, = —7, u}, = ¥, and
the functions g, and g, at the equator are found as g,(¢) = (1 — sin¢)/2 and g,(¢) =
(1 + sin¢g)/2. The distribution pr,(n,,n) is now exactly the same as in the case of an
initally uniform phase distribution, with detectors placed in the output channel of a single
50% — 50% beam splitter [102]. We recover the bunching distribution

( ) 1 [(2n4) (21

Na,Nb) = 37 ;

pPL b 2L\ n, -

with (ng,np) = (L,0) or (0, L) the most probable histories of L detections. The identity of
the distribution in these two cases may be surprising in view of the quite different physical

situations. It is the merit of the description of states and detections as distributions on the
Bloch sphere that it clarifies this identity, since the two cases have the same relative geometry

on the Bloch sphere.
(b)

)
8]

Figure 7.3: Comparison of the geometry on the Bloch sphere for two cases. (a) particles
emitted by modes A and B are detected directly, without the use of a beam splitter; (b)
emitted particles are detected through a beam splitter. For each case, the position of the
detectors on the Bloch sphere are indicated in both cases. The large circles on the sphere
indicate the distribution f that determines the initial state just before the detections.

This is illustrated by Fig. 7.3. The situation that the pulse duration deviates slightly from
the identity 7 = /2 implies that the detector positions do not lie precisely on the large
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circle that describes the initial distribution. Then it follows from the general expressions
(7.39) that the contrast of the functions g, and g, on the large circle is diminished, so that
convergence to a single phase value is slowed down. Accordingly, the distribution py, (n,, 1)
will have a diminished bunching.

For the initially coupled modes and the detections without the beam splitter, the relative
phase is initially rather well determined around ¢ = 0 and ¢ = 7. A typical detection series
now projects the state of the system onto the state with most particles either in mode A or in
mode B, with an undetermined relative phase. If at the Aend of the detection series a second
pulsed coupling is applied as described by the operator Uy, the final state after this pulse has
a well-determined relative phase. The final state after the entire scheme of pulsed coupling,
detection series and second pulse is the same as the result of just a detection series through
the beam splitter. In this sense, the pulsed coupling can be viewed as a replacement of the
beam splitter. This scheme with pulsed coupling offers a simple possibility of realizing the
bunching distribution (7.33) of bosons, without the use of a beam splitter.

7.4.2 Continuous coupling between modes

The situation is different when the coupling between the modes is present continuously. Then
in expression (7.13) for the coherent-evolution operator, the Hamiltonian is given by eq.
(7.35). Since the Hamiltonian commutes with the number operator N, the decay terms are
not affected the Hamiltonian evolution, and eq. (7.19) is replaced by the modified form

e“TH(R,0,8) = exp[-R2(1 — e " U(T)p(Re"T/2,0,¢)UT(T) (7.43)

with U(T) = exp(—iHT/h) = exp(idT'J,). The effect of the Hamiltonian on the density
matrix for a detection history {¢;, s;} can be expressed in the Heisenberg picture, with the
time-dependent detection operators

&(ts) = UN(T)E,U(T). (7.44)
Their action on the density matrix follows from eq. (7.21) when one uses that ¢, (¢) cor-
responds to the direction ,(t) = —7sin &t + Zcos &t and ¢,(t) to the opposite direction
— A~ . ~ . .
wp(t) = ysin §t — Z cos §t. This gives

C(t)p(R, 0, 9)el (ts) = R2ga(0, ¢, ) (R, 0, 9), (7.45)

—

with g,(0,¢,t) = [1 + W - U s(t)]/2. The general expression (7.17) for the contribution to
the density matrix from a detection history {¢;, s; } with the initial state (7.18) is found as

({tusz} T) = eXp[ *FT H FR2

L
< [a0s6.0) [Tl 0-6. T pRT0.0)0 (D) (7.46)

Each detection s leads to a multiplication of the distribution function over the Bloch sphere by
afactor g4(6, ¢, t) that now depends on the detection time. This time dependence corresponds
to a rotation of the direction u  in the 3z plane.



