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“Poets say science takes away from the beauty of the stars - mere globs of gas atoms.
I, too, can see the stars on a desert night, and feel them. But do I see less or more?”

Richard Feynman, The Feynman Lections on Physics, Vol. 1
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CHAPTER 1

Introduction

1.1 Subwavelength hole arrays
In 1998, Ebbesen showed that arrays of subwavelength-diameter holes in metal films have
extraordinary transmission properties [1]. Their transmission spectrum is strongly peaked,
with peak intensities that can be an order of magnitude larger than expected from stan-
dard electromagnetic theory for subwavelength apertures, developed by Bethe and adapted
by Bouwkamp [2,3]. A typical transmission spectrum of a square nanohole array is shown in
Fig. 1.1, together with the Bethe and Bouwkamp predictions [2, 3]. The extraordinary large
peak transmission is commonly explained by resonant excitation of surface plasmons (SPs)
on the hole array [1, 4–6]. However, there has been some debate on alternative explanations
in the literature: one paper found an anti-correlation between optical transmission peaks and
excitation of SPs in 1-D arrays of slits [7], another focussed on the role of phase singulari-
ties (optical vortices) [8], a third showed the non-negligible influence of the holes themselves
through their shapes [9] and a fourth, coauthor of Ref. [1], in an interesting change of opinion,
now advocates a diffracted evanescent wave model [10]. Most of this debate can probably
be resolved by admitting that each of the viewpoints is a valid description of some part of
the problem, and that SPs, however useful a concept to explain a number of the optical prop-
erties of the nanohole arrays, may fall short in other respects. It is interesting to note, that
most of the optical properties of nanohole arrays can already be accounted for qualitatively
by allowing for a (small) direct transmission through the holes, next to the indirect resonant-
SP contribution; This explains, for instance, the typical asymmetric peaks in the hole array
spectra, which are similar to Fano resonances occurring in atomic physics [11, 12].
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1. Introduction

Figure 1.1: a) A typical transmission spectrum of a square hole array in gold, for nearly
plane-wave illumination at normal incidence. The two smooth curves show the Bethe
prediction (solid) and Bouwkamp’s corrections thereof (dashed), where both curves are
calculated using the hole filling factor for the square array of 0.064. b) A sketch of the
investigated square array of holes.

1.2 Surface Plasmons
Surface plasmons have been intensively studied since a number of decades already [13]. They
are surface charge density waves, with an associated electromagnetic field, propagating along
the interface between a dielectric and a metal, see Fig. 1.2. They exist when εd +εm < 0, with
εd and εm the electric permittivity of the dielectric and metal, respectively. The SP electric
field decays exponentially in both directions orthogonal to the interface, with typical decay
distances at optical wavelengths of a quarter wavelength into the dielectric and of 10−20 nm
(the penetration depth) into the metal. Furthermore, SPs are damped exponentially in the
propagation direction, due to losses in the metal, with typical propagation lengths of a few
tens of µm for a flat surface; the energy flow associated with the propagating SP is mainly
directed along the propagation direction but also slightly into the metal. The SP polarization is
elliptical in the plane spanned by the surface normal and the SP propagation direction, which
means that SPs also have a longitudinal electric field component. The momentum of a SP on a
flat metal-dielectric interface is somewhat larger than that of a free-space photon. Therefore,
in order to excite SPs with optical pumping, and fulfill conservation of momentum along the
interface, additional momentum has to be provided, which can be done by a corrugation of
the metal-dielectric interface. The periodic structures of nanohole arrays are one example of
such a corrugation.

1.3 Quantum Entanglement
In 1935 Einstein, Podolsky and Rosen voiced their uneasiness with a certain consequence of
the quantum theory, which made this theory incompatible with their view on nature [14]. The
mentioned consequence is the possibility of two particles being in a state, such that a mea-
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1.3 Quantum Entanglement

Figure 1.2: A sketch of the surface charge density wave and associated electric field
of a surface plasmon. The field decays exponentially into the metal and dielectric.
Furthermore, the SPs are damped in the propagation direction (denoted here by x).

surement on one of the two immediately determines the outcome of a similar measurement
on the other one, regardless of the distance between the two particles. This “non-locality” is
an essential property of such an “entangled” quantum state. Entanglement was later realized
to be a powerful tool, as it can in principle be used to make a “quantum computer” which
can be exponentially faster in certain computations than the classical computer [15–17]. A
number of experiments so far have focussed on demonstrating entanglement between pho-
tons [18–20]. A specific case, discussed in this thesis, is the entanglement between two
photons with respect to their polarization. An example of a polarization-entangled state is the
state:

|Ψ〉 =
1√
2

(

|H1V2〉 + eiα |V1H2〉
)

, (1.1)

which states that if a photon at position 1 is horizontally polarized, then its counterpart at
position 2 is vertically polarized, and vice versa. In fact, for the singlet state with α = π ,
the polarizations of the two entangled photons are always orthogonal, for every basis, so if
photon 1 is polarized at 45◦ then photon 2 is polarized at −45◦, etcetera.

The main topic of this thesis is the extension of the research of quantum entanglement
to the domain of SPs, out of fundamental interest, but also for potential applications using
the solid-state medium on whose boundaries SPs can reside. To address this issue, we have
studied the way the polarization-entanglement between two photons is affected when one
of them is sent through a nanohole array, being coupled to SPs in the transmission process.
This experiment is discussed in Chapter 4. In the adjoining chapters some of the classical
optical properties of nanohole arrays are studied, with a strong accent on polarization. In
the final chapter, Chapter 10, we combine the quantum and classical analysis to provide a
model explaining the results of Chapter 4 in terms of the far-field transmission function of
the nanohole array. We describe the contents of the chapters in more detail below:

• Chapter 2 describes the production processes we used to make our nanohole array sam-
ples, and experimental methods to characterize their optical properties and diagnose
production errors. It also includes SP dispersion curves, and higher-diffraction-order
reflection and transmission data of the nanohole arrays.

• Chapter 3 provides an in-depth theoretical analysis of a spontaneous parametric down-
conversion source of polarization-entangled photons. The limitations to the attainable
degree of entanglement are discussed and compared to experimental results.

3



1. Introduction

• Chapter 4 presents the pivotal experiment of this thesis, investigating the decoherence
induced by nanohole arrays as they are placed in the paths of polarization-entangled
photons. The degree of entanglement behind the arrays is found to be limited by the
opening angle on the array, where focussing reduces the entanglement.

• Chapter 5 contains measured zeroth-order reflection spectra of a square nanohole array.
The reflection from the two sides of the sample are found to be spectrally different. By
comparing the amplitudes of the peaks in both spectra, the interface on which the SPs
are resonantly excited can be determined, and a rough estimate of the coupling strength
between the SPs on both interfaces can be obtained.

• Chapter 6 discusses polarization-resolved measurements of the far-field transmission
function of a square nanohole array. It relates obtained far-field pictures to SP propa-
gation.

• Chapter 7 describes the direct optical imaging of the transmission at the backside of a
nanohole array. In the images so-obtained propagating SPs are visible separate from
the direct transmission through the holes. The Fano-type interference between the
two contributions to the transmission is analyzed to obtain their relative phase and
amplitude.

• Chapter 8 investigates experimentally the optical depolarization induced by square and
hexagonal nanohole arrays on a fully polarized input beam. The results are presented
using the Mueller matrix formalism.

• Chapter 9 presents an analytic model of the far-field transmission function of square
and hexagonal nanohole arrays. The model is based on a Fano-type interference be-
tween a resonant surface-plasmon contribution and a non-resonant contribution directly
through the holes. The results of the model are compared to experimental results simi-
lar to those of Chapter 8.

• Chapter 10 discusses the relation between the quantum measurements of Chapter 4
and the classical measurements of Chapter 8. It demonstrates that both measurements
depend in identical ways on the far-field transmission function of the nanohole array,
discussed in Chapter 6.

There is some overlap between the chapters, as most of them are in fact published
papers. Consequently, the chapters can be read separately.
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CHAPTER 2

Characterization of nanohole arrays in metal films

We discuss a number of experimental tools that can be used to characterize subwavelength
hole arrays in metal films. We study samples made with two different techniques: electron-
beam lithography and ion-beam milling.

5



2. Characterization of nanohole arrays in metal films

2.1 Production and visual analysis of hole arrays
There are currently two methods available to make periodic patterns of holes with diameters
smaller than 300 nm in metal layers: i) electron-beam lithography and ii) ion-beam milling.
In this chapter we will discuss both techniques and some of their limitations as observed from
a number of hole array samples.

All hole array samples discussed in this thesis are of the form sketched in Fig. 1.1(b).
They consist of a gold layer perforated with circular holes, which is attached to a glass sub-
strate by a titanium or chromium bonding layer. To be able to observe effects which are
dominantly due to SPs there are a number of criteria that a hole array has to obey: i) the gold
layer has to be at least an order of magnitude thicker than the skin depth (negligible direct
transmission through the metal layer), but ii) still sufficiently small compared to the optical
wavelength to avoid excessive waveguide losses in the holes [21] and iii) the lossy bonding
layer has to be as thin as possible if one wants to excite SPs at the metal-glass interface with
the highest possible amplitude. To fulfill these conditions we choose the gold layer thickness
to be 200 nm, which is much larger than the skin depth of ≈ 12 nm but still smaller than the
typical wavelength of 800 nm, and the bonding layer thickness to be 2 nm. A further technical
demand for the type of arrays that we are interested in is that the holes have to be sufficiently
accurately spaced (to avoid spectral broadening of the resonance) and circularly shaped (to
avoid dichroism). We will discuss the latter demands for both production techniques below.

2.1.1 Samples made with e-beam lithography
The electron-beam lithography that we used was developed by Arjan van Zuuk and Emile van
der Drift at DIMES in Delft. It essentially comprises the following steps: first, an array of
pillars is defined with an e-beam device, where (at least) the bottom part of the pillars is made
of material that can be dissolved chemically. Then, in between (and on top) of the pillars
the metal layers are deposited, and finally the pillars are removed (“lift-off”) by chemical
etching. Table 2.1 gives the production steps in more detail. This somewhat intricate scheme
is necessary because electrons cannot directly make holes in gold, due to their small mass.

The main difficulty of this production process proved to be the last lift-off step. The
pillars, which consist of (from top to bottom) gold, titanium, electronresist and photoresist,
must be dissolved and shaken loose in such a way that they will not “trip over” and stick to the
bulk gold layer in between the holes by Van der Waals forces. This requires the right timing
and concentration of the etching and a proper use of gravity. It also requires the right timing
of all previous baking and plasma-etching steps to keep the pillars soft enough for the final
lift-off. Figure 2.1 shows pictures of an array of which the pillars were not fully dissolved
and became attached to the bulk gold. Figure 2.1(a) shows an overview optical microscope
picture and Fig. 2.1(b) shows a detail scanning electron microscope picture.

Apart from this lift-off difficulty, we were able to successfully produce usable hole arrays
with this method. Electron microscope pictures of one good sample are shown in Fig. 2.2,
where (a) is a top view and (b) a view taken at a different angle. From the latter picture one
can see that some residue material from the pillars remains attached to a few hole edges, but
that the holes are generally quite clean.

The major advantage of the e-beam method is that relatively large area arrays (1×1 mm2)

6



2.1 Production and visual analysis of hole arrays

Table 2.1: The e-beam production process in detail.
1 Spin coating plus baking of a ≈ 1 µm photoresist (S1813) layer

which serves as the bottom part of the pillars
2 Deposition by sputtering of approximately 20 nm Ge layer

(conductive loss channel for scattered electrons in the e-beam step)
3 Spin coating of ≈ 120 nm electroresist (SNR) on top of a thin

photo resist (HMDS) bonding layer plus baking (≈ 2 minutes at 60◦)
4 E-beam pattern definition of a square array of circles
5 Development of the electroresist in xylene (with cyclohexane as stopper)

leaving the top part of the pillars clear
6 Cleaning in oxygen plasma
7 Plasma etching of the Ge layer
8 Chemical etching of the photo resist remaining in between the pillars
9 Deposition of 2 nm Ti bonding layer and 200 nm Au top layer

10 “Lift-off” of the pillars by chemically etching (with ultrasonic vibration)
of the lower part consisting of photoresist

(a) (b)

Figure 2.1: Pictures of dielectric pillars remaining on the metal surface after the “lift-
off”process has been applied. The pictures are taken with (a) an optical microscope,
picture roughly 400 µm full width and (b) a scanning electron microscope, scale bar
5 µm.

can be produced, with high accuracy of the lattice spacing and hole shapes. A disadvantage
is the complexity of the process.

2.1.2 Samples made with ion-beam milling
In comparison with the previously discussed electron-beam lithography the focussed-ion-
beam (FIB) production process is very simple. First, a small (2-3 nm thick) bonding layer of
titanium or chromium is evaporated onto a glass substrate. Second, a 200-nm thick gold layer
is evaporated onto the bonding layer. Finally, the desired hole pattern is etched into the metal
layers by bombardment with gallium ions of sufficient momentum (a few keV). The last step
was performed for us by Paul Alkemade at the Material Sciences department in Delft. The
advantage of the FIB method is clearly its simplicity, resulting in a high production efficiency.

7



2. Characterization of nanohole arrays in metal films

(a) (b)

Figure 2.2: Scanning electron microscope pictures of a “clean”square hole array, (a)
top view and (b) tilted view, with scale bars 2 µm.

However, due to limitations of the FIB we used, the dimensions of the arrays were maximally
100× 100 µm2, i.e., a factor 100 smaller in area compared to the e-beam arrays. This can
be a limiting factor for measurements where the total transmitted power through the array is
critical.

Figure 2.3 shows a SEM image of a hexagonal array produced with the FIB method. As
can be seen in the picture, over small areas the array quality is very high, without surface
contaminations. However, over larger areas deviations in symmetry and lattice spacing are
generally visible in the arrays that were produced with i-beam (see Section 2.3). These de-
viations are probably caused by misalignment errors in the i-beam device, which we were
unable to correct.

Figure 2.3: SEM picture of a hexagonal hole array made with ion-beam milling.

8



2.2 Optical measurement of the lattice period

2.2 Optical measurement of the lattice period
The most important parameter for controlling the resonance wavelength of a nanohole array
is the lattice period. To check the accuracy of the FIB device, we have measured the lattice
period optically using diffraction orders in reflection. We use this optical method because
it provides for an absolute-distance measurement, whereas, for instance, a scanning electron
microscope gives results that depend on calibration. This is done with the setup shown in
Fig. 2.4. By measuring the angles α , φ and θm with illumination at known λ we obtain the
lattice constant

a =
Cmλ

[sin(α/2)+ sinθm]cosφ
, (2.1)

with C = 1 for a square lattice and C = 2√
3

for a hexagonal lattice, respectively [27]. Here
θm = arctan(y/x), the angle of incidence on the array is α/2 and the factor cosφ arises be-
cause of a possible tilt between the array axis and the horizontal plane in which the distances
x and y are measured.

Figure 2.4: The experimental setup used to optically measure the lattice constant of a
nanohole array. The array is illuminated by a coherent He-Ne beam incident at angle
α .

The error in the value for a obtained with this method is dominated by the errors in α and
sin(θm) = y/

√

x2 + y2, because cos(φ) ≈ 1 at the experimentally attainable |φ | ≤ 2× 10−3.
The total relative error ∆a

a can be made as low as 0.3-0.4%, corresponding to an absolute error
of only 2-3 nm, by setting α = 0 (easily done to within 2×10−3) and measuring the distances
x and y accurate to within 2 mm and 1 cm, respectively.

Table 2.2 shows the lattice spacings as measured for a number of arrays. By comparing
the specified spacing (middle column) with the measured spacing (rightmost column) we find
that the i-beam device has a 0.7 to 1.0 percent deviation in its calibration, whereas the e-beam
device has a negligible calibration error.