Phase dynamics of a multimode Bose condensate controlled by decay 89

For the initial state of two decoupled modes, with a uniform distribution of the phase, the
function f is uniform over the equator of the Bloch sphere. A detection at time ¢ of a particle
emitted by mode A or B then multiplies the distribution over the relative phase ¢ by the factor
9a(¢) = (1—sindtsin ¢)/2 or gy(¢p) = (1+sin d¢ sin ¢) /2. These functions have their max-
imum value for ¢ = 37w /2 or ¢ = 7/2. Strictly speaking, this distribution describes the state
of the system in the Heisenberg picture, where it is not affected by continuous evolution, but
only by the quantum jumps that describe the effect of detections. The evolution of the phase
distribution during a typical detection history is conceptually simple. The total decay rate,
summed over both detectors, is autonomous and has the time dependent rate I'R? exp(—I't).
The branching over the two detectors a and b is determined by the expectation value of g, (¢)
and g, (¢), which has a contrast that oscillates in time at the coupling frequency 4, as a result
of the mode coupling. The effect of a detection on the phase distribution is a multiplication
with the same factor (1 F sin ¢ sin ¢) /2 for detectors a and b. This will eventually lead to
a convergence of the phase distribution to a single peak at a value where either one of the
factors g, is maximal; hence, ¢ = 7/2 or ¢ = 37/2. The convergence to these peaked dis-
tributions is slower than in the case of a detections through a single beam splitter, as a result
of the oscillations of the contrast in the functions g, (t).

o, 1:0)

\

/2 7 31/2 b Tl:

%

Figure 7.4: Relative phase distributions for two coupled modes after L = 10 detections. The
sets of ten detections times are selected randomly, and for each set the most probable pair of
detection histories is determined numerically. Each curve is the final phase distribution after
such a detection history.

In Fig. 7.4 we plot the phase distributions for a set of typical detection histories consisting
of L = 10 detections. These curves are numerically calculated in the following way. First we
randomly select the ten time instants. Then the most probable set of ten detection channels
at those instants is chosen. For each set of time instants, there are two complementary sets of
detection channels, which are related by interchanging detectors a and b. The different curves
in Fig. 7.4 correspond to a different selection of the time instants of detection. As seen in
Fig. 7.4, after each such history, the distribution over ¢ is a peak centered either at 7/2 or at
3m/2.
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7.4.3 Coupling and energy shift

An energy difference he between the two modes in addition to the effect of tunneling is
described by the Hamiltonian

H=—h8J, + hel,, (7.47)

which replaces eq. (7.35). The angular momentum operators are defined in eq. (7.1). We
consider the same detection scheme used in the preceding subsection. The energy difference
modifies the detection statistics and the phase distribution following a representative detection
history. On the Bloch sphere, the modified evolution operator U () is represented by a rota-
tion in the positive direction around the axis €z — 0, over an angle Q¢, with Q = /&2 + §2.
Equations (7.43) for the density matrix after a detection history and (7.44) for the detection
operators in the Heisenberg representation ¢;(¢) remain valid. The detection operators are
represented by points 7 , on the sphere that are reached from the poles when the opposite
rotation is applied. Since the rotation axis does not lie in the equator plane, the azimuthal an-
gle varies continuously with time, and the relative phase is no longer projected preferentially
onto the same value. These unit vectors are found in the form
2 2
Uo(t) = —up(t) = ;—Z(cos Qt — 1)z — % sin Qty + <;522 cos Qt + ;2> zZ.

They determine the factors g (6, ¢, ) = [L+ U - u s(¢)] /2 that multiply the distribution over
the sphere when a particle emitted by mode A or B is detected.

As above, we consider the case of an initially factorized state, which is represented by a
uniform distribution over the equator of the Bloch sphere. When a particle from mode A or
B is detected, the distribution over ¢ is multiplied by

9a(0) = ! (1 + £ cos p(cos QU — 1) — %sinqﬁsinﬂt) ,

2 02
1 ed o .
gp(0) = 3 (1 ) cos p(cos Ut — 1) + ) smqﬁstt) .

The maximum of these functions no longer coincides with the maximum of =+ sin ¢, as is the
case when € = 0.

In Fig. 7.5 the resulting phase distributions are shown after a number of most probable
detection histories, each consisting of ten detections, for ¢/§ = 1/4. The various curves
differ in the selection of the detection times. The prescription of the calculation is the same
as used in Fig. 7.4. Now not only the width of the peak, but also their position varies for
different selections of the detection times. This can be explained from the time variation in
the position where the maximum of g, (¢, ) occurs.

7.5 Linear and circular chains of modes

The dynamics of a coupled chain of condensates in an optical lattice has been explored,
with emphasis on the difference between a linear and a circular chain [66]. The coupling
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Figure 7.5: Same as Fig. 7.4, but now for coupled modes at different energies. The ratio of
the energy splitting and the coupling strength is /6 = 1/4.

was due to tunneling between neighboring modes. One expects analogous differences in
the situation considered in this paper, where the phase relation between neighboring modes
arises by spontaneous symmetry breaking from the observation of emitted bosons interfering
through a beam splitter. This raises the question of the transitivity of the relative phase. When
the relative phase between two modes A and B is well determined and the same holds for
the relative phase between two modes B and C, then one expects the phase between C' and
A should also be fixed. On the other hand, when this latter phase is also selected by direct
interaction, one may expect different dynamics depending on whether the two paths of phase
determination converge to the same result or not. In the present section we compare the phase
dynamics on a linear and a circular chain of modes.

7.5.1 Linear chain of modes

s-1 S s+l

/ \

SRV

Figure 7.6: Setup with a linear chain of boson modes ..., s — 1,s,s + 1, ... Neighboring
modes emit particles in the input port of a beam splitter, and detectors monitor the particles
in the output ports.

We consider a linear chain of modes, as sketched in Fig. 7.6. As initial state we take the
uncorrelated state given by the factorized density matrix

pO0)=]]Ps=" Pec1®P:e®Pas1--, (7.48)
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where the density matrix p, of each mode s has the form (7.34) with a uniform phase ¢;.
Beam splitters are mixing the bosons emitted from neighboring modes s and s + 1, with
orthogonal detection operators in the output channels

~ 1

dsizﬁ

with a; the annihilation operator of mode i. The evolution is described by the master equation
(7.12), with

(Gs £ e 0y 1) (7.49)

. | R
Lop = — Z §(ala5’p + paias), L= Z([le+ + L), (7.50)

S S
where the contribution to £; corresponding to the detection channels s is specified by

r

Lrox = Gduspdls. (7.51)

Physically it is obvious that the detection statistics over the output channels of each beam
splitter is identical to the statistics for each of the two beam splitters in Sec. III, since each
mode emits into two input channels with equal rate. The density matrix corresponding to a
given detection history with ns detections in channel s, and mg detections in the channel
s_ is easily written down by using the fact that a detection in channel s gives a factor
cos?[(®, — &,)/2] and a detection in channel s_ a factor sin®[(®, — &,)/2]. After each
detection history, the distribution over the phases ¢ of all modes factorizes into a product of
distributions for each relative phase ®; = ¢, — 51 between neighbors. After ng detections
in channel s; and m, detections in the channel s_, the distribution over the relative phase
¢s — P51 is proportional to cos?™s [(®, — &) /2] sin®™=[(®, — &,)/2], and the distribution
over the phases is proportional to the product

1:[ [COSQnS (Ls ; 5S) sin?ms ((I)s ; & )} . (7.52)

Because of this factorization, the detection statistics for the pair of output channels of each
beam splitter is uncorrelated to the other detections. The total number M, of detections in
the time interval [0, T'] on the two output channels of a single beam splitter is Poissonian with
average value 72[1 — exp(—I'T')], and the probability distribution of the M detections over
the two detectors is identical to the distribution (7.33) [102]. Therefore, the most probable
histories with M detections on this sth beam splitter are given as (ns, m;) = (M, 0) and
(0, My). The relative phase @, between modes s and s+ 1 converges to a single peak located
at & or & + m, for each value of s. This also determines in a unique and unambiguous way
the relative phase between any pair of modes. Hence for a linear chain of modes, the relative
phase between two neighbors converges to one out of two possible values, in precisely the
same way as it occurs for two modes and a single beam splitter. Spontaneous symmetry
breaking occurs independently for each neighboring pair.
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7.5.2 Circular chain of modes