9



2. Characterization of nanohole arrays in metal films

Table 2.2: Optically measured lattice spacings.
array type specified a measured a

square, e beam 700 nm 699±2 nm
square, i beam 765 nm 759±4 nm

hex, i beam 883 nm 874±4 nm

2.3 Spectral measurements
One of the most important tools to characterize nanohole arrays is the analysis of their trans-
mission spectrum. This spectrum contains information about lattice spacings, array symmetry
and SP propagation and dispersion. To extract this information we use a simple model, which
is currently widespread [1, 4]. In this model, the resonance frequencies ωSP and resonance
widths ∆ωSP of the transmission maxima are determined by the SP dispersion in combination
with the SP momentum kSP. The SP dispersion relation is given by

kSP = n̂eff
ω̂SP

c
, (2.2)

where the complex frequency ω̂SP = ωSP + i∆ωSP [22] and the complex effective refractive

index n̂eff ≡
√

ε1ε2
ε1+ε2

, and ε1 and ε2 are the dielectric constants of the metal and the dielectric,
respectively; usually the values for the bulk materials are used. The momentum necessary
for the excitation of SPs with momentum~kSP = kSP~eSP (and kSP > n1ω/c) is supplied by the
component of the incident photon momentum projected on the array surface~k//, plus a lattice
component supplied by the reciprocal array vectors, which are labelled (N1,N2). For square
and hexagonal arrays with hole spacing a the SP momentum is thus given by

~kSP =~k// +(N1~e1 +N2~e2)
2πC

a
, (2.3)

with C = 1 for a square and C = 2√
3

for a hexagonal array. The normalized vectors~em (m =

1,2) are reciprocal lattice vectors, where for the hexagonal array C > 1 because ~e1 ·~e2 6= 0.
The incident photon momentum depends on the angle of incidence θ via |~k//| = kin sinθ .

The spectra (at normal incidence) can be used to characterize the quality of the arrays.
Information on the homogeneity of the lattice spacing of the arrays is gained by comparing
the peak positions for fixed-polarized illumination for different transverse spot positions on
the array. Information on the lattice symmetry is obtained by comparing the transmission-
peak wavelengths and intensities for one linearly polarized input beam at normal incidence
with an orthogonally polarized input beam. For ideal square and hexagonal arrays, the spec-
trum would be the same for the two polarizations and for each position. For arrays with a
deformed lattice, of for instance a slightly rectangular instead of square symmetry, the trans-
mission peaks will be at different wavelengths for a polarization along one of the array basis
vectors as compared to a polarization along the other basis vector. Of course, apart from
deviations of the lattice symmetry, also the holes themselves could be deformed (rectangu-
lar/elliptical instead of square/circular). Such deformations can be recognized in the spectra

10



2.3 Spectral measurements

Figure 2.5: The transmission spectra of a square array made with a) ion beam and
illuminated with two orthogonal polarizations, b) electron beam and illuminated at two
different positions.

as the occurrence of different transmission peak powers, but equal resonance frequencies, for
two orthogonal polarizations (dichroism).

We measure the transmission spectra with an incandescent light source that is focused
onto the hole array in such a way that the numerical aperture (NA) of the beam is still limited
(in practice we use a FWHM angular width of ≈ 0.5◦). The polarization of the illumination is
set by a polarizer. The transmitted light is coupled into a fibre (core diameter 50 or 200 µm)
which in turn illuminates a commercial grating spectrometer (Avantes Avaspec2048)). The
hole array can be positioned in the beam by a three-axis translation stage (≈ 5 µm resolution),
and the illumination angle of incidence on the array can be controlled by a rotation stage
(≈ 0.1◦ resolution).

When applying the mentioned analysis to our arrays, we find that the e-beam arrays typ-
ically have much less symmetry defects and dichroism than the i-beam arrays. Figure 2.5(a)
shows, as an example, the transmission spectrum of an i-beam square array measured with
illumination at normal incidence with two orthogonal polarizations (gray and black curves),
showing both dichroism (different peak powers) and symmetry errors (different peak wave-
lengths); the spectra of this array changed considerably as a function of the position of the
illumination on the array. The e-beam arrays typically do show varying peak intensity as a
function of illumination-spot position, as shown for a square array in Fig. 2.5(b). This is
probably caused by the presences of rest material of the production process on these arrays.
The e-beam-made square array that was used for most of the experiments discussed in this
thesis showed no dichroism and no position-dependent resonance-frequency shifts. The i-
beam-made hexagonal array discussed in a number of chapters did show both defects (see
Chapter 8).

The (average) lattice spacing determined independently with the measurement of Sec-
tion 2.2 can be used to compare the measured peak wavelengths to the model predictions.
The precise “correction factors” between experimental and theoretical values are shown in
Table 2.3. These factors are calculated using ne f f values obtained from Refs. [23, 24],
nglass = 1.51 (BK7) for the first sample and nglass = 1.453 (fused silica) for the others. We

11



2. Characterization of nanohole arrays in metal films

find that the measured peaks are always redshifted as compared to the theoretical ones, with
shifts in the range of 2 to 5%. This redshift can be seen in Fig. 2.5(b), where the theoretical
peak wavelengths [indicated by the dashed vertical lines in Fig. 2.5(b)] are 722 nm for the
air-side (±1,0) and (0,±1) modes and 785 nm for the glass-side (±1,±1) modes, whereas
the observed peak wavelengths are 750 and about 815 nm, respectively. We can think of
three explanations for these deviations. First, the dispersion relation for SPs on hole arrays
differs from that for a smooth surface, which could cause a redshift of the peaks. A second
explanation is that the model neglects the direct transmission of the optical field through the
holes, which is small but not negligible. The interference between the direct and resonant-
SP contributions to the transmission can generate asymmetric Fano-type lineshapes, which
have peaks that are shifted by a fraction of the linewidth with respect to the peaks of the un-
derlying Lorentzian resonances. Fano-type effects are discussed in more detail in Chapter 9
and 7 of this thesis. The foregoing limitations of the simple model behind Eqs. (2.2) and (2.3)
have also been demonstrated recently in experiments on arrays with different hole diameters
which were otherwise identical [25], where it was shown that, for the {(±1,0),(0,±1)} and
(±1,±1) modes, increasing the hole diameter increases the redshift. Other experiments have
investigated the dependence on layer thickness [21] and hole shape [9], both of which are not
taken into account in the simple model.

Table 2.3: Correction factors between measured and theoretical peak wavelengths. For
all samples nglass = 1.453 unless otherwise specified.

array type measured correction factor correction factor
lattice spacing air-side mode glass-side mode

square, e beam (nglass = 1.51) 699±2 nm 1.047 1.037
square, i beam 759±4 nm 1.026 1.044
hex, i beam 874±4 nm 1.045 -

From the transmission spectrum at a number of angles of incidence, for s- and p-polarized
illumination, the SP dispersion can be determined [4]. By combining Eqs. (2.2) and (2.3)
one can find the general expression for the resonance wavelength λres for illumination at
an angle of incidence ~θ = (θx,θy). To avoid lengthy equations, we will here give only the
expressions for a square array (with basis {~ex,~ey}), which we tilt around a diagonal, i.e.,
sinθx = sinθy = sinθ/

√
2. For the (±1,0) and (0,±1) modes we find:

λres/a =

√

n2
e f f −

1
2

sin2(θ)± sin(θ)/
√

2, (2.4)

for the ±(1,1) modes, along the tilt axis (s-polarized):

λres/a = [ne f f ± sin(θ)]/
√

2, (2.5)

and for the ±(−1,1) modes, orthogonal to the tilt axis (p-polarized):

λres/a =
√

n2
e f f − sin2(θ)/

√
2. (2.6)

From these equations we see that, to first order in the angle, the slope of λres(θ) is purely
determined by a numerical pre-factor and is not dependent on, for instance, refractive indices.
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2.3 Spectral measurements

Figure 2.6: The SP dispersion on the square hole array for p-polarized input light,
obtained by measuring (b) the transmission spectrum for a set of angles of incidence
with a 1◦ interval. (a) The rotation axis (dashed line) was chosen along the array
diagonals, with input light polarized along the solid arrow. The white solid lines in (c)
indicate the approximate wavelengths of the transmission peaks and the white dashed
lines indicate the theoretically expected peak wavelengths, based on Eq. (2.4) to (2.6).
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2. Characterization of nanohole arrays in metal films

Figure 2.7: The SP dispersion on the square hole array for s-polarized input light,
obtained by measuring (b) the transmission spectrum for a set of angles of incidence
with a 1◦ interval. (a) The rotation axis (dashed line) was chosen along the array
diagonals, with input light polarized along the solid arrow. The white solid lines in (c)
indicate the approximate wavelengths of the transmission peaks and the white dashed
lines indicate the theoretically expected peak wavelengths, based on Eq. (2.4) to (2.6).
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2.4 Conclusions

Figure 2.6 and 2.7 show a typical measurement of the SP dispersion for a square array:
in both figures, (a) shows the input polarization relative to the rotation axis, (b) shows the
measured transmission spectra for 1◦ steps of the angle of incidence and (c) shows the (in-
terpolated) dispersion. The scale bar on the right of subfigure (c) relates the gray values in
the plots to the transmission intensity. The white solid lines are guides to the eye, indicating
the measured peak positions. The white dashed lines indicate the theoretical angle-dependent
resonance wavelengths for the (±1,±1) glass-side modes and the (±1,0) and (0,±1) air-side
modes, as given by Eq. (2.4) to (2.6).

The dashed lines in Fig. 2.6 and 2.7 do not match well to the experimental solid lines.
First, the theoretical curves are much closer to the transmission minima than to the maxima.
This deviation is the redshift as discussed above for normal incidence. Second, the slopes of
the experimental and theoretical lines are (slightly) different. And third, “extra” peaks, not
contained in Eqs. (2.4) to (2.6), appear in the experimental data (see e.g. Fig. 2.6 between
750 nm and 810 nm for angles of incidence of 1− 5◦). Note, that these extra modes are
absent for θ = 0◦, as can be seen in the transmission spectra at the bottom of Fig. 2.6(b)
and 2.7(b). The most probable explanation for these additional resonances is coupling be-
tween resonances on either sides of the metal layer, something that is not contained in the
simple single-surface model we discuss here. This hypothesis has recently been confirmed
in a paper that relates the additional resonances to subradiant modes (antisymmetric versus
symmetric) [26].

Another indication for the coupling between different SP modes is the “avoided cross-
ings” of the solid curves in Fig. 2.6 and 2.7, and consequently the occurrence of bandgaps at
θ = 0◦, noticeably for the modes in between λ ≈ 750 nm and ≈ 820 nm. We estimate the
size of the bandgaps by measuring the peak-peak distance around θ = 0◦, which gives gaps
of 94 meV around λ = 730 nm, 34 meV around λ = 757 nm, 53 meV around λ = 778 nm
and 39 meV around λ = 800 nm. These values are of the same order of magnitude as those
reported for a 1-dimensional array of slits in Ref. [26].

2.4 Conclusions
We have discussed two different production schemes for hole arrays as well as several tech-
niques which can be used to characterize them. Most information is contained in the polarization-
resolved transmission spectra. When measured with illumination at normal incidence, these
can be used to diagnose errors in the lattice structure as well as the hole shapes. When mea-
sured as a function of the angle of incidence, the surface plasmon dispersion on the nanohole
array is obtained. We have also discussed a simple single-surface model that is standard in the
literature. We find that this model, although useful to understand the basic features, does not
satisfactorily describe the detailed structure of the measured surface plasmon dispersion. An
improved model would need to describe a coupling mechanism between different SP modes.
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2. Characterization of nanohole arrays in metal films

Appendix

2.A Hole arrays as diffraction gratings
Apart from the zeroth-order transmission discussed in Section 2.3, hole arrays also exhibit
other diffraction orders, both in reflection and transmission, as hole arrays are just a special
type of two-dimensional gratings. By illuminating our array (lattice spacing a = 700 nm) with
laser light (wavelength λ0 = 672 nm) at approximately normal incidence, we observe four
additional reflection and transmission orders, of first order and emitted in directions along
the array basis vectors (+x,−x,+y,−y). We have measured the intensity of all observable
transmission orders Tj and reflection orders R j of a square hole array as a function of the angle
of incidence θ , at the fixed wavelength λ0. Note, that T0(θ ,λ0) obtained in this way is directly
related to the SP dispersion discussed in Section 2.3: T0(θ ,λ0) is a cross section of the SP
dispersion, such as plotted in Fig. 2.7 and Fig. 2.6, along the line λ = λ0. Unfortunately, at
present we are unable to provide a rigorous theoretical analysis of the results, for the same
reason that we are unable to accurately describe the SP dispersion: at this moment we lack
a model that describes the coupling between different SP modes, that causes the avoided
crossings and bandgaps in the dispersion plots of Fig. 2.7 and Fig. 2.6. Nevertheless, we have
included the measurements here for didactic purposes and to stimulate future discussions.

Figure 2.8: A sketch of a one-dimensional grating with its zeroth- and first-order trans-
mission and reflection. In this case, the m = −1 orders are past grazing incidence and
have become SPs (wiggly lines).

As a qualitative and simplified description, we consider a one-dimensional grating con-
sisting of lines with spacing a in a perfect conductor of small thickness. When illuminating
such a grating with light of wavelength λ and incident at angle θi, reflection and transmission
maxima occur at output angles θo given by [27]:

a(sinθi + sinθo) = mλ , (2.7)

where m labels the order of the maxima. Note, that this one-dimensional treatment is also
applicable to two-dimensional array of square symmetry for small angles of incidence, as
in this case the array can be decomposed into two independent one-dimensional gratings.
Figure 2.8 shows the grating with its diffraction orders and the convention we use to name
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2.A Hole arrays as diffraction gratings

Figure 2.9: Zeroth-order intensity reflection (solid) and transmission (dashed) versus
angle of incidence on a square array of 672 nm-wavelength light. The rotation axis is
orthogonal to the linear input polarization and lies along one of the array axes.

them. In this figure the input angle θ > 0, and consequently, the reflections on the right
correspond to m ≤ 0, while on the left they correspond to m > 0. Figure 2.8 provides a nice
intuitive explanation of SP excitation: at a certain angle of incidence θi, one of the reflection
orders (in this case m = −1) becomes “grazing”, i.e., the θo of this order becomes equal
to π/2. If we further increase θi, this order so-to-say “disappears” into the metal and can
become a SP (wiggly line in Fig. 2.8) if θi is close to some critical angle determined by
material properties.

The measurements shown in Figs. 2.9 to 2.11 were performed with a collimated diode-
laser beam (λ = 672 nm) illuminating a square hole array (lattice spacing 700 nm) on a ro-
tation stage. For each input angle (tilt axis along one of the array basis vectors) the reflected
and transmitted powers of the observable orders were measured with a photodiode (15 mm2-
surface area). Figure 2.9 shows the intensity of R0(θ) (solid curve) and T0(θ) (dashed curve)
for 672-nm wavelength input. The two curves have an opposite trend: where R0 has a maxi-
mum, T0 has a minimum and vice versa. However, both have an asymmetric shape familiar
from measurements on SP resonances in the so-called Kretschmann configuration [13]. As
mentioned above, the T0(θ) curve is directly related to the previously discussed SP disper-
sion of Fig. 2.6 and 2.7, and is just a cross-section along the line λ = 762 nm. Indeed, the
transmission minimum in Fig. 2.9 agrees well with the minimum for λ = 672 nm in the dis-
persion plots: an angle of 4.3◦±0.5◦ compared to 5.6/

√
2 = 4.0◦±0.4◦ (average of the two

dispersion plots), where the factor
√

2 arises because of the tilting along an array axis instead
of along one of the diagonals. Note, that the oscillations present in T0 for angles larger than
7◦ are caused by Fabry-Perot type interference effects in the glass substrate of the array.