Now we consider a series of K modes, coupled by beam splitters and arranged into a circular
chain. For K = 3, the scheme is presented in Fig. 7.7. Equations (7.48)-(7.50) still hold,
With the index s running from 1 to K. The relative phases @ and the detection operators
dsi are defined as above for s = 1, 2,..., K — 1, while we denote ®x = ¢x — ¢1 and
d, Kkt = (A £ e *%5a;)/+/2. The number of beam splitters is now equal to the number of
modes. On the other hand, since

K
Z b, =0, (7.53)
s=1

the K modes have only K — 1 independent relative phases ®,, which makes the detection
system overdetermined. This is the main difference with the case of the linear chain. Detec-
tions on the sth beam splitter tend to drive the relative phase @4 to the value & or £ + 7.
However, these values are consistent only when the values of all £, add up to a multiple of .
The probability p({ns,ms},T) of a specified number of detections by each detector in the
time interval [0, T'] factorizes as in eq. (7.28) in a Poisson distribution for the total number
L of detections, with the mean value K72(1 — e~!'T) and the probability py, ({ns,m,}) that
the L detections are distributed over the detectors according to the indicated partition. This
latter distribution can be specified in analogy to eq. (7.29) by

L!
pr({ns,ms}) = 1—15(7

ns!ms!)F({ns,ms}), (7.54)

with

F({ns,ms}) = ( ) /d¢1d¢2 d¢KH{C% fs) n2m s2—£s)
(7.55)

After a detection history with ng detections in channel s, and mg detections in channel s_,
the distribution over the relative phase is still proportional to eq. (7.52). However, because of
the relation (7.53), the relative phases are no longer independent, and the detection statistics
of the output channels of the different beam splitters become correlated.

The most probable histories can now be found by similar considerations as we used above
in Sec. 7.3.3. For a total number of L = K x M detections, the distribution for the total
number of particles reaching the K beam splitters must be multinomial, with the average
value M. For a most probable history the number of particles that passed each beam splitter
is equal to M for each one of them. One might expect that these M particles display bosonic
bunching into one output channel, with the most probable partition (ns, ms) = (M,0) or
(0, M) for all of the K beam splitters. This would indicate that the corresponding relative
phases probed by these beam splitters will have converged to the value £ or £ = 7. However,
in general this can only be true for all relative phases except one, because of the phase relation
(7.53). Assume that this excepted relative phase has the index sg. As a result of this relation,
the value of the last relative phase ®, is thereby also fixed. The distribution over the two
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output channels sg4 and sg_— will then be binomial, and the most probable partition is given
by (nsy, M, )=(M cos?[(®,, — Es,)/2], M sin?[(®,, — £s,)/2]. For symmetry reasons, each
beam splitter has the same probability to end up in such a binomial distribution rather than
a bunching one. The situation can be summarized by stating that in addition to the local
spontaneous symmetry breaking for each beam splitter, also a global symmetry breaking
occurs, by which the relative phase between two neighbors is not determined by the setting
of their own shared beam splitter, but by the settings of all the other ones. Again, a typical
detection history may be expected to be in the neighborhood of a most probable history, even
though for large detection numbers, the absolute probability of a most probable history will
be small.

Figure 7.7: Setup of a circular chain of three boson modes 1, 2 and 3, with decay channels
that are pairwise coupled by beam splitters 1, 2 and 3.

As an example, consider the case K = 3, as sketched in Fig. 7.7. The settings of the beam
splitters are given by &1 = & = 0 and 3 = 7/2. After 30 detections, one of the partitions
with the highest probability was found to be (ny,m1) = (5,5), (n2,m2) = (10,0), and
(n3,m3) = (10,0). As one would expect from symmetry considerations, other partitions
with the same maximal probability are found by swapping n, and mg for each beam splitter
s and also by a permutation of the three indices 1, 2 and 3. This result is confirmed by a
numerical calculation based on a direct evaluation of the probability distribution (7.54).

7.6 Discussion and conclusions

The absolute phase of a single-mode or multimode bosonic system is fully undetermined
when the state of the system is diagonal in the total particle number. For bosonic atoms, this
must be the case, since states with different particle numbers do not superpose. For a two-
mode system we use the Schwinger representation with fictitious angular momentum oper-
ators to take advantage of the underlying SU(2) symmetry of the state space. This allows
us to represent the density matrix of the two-mode system with an undetermined absolute
phase and a Poissonian distribution of the total number of particles as an integral over the
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Bloch sphere of the fictitious angular momentum. The representation is given in eq. (7.10),
where f (6, ¢) is the distribution function over the sphere. It may be viewed as the Glauber-
Sudarshan P function restricted to the sphere. The azimuthal angle ¢ is the relative phase,
whereas the polar angle § measures the ratio of the average number of particles in A and
B, with equal populations represented by points on the equator and the poles representing
states with all particles in one mode. The merit of these states with Poissonian distribution
of the total particle number is that the overall decay of the modes factors out, and the detec-
tion statistics is the product of time-dependent probabilities for the total number of detections
and time-independent distributions for the partitions over the various detection channels. The
effect of a detection is described by the action of an annihilation operator, which also corre-
sponds to a point on the sphere. This is equivalent to the multiplication of the distribution
function f (6, ¢) by a factor that depends only on the distance over the sphere between the
points (0, ¢) and the detection point. This allows exact expressions, both for the detection
statistics and for the conditional density matrix of the system for a given detection history.
It also implies that identical detection statistics arises for different choices of the distribution
f and the detection points on the Bloch sphere, provided that the setup has the same relative
geometry on the sphere. This can correspond to quite different experimental setups, since the
effect of detection through a beam splitter can be produced by a pulsed tunneling coupling
between the modes.

In the case that the modes are constantly coupled by tunneling and in the presence of an
energy difference between the modes, the phase distribution still becomes nonuniform by the
detecting particles emitted by the two modes. However, since the preferred phase imposed
by the detections is not the same for all detections in this case, the maximum in the phase
distribution will continue to vary in position even after many detections. The convergence
of the phase is expected to be perturbed more strongly when interparticle interactions are
important during a detection history [107].

We treat explicitly the case of two modes which both emit particles in an input channel
of two different beam splitters. When the settings of the beam splitters are different, they
can drive the relative phase of the modes to values which are conflicting. Such a situation of
conflicting phase values occurs for any number of modes which are coupled by beam splitters
and arranged in a circular chain. Our model shows that in these cases the most probable
detection histories lead for each pair of neighboring modes to a relative phase converging
with equal probability to one of the conflicting values. The partition of the detection over
the channels is a signature of the location of the peak in the phase distribution. Such a
conflict does not arise for a linear chain of modes coupled by a beam splitter. A common
feature of these various cases is that an initially factorized state of several modes builds up a
specific value of all relative phases by only detecting their decay products in interference. In
principle, this means that the modes become entangled, even though they have never been in
direct contact.
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Samenvatting

Sinds de komst van de quantummechanica is licht een belangrijk middel om de quantumei-
genschappen van materie te bepalen en te begrijpen. Om de bouwstenen van de wereld op
atomaire schaal (atomen, ionen en elektronen) te onderzoeken is het nodig om de thermische
fluctuaties van de atomaire dynamica te beperken. Dit probleem is uitgebreid onderzocht in
de afgelopen jaren, met als prominent voorbeeld succesvolle methoden om neutrale atomen
te koelen en op te sluiten met de kracht van licht. Aan dit onderzoeksgebied is in 1997 de No-
belprijs voor natuurkunde verleend, die gezamenlijk werd toegekend aan W. D. Phillips, C.
Cohen-Tannoudji en S. Chu. Het basismechanisme is de uitwisseling van impuls en energie
tussen het licht en een atoom. De lichtkrachten die het atoom ondervindt kunnen zijn bewe-
gingsvrijheid in de ruimte beperken, en bovendien de thermische fluctuaties in zijn snelheid
verminderen.