Figures 2.10 and 2.11 show Tj(θ) and R j(θ), for j = {0,x±1,y±1}. In both measure-
ments the rotation axis was oriented along the y direction. The order labelled x−1 becomes
grazing at an angle of around 2.3◦, which is in agreement with the value calculated from
Eq. (2.7) for a = 700 nm and λ = 672 nm. The y− 1 order could not be measured due to
the mounting of the array, but should behave identical to that of the y + 1 order because of
symmetry arguments. The Tj(θ) all show a zero at an angle of 4.3◦ and are all of similar
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2. Characterization of nanohole arrays in metal films

Figure 2.10: All observable transmission orders versus angle of incidence on a square
hole array of 672 nm-wavelength light (Ty−1 = Ty+1). The rotation axis is orthogonal
to the linear input polarization and lies along one of the array axes.

magnitude. The reflection curves on the other hand have a much larger absolute difference,
where Rx+1 (along the polarization direction) is larger than Ry+1 (orthogonal to the polariza-
tion). Also, the zeroth-order has an opposite trend as compared to the other reflection orders,
and to all transmission orders as well. It is obvious that the foregoing observations contain
a lot of information about the (optical) physics of the nanohole array, however it seems that,
currently, the right theoretical tool to handle the discussed measurements, other than pure
numerical modeling, is not available.

Figure 2.11: All observable reflection orders versus angle of incidence on a square
hole array of 672 nm-wavelength light (Ry−1 = Ry+1). The rotation axis is orthogonal
to the linear input polarization and lies along one of the array axes.
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CHAPTER 3

Spontaneous parametric down conversion as a source of
entangled biphotons, in theory and practice

We present a theoretical description of the generation of polarization-entangled photon
pairs via type-II spontaneous parametric down-conversion. The limitations occurring
in an experimental realization of such a source based on BBO crystals are discussed in
detail.
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3. Spontaneous parametric down conversion as a source of entangled biphotons, in theory and practice

3.1 Introduction
The process of spontaneous parametric down conversion (SPDC) and its inverse of sum-
frequency generation are well-known in nonlinear optics since the 1960s [28]. In the former
process an incident photon of given energy is split (“down-converted”), inside a suitable non-
linear medium, into two photons of less energy, such that the total energy and momentum
is conserved; in the latter reverse process a single photon with the sum energy of its inci-
dent counterparts emerges. It was realized in the 1980s that the down-conversion process
can, under certain conditions to be discussed below, efficiently produce quantum-entangled
biphoton pairs [20,29]. Currently, SPDC is the standard way of producing entangled photons
for all types of experiments in the domain of quantum information. The basic setup for such
an experiment is sketched in Fig. 3.1: a photon of a pump beam is split inside a nonlinear
crystal into two entangled photons that travel to detectors 1 and 2. A counter measures the
number of coincident detections of 1 and 2, from which a suitable measure for the degree of
entanglement can be obtained.

Figure 3.1: The basic setup of an entangled biphoton experiment.

The photon pairs generated in type-II SPDC are simultaneously entangled in three sets
of variables. The generated two-photon function is nonseparable in i) the polarization, ii)
momentum and iii) frequency degrees of freedom. This triply-joint entanglement is seldom
taken into account explicitly; one often limits the discussion to entanglement in a single set
of variables and ignores the others. For instance, in the case where polarization is considered
as the important set, one usually describes the photon pair produced in Fig. 3.1 by the pure
“polarization-entangled”state

|Ψ〉 =
1√
2

(

|H1V2〉 + eiα |V1H2〉
)

, (3.1)

where the state |H1V2〉 represents the simultaneous emission and propagation of a H-polarized
photon in beam 1 and a V -polarized photon in beam 2, the H- and V -directions being defined
by the birefringent axis of the generating nonlinear crystal. The coarse spatial information
is implicitly contained in the beam labelling 1 and 2, but the finer details are neglected. The
frequency information is removed completely.

In this chapter, we will describe the full produced SPDC wave function in the paraxial ap-
proximation, and discuss the conditions under which the simplified version of Eq. (3.1) holds
experimentally. In Section 3.2 we determine the spatial distribution of the SPDC photons and
give the polarization-entangled state that is obtained using suitable selection. In Section 3.3
we introduce the so-called concurrence, a quantity that measures the degree of entanglement
of the produced biphoton state, and discuss some of the experimental requirements for a high
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3.2 Theory of SPDC as a biphoton source

efficiency and quality of the source. In Section 3.4 we present measurements made with a
real SPDC setup and compare these to the theory.

3.2 Theory of SPDC as a biphoton source

3.2.1 The biphoton wave function
In a description distilled from Ref. [30, 31] the biphoton part of the total field generated in
type-II SPDC can be written in the paraxial approximation as:

|Ψ〉 =
∫

d~qo d~qe dωodωe Φ(~qo,ωo;~qe,ωe) |~qo,ωo;~qe,ωe 〉 . (3.2)

Here
Φ(~qo,ωo;~qe,ωe) ∝ Ẽp(~qo +~qe;ωo +ωe)×Lsinc(φ)× eiφ , (3.3)

where Ẽp(~q,ω) is the spatial and frequency spectrum of the (classical) pump beam, sinc(x)≡
sin(x)/x, L is the thickness of the nonlinear crystal, and the function φ = L∆k/2 quantifies the
so-called phase mismatch for propagation over half the crystal thickness (the average phase
mismatch). The sets (~qo,ωo) and (~qe,ωe) are the transverse wavevector and optical frequency
of the ordinary and extra-ordinary photons, respectively. The biphoton wave function |Ψ〉
contains integrals over all these variables. The subscripts o and e label the ordinary and
extra-ordinary polarization, respectively.

3.2.2 Phase matching
Most of the properties of the SPDC light are contained in the functional dependence of the
phase mismatch φ(~qo,ωo;~qe,ωe) on its variables. This function determines both the com-
bined spatial and spectral distribution of the SPDC light as well as the maximally attainable
degree of polarization entanglement. For a plane-wave pump at normal incidence and fixed
frequency ωp, the (longitudinal) wavevector mismatch ∆k = kp,z − ko,z − ke,z (sketched in
Fig. 3.2) can be written in the following dimensionless form:

c
Ω

∆k = −C + (no,gr −ne,gr(Θc))
δωe

Ω
+ 〈1/n〉θ 2

e,x + 〈1/n〉
(

θe,y −θoff

)2
. (3.4)

A complete derivation of this formula, which is basically a rewritten form of Eq. (37) in
Ref. [32], can be found in the Appendix. In this equation, we have introduced the following
variables (see also the Appendix for a complete list of symbols): SPDC center frequency
Ω = ωp/2, the frequency mismatch δωe ≡ ωe −Ω = Ω−ωo (δωe � Ω), and the external
angles (θo,x,θo,y) and (θe,x,θe,y), where the x and y directions are chosen along the o and e
polarizations, respectively. Furthermore, we define the constant C = no(Ω) + ne(Θc,Ω)−
2ne(Θc,ωp)+ 〈1/n〉θ 2

off, where no,gr and ne,gr(Θc) are the group refractive indices and Θc is
the crystal cut angle, the average inverse refractive index 〈1/n〉 ≡ 1

2no
+ 1

2ne(Θc)
, the external

offset angle θoff ≡ 1
2〈1/n〉 ρ(Θc) and the internal walk-off angle ρ(Θc) (see Appendix).
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3. Spontaneous parametric down conversion as a source of entangled biphotons, in theory and practice

Figure 3.2: The wavevector mismatch ∆~k is the vectorial difference~kp −~ko −~ke. The
scalar ∆k is the component of ∆~k along~ez (for simplicity~kp ‖~ez was drawn). The trans-
verse components of the wave vectors for the o- and e-polarized photons are indicated
as ~qo and ~qe,respectively.

3.2.3 The angular distribution of type-II SPDC light
The angular distribution of the SPDC light is found by determining the angles in the far
field for which the generated “biphoton state amplitude function” Φ (Eq. (3.3)) differs from
zero. Because Φ ∝ sinc(∆kL/2) the SPDC emission peaks around ∆k = 0 and is zero for
L∆k =±2π . A closer inspection of Eq. (3.4) shows that the e-polarized SPDC light is emitted
in a ring (in the far field) centered around θx = 0 and θy = θoff. The radius of this ring is
determined by the various refractive indices and the angle between pump beam and optic
axis through θoff (both contained in the parameter C), and the frequency mismatch δωe. The
o-polarized SPDC light is emitted simultaneously in a similar ring, which is a mirror-flipped
image of the e-ring around the line θy = 0. The reason for this reversal is the conservation
of transverse momentum, which (close to frequency degeneracy) translates into θo,i = −θe,i
for i = x,y. The resulting pair of rings in the far-field are shown in Fig. 3.3, where (b) is a
measured version and (c) a sketch showing the coordinate system used below.

Figure 3.4 shows what happens to the emitted far field at frequencies different from
Ω = ωp/2. For a negative birefringent crystal (ne < no) like BBO, an increase of the de-
tection frequency decreases the e-polarized ring diameter and increases the o-polarized ring
diameter, leading to an effective upward shift of the crossings (see Fig. 3.4). Away from fre-
quency degeneracy the rings are unequal in size because they correspond to different emission
conditions: δωe > 0 and δωe < 0, respectively.

Because the generated biphoton state amplitude is proportional to sinc(∆kL/2) the the-
oretical zeros of the SPDC rings are determined by the relation ∆k = ±2π/L. This relation
provides for two useful parameters. First of all, for a fixed detection angle, the emitted light
will have a finite SPDC-spectral width ∆ωSPDC equal to

∆ωSPDC =
2πc

(

no,gr −ne,gr(Θc)
)

L
=

2π
τo,gr − τe,gr(Θc)

, (3.5)

where τo,gr and τe,gr(Θc) are the transit times through the generating crystal of a (frequency-
degenerate) o- and e-polarized optical wave packet, respectively. The spectral width ∆ωSPDC
is Fourier-related to the so-called longitudinal walk-off, which quantifies the time delay
τo,gr − τe,gr(Θc) between o- and e-polarized wave packets that are produced simultaneously
near the input facet and propagate through the entire generating crystal.

A second consequence of the relation ∆k =±2π/L is that it determines the “thickness”or

22



3.2 Theory of SPDC as a biphoton source

Figure 3.3: (a) A side view of a (negative-birefringent) crystal showing the optic axis
(dashed line) and the downward vertical beam walk experienced by e-polarized light.
(b) Far-field profile of the frequency-degenerate type-II SPDC emitted from a 2 mm-thick
BBO crystal and measured with an intensified CCD (full view 5.6◦×5.6◦ ). Frequency
selection was achieved with interference filters of a 5-nm spectral width centered around
the double pump wavelength. The central spot is a residue of the pump light. (c) Sketch
of the far-field profile of the emitted SPDC light, showing two intersecting rings of
orthogonal polarization (labelled H and V), centered at the offset angle θoff. Only
the photon pairs at the crossings of these rings, which define the general directions of
beam 1 and 2, can be polarization entangled, because the polarization of these photons
is not known in advance, whereas it is known for photons originating from outside
the intersections. For convenience, we introduce two local angular coordinate systems
(δθi,x,θi,y) [i = 1,2] that have their origin exactly at the mentioned crossings.

angular width ∆θSPDC of the SPDC rings at fixed emission frequency. From an experimental
point of view it is convenient to work under conditions where the o- and e-polarized SPDC
rings intersect at right angles; the reason is that such intersections have the highest symme-
try and are best compatible with circular apertures, so that one expects the best compromise
between coincidence rate and degree of entanglement in this geometry. At frequency de-
generacy (δωe = 0) this condition of perpendicular intersection is met for C = 2 〈1/n〉θ 2

off,
where the intersection coordinates θe,x =−θo,x =±θoff and θe,y =−θo,y = 0 both correspond
to ∆k = 0. In this case the SPDC angular width ∆θSPDC, as measured in either x or y direction,
is

∆θSPDC =
πc

Ω〈1/n〉Lθoff
=

λ0
Lρ(Θc)

, (3.6)
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Figure 3.4: The far-field profile of the emitted SPDC light changes with detection fre-
quency. At the frequency-degenerate point, where ω = Ω≡ωp/2, it consist of two rings
of equal size depicted in dark-gray. At larger detection frequency (ω > Ω, black), the
radius of the o-polarized ring increases, while the e-polarized ring decreases in size. At
smaller detection frequency (ω < Ω, light-gray), the reverse applies. Note that a de-
tuning of the detection frequency away from frequency degeneracy results in a vertical
shift of the ring crossings, whereas their horizontal position remains unchanged up to
first order.

where λ0 = 2πc/Ω is the degenerate SPDC wavelength. The angular ring width in the radial
direction is a factor

√
2 smaller at ∆θr = ∆θSPDC/

√
2. The angular width ∆θSPDC is Fourier-

related to the so-called transverse walk-off, which quantifies the transverse displacement
∆y of the e-ray with respect to the o-polarized ray. For rays starting at the input facet this
displacement is ∆y = Lρ(Θc) = 2L〈1/n〉θoff.

The natural spectral width ∆ωSPDC and natural angular width ∆θr or ∆θSPDC are both de-
fined as the distance between the peak value and the first minimum of the sinc-function. These
values are therefore slightly (≈ 1.13×) larger than the full width at half maximum (FWHM)
of the SPDC intensity profile with its accompanying sinc2 shape. Because the angular width
is inversely proportional to its diameter, due to the quadratic dependence in Eq. (3.4), the
ring area and the related angular-integrated SPDC power are virtually independent of the ring
diameter.

In further discussions on phase matching we will rely heavily on the expanded form of
Eq. (3.4), which we have already linearized around the frequency-degenerate point (via ωe =
Ω+δωe), but will now also linearize around either one of the two (frequency-degenerate and
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3.2 Theory of SPDC as a biphoton source

right-angle) crossings of the SPDC rings. Using θe,x ≡±θoff +δθe,x, we find

L∆k
2π

=
φ
π

=
δωe

∆ωSPDC
+

±δθe,x −θe,y

∆θSPDC
, (3.7)

where the plus sign is for intersection 1 and the minus sign for intersection 2. As a sign check,
we note that linearization around the intersection θe,x ≈ +θoff corresponds to a plus sign in
front of the δθe,x-term and therefore to a +45◦ orientation of this part of the e-polarized ring.
This is consistent with the earlier remark that the e-polarized SPDC ring is centered around
the positive angle θy = θoff (see Fig. 3.3).

3.2.4 The entangled state produced in type-II SPDC
Equation 3.2 gives a complete description of the biphoton wave function produced in type-II
SPDC. It is, however, generally not the most convenient representation, because the quantum
entanglement is hidden in the symmetry properties of Φ [33]. In a typical experimental setup,
detection takes place behind two apertures that are centered around the crossings of the SPDC
rings to single out polarization-entangled photon pairs. When we apply this spatial filtering
to Eq. (3.2) there are obviously only two relevant angular integration ranges: where the o-
polarized photon passes either through crossing region 1 or through region 2, and where the
e photon uses the other crossing. Substitution of these two cases (~qo =~q1 and ~qe =~q2) and
(~qo = ~q2 and ~qe = ~q1) in Eq. (3.2) produces what might be called the “truncated biphoton
wave function”

|Ψ〉 =
∫

d~q1 d~q2 dω1dω2 {ΦHV

(

~q1,ω1;~q2,ω2

)

|H1,~q1,ω1;V2,~q2,ω2 〉+

ΦVH

(

~q1,ω1;~q2,ω2

)

|V1,~q1,ω1;H2,~q2,ω2 〉} ,
(3.8)

where the integration over the wave vectors~q1 and~q2 is now confined (“truncated”) to the two
mentioned crossing regions. The two different photon paths introduced above can be clearly
distinguished via the threefold labelling of the photon states, with forms like |H1,~q1,ω1〉. The
corresponding subscripts HV and VH of the function Φ [defined in Eq. (3.3)] are necessary,
because of a generally different phase mismatch φ of the two paths; this so-called “walk-off”
is described in more detail in Section 3.3.3. The polarization directions H and V are defined
with respect to the axes of the generating crystal and correspond to o and e polarizations,
respectively.

We have chosen the notation of Eq. (3.8) to resemble the “simplified” state of Eq. (3.1). If
the biphoton state amplitude functions obey the simple proportionality ΦHV

(

~q1,ω1;~q2,ω2

)

≈
exp(iα)ΦVH

(

~q1,ω1;~q2,ω2

)

within the detection area and bandwidth, the integration in Eq. (3.8)
can be factorized and the state can effectively be described by Eq. (3.1). This happens in the
so-called thin-crystal limit, where the phase mismatch φ = ∆kL/2 is simply set to zero.

3.2.5 Coincidence detection rate for polarization entanglement
To determine whether the state Eq. (3.8) is an entangled state experimentally, using a setup
like in Fig. 3.1, one measures the coincidence rate R({χi}) of simultaneous detection of
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two photons by detectors 1 and 2 as a function of some parameters {χi}. In the case of
polarization entanglement, where the frequency and wave vectors are fixed within a certain
bandwidth, the parameters are the angles ϕ1 and ϕ2 of two polarizers in front of the detectors.
To derive the theoretical coincidence rate for polarization-sensitive detection, it is convenient
to first introduce the “biphoton amplitude function”

Aij

(

~q1,ω1;~q2,ω2

)

≡ 〈0|E+
1,i(~q1,ω1)E

+
2,j(~q2,ω2)|Ψ〉 , (3.9)

where i, j = H,V are labels for the optical polarization in the beams 1 and 2, respectively [34];
the coincidence rate will be proportional to the absolute square of Aij. Furthermore, we define
the 2 x 2 biphoton polarization density matrix as

ρ̂ = Tr~q1,~q2,ω1,ω2
(|Ψ〉〈Ψ|) =

( 〈〈

|AHV|2
〉〉 〈〈

AHVA∗
VH
〉〉

〈〈

AVHA∗
HV
〉〉 〈〈

|AVH|2
〉〉

)

, (3.10)

where the symbols 〈〈 〉〉 denote the frequency and spatial integration of the trace operation.
Noting that the optical fields transmitted by a polarizer are projected via

Eprojected = EH cosϕ + EV sinϕ , (3.11)

we can write the polarization-projected coincidence rate R(ϕ1,ϕ2) in terms of the polarization
density matrix as

R(ϕ1,ϕ2) =

(

cosϕ1 sinϕ2
sinϕ1 cosϕ2

)

ρ̂
(

cosϕ1 sinϕ2 , sinϕ1 cosϕ2

)

. (3.12)

In the above description the complications associated with the six-fold integration over
the frequency and spatial coordinates

(

~q1,ω1;~q2,ω2

)

are neatly hidden in the double brackets
〈〈 〉〉. For further calculations we first have to specify the exact meaning of this symbol,
which operates on combinations of the form Aij

(

~q1,ω1;~q2,ω2

)

A∗
kl
(

~q1,ω1;~q2,ω2

)

, but for
convenience will be specified only for the shorthand form |A

(

~q1,ω1;~q2,ω2

)

|2. We assume
that the spatial selection in both beams is performed with apertures positioned in the far-field
of the SPDC source that are fully imaged onto the detectors. This allows us to interpret the
variables ~qi either as a transverse momentum or as an angular position. Furthermore, the
frequency selection is performed by interference filters with intensity transmissions Ti(ω) in
front of the detectors. In this case the double bracket should be interpreted as

〈〈

|A
(

~q1,ω1;~q2,ω2

)

|2
〉〉

=
∫ ∫

dω1 dω2

∫ ∫

d~q1 d~q2 T1(ω1)T2(ω2) |A
(

~q1,ω1;~q2,ω2

)

|2 ,

(3.13)
where the spatial integrals run only over the angular coordinates of the two apertures. In case
of continuous-wave excitation, it is convenient to introduce the combined transmission func-
tion T (δω1) ≡ T1(Ω + δω1)T2(Ω− δω1). If the two filters are identical (T1(ω) = T2(ω)),
T (δω1) is symmetric even if the filter characteristics themselves are not.

26



3.3 The degree of polarization entanglement

3.3 The degree of polarization entanglement

3.3.1 The concurrence and related measures
In the literature various different parameters are used to quantify the degree of entanglement
of mixed states [35]. We will use the so-called concurrence P as the ”degree of polariza-
tion entanglement” [35]. This parameter lies between 0 and 1, where a state with P = 1 is
perfectly entangled, and a state with P = 0 is nonentangled, i.e., a product state. If the bipho-
ton amplitude functions Ai j obey the relation

〈〈

|AHV|2
〉〉

=
〈〈

|AVH|2
〉〉

(see below), we can
express the concurrence as:

P =
|
〈〈

AHVA∗
VH
〉〉

|
〈〈

|AHV|2
〉〉 , (3.14)

and the polarization density matrix as

ρ̂ =
〈〈

|AHV|2
〉〉

(

1 Pe−iᾱ

Peiᾱ 1

)

, (3.15)

with the average phase ᾱ = Arg
〈〈

AHVA∗
VH
〉〉

. This expression for ρ̂ has the form of the
expected density matrices for pure and mixed states, for corresponding values of P [35].

The relation
〈〈

|AHV|2
〉〉

=
〈〈

|AVH|2
〉〉

is certainly valid in the ideal experimental setup,
where (i) the pump beam is planar or symmetrically focused, (ii) spatial selection is cen-
tered around the two crossings of the frequency degenerate SPDC rings, and (iii) frequency
selection is performed with identical filters in both beams. It is, however, also valid under
less stringent symmetry conditions, such as spatial selection in a way that is invariant under
reflection in a plane through the (center of the) pump beam and the crystalline optic axis.

Note that, even in the ideal experimental setup, the SPDC state of Eq. (3.8) generally
has P < 1, because the functions AHV and AV H are not identical. The most important dif-
ference between these functions is a phase factor in the approximate form ΦHV ≈ eiβ ΦV H ,
with in general β = β (~q1,ω1;~q2,ω2). The physical explanation for this phase factor is the
birefringence of a type-II SPDC crystal, which is a consequence of the crystal symmetry that
is necessary for the SPDC process to occur. This birefringence causes the so-called walk-off,
both longitudinal (a relative shift in time) and transverse (a relative shift in position), be-
tween the o and e-polarized photons as they emerge from the crystal. In an intuitive picture,
the walk-off provides for an additional labelling of the individual photons in a pair, which
causes a reduction of the degree of polarization entanglement. There is a way to compensate
for this walk-off, using additional birefringent optical elements, that will be discussed in the
next section.

An experimentally used measure for the degree of entanglement is the so-called biphoton
fringe visibility Vϕ1

, defined as

Vϕ1
≡ Rmax −Rmin

Rmax +Rmin
. (3.16)

This quantity expresses the relative modulation depth of the sinusoidal interference fringe
in the biphoton coincidence rate R(ϕ1,ϕ2) that is measured when the polarizer of detector 1
is kept fixed at ϕ1 while ϕ2 is varied. The quantities Rmax and Rmin are the maximum and
minimum observed rates, respectively. Note that for the state of Eq. (3.8) V0◦ = V90◦ = 1,
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because for the corresponding settings of polarizer 1 there is no interference between the
AHV and the AV H terms , cf. Eq. (3.12). The visibilities V45◦ and V135◦ are however in general
smaller than 1. Furthermore, when the average phase ᾱ = 0 or ᾱ = π , these visibilities
are equal to the concurrence, i.e V45◦ = V135◦ = P. Note, that the average phase ᾱ can be
set experimentally using the same additional birefringent optical elements that are used to
correct walk-off effects; this will be discussed in the next section.

Another parameter that is sometimes used to characterize the quality of entangled-photon
sources is the Bell parameter S [20]. However, this quantity is much more than a measure for
the degree of entanglement alone, because it can provide, via the associated Bell inequality, a
distinction between (nonlocal) quantum-mechanical behavior from (local) classical behavior
[14,20,36]. We discuss the Bell parameter here because we use it in Chapter 4. In the CHSH
variant, and using the fair-sampling assumption, the Bell parameter is given by [20, 37, 38]

S = |E(ϕ1,ϕ2)−E(ϕ ′
1,ϕ2)+E(ϕ1,ϕ

′
2)+E(ϕ ′

1,ϕ ′
2)|, (3.17)

with

E(ϕ1,ϕ2) ≡
R(ϕ1,ϕ2)+R(ϕ⊥

1 ,ϕ⊥
2 )−R(ϕ1,ϕ

⊥
2 )−R(ϕ⊥

1 ,ϕ2)

R(ϕ1,ϕ2)+R(ϕ⊥
1 ,ϕ⊥

2 )+R(ϕ1,ϕ⊥
2 )+R(ϕ⊥

1 ,ϕ2)
, (3.18)

and where we immediately expressed the measurement probabilities in terms of the coinci-
dence rate R as defined above. For systems conforming to local-realistic theories (including
hidden-variable theories) 0 ≤ S ≤ 2. For the quantum system described by the entangled (and
therefore nonlocal) state of Eq. (3.1), the strongest violation of the Bell inequality occurs for
settings of the polarizers at φ1 = −π/8, φ ′

1 = π/8, φ2 = −π/4 and φ ′
2 = 0 [20]. In this case,

the Bell parameter is equal to S =
√

2
(

V0◦ +V45◦
)

=
√

2
(

1+V45◦
)

, which shows that here
S is just a sort of “average” visibility [39]. It has a maximal value of 2

√
2 for a perfectly

entangled state. Note, that the second equality holds for the state of Eq. (3.2), but the first
equality holds as well for the most general state which also has |HH〉 and |VV 〉 pairs.

We will now calculate the concurrence for the case of monochromatic plane-wave pump-
ing, both without and with walk-off compensation.

3.3.2 Concurrence without walk-off compensation
For monochromatic plane-wave pumping conservation of energy (=frequency) and transverse
momentum introduce δ -functions in the equations for the four elements of the polarization
density matrix:

AijA
∗
kl ∝ L2 sinc(φi j)sinc(φkl)× ei

(

φi j−φkl

)

δ (~q1 +~q2)δ (ω1 +ω2 −ωp) , (3.19)

where ij,kl = HV or VH. Here the pump, at frequency ωp ≡ 2Ω, enters the crystal at normal
incidence with transverse momentum ~qp =~0. Close to frequency degeneracy we can write
~qi ≈~θi(Ω/c), where we define ~θi ≡ (θi,x,θi,y), and use the δ -relations by taking ~θ2 ≈−~θ1 and
δω1 ≈−δω2. In the absence of compensating birefringent optical elements the concurrence
[Eq. (3.14)] can then be written as

P =
|∫ ∫ ∫ dδθ1,x dθ1,y dδω1 T (δω1)sinc(φHV)sinc(φVH) exp(i{φHV −φVH})|

∫ ∫ ∫

dδθ1,x dθ1,y dδω1 T (δω1)sinc2(φHV)
. (3.20)
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Note, that we again assumed
〈〈

|AHV|2
〉〉

=
〈〈

|AVH|2
〉〉

, which is equivalent to
〈〈

T (δω1)
(

sinc2 (φHV
)

− sinc2 (φV H
))〉〉

= 0. This holds when T (δω1) and the δω1-
integration range are symmetric around δω1 = 0, and when the (δθ1,x,θ1,y)-integration range
is inversion-symmetric in either θ axis, as mentioned before.

The 3-fold integrals in Eq. (3.20) are in general hard to solve. They are manageable, how-
ever, in the limit of good entanglement P ≈ 1, where we can perform a Taylor expansion of
the exponential and sinc functions around φi j = 0. Furthermore, we can use the linearization
of the phase mismatch functions given in Eq. (3.7) to write:

φHV(~θ1,
~θ2;δω1) ≡ ∆kHVL/2 = − πδω1

∆ωSPDC
+ π

∆θSPDC

(

δθ1,x +θ1,y

)

, (3.21)

φVH(~θ1,
~θ2;δω1) ≡ ∆kVHL/2 =

πδω1
∆ωSPDC

+ π
∆θSPDC

(

δθ1,x −θ1,y

)

, (3.22)

where we substituted (1 = H = o) and (1 = V = e) in Eq. (3.7), respectively.
Using the foregoing expansions, we calculate the concurrence, valid up to second order

in the variables, for filters with a “top-hat”spectral transmission profile, of full width ∆ωfilter
centered around Ω, and for square spatial-selection apertures, which span full angles ∆θaperture
in both x and y direction. This yields

P ≈ 1− π2

6

(

∆ωfilter
∆ωSPDC

)2

− π2

6

(∆θaperture

∆θSPDC

)2

. (3.23)

Note, that the terms in this expansion originate from the phase factor of Eq. (3.19); the sinc
terms cancel each other and contribute only in fourth and higher order. For other types of
filters and apertures the general form of Eq. (3.23) remains intact, but the pre-factors change.
For instance, for matched filters with Gaussian transmission profiles of full width ∆ωfilter and
circular apertures of diameter ∆θaperture one finds

P ≈ 1− π2

8ln2

(

∆ωfilter
∆ωSPDC

)2

− π2

8

(∆θaperture

∆θSPDC

)2

, (3.24)

Note that 8 ln2 ≈ 5.5 is close to the value of 6 found for top-hat filters. Also note that spatial
labeling is less severe with circular apertures than with square apertures as π 2/8 < π2/6.

The obtained expansions quantify some of the practical limitations of using type-II SPDC
as a polarization-entanglement source. Although it is in principle possible to generate per-
fectly polarization-entangled photons, the required limits ∆ωfilter → 0 and ∆θaperture → 0 are
not very practical because they will nullify the biphoton yield. An experimentalist will there-
fore always search for a compromise between biphoton yield and the degree of polarization
entanglement.

3.3.3 Concurrence with walk-off compensation
As discussed in Section 3.2.4, the physical reason for the reduced degree of entanglement
P with increased detection bandwidth or increased aperture size lies in the possibility (if
only theoretically) to determine the photon polarization from either its time of arrival, via the
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longitudinal walk-off, or its position at the exit facet of the crystal, via the transverse walk-
off. From this perspective, the frequency filters and apertures both act as quantum erasers;
narrow filters and tight apertures are able to erase both the time and position “labelling”that
was originally present in the generated biphoton field.

The mathematical reason for the entanglement reduction with increased detection band-
width or aperture size is the different dependence of the amplitude functions ΦHV and ΦVH
on frequency and angle. This argument is of course Fourier-related to the time and position
labelling mentioned above. In the Taylor expansion of Eq. (3.20) we noted that the exponen-
tial factors change more rapidly that the sinc-factors. The degree of entanglement P would
thus increase considerably if we could remove the exponential factors, or at least make them
equal for the HV and V H combinations. Experimentally, this is not too difficult: in a stan-
dard compensation scheme, both SPDC beams are first passed through a λ/2 plate oriented
at 45◦, to swap the emitted H and V polarizations. The beams 1 and 2 are then passed through
birefringent crystals of length L1 and L2, which we will consider, for ease of calculation, to
be of the same material and orientation as the generating crystal. The crystals add frequency-
and angle-dependent phase factors in the relation between the biphoton wave function Φi j
and the detected biphoton fields Ai j:

Aij

(

~q1,ω1;~q2,ω2

)

∝ Φij

(

~q1,ω1;~q2,ω2

)

× e−iβij(~q1,ω1;~q2,ω2). (3.25)

For the concurrence of the compensated state only the phase difference βHV −βVH is im-
portant. In a first-order Taylor expansion of the frequency ω1 = Ω±δω and the momentum
~q1 = (Ω/c)~θ1 of the incident SPDC light (and δω2 = −δω1 and θ2 = −θ1 for the other
beam), we can write:

βHV −βHV ≈ (β 0
1 −β 0

2 )+(β ω
1 +β ω

2 )δω1 − (β θ
1 +β θ

2 )θ1,y (3.26)

where we used again δω2 = −δω1 and δθ2,y = −δθ1,y.
This first-order expansion explicitly shows the presence of three contributions. The “con-

stant” term β 0
j =

[

no −ne(ΘC +θtilt/ne(ΘC))
]

ΩL j /c is the birefringent phase delay at θy = 0
and δω = 0. It dominantly determines the average phase ᾱ in Eq. (3.15) [or α in the approx-
imate state Eq. (3.1)], because β 0

j � 1 for many practical crystal lengths. By varying the
tilt angle θtilt slightly, α can be easily set to any desired value from 0 to 2π . The other
terms β ω

j =
[

no,gr −ne,gr(ΘC +θtilt/ne(ΘC))
]

L j /c and β θ
j = Ωρ(ΘC + θtilt/ne(ΘC)L j /c

quantify the frequency- and angle-dependence of the phase difference. Both these terms are
crucial for the compensation scheme because they can be used to “erase”the differences in
frequency and angular-dependence of the biphoton fields AHV and AVH. A Fourier transfor-
mation of Eq. (3.26) shows more clearly the physical principle behind this compensation. The
frequency-dependent phase introduced by β ω

j corresponds to a time delay of one polarized
field component with respect to the other. The angle-dependent term β θ

j corresponds to a
spatial shift in the y-direction of one polarized field component with respect to the other.