Daarnaast vormen lichtvelden het belangrijkste middel om de quantumeigenschappen van
neutrale atomen te sturen. Dit is in verscheidene toepassingen gerealiseerd. De belangrijkste
toepassing is atomaire interferometrie, die tegenwoordig een aanzienlijk hogere gevoeligheid
te zien geeft dan de meer conventionele, zuiver optische interferometrie. Een verdere toepas-
sing van koude atomen, meer in het bijzonder koude ionen, wordt nagestreefd in opstellingen
die de basis moeten vormen van onderdelen van quantumcomputers.

Een volgende belangrijke stap in het “meer quantummechanisch” maken van neutrale
atomen is gezet in 1995, met de eerste experimentele demonstratie van een Bose-Einstein-
condensaat (BEC) van alkali-atomen. Dit is een toestand van materie waarin alle atomen in
eenzelfde quantumtoestand verkeren. In 2001 werd de Nobelprijs voor natuurkunde toege-
kend aan E. A. Cornell, W. Ketterle and C. E. Wieman, voor de realisatie van BEC in een
ijl gas van alkali-atomen, en baanbrekend fundamenteel onderzoek van hun eigenschappen.
De macroscopische bevolking van de laagste energietoestand werd bereikt door de atomen
op te sluiten in licht, en door ze met behulp van afdamping tot extreem lage temperaturen te
koelen. Op deze wijze kunnen de quantumeigenschappen van materie worden versterkt, en
op macroscopische schaal worden onderzocht.

De meeste theoretische beschrijvingen van een systeem van koude atomen verwaarlozen
de correlatie tussen de atomen. Maar een beschrijving van een BEC als een echt veeldeel-
tjessysteem vereist dat de wisselwerking tussen de atomen in rekening wordt gebracht. Het
vroegere theoretische werk aan condensaten in een enkele mode maakte gebruik van het mo-
del van Gross, Pitaevski en Bogoliubov. De basisvergelijking van deze theorie beschrijft het
systeem met behulp van een macroscopische golffunctie, die de verdeling van de atomen
over plaats en impuls beschrijft. Deze beschrijving is semiklassiek van aard, en is nauw
verwant met de theorie van superfluiditeit. Maar in de praktijk kan een BEC quantumfluctu-
aties vertonen die niet in de semiklassieke theorie zijn vervat. Dit soort quantumeffecten is
waarneembaar voor een BEC in meerdere modes, bijvoorbeeld in een optisch rooster.

In dit proefschrift bekijken we een aantal voorbeelden van fysische situaties waar licht-
velden worden gebruikt om condensaten en andere systemen van koude atomen met hoge
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nauwkeurigheid te manipuleren. We beginnen met beschouwingen van enkele atomen, en
breiden vervolgens de discussie uit tot veeldeeltjessystemen, zoals condensaten.

In Hoofdstuk 2 bekijken we de mogelijkheden om de toestand van een enkel atoom te
prepareren en te sturen. Het atoom verkeert in een periodieke optische potentiaal met een
helling. Meestal wordt een periodieke optische potentiaal gevormd door een staande golf van
licht, die is samengesteld uit twee tegen elkaar in lopende golven. Het resultaat is een keten
van potentiaalputten, waarbinnen een deeltje door het tunneleffect de barriere tussen twee be-
lendende putten kan passeren. Een systeem van atomen in een periodieke optische potentiaal
wordt een optisch rooster genoemd. Wij beschouwen de situatie waarin behalve de periodieke
potentiaal ook een uniforme kracht wordt opgelegd, die bovendien met de tijd kan variéren.
We bepalen de dynamica van een deeltje bij een willekeurige begintoestand, met behulp van
een exact oplosbaar model. Het gedrag van zo’n deeltje is rijk gestructureerd, en hangt sterk
af van de beginverdeling van het deeltje over het rooster. Als het deeltje bijvoorbeeld aan-
vankelijk is gelokaliseerd in een enkele potentiaalput, dan beweegt het niet in de richting van
de uniforme kracht, maar het spreidt zich slechts uit over het rooster, zonder dat zijn gemid-
delde positie verandert. Als het deeltje aanvankelijk een redelijk welbepaalde quasi-impuls
heeft, waarbij het verdeeld moet zijn over vele roosterplaatsen, dan zal het Bloch-oscillaties
gaan vertonen. Daarbij vertonen de quasi-impuls en de gemiddelde positie van het deeltje
een periodieke variatie in de tijd. Dit effect is aanvankelijk voorspeld voor elektronen in een
kristal, maar het is waargenomen voor atomen in een optisch rooster. We geven een algemene
beschrijving van de gemiddelde beweging en de spreiding van de toestand van een deeltje in
een optisch rooster met een uniforme kracht.