When the combined length of the compensating crystals L1 +L2 = L the compensation is
perfect and the phase factors of AHV and AVH become identical. When L1 +L2 6= L a fraction
1− (L1 + L2)/L of the original relative phase factor remains. When we single out the effect
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of this remaining phase factor on the degree of polarization we have to modify Eq. (3.24) into

P ≈ 1− π2

8ln2

(

L−L1 −L2
L

)2 ( ∆ωfilter
∆ωSPDC

)2

− π2

8

(

L−L1 −L2
L

)2 (∆θaperture

∆θSPDC

)2

.

(3.27)
The two pre-factors that originate from imperfect compensation can be fine-tuned somewhat
via the refractive index ne(Θ) and walk-off angle ρ(Θ) by tilting the compensating crystals
in the y-direction. The compensation for longitudinal walk-off can be fine-tuned pretty easily
because ne,gr(Θ) changes considerably with angle (see Appendix, Eq. (3.29)). The compen-
sation for transverse walk-off changes much less rapidly because we are generally close to an
extremum of ρ(Θ) at typical angles of Θ ≈ 45◦ (see Appendix, Eq. (3.30)).

Even if the birefringence compensation is perfect and the phases of AHV and AVH are
identical, the concurrence can be nonideal (P < 1). This occurs when the integrated ampli-
tudes

〈〈

|AHV|2
〉〉

∝
〈〈

sinc2(φHV)
〉〉

and
〈〈

|AVH|2
〉〉

∝
〈〈

sinc2(φVH)
〉〉

differ, i.e when the
aperture sizes are large enough to observe the different shapes of the H and V rings. In
this case the positions of the detected photons give partial information on their polarization
(spatial labelling), which translates in the inequality |AHV| 6= |AVH| at these positions. These
differences are fourth and higher order in δω1 and δ~θ1.

3.4 Experimental characterization of our SPDC source

3.4.1 Setup and typical experimental numbers

Figure 3.5: Experimental setup.

Figure 3.5 shows the detailed experimental setup that was used to generate the polarization-
entangled photon pairs. A continuous-wave Kr-ion pump laser, operating at λp = 406.7 nm,
illuminates a χ (2)-nonlinear generating crystal made of β -Barium Borate (BBO), typically
1 mm thick and cut at an angle of Θc = 41.2◦. It is followed by the standard quantum eraser
that compensates for the birefringent walk-off in the crystal. It comprises a half-wave plate
HWP, oriented at 45◦ with respect to the crystal axes, and two BBO crystals (C) with a thick-
ness equal to approximately half of that of the generating crystal. Spatial selection of the
frequency-degenerate crossings is performed by two circular apertures of variable diameter,
which are situated in the far field of the generating crystal at approximately 80 cm from the
generating crystal. After passing through two adjustable polarizers (P1 and P2), frequency
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Table 3.1: Experimental numbers for 1 mm-thick BBO

Quantity Value Quantity Value

λp 406.7 nm ngr,o(λSPDC) 1.686
λSPDC = λe = λo 813.4 nm ngr,e(ΘC,λSPDC) 1.627

ΘC 41.9◦ ρ(ΘC,λSPDC) 4.10◦

no(λSPDC) 1.661 ρ(ΘC,λp) 4.38◦

ne(λSPDC) 1.546 θoff 3.35◦

ne(ΘC,λSPDC) 1.607 ∆ωSPDC/Ω 0.0138
ne(ΘC,λp) 1.633 ∆θSPDC 11.4 mrad
〈1/n〉−1 1.633

selection is performed by narrow-band interference filters (IF) with a top-hat transmission
spectrum centered at λSPDC = λo = λe = 813.4 nm. Finally, the two beams are focused onto
single-photon counting Avalanche Photo Diodes (PerkinElmer SPCM-AQR-14), which act
as bucket detectors, imposing no further transverse mode selection. The signals from the
two detectors are combined electronically in a coincidence circuit with a time window that is
sufficiently short to isolate individual twin photons, but much longer than the inverse optical
bandwidth of the interference filters so that twin photons are practically never separated from
one another by the temporal resolution. The lenses L serve to refocus the SPDC light to be
able to accommodate further experiments.

Crucial parameters for the efficiency of this setup and the quality of the produced photon
states are, on the generating side, the thickness (and orientation) of the nonlinear crystal,
the size of the pumped area, and the amount of compensation. Crucial parameters on the
detection side are the amount of frequency selection (filter bandwidth) and the amount of
spatial selection (aperture diameters). For optimum performance, the spatial selection should
of course be properly centered around the two crossings of the frequency-degenerate SPDC
rings.

Table 3.1 gives the relevant optical constants for the setup. From these numbers, we see
that the crystal is indeed phase-matched at external angles close to normal incidence. Slight
angle tuning of the BBO crystal allows one to fine-tune the SPDC rings for perpendicular
crossing, at which point the crossings are positioned at θi,x = ±θoff = ±3.35◦ = ±58 mrad
from the pump beam. The SPDC spectral and angular widths are calculated using Eq. (3.5)
and Eq. (3.6), respectively. Note that these widths applies only to the case of plane-wave
pumping and monochromatic detection. If detection takes place over a finite frequency band-
width the SPDC rings will be broadened via

∆θSPDC =

(

dθ
dλ

)

∆λSPDC =

(

no,gr −ne,gr(Θc)

ρλ0

)

∆λSPDC . (3.28)

A spectral integration over a 10 nm bandwidth will for instance already add 9.1 mrad to the
SPDC angular width.

Figure 3.6 a) shows far-field pictures of the SPDC rings as a function of the angle of
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Figure 3.6: The spatial intensity distribution of the SPDC light as a function of the
internal angle of the pump beam with the optic axis of a 2 mm BBO crystal. The pictures
span 5.6◦×5.6◦ each. The gray scales are different for each picture. The central spot
is a residue of the pump laser beam.

incidence of the pump beam on the crystal, observed with an intensified CCD (Princeton In-
struments PI-MAX 512HQ with 4-th generation intensifier). A blue-reflecting laser mirror
and an interference filter (spectral width 5 nm centered around 813 nm were used to select
the SPDC light. Note how the two SPDC rings change shape considerably over the relatively
small angular interval of 2◦. This justifies the small-angle approximations used in the preced-
ing theoretical discussions. The rings intersect perpendicularly at a measured internal angle
of 42.3◦±0.5◦ with a corresponding offset angle θoff = 54±3 mrad, agreeing nicely with the
calculated values of 41.9◦ and 58 mrad. From a cross section through the observed rings the
radial width of the SPDC rings was measured to be ≈ 5.4 mrad (FWHM). This value is close
to the expected value of (5.6 + 4.9)/

√
2/1.13 = 6.6 mrad for a 2-mm thick crystal and a 5-nm

wide spectral filter. The two terms in the sum reflect the natural width (at fixed frequency)
and the extra width due to frequency spreading, and the two correction factors arise from the
conversion from x/y to radial width and from θSPDC to FWHM.

3.4.2 Measured count rates
To characterize the efficiency of our setup, we now discuss the count rates that were typically
achieved. These rates depend on the size of the apertures used to select the ring crossings, the
bandwidth of the frequency filters and the pump power and pump beam waist at the crystal.
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The aperture dependence of the count rates for a mildly-focussed pump beam (FWHM-pump
diameter 280 µm inside the crystal) is shown in Fig. 3.7, where open triangles denote single
count rates (s.c.) and open circles denote coincidence count rates (c.c.). A 1 mm thick BBO
crystal and 10 nm wide interference filters were used. Note that the coincidence rates have
been multiplied by a factor 4 to fit on the same scale. Also shown in Fig. 3.7 is the quantum
efficiency (q.e.; open squares) or relative biphoton detection efficiency, which is defined as
the conditional probability to detect the second photon out of a pair when the first photon has
been detected. The quantum efficiency rises steeply for small apertures to a value of ≈ 25%.
This steep rise is associated with the divergence of the pump laser, which is slightly less than
1 mrad for this case of mild focusing. The gradual decrease in quantum efficiency for larger
apertures is probably due to spatial limitations of the imaging optics and bucket detectors.

Figure 3.7: Measured single count rate (s.c.), coincidence count rate (c.c.), and quan-
tum efficiency η = c.c./s.c., as a function of the diameter of two apertures situated in
the far-field at 80 cm away from the 1 mm thick generating BBO crystal. We used inter-
ference filters of 10 nm spectral width and 240 mW of cw pump power at λp = 406.7 nm.
The pump laser was mildly focused to a (FWHM) diameter of 280 µm inside the crystal,
corresponding to a far-field angle of slightly less than 1 mrad.

To illustrate the dependence of the count rates and quantum efficiency on the crystal
thickness, Fig. 3.8 shows measurements with a 2-mm thick generating BBO crystal and 5 nm
wide filters under the same mild-focusing condition used for Fig. 3.7. The coincidence count
rate is again multiplied by a factor 4. In spite of the reduced detection bandwidth (from
10 nm to 5 nm, in correspondence with the reduced SPDC bandwidth), the count rates for
small apertures are larger for the 2-mm thick BBO than for the 1-mm thick crystal, due to the
increased crystal thickness. Note how the turnover from a quadratic to a linear dependence
of count rate on aperture size (marked by the arrow) occurs much earlier, thus showing that
the angular width of the SPDC rings produced by a 2-mm thick crystal is roughly a factor 2
smaller than that of the 1-mm thick crystal.
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Figure 3.8: Similar measurement as in Fig. 3.7, but now for a 2 mm BBO crystal, 5 nm
wide filters and (again) a mildly-focused pump laser. The single count rate, coincidence
count rate (multiplied by 4), and deduced quantum efficiency are shown as a function
of the aperture diameter.

3.4.3 Measured degree of quantum entanglement
To illustrate the effects of the birefringent walk-off in the crystal, we give some typical count
rates from the setup without the quantum eraser components. For effectively plane-wave
pumping (pump focus ≈ 280 µm FWHM) at 240 mW power, in combination with detection
behind apertures with 5-mrad diameter (≈ 4 mm at 80 cm from the BBO), we measured a
large biphoton visibility in the HV basis (V0◦ > 99.0 %), but a generally modest visibility in
the ±45◦ basis. For a 1-mm thick BBO crystal we typically obtained V45◦ = 37 % and 75% for
a detection bandwidth of 10 nm and 5 nm, respectively. For the aperture diameter of 5 mrad
that we used, these visibilities are dominantly limited by longitudinal walk-off. Numerical
evaluation of the integrals in Eq. (3.20) gives P = 36.4% and 64.3%, respectively, for the two
spectral bandwidths; the experimental result for the 5-nm filters is probably so large because
the center wavelength of these filters was slightly misplaced, making the combination of two
filters effectively narrower [40]. Increasing the aperture diameter decreased the visibility only
mildly from the mentioned 37 % at 5 mrad to ≈ 20 % at 19 mrad apertures, using the 10-nm
wide spectral filter. A 2-mm thick BBO crystal gave V45◦ = 49 % for 5-nm wide detection
bandwidth [40]. For a crystal as thin as 50 µm we found V45◦ = 99.3− 98.9 % (upon an
increase of aperture diameter from 5 to 19 mrad) even for the 10 nm interference filters, in
nice agreement with the calculated values of P = 99.6− 98.9%. This is consistent with the
statement that walk-off effects are very small in such a thin crystal. Typical coincidence rates
for detection behind the 10 nm filters were 3×104 s−1 and 90 s−1 for the 1 mm and 50 µm
thick BBO, respectively, a difference of roughly a factor 202 = 400. This shows that thin
crystals, although they intrinsically have small walk-off effects, are unpractical as a source
because they have too low a yield.

By inserting the quantum eraser components, namely the half-wave plate and the two
other crystals C, we are able to compensate for the walk-off (i.e., eliminate the second-order
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3. Spontaneous parametric down conversion as a source of entangled biphotons, in theory and practice

Figure 3.9: Measured visibility V45◦ as a function of the tilt angle of one of the com-
pensating crystals.

terms of Eq. (3.27)) and to approach V45◦ = 1 (and P = 1). Because the thicknesses of the
compensating crystals were not precisely half that of the generating crystal, we had to fine-
tune the (horizontal) angle of their optic axis with respect to the incident SPDC beams. The
result of this angle tuning is depicted in Fig. 3.9, which shows the measured visibility V45◦ as
a function of the angle of one of the compensating crystals for 5-mrad diameter apertures and
10-nm bandwidth frequency filters. The fitted curve is based on a sixth-order expansion of
Eq. (3.20), including as a variable the compensating-crystal tilt angle (or effective length mis-
match L−L1 −L2). From the transverse walk-off observed under a microscope we estimate
L = 1.0 mm, L1 = 0.50 mm and L2 = 0.46 mm (within 10%). The coefficients correspond to
values of ∆ωfilter = 11 nm, ∆θap = 6.7 mrad, which are in reasonable agreement with the ex-
perimental values; the peak visibility of 96.2 % is less than the theoretical maximum of 100 %
due to the finite size of the apertures. (In a second run we were able to achieve V45◦ = 97.8%
as a maximum for the same aperture diameter and filters). The performance of the total sys-
tem is not extremely sensitive to the exact orientation of the compensating elements, being
the half-wave plate (oriented at 45◦) and the two compensating crystals (oriented in the same
direction as the generating crystal). The visibility V45◦ was found to change quadratically
with the various misorientation angles, where a rotation of the half-wave plate over 1◦ lead
to a reduction of V45◦ by only 0.6 %.

Even for perfect birefringent compensation the degree of entanglement P can be smaller
than 1 if the apertures are opened up. This is illustrated in Fig. 3.10, which shows the visibility
V45◦ and V135◦ as a function of the diameter of two apertures centered around the frequency-
degenerate crossings of the SPDC rings produced by a 1 mm thick BBO crystal and detected
in a 10 nm bandwidth around frequency degeneracy. The solid data points show the results
for two different 1 mm thick crystals under mildly-focused pumping, while the open symbols
show the results for stronger focusing (∆θp = 8 mrad). Note that focused pumping hardly
changes the visibility, while it does have a strong effect on the coincidence rate and quantum
efficiency (see Fig. 3.7). The solid curve is a theoretical fit (through the solid dots) based on
a simple quadratic dependence with equation V = −2.84× 104(∆θ)2 + 0.993. For a 2-mm
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thick crystal we measured a similar quadratic behavior within half the angular range. We
understand this scaling, but do not yet understand why the quadratic fit is so good.

Figure 3.10: Visibility V45◦ and V135◦ versus the aperture diameter, under conditions
similar to Figs. 3.7 and 3.8. The solid symbols correspond to mildly-focused pumping,
the open symbols correspond to strong focusing. The solid curve is a theoretical fit
(through the solid dots) based on a simple quadratic dependence.

3.5 Conclusions
We have given a theoretical and experimental description of a SPDC source for polarization-
entangled photons. We have shown that quantum states with almost perfect entanglement
can be produced if the proper correction for the birefringence of the source is applied and
if the spatial- and frequency- detection bandwidths are kept small enough. As a convenient
compromise between entanglement quality and biphoton yield we often worked with a 1-
mm thick BBO crystal, a 10-nm wide detection bandwidth and 5-mrad diameter apertures.
Under these conditions we typically obtain V0◦ = 99.6, V45◦ = 97.4 at a coincidence rate of
30×103 s−1 for a 200-mW pump power.

Appendix

3.A Phase matching in type-II SPDC
In this appendix we consider the issue of “phase matching”that governs the generation of
SPDC light in crystals of finite length. Phase matching is determined by the geometry and
the optical properties of the generating crystal. The linear optical properties of uniaxial bire-
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fringent crystals are basically contained in a single equation [41]:

1
ne(Θ,ω)

=

√

sin2 Θ
n2

e(ω)
+

cos2 Θ
n2

o(ω)
, (3.29)

which denotes the refractive index of e-polarized rays propagating in the plane containing the
optic axis of the crystal, at an internal angle Θ with respect to the optic axis. In this equation
no and ne are the principal refractive indices at optical frequency ω for o and e polarization,
respectively. Note, that we will mostly suppress the ω dependence in our notation.

For the e-polarized rays, the Poynting vector ~S ∝ ~E × ~H (= direction of energy flow) is
oriented in a different direction than the wavevector~k ∝ ~D×~H, which is along the propagation
direction of o-polarized rays. The angle between ~S and~k is the so-called (internal) walk-off
angle, which is given by [41] as
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tanΘ
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)
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(3.30)
The associated external offset angle is given by

θoff ≡ 1
2〈1/n〉 ρ(Θ) , (3.31)

〈1/n〉 ≡ 1
2no

+
1

2ne(Θ)
. (3.32)

For negative uniaxial crystals (ne < no) the beam walk-off is away from the optic axis as
ρo f f (Θ) > 0 (see Fig. 3.3).

We now consider a geometry in which a monochromatic, but not necessarily planar, pump
laser is incident on a uniaxial crystal that is cut in such a way that the optic axis makes an
angle Θc with the surface normal [denoted as the z-axis, see Fig. 3.3(b)]. To evaluate the
wavevector mismatch along the surface normal, we use the paraxial approximation to ex-
pand the z-components of the various wave vectors to first order in the optical frequency
ω and to second order in the external angles of incidence θx and θy (θx,θy � 1). Be-
cause the planar pump is allowed to make a small angle with the surface normal, the (z-
component of the) wavevector mismatch is generally a complicated function of the form
∆k(~qo,ωo;~qe,ωe;~qp,ωp) = kp,z − ko,z − ke,z.

For the o-polarized SPDC ray, at optical frequency ω = Ω−δωe (δωe � Ω), expansion
yields

ko,z ≈ no(ω)
ω
c

cos
(

θo,x

no

)

cos
(

θo,y

no

)

≈ no(Ω)
Ω
c
−no,gr(Ω)

δωe

c
− Ω

c
1

2n0(Ω)

(

θ 2
o,x +θ 2

o,y
)

,

(3.33)
where Ω = ωp/2 is the SPDC center frequency, being half the pump frequency, and where
no,gr is the group refractive index of the o-polarized SPDC ray (at the optical frequency Ω).

For the e-polarized SPDC ray, at frequency ωe = Ω + δωe, the expansion is slightly
more complicated, because it involves both the frequency and the angle dependence of the
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associated refraction index ne(Θ,ω). For the geometry of Fig. 3.3, with the crystalline optic
axis in the yz-plane, we find

ke,z ≈n
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Θc −
θe,y

ne(Θc,ω)
, ω
)

ω
c

cos
(
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(3.34)

For type-II SPDC in a negative birefringent crystal, the pump laser also has the e po-
larization. Because the pump beam is assumed to enter close to the surface normal, and
θp,x,θp,y � θoff, we can decompose it in plane-wave components and consider only the trans-
verse walk-off in the expansion

kp,z ≈ n
(

Θc −
θp,y

ne(Θc,ωp)
,ωp

)

ωp

c
≈ ne(Θc,2Ω)

2Ω
c

+ρ(Θc,2Ω)
2Ω
c

θp,y . (3.35)

Combining Eqs. (3.33), (3.34), and (3.35) yields the dimensionless equation for the
wavevector mismatch

c
Ω

∆k ≡ c
Ω

(kp − ko,z − ke,z) ≈−C′ + (no,gr −ne,gr(Θc))
δωe
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+
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+
1
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(

θ 2
e,x +θ 2

e,y
)

,
(3.36)

where the constant C′ = [no(Ω)+ne(Θc,Ω)−2ne(Θc,ωp)], and where we assumed identical
walk-off angles at SPDC and pump frequencies, via ρ(Θc,Ω) ≈ ρ(Θc,2Ω) ≡ ρ(Θc).

We can apply the transverse-wave-matching condition ~qo +~qe = 2~qp to each of the indi-
vidual plane-wave components of the (nonplanar) pump laser, which translates into the two
equations ωoθo,y +ωeθe,y = 2ωpθp,y and ωoθo,x +ωeθe,x = 2ωpθp,x. If we assume frequency
degeneracy (δωe ≈ 0) and normal incidence of the pump, we get the relations θo,y ≈ −θe,y
and θo,x ≈−θe,x. Using these we find the geometrical shape of the SPDC light in the far field
of the crystal: it consists of two rings with frequency-dependent diameters, as determined by
the phase-matching condition ∆k < 2π (see Figs. 3.3 and 3.4). As a side remark, we note that
for δωe 6= 0 we get ~θo +~θe 6= 0. The resulting difference in the spectral bandwidth of e- and
o-polarized rings has been observed experimentally to be as large as 13% [42].

For plane-wave pumping at normal incidence, we can further simplify the above expres-
sions for the phase mismatch, by setting θp,y = 0 and enforcing strict conservation of trans-
verse momentum to convert the o angles into e angles. This yields

c
Ω

∆k = −C + (no,gr −ne,gr(Θc))
δωe

Ω
+

〈

1
n

〉

θ 2
e,x +

〈

1
n

〉

(

θe,y −θoff

)2
, (3.37)

where C = C′ + 〈1/n〉θ 2
off.
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Table 3.2: Definition of symbols used in this chapter
Symbol Definition

subscript 1,2 with respect to beams defined by aperture 1 and 2
subscript p with respect to the pump beam

o,e ordinary- and extraordinary polarization
x,y real-space transverse coordinates
z paraxial optical propagation direction and crystal surface normal

q ≈ 2π
λ

~θ transverse momentum vector
ϕ angle of polarizer with respect to o (horizontal) polarization
θ external angle with the crystal surface normal

θx, θy external angle with the crystal surface normal, in the xz or yz plane
θoff external (far-field) walk-off angle between o- (or e-)polarized beam

and the pump.
Θ internal angle with the optic axis of the crystal
Θc crystal cut angle (between the optic axis and the surface normal)

ω optical frequency
∆ωSPDC spectral width (peak-to-zero) of the SPDC light in frequency units
∆λSPDC spectral width (peak-to-zero) of the SPDC light in wavelength units
∆θSPDC angular (far-field) width (peak-to-zero) of the SPDC rings
n, n(ω) refractive index, function of frequency only

ne(Θ), ne(Θ,ω) refractive index for an e ray propagating at angle Θ inside crystal,
function of both angle and frequency

〈1/n〉 inverse average refractive index.
L crystal thickness
E electric field

φ = ∆kL/2 average phase mismatch
β birefringent phase delay

T (ω) intensity transmission function of spectral filter

ρ̂ density operator
Ψ state vector
α phase in the approximate, simplified state
α̃ average phase in the full state

Φ,Φi j biphoton state amplitude function,
for i polarization in beam 1 and j polarization in beam 2

Ai j biphoton probability amplitude
R number of coincident photon detections per time unit
V fringe visibility
P concurrence
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CHAPTER 4

Plasmon-assisted transmission of entangled photons

The state of a two-particle system is said to be entangled when its quantum-mechanical
wave function cannot be factorized into two single-particle wave functions. This leads
to one of the strongest counter-intuitive features of quantum mechanics, namely non-
locality [43, 44]. Experimental realization of quantum entanglement is relatively easy
for photons; a starting photon can spontaneously split into a pair of entangled photons
inside a nonlinear crystal. Here we investigate the effects of nanostructured metal optical
elements [13] on the properties of entangled photons. To this end, we place optically
thick metal films perforated with a periodic array of subwavelength holes in the paths of
the two entangled photons. Such arrays convert photons into surface plasmon waves, op-
tically excited compressive charge density waves, which tunnel through the holes before
reradiating as photons at the far side [1,4,5,45]. We address the question of whether the
entanglement survives such a conversion process. Our coincidence counting measure-
ments show that it does, so demonstrating that the surface plasmons have a true quantum
nature. Focusing one of the photon beams on its array reduces the quality of the entan-
glement. The propagation of the surface plasmons makes the array effectively act as a
which way detector.

E. Altewischer, M.P. van Exter, and J.P. Woerdman, Nature 418, 304-306 (2002).
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4. Plasmon-assisted transmission of entangled photons

Light can potentially couple to surface plasmons (SPs) if the surface in which the SPs
reside shows a periodic structure to satisfy conservation of energy and momentum. The
samples that we have studied are two metal hole arrays. Each array is 1 mm× 1 mm, and
comprises a 200-nm-thick gold layer (on glass) perforated with a square grid of 200-nm-
diameter holes spaced with a 700-nm lattice constant; Figure 4.1(a) inset shows a typical
scanning electron microscope picture. This figure also shows transmission spectra of the two
arrays, measured with a spectrometer using normally incident white light. We can clearly
see the resonances due to excitation of SPs on either of the metaldielectric boundaries. At
these resonances, the measured transmission can be orders of magnitude larger than the value
obtained from classical diffraction theory for subwavelength holes [1,2]. In a simple picture,
the surprisingly large transmission is due to the coupling of a photon to an SP on one side
of the metal, subsequent tunnelling of the SP through the holes to establish an SP at the
other side, and final reradiation into a photon [5]. Other prominent features in the spectra are
the transmission minima associated with Wood anomalies [4]. The theoretical description
of the full transmission spectrum is incomplete at present, but the role of the SP is well
established [4, 5, 45]. The resonance used in our experiment is centered at 809 nm, and has a
width of ≈ 40 nm; a calculation based on the geometry of the array and the optical constants
of gold and glass shows that it is associated with the (±1,±1) SP mode on the glassmetal
interface. The label (±1,±1) denotes any of the four diagonal directions that are frequency
degenerate for excitation under normal incidence. Peak transmissions of the two arrays at
813 nm are typically 3% (dashed curve) and 5% (solid curve); these values are much larger
than the value of 0.55% obtained from classical theory [2]. The difference in transmission
between the two nominally identical hole arrays is ascribed to production imperfections.

Because an SP is a mainly longitudinal, compressive electron density wave, its propa-
gation direction depends on the polarization axis of the incident light, following a certain
dispersion relation [46, 47]. In order to confirm this for our samples, we have measured
polarization-resolved transmission spectra of one of the hole arrays for various angles of in-
cidence θinc of plane-wave radiation [Fig. 4.1(b) and (c)]. Angle tuning is expected to shift the
various resonances in the transmission spectrum in different ways. As we have theoretically
associated the peak at 809 nm with a (±1,±1) SP, we have varied the angle of incidence
by tilting the samples along the diagonal axis of the square hole array. For incident light
polarized orthogonal to this tilting axis [Fig. 4.1(b)], the 809-nm peak splits and shifts for in-
creasing θinc; for incident light polarized along the tilting axis [Fig. 4.1(c)], the 809-nm peak
remains at approximately the same spectral position. These results confirm the association of
the 809-nm peak with the (±1,±1) SP.

We generate polarization-entangled twin photons at a wavelength of 813 nm with the
standard method of type II spontaneous parametric down-conversion [20, 48] depicted in
Fig. 4.2. The twin photons travel along two “beam lines”defined by pinholes, pass through
polarizers P1 and P2, and are detected by single-photon counters. The photodetectors act as
“bucket detectors”, that is, they impose no further transverse mode selection (this is only done
by pinholes). To provide the two-photon coincidence rate, the signals from the two detectors
are combined electronically in a coincidence circuit with a time window of 2 ns.

In a simplified picture, the generated polarization-entangled state is

|Ψ〉 =
1√
2

(

|H1V2〉 + eiθ |V1H2〉
)

, (4.1)
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Figure 4.1: Wavelength-dependent transmission of the arrays used in the experiment.
The dashed vertical line indicates the wavelength of 813 nm used in the entanglement
experiment. (a), The transmission of the two arrays. Inset, scanning electron mi-
croscope picture of part of a typical hole array. Scale bar, 2 µm. The hole arrays
were produced at the Delft Institute of Micro-Electronics and Sub-micron Technology
(DIMES) by first defining, with electron beam lithography, arrays of dielectric pillars
on a 0.5-mm-thick glass substrate, subsequently evaporating the gold layer onto a 2-nm
titanium bonding layer, and finally etching away the pillars to leave the array of air
holes. (b), (c), Wavelength-dependent transmission of one of the hole arrays for various
angles of incidence at a polarization orthogonal to the tilting axis (b) and along the
tilting axis (c). In both graphs the lowest curve is measured with the probe beam at
normal incidence, while consecutive curves are measured at increasing angles of inci-
dence (one-degree steps) by tilting of the square hole array around a diagonal. These
curves have been plotted with subsequent vertical offsets of 2% on the transmission
scale. The resonance around 813 nm (dashed line) shows a complicated splitting for
a polarization orthogonal to the tilting axis (b), whereas it is approximately stationary
for a polarization along this axis (c).
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Figure 4.2: Experimental setup. A 240-mW continuous-wave krypton-ion laser beam
at a wavelength of 406.7 nm is directed onto a 1-mm-thick BBO nonlinear crystal,
where the beam diameter is ≈ 0.50 mm (full width at 1/e2 points). Inside the nonlin-
ear crystal, a small fraction of the pump photons is down-converted into twin photons
at the doubled wavelength (813 nm); these are emitted along two intersecting cones.
Polarization-entangled photon pairs are selected with pinholes at the crossings of these
cones; the size of the pinholes (far-field diameter 5 mrad) was chosen as a compromise
between high yield and good quantum entanglement. Lenses L of 40 cm focal length
produce a one-to-one intermediate image of the pumped area, which is used in some
experiments to accommodate the hole arrays A1 and A2. After passing through polar-
izers P1 and P2, the entangled twin photons are focused through interference filters IF
(10-nm bandwidth centered at 813 nm) onto single-photon counting modules (Perkin
Elmer SPCM-AQR-14). Beam walk-off is compensated by the standard quantum eraser
comprising a half-wave plate HWP at 45◦ and compensating crystals C with a thickness
equal to half of that of the generating crystal [20, 48]. The dotted objects are present
only in some experiments; they show the hole arrays A1 and A2 at the image positions
created by lenses L, or, alternatively, in the focus of the confocal telescope TEL (15 mm
focal length lenses). Inset, schematic picture of the near field at the back of array A1
when this is positioned inside the telescope. The arrows indicate the polarization direc-
tion of the optical electric field; the center region is unpolarized.

where the state |H1V2〉 represents the simultaneous emission and propagation of an H-polarized
photon in beam 1 and a V-polarized photon in beam 2. The H- and V-directions are defined
by the orthogonal birefringent axes of the BBO (β barium borate) crystal generating the twin
photons, and all spatial information is implicitly contained in the beam labelling. By tilting
one of the compensating crystals (C in Fig. 4.2), the quantum phase θ can be set. In the
absence of the hole arrays, our setup produces typically 3.2× 104 coincidence counts per
second, which is ≈ 25% of the single count rate. A measure for the purity of the quantum
entangled state is the so-called visibility of the biphoton fringe [20, 48]. This visibility was
typically V0◦ = 99.3% and V45◦ = 97.0% at polarization angles of 0◦ and 45◦, respectively
(see Table 4.1). The high value at 45◦ shows that the natural preference of the generating
BBO crystal for its birefringent axes (0◦ and 90◦) was almost completely removed in our
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Figure 4.3: Biphoton fringes. These fringes correspond to fourth-order quantum inter-
ference, and were measured with the two hole arrays in place, for P2 fixed at 0◦ (solid
curve) and 45◦ (dashed curve), and P1 varying in steps of 10◦.

setup by the compensating crystals C, which act as quantum erasers.
Placement of the two hole arrays in the two beam lines leads naturally to a marked re-

duction of single and coincidence counts. Coincidence count rates are typically 55 s1 at the
optimum setting of the detecting polarizers, which is consistent with the transmissions of the
arrays given above (3%×5%×3.2×104s−1 ≈ 50s−1). We again measured the purity of the
entangled state, and found that the visibilities were now V0◦ = 97.1% and V45◦ = 97.2%, re-
spectively. In Fig. 4.3 the corresponding fourth-order quantum interference fringes are shown
for polarizer P2 fixed at 0◦ and 45◦, respectively, and P1 varying in steps of 10◦. These mea-
surements show convincingly that the quantum entanglement almost completely survives the
transition from photon to SP and back. As a further confirmation, we performed a measure-
ment of the so-called S-parameter, as described in Chapter 3, on a singlet Bell state (θ = π
in Table 4.1). This experiment, which took 16 runs of 100 seconds each, gave a value of
|S| = 2.71± 0.02, which is a violation of the classical inequality (|S| ≤ 2; Ref. [49]) by 35
standard deviations.