Ook in Hoofdstuk 3 kijken we naar de wisselwerking van een enkel atoom met een peri-
odieke optische potentiaal. Maar terwijl het in Hoofdstuk 2 ging over de dynamica van een
atoom dat gevangen was in het rooster, gaat het nu om een vrij atoom, waarvan de golffunctie
diffractie vertoont als het een staande golf van licht doorkruist. De belangrijkste resultaten
kunnen worden begrepen uit de beginselen van behoud van energie en impuls. Als het atoom
wisselwerkt met twee tegen elkaar in lopende golven, dan kan het een foton uit één lopende
golf absorberen, en dat weer uitzenden naar de andere lopende golf. Zo kan een atoom in
een staande golf een grote impuls oplopen, zonder dat er sprake is van spontane emissie. Dit
is in tegenstelling tot het geval van een lopende golf, waar een atoom niet meer impuls kan
opnemen dan de impuls Ak van een enkel foton. Deze bekende resultaten gelden als een
atoom voorafgaand aan de wisselwerking in de grondtoestand verkeert. Maar de situatie is
anders wanneer het atoom in een superpositie verkeert van de grondtoestand en de aangesla-
gen toestand. We laten zien dat in dit geval de impulsoverdracht van de fotonen aan het atoom
gedurende de wisselwerking met een lopende golf groter kan zijn dan hk. Dit effect sugge-
reert een belangrijke praktische toepassing. Het effect van diffractie kan worden gestuurd
door een welgekozen afwisseling van staande en lopende golven te gebruiken.

Terwijl de wisselwerking van een atoom met een staande golf van licht gepaard gaat
met een uitwisseling van impuls tussen veld en atoom, kan de wisselwerking met een paar
Laguerre-Gauss-bundels met tegengestelde heliciteit leiden tot uitwisseling van impulsmo-
ment. Dit is het gevolg van het feit dat de fotonen in een Laguerre-Gauss-bundel een baan-
impulsmoment in de propagatierichting dragen. Ruimtelijk gezien vormt een paar van zulke
bundels met tegengestelde heliciteit een circulair optisch rooster, dat het gevolg is van een
staande golf langs een cirkel. Zo’n circulaire staande golf heeft wezenlijke voordelen verge-
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leken met een gebruikelijke lineaire staande golf. Een aanvankelijk gelokaliseerd golfpakket
van een atoom wordt gesplitst in een superpositie van een naar links en een naar rechts draai-
ende component. Als het atoom is opgesloten in een ringvormige potentiaal, dan leiden de
beide componenten tot interferentie. Karakteristiek voor het circulaire rooster is dat de com-
ponenten elkaar treffen zonder dat hun bewegingsrichting hoeft te worden omgekeerd. In
gebruikelijke interferometrische opstellingen zijn altijd lichtvelden nodig die als spiegel die-
nen voor een atomair golfpakket. Dit schema voor atoominterferometrie zonder spiegelende
lichtvelden wordt besproken in Hoofdstuk 4.