Further experiments were done on a setup with only a single array in one of the beams.
The results for this case look very similar to those for the experiment with two arrays; again
the entanglement was practically unaffected (see Table 4.1). This is to be expected, as the
two-photon wave function of Table 4.1 is perturbed by changes in either of its single-photon
components; in principle, a single array could have removed all entanglement. The differ-
ence between the two single-array experiments (Table 4.1) is due to imperfections in array 2,
which are also observable in its (single-photon) polarization-dependent transmission. As the
measurements using only array 2 gave results very similar to the situation with both arrays in
place, these imperfections must have caused the somewhat limited visibilities in the two-array
experiment.

The most intriguing results of our single-array experiment are obtained when we focus
one of the beam lines onto its hole array, using a confocal telescope (close to lens L) of two
f = 15 mm lenses symmetrically positioned around the array, as shown inside the large dotted
rectangle in Fig. 4.2. Under these conditions, we observe a notable reduction of the degree of
quantum entanglement: when the intra-telescope focus has a numerical aperture of 0.13, we
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Table 4.1: Biphoton fringe visibilities under various conditions
.

Experiment R [s−1] V0◦ V45◦

No arrays 32 k 99.3 97.0
Both arrays 55 97.1 97.2
Only array 1 1.6 k 99.4 97.1
Only array 2 1.0 k 97.5 96.8
Array 1, focussed 1.1 k 73 87

R, measured coincidence count rate; V0◦ and V45◦ , measured visibility for one of the polarizers
fixed at 0◦ and 45◦, respectively.

observe visibilities of V0◦ = 73% and V45◦ = 87% (Table 4.1).
The observed reduction in visibility on focusing can be explained as a consequence of the

non-local relation between the electronic excitation in the metal film and the incident optical
field; SPs are not at all local, but instead propagate along the dielectric.metal interface at
nearly the speed of light over distances of many optical wavelengths [13, 46, 47]. As a result
of this propagation, the near-field distribution of the photons that are reradiated at the back of
the hole array differs from the spatial profile of the “polarization-isotropic”incident photons.
Because we use the ( ±1, ±1) SP resonance (at 809 nm) we expect, for unpolarized incident
light, a near-field pattern consisting of two orthogonal “ellipses”at the back of the hole array
(Fig. 4.2 inset). The unpolarized overlap region of these ellipses correspond to the focused
incident light, whereas the polarized “protuberances”introduce the possibility of distinguish-
ing the polarization of the photons on the basis of their spatial near-field coordinates. This
will then automatically remove part of the polarization entanglement, just as any which way
information will do. Note that the observed reduction in visibility is much stronger for V0◦
than for V45◦ , contrary to what is generally found without using hole arrays [20, 48]. This
observation is consistent with the fact that we excite SPs propagating in the “diagonal”(45◦)
directions.

The non-local nature of the electronic response is equivalent to an explicit wavevector
dependence of the dielectric function (“spatial dispersion” [50]). The latter description high-
lights the far-field aspects of a non-local dielectric response, and is related by way of a Fourier
transform to the near-field picture given above. A theory for the reduction of visibility due to
this effect must intrinsically be a multi-mode theory because, after passage through the hole
arrays, the spatial information within each beam should be accounted for. Discussion of such
a theory is beyond the scope of this Letter, but qualitative arguments are easily found. When
adopting a near-field point of view, the reduction of the visibility is expected to be signifi-
cant when the propagation or coherence length l of the SP is comparable to the transverse
coherence length of the focused incident beam. This is indeed the case for our experiment:
on the basis of the spectral width of the transmission peak at 809 nm, we estimate l < 4 µm;
the number of holes covered by the propagating SPs is thus about 10. In comparison, the
transverse coherence length of the light is ≈ 4 µm (set by the 5-mrad far-field selection due
to the pinholes; Fig. 4.2). We note that the SP propagation length is an order of magnitude
smaller than the value l ≈ 40 µm predicted for a smooth pure gold film [13]; we ascribe this
difference to radiative decay due to the hole patterning, and to extra damping by the titanium
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bonding layer.
From a general perspective, the observed conservation of quantum entanglement for the

conversion from photon → surface plasmon → photon is a demonstration of the true quantum
nature of SPs. All experiments on SPs so far have not probed their quantum nature, but
only their wave nature through their semiclassical dispersion relation. We note that the true
quantum nature of the photon was only established in 1977, in anti-bunching experiments
[51, 52]. Furthermore, a simple estimate shows that SPs are very macroscopic, in the sense
that they involve some 1010 electrons. Our experiment proves that this macroscopic nature
does not impede the quantum behaviour of SPs, because they can act as intermediates in
transmitting entangled photons to yield the expected fourth-order interference. A theory for
our experiments based only on locally induced surface currents is clearly inadequate. We
stress this point because some recent theoretical models for one-dimensional gratings in thick
metal films have questioned the role of SPs, emphasizing instead waveguide effects. Our
arrays are apparently thin enough (thickness/period < 0.3) for waveguide effects not to play
an important role. This conclusion is supported by experiments in which the thickness of
such a thin array has been varied [4].

By addressing the topic of plasmon-assisted transmission of quantum entangled photons,
we have combined two fields of research, namely quantum information and nanostructured
metal optics. We hope that our work will stimulate other studies of the transfer of entangle-
ment to condensed-matter degrees of freedom.
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CHAPTER 5

Nonreciprocal reflection of a subwavelength hole array

We present measurements of the wavelength-dependent reflectivity of a subwavelength
metal hole array on a glass substrate. We compare the observed resonant structures to
those found in transmission and note a nonreciprocity under illumination from the air
versus the glass side. This can be used to verify on which interface the surface plasmons
are resonantly excited and to estimate the losses in the subwavelength channels.

E. Altewischer, M.P. van Exter, and J.P. Woerdman, Opt. Lett. 28, 1906-1908 (2003).
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Recently, subwavelength hole arrays in metal films have received a lot of attention [1,
4–6, 21, 53], as they show an unexpectedly large transmission compared to predictions of
conventional diffraction theory [2]. This large transmission is attributed to the resonant exci-
tation of surface plasmons (SPs) [13], which, in the standard model [1,4], can reside on either
interface [4]. In this model the in-plane momentum of the SPs is supplied by the projected
component of the incident optical wave momentum plus a lattice component taken from the
hole array. Quite surprisingly, the reflection properties of these nanostructures have not yet
been reported, although they are essential for a complete description and understanding of the
optical system; as we will show, they provide a tool to determine on which side of the metal
film the resonances are localized. The transmission cannot give such information, as it does
not change under reversal of the film due to the reciprocity theorem; however, reflection can
be nonreciprocal if losses are incorporated in an asymmetric structure [54, 55]. We present
here the first reflection spectra of a subwavelength hole array, measured in zeroth order and
under normal incidence.

The hole array used in the experiment consists of a 200 nm thick gold film (much thicker
than the optical skin depth of ≈ 12 nm) deposited on a 0.5 mm thick glass substrate, with
a thin (2 nm) titanium bonding layer in between. A 1×1 mm2 array of cylindrical air holes
arranged in a square grid was made in the gold film, by first defining an array of pillars
by electron beam lithography, subsequently evaporating the metal onto the substrate, and
finally removing the pillars. The hole diameter is 200 nm and the array period 700 nm, as
determined from scanning electron-beam micrographs (error within 1%); the refractive index
of the glass (Schott-type BK7) is 1.51 in the wavelength range 650-1100 nm. Note that the
glass substrate provides for the necessary asymmetry to remove the wavelength degeneracy
between resonances at both sides of the film [1, 4], so that losses, in principle, can break
reflection reciprocity.

Figure 5.1: Experimental setup for reflection measurements, comprising an incandes-
cent lamp as light source, two pinholes (P1 and P2), a beamsplitter (BS), two imaging
lenses (L1 and L2), the hole array and a fiber connected to a grating spectrometer. The
hole array was placed with either its glass-metal or its air-metal side facing the beam.

Figure 1 depicts the experimental setup; an incandescent lamp was used as light source.
A combination of two pinholes and a lens serves to limit the spot size on the hole array to
500 µm, with an associated numerical aperture (NA) of 0.01 rad. A beamsplitter redirects the
reflected light onto a multi-mode fiber (core diameter 200 µm, NA=0.20 rad) serving as input

50



5. Nonreciprocal reflection of a subwavelength hole array

Figure 5.2: The curves R1 correspond to measured reflection spectra of the hole array.
For comparison the corresponding reflection spectra of the neighbouring unperforated
gold film are shown as the curves R2. Also shown are corresponding transmission
spectra T, of which the vertical scale has been multiplied by a factor of 5. In all spectra
the black curves were obtained when illuminating the air side of the hole array and the
gray curves when illuminating the glass side. The dashed vertical lines indicate the
positions of the resonances, at wavelengths of: (1) 747 nm, (2) 810 nm and (3) just over
1100 nm. The arrow indicates a kink in the spectrum, due to the onset of first-order
diffracted modes.

to a grating spectrometer with a CCD detector (Avantes Avaspec-2048, resolution 1.2 nm).
An additional lens in front of the fiber allows us to capture all light, as it makes an image of
only 100 µm on the fiber-core facet, while staying well within the numerical aperture of the
fiber.

Figure 2 shows the measured reflection spectrum of the hole array and the neighbour-
ing unperforated gold film, illuminated under normal incidence from either the glass or the
air side (see caption). These curves have been obtained by averaging over many individual
measurements to increase the signal-to-noise ratio, which deteriorates above 1000 nm due to
limited detector efficiency. As reference for the 100% level we have used a broadband silver
mirror (New Focus 5103), of which the reflectivity was in turn calibrated against a dielectric
mirror with R ≥ 99% (New Focus 5102) in the range 700-1050 nm. The estimated accuracy
of the vertical reflectivity scale is better than 5% in absolute units and, of course, much better
in relative units; this estimate is based on the reproducibility and alignment sensitivity. For
comparison, we also show the measured transmission spectrum of the hole array, multiplied
by a factor of 5.

The reflection spectra of the hole array show resonant structures quite similar to those ob-
served in transmission. Three such structures are discernable at wavelengths of approximately
750, 810 and just over 1100 nm, which have been labelled as (1), (2) and (3) respectively in
Fig. 5.2; unfortunately, structure (3) is at the end of our measurement range. The dotted verti-
cal lines show that the structures are neatly aligned in all spectra. On the basis of the standard
model mentioned above, peak (1) can be assigned to the resonant excitation, on the air-metal
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interface, of the (±1,0) & (0,±1) SPs, and peak (2) and (3) to the resonant excitation, on
the glass-metal interface, of the (±1,±1) and the (±1,0) & (0,±1) SPs, respectively. Typical
amplitudes of these resonances are much larger in reflection than in transmission (the vertical
scale of the transmission spectrum has been magnified 5 times). As an aside we note the
slight kink in the spectra at a wavelength of 700 nm (see arrow in Fig. 5.2), which is precisely
equal to the lattice period; this indicates the onset of first-order diffraction modes (both in
reflection and transmission).

The key point to note in Fig. 5.2 is that there is a striking difference between the reflec-
tion spectra observed from the glass side (red) and the air side (blue); on the contrary, the
transmission spectra do not show this asymmetry, in fact they overlap within the experimen-
tal accuracy. Theoretically, the transmission spectra should of course be equal on account of
the reciprocity theorem. For the reflection spectra nonreciprocity is allowed and can be used
to obtain additional information. Experimentally, we find that in the air-side reflection spec-
trum peak (1) is the most prominent, whereas in the glass-side reflection peaks (2) and (3) are
stronger. This indicates that the resonances are dominantly localized at a specific interface
and show up most prominently in the reflection spectrum taken under illumination from that
side. Furthermore, the aforementioned observations agree with the assignment based on the
standard model, thereby confirming its validity.

A quantitative analysis of the observed differences in reflection was performed as follows:
for peak (2) we look specifically at the structure observed between 770 and 830 nm, which has
a nearly identical shape in both spectra. The glass-side resonance ranges from 90% at 775 nm
to 40% at 810 nm, while the air-side resonance ranges from 76% to 55%. The strength of
the glass-side resonance, as quantified by the relative variations in reflectivity, is therefore
roughly a factor 50/21 = 2.4 more than that of the air-side resonance. Similarly, for peak (3)
around 1100 nm the reflectivities range from 97% to 23% for the glass side and from 100%
to 70% for the air side, giving a factor of 74/30 = 2.5, although the uncertainty is larger here
since this peak is off-scale. For peak (1) the structures in the region between 710 and 770 nm
match less well in shape. Therefore, we compare the average reflectivity of the two maxima
to the minimum in between, which yields the following numbers: reflectivities of 85% to
74% for the glass side and 73% to 36% for the air side, giving a factor of 11/37 = 1/3.4 for
the resonance strength as observed from either side.

The measured difference between the reflection dips observed in “frontside”and “back-
side”illumination is naturally attributed to propagation loss in the cylindrical waveguides
represented by the holes: the resonance at the interface opposite to the illuminated one can
still be felt, but at the cost of a double pass through the subwavelength holes. In the absence
of an exact theory, it seems likely that the observed peaks in reflection are dominated by
the coherent interference between a resonant and a nonresonant reflection amplitude, as in
the Fano-type description of hole-array transmission [53]. The observed factor of roughly 3
should then be interpreted as a roundtrip amplitude loss. This may be compared with recent
transmission experiments on hole arrays with identical (200 nm) hole diameter and varying
thicknesses, where an exponential intensity decay length of ≈ 50 nm was reported [21]. This
would correspond to a roundtrip amplitude loss of exp(4) ≈ 55, i.e., a much larger value.
This estimate might however be too naive, as the aforementioned experiments [21] show that
the exponential dependence breaks down for films thinner than 300 nm, for as yet unknown
reasons. Our results seem to confirm this breakdown.
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In conclusion, we have presented the first reflection spectra of a subwavelength hole array.
These exhibit strong features that resemble those found in transmission. On the basis of the
asymmetry of the reflection under reversal of the array, we are able to identify the interface
at which the SPs are dominantly excited; this is a powerful diagnostic tool to characterize a
given hole array without needing a priori knowledge about its structure. A more quantitative
analysis of the spectra suggests a break-down of the exponential field decay, that one would
expect for waveguides below cut-off. This is consistent with experiments reported by others
[21], but cannot yet be explained. The fact that there is no complete theory yet makes our
measurements extra useful, as they provide a new piece of the puzzle.
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CHAPTER 6

Polarization analysis of propagating surface plasmons in a
subwavelength hole array

We present angle- and polarization-resolved measurements of the optical transmission of
a subwavelength hole array. These results give a far-field visualization of the propagation
of the excited surface plasmons and allow for a simple analysis of their polarization
properties.

E. Altewischer, M.P. van Exter, and J.P. Woerdman, JOSA B 20, 1927-1931 (2003).
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Metal films perforated with a periodic array of subwavelength holes have recently been
shown to exhibit a much larger optical transmission than expected [1]. The reason for this is
the presence of surface plasmons (SP’s) on the metal interfaces, which couple to freely propa-
gating light via the two-dimensional grating of the hole array. In a simple picture, the incident
light gets through because it first excites SP’s on the front side of the metal layer, which then
couple through the holes to SP’s on the back side, that finally reradiate in the form of light.
Since its original discovery [1], this phenomenon has been studied in many theoretical and
experimental papers [4,5,45,56]. An aspect that has been underexposed up to now is the role
of polarization in the transmission process. SP’s are combined optical-electronic excitations
that comprise a (longitudinal) electric field aligned with their propagation direction, which
for a large part determines their coupling to the (input and output) optical field. In this paper
we address experimentally the polarization properties of the transmission, both by varying
the polarization of the light incident on the hole array and by analyzing the polarization of
the output light.