Vanaf Hoofdstuk 5 bekijken we condensaten in meerdere modes. Als modelsysteem ne-
men we het geval van een BEC in een dubbele potentiaalput. We vergelijken de dynamica
van een BEC in de twee putten met de dynamica van atomen die aan een staande lichtgolf
diffractie ondergaan. De aanleiding daarvoor is dat de Hamiltonianen in operatorgedaante
er hetzelfde uitzien. Het verschil ligt in de commutatieregels van de operatoren. Beken-
de diffractieverschijnselen zoals de Pendellosung-oscillaties tussen tegengestelde impulstoe-
standen in het geval van Bragg-diffractie hebben een analogon in het gedrag van de verdeling
van de atomen in een BEC over de twee putten. Deze verdeling vertoont een oscillatie in het
verschil in de atoomaantallen in de twee putten, tenminste als de koppeling tussen de putten
zwak is vergeleken met de wisselwerking tussen de atomen. Als deze koppeling langzaam
varieert in de tijd, dan kan een deel van de atomen adiabatisch van de ene put overgaan naar
de andere.

In Hoofdstuk 6 worden de eigenschappen van een BEC in een dubbele potentiaalput nader
onderzocht in het geval van sterke wisselwerking tussen de atomen. Een gevoelige manier om
de eigenschappen van een condensaat te bepalen is te zoeken naar resonanties in de respons
van het systeem op een externe periodieke variatie van de parameters. In de buurt van de
resonantiefrequenties is te verwachten dat de respons sterk met de frequentie zal variéren.
De periodieke variatie kan worden gerealiseerd door de vorm van de potentiaal te moduleren.
We vinden een resonante overgang tussen twee toestanden waarbij een enkel atoom uit het
condensaat oscilleert tussen de putten. Het kan ook voorkomen dat meer dan twee toestanden
resonant met elkaar zijn gekoppeld, zodat meer dan één atoom tussen de putten oscilleert.
Als gevolg van deze resonantie-effecten kan men het aantal atomen in de putten beheersen
door de sterkte en de frequentie van de modulatie van het energieverschil tussen de putten
geschikt te kiezen. Ook de tunnelsnelheid tussen de putten kan door resonanties worden
vergroot. Deze beschouwingen kunnen ook worden gegeneraliseerd tot een systeem met
meer dan twee putten, zoals een condensaat in een optisch rooster.

In Hoofdstuk 7 behandelen we het probleem van de relatieve fase tussen de verschillende
modes van een BEC. De relatieve fase wordt bepaald door de atomen waar te nemen die door
de verschillende modes worden geémitteerd. Daarbij worden de atomen uitgezonden door
verschillende modes in de ingangskanalen van een bundelsplitser gestuurd, en zodoende in
interferentie waargenomen. Eerst behandelen we het geval van een BEC in twee modes. Bei-
de modes zenden atomen uit in de ingangskanalen van twee verschillende bundelsplitsers,
waarvan de uitgangskanalen worden gedetecteerd. De uitgangskanalen van een bundelsplit-
ser corresponderen met twee tegengestelde relatieve fasen van de modes. De instelling van
de bundelsplitsers kan zo worden gekozen dat de paren van relatieve fasewaarden met elkaar
in tegenspraak zijn. Ook bij meer dan twee modes treedt een dergelijk conflict op, wanneer
ze met elkaar gekoppeld zijn in een cyclische structuur. We berekenen de statistiek van de
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verschillende mogelijke detectiehistories van alle uitgangskanalen, en we leiden af welke van
die histories de grootste waarschijnlijkheid hebben. Het model laat zien dat bij elk van de
histories met de grootste waarschijnlijkheid de relatieve fase uiteindelijk convergeert naar
een van de elkaar tegensprekende waarden. Welke van de waarden uiteindelijk optreedt is
een strikt quantumproces, dat zich dus niet laat voorspellen. Een dergelijk conflict treedt niet
op bij een lineaire keten van modes, die buursgewijs door bundelsplitsers zijn gekoppeld.
Een gemeenschappelijke eigenaardigheid van de verschillende gevallen is dat een aanvanke-
lijk gefactoriseerde toestand van de modes leidt tot een gecorreleerde toestand door alleen
maar de vervalsproducten van de modes in interferentie te detecteren. Dit houdt in dat een
quantummechanische verstrengeling ontstaat zonder dat de modes met elkaar in contact zijn
geweest.
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