The SP-assisted optical transmission through subwavelength hole arrays is usually de-
scribed in a simple model, where the in-plane momentum of the SP’s is supplied by the
projected component of the incident optical wave momentum plus a lattice component that is
taken from the hole array [4]. This lattice momentum can be used to label the SP resonances
as (Nx,Ny). When the surrounding media are not the same (air and glass, in our case, as dis-
cussed below), the observed transmission resonances are generally assumed to be dominated
by SPs excited on either the one or the other surface.

Surface Plasmons have been extensively studied with near-field microscopy [46, 47, 57,
58], which allows a mapping of the optical field with subwavelength resolution. To study the
SP propagation on metal hole arrays one has to excite them locally by limiting the incident
beam size, i.e., by focussing the beam to a spot size of the order of the SP propagation length
(still covering many holes of the array). Generally, a study of the SP propagation, which
covers many optical wavelengths, does not require subwavelength resolution; we show in this
article that, in fact, such a study can be done equally well in the optical far field. We describe
a (polarization and angle-resolved) analysis of the optical far-field transmitted through a metal
hole array illuminated with strongly focussed light. This analysis allows one to check the
validity of the “single SP resonance”model mentioned above, and the mode assignment of
the various transmission peaks.

The transmission spectrum of a subwavelength hole array depends on the angle of inci-
dence, which co-determines the momentum of the excited SP’s. A measurement of this angle
dependence was used by Ghaemi et al. to determine SP dispersion curves [4] (i.e., the SP
bandstructure); they used a collimated beam to measure the transmission spectrum over a
large wavelength range for a set of fixed angles of incidence. In contrast, in this article we
use a fixed wavelength and monitor the transmission of a strongly focussed beam incident
along the z-axis at this specific wavelength. We measure in fact the transmission into the
zeroth-order diffracted beam, as a function of the two far-field angles (θx,θy) (the z-axis is
aligned with the surface normal). Contrary to near-field diagnostics, such a measurement can
be performed in a single exposure. We illuminate the array with a strongly focussed beam
in order to excite SP’s locally, and use a subsequent Fourier transforming lens and a CCD to
record the optical far field emitted by the array; this principle is further discussed below.

An input-output description of the transmission through the hole array is rather simple,
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because it is a linear process and because the array can supply only multiples of the basic
reciprocal lattice vectors. We take the opening angle ∆θ (FWHM) of the incident light small
enough to avoid overlap and interference between possible scattering orders (typically ∆θ ≈
23◦); i.e., any incident plane-wave component leads to an isolated zero-order output plane-
wave component that makes the same angle with the surface normal. In this case the zero-
order diffracted beam is simply given by

Ẽout, i (θx,θy;λ ) = ∑
j

t̃i j (θx,θy;λ ) Ẽin, j (θx,θy;λ ) , (6.1)

where Ẽout, i is the far field at the backside of the hole array and Ẽin, j is the field incident
at the frontside of the array, with i, j = x,y the two transverse coordinates in the paraxial
approximation. Equation (1) gives a complete description of the far field behind the array; the
transmission matrix t̃i j (θx,θy;λ ) specifies the amplitude and polarization relation between
the input and output plane-wave components at wavelength λ and angles (θx,θy) with the
array normal (z axis). The corresponding near-field relation is found by Fourier transforming
Eq. (6.1), and is given by

Eout, i (x,y;λ ) = ∑
j

∫

ti j

(

x′,y′;λ
)

Ein, j

(

x− x′,y− y′;λ
)

dx′dy′, (6.2)

where the integration is over the area occupied by the hole array, and Eout, i and Ein, j are
the near-field components at the array. By applying a standard Fourier theorem, the product
of t̃ and ~̃E in Eq. (6.1) has been changed into a convolution of the corresponding Fourier-
transformed quantities in Eq. (6.2). The Green’s tensor function ti j (x

′,y′;λ ) (the Fourier
transform of t̃i j) now describes the (near-field) transmission properties of the array and thus
contains both polarization and propagation effects.

For completeness, we note that Eq. (6.1) is not valid for diffraction by a single subwave-
length hole; in order to have a plane wave at the output we need a (periodic) array of such
holes. Even without the above analysis, it is obvious that far-field measurements on a single
subwavelength hole would not provide useful information, contrary to near-field measure-
ments.

Experimentally, the transform from near field to far field can be realized by putting the
hole array in the focus of a telescope consisting of two positive lenses. The input lens of the
telescope focusses the (collimated) beam to the desired spot size; the far field can be observed
at the back focal plane of the output lens. It is important to note that, in this situation, the
observed far-field pattern does not depend on the (longitudinal) position of the hole array
with respect to the intratelescope focus of the incident beam. This follows trivially from the
far-field description in Eq. (6.1), because propagation of the field from one transverse plane
to another along the focussed beam does not change the angles of the plane-wave compo-
nents present in the beam, so there is no (longitudinal) position dependence in Eq. (6.1). In
the near-field picture, on the other hand, this invariance sounds somewhat surprising. If the
array is moved out of the focus of the incident beam, the size of the optical field on the array
will certainly change. On naive arguments one might expect the (transverse) SP propagation
to be less important for larger illumination spots. The apparent paradox between near-field
and far-field descriptions can be resolved, however, by noting that the phase of the optical
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field is as important as its amplitude; the SP’s are excited coherently and transport this phase
information to positions where they decay radiatively (and thus contribute to the output field).
When the hole array is positioned outside the optical focus, where the incident beam is rel-
atively large but has a curved optical phase front, it is the transverse transport of the phase
information by SP’s that apparently produces the structure in the far field.

A far-field measurement as described above allows for a simple analysis of the polar-
ization aspects of the transmission. For a square array and normal incidence (with plane-
wave illumination) these are trivial: there is no polarization dependence of the transmission
and the polarization of the output is the same as that of the input, i.e., the transmission is
polarization isotropic. This is because the square symmetry of the array allows only exci-
tation of frequency-degenerate sets of SP’s, each having a well defined polarization; these
polarizations sum up to the same polarization as that of the incident light, again due to the
square symmetry. For instance, the set (±N,0), which is x polarized, is frequency degener-
ate with the set (0, ±N), which is y polarized. For normal incidence on a rectangular array
this frequency degeneracy would disappear and the polarization properties would become
anisotropic. Somewhat analogously, the same thing happens for non-normal incidence on a
square array.

In the experiment, we measured the far field of the transmitted light of the hole array by
putting it in the focus of a telescope, consisting of a confocal configuration of two lenses
(L1) with 15-mm focal length each, as shown in Fig. 6.1. The telescope was illuminated by a
linearly polarized laser beam from a Ti:sapphire-laser with a tunable wavelength. This beam
was first focused through a 10-µm pinhole (P) to produce a nearly plane wave, homogeneous
illumination of the entrance pupil of the telescope, which was set by a 6-mm diaphragm (D).
We estimate the spot diameter at the intratelescope focal plane as approximately 2 to 3 µm
(i.e., covering roughly 15 holes). The orientation of the input polarization was set with a
half-wave-plate (HWP). A relay lens (L2; 10-cm focal length) was used to make a one-to-
one image of the output telescope-lens on a CCD (Apogee), which therefore recorded the
far-field transmission pattern of the array. This pattern was observed to be independent of
the longitudinal position of the array relative to the focus, except from a trivial cut off of the
angular size of the transmitted far field when the array is too much out of focus; this confirms
the theoretical discussion given above.

The array that we have studied is a 1 mm × 1 mm hole array in a 200-nm-thick gold
layer, which is attached to a 0.5 mm glass substrate by a 2-nm titanium bonding layer. The
metal layer is perforated with a square grid of 200-nm diameter holes spaced with a 700-nm
lattice constant. A typical transmission spectrum of the hole array for unfocused light (i.e.,
beam diameter ≈ 1 mm) at normal incidence is shown in Fig. 6.2 (solid curve); this spectrum
was measured with an incandescent lamp in combination with a fibre-coupled grating spec-
trometer array. The peak transmission of the most prominent resonance, 6 % at 810 nm, is
much larger than the value of 0.56 % expected from “classical”theory [2]. On the basis of the
simple model described above [4], we associate the 810 nm resonance with the four (±1,±1)
modes on the metal-glass interface, which are frequency degenerate at normal incidence. The
measured transmission spectrum in the focused situation (i.e., spot diameter approximately
2 to3 µm) is shown in Fig. 6.2 (dashed curve). The individual peaks are “smeared out”as
compared to the full curve, due to the angle dependence of the transmission, i.e., the SP dis-
persion, in combination with the effective integration over the range of angles of incidence
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Figure 6.1: Light from a Ti:sapphire frequency-tunable laser is passed through a pin-
hole P (diameter 10 µm, positioned at l = 40 cm), half-wave plate HWP, diaphragm
D and a telescope consisting of two lenses L1 of 15-mm focal length. The hole ar-
ray, which is positioned in the center of the telescope, modifies the optical field profile
through SP excitation and propagation in the transverse (xy) plane (see arrow and in-
set). Relay lens L2 images the transmitted far field (dashed line) onto a CCD, which
thus records the transmission in a single run. Inset: Schematic representation of the
near field at the backside of the hole array for 810-nm light. The incident optical elec-
tric field, polarized at 90◦ (dashed arrow), is decomposed into four resonant SP’s (solid
contour lines). These SP’s propagate along, and are polarized at, +45◦/+ 225◦ and
−45◦/+135◦ respectively (solid arrows). The shaded overlap region is polarized along
the incident field. In the far field, narrow and wide dimensions are interchanged due to
Fourier relations, but the polarization directions remain unchanged.

that is present in the focus.
Figure 3 shows the measured far-field pattern at a wavelength of 810 nm. Each of the

four pictures was obtained for a different linear input polarization, (a) 0◦, (b) 90◦, (c) 45◦

and (d) −45◦, indicated by arrows in the pictures. The throughput intensity is measured
without any further polarization analysis. In all images, interference rings of equal inclination
are visible. These result from the glass substrate acting as a Fabry-Perot and producing
interference for the plane-wave components at different angles present in the focus. When
the hole array is removed the far field returns to almost uniform illumination [the intensity
varies less than 25% across the field of view, as can be seen in the cross-section shown in
Fig. 6.3(e)] so that Fig. 6.3(a) and (d) give a relatively good quantitative measure for the
angle-dependent transmission T(θx,θy). The pictures in Fig. 6.3 visualize the nature of the
dominant SP resonances that are addressed at 810 nm. The prominent diagonal ”lobes”are
consistent with the (±1,±1) labelling. For incident light polarized along 0◦ (or 90◦) the lobes
on both the diagonals are excited [Fig. 6.3(a) and (b)]. For +45◦ input polarization angle only
the lobes along one of the diagonals are excited [Fig. 6.3(c)], for −45◦ the complementary
ones [Fig. 6.3(d)]. This shows that the incident optical electric field is decomposed into
components along the four resonant modes, thereby exciting either one or both diagonals
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Figure 6.2: Wavelength-dependent transmission of the hole array used in the experi-
ment, for unpolarized (white) light. The solid curve shows the transmission spectrum in
the case of a normally incident plane wave as input. The dashed curve corresponds to
a focused beam as input.

depending on the incident polarization angle. This is displayed schematically in the dashed
inset in Fig. 6.1 for incident light of 90◦ polarization angle, where the incident field (dashed
arrow) is decomposed into two equal components along the “diagonal”(±1,±1) modes (solid
arrows).

From the far-field measurements of Fig. 6.3 we can extract information about the near
field at the backside of the array as long as we restrict ourselves to near-field structures larger
than an optical wavelength. More specifically, from the measured transmission t̃i j (θx,θy;λ ),
we obtain information on the propagation direction and the mean free path of the excited
SP’s (being several optical wavelengths large). Based on Fourier relations as those between
Eqs. (6.1) and (6.2), a compact far field in a certain direction corresponds to a wide near
field in that direction; such a wide near-field distribution in ti j (x,y;λ ) corresponds to SP
propagation. This is evident in Fig. 6.3(c), where an input polarization of 45◦ gives a far
field that is compact in the same direction but wide in the orthogonal direction. A rough
quantitative estimate based on a 3◦ (FWHM) far field corresponds to a near-field propagation
of only 2 µm; in this calculation it has been assumed that the SP’s propagate along one fixed
axis, i.e., in one dimension. A more accurate two-dimensional description which takes into
account the (slight) spread in the SP propagation direction (induced by focussing), would
lead to a slightly larger propagation length [similar to the 20% larger far-field diffraction
width of a circular aperture (two dimensional), as compared to a slit (one dimensional) of
identical width [27]]. As the value for the propagation length is certainly much smaller than
the theoretical value of 40 µm expected for a smooth gold film at this wavelength [13],
we note that SP scattering by the holes, (mainly) leading to radiation decay, must be very
important. Our result is consistent with propagation lengths that can be deduced from other
experiments [59].

In a second experiment, the polarization of the 810-nm mode was analyzed by putting
a polarizer behind the hole array. Fig. 6.4(a) and (b) show the measured far fields for an
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Figure 6.3: Far-field transmission of the hole array, at a wavelength of 810 nm. The
CCD images span a 17.6◦×17.6◦ solid angle (the far-field angles are indicated by the
numbers alongside the figures). The input polarization (white arrows) was set at (a)
0◦, (b) 90◦, (c) 45◦, (d) −45◦. The color scales are different for each picture. A cross-
section along θy = 0 of the far field recorded without array in the telescope (e) shows
that the input illumination was nearly uniform.

61



6. Polarization analysis of propagating surface plasmons in a subwavelength hole array

Figure 6.4: Polarization analysis of the far-field transmission of the hole array at
810 nm. The far-field angles are indicated by the numbers alongside the figures
(17.6◦×17.6◦ solid angle). The input polarization is 90◦ (white arrows). The polarizer
in front of the CCD is oriented at (a) 45◦ and (b) 0◦ (red arrows).

input polarization of 90◦ (white broken arrows), which excite both +45◦ and -45◦ modes
equally (see also the inset in Fig. 6.1). In the first picture [Fig. 6.4(a)] the analyzing polarizer
was set at +45◦ (red arrows). For this polarization, only the lobes corresponding to the
(1,1) and (-1,-1) modes are visible. This demonstrates that the associated SP modes are
polarized at +45◦ and, at the same time, that the orthogonal (invisible) (-1,1) and (1,-1)
modes are polarized at −45◦ (for which the polarizer is at blocking angle). In both cases,
the Fourier-transform argument tells us that the polarization is in the same direction as the SP
propagation direction, as expected. The second picture [Fig. 6.4(b)], made with the analyzing
polarizer at 0◦ (blocking angle to input polarization), shows no intensity in the central overlap
region (corresponding to the telescope axis), whereas the outward lobes (corresponding to
off-axis angles) do have intensity. This is consistent with the statement that the transmission
in the central spot, which corresponds to angles of incidence close to zero, is polarization
isotropic. In the inset in Fig. 6.1, this is illustrated (in the near field) by the shaded region,
where both orthogonal polarization components are present and overlapping due to the finite
width of the lobes (indicated by the solid contour lines). On the other hand, the outward
lobes (outside the shaded region in Fig. 6.1) each have a unique polarization (indicated by
arrows). In fact, the outward lobes behave quite similar to polarizers, as they transmit only the
polarization component of the incident light aligned with their axis (at ±45◦). In the situation
of Fig. 6.4(b), where the hole array is effectively placed between two orthogonal polarizers
(at 0◦ and 90◦), this means that the “lobe-polarizers”(at ±45◦) are expected to transmit 1/4 of
the incident intensity, due to simple projection arguments.

Some further comments on the far fields in Fig. 6.3 and Fig. 6.4 are as follows:
(i) A closer look at Fig. 6.3(a) and (b) reveals that these figures are not perfectly fourfold

symmetric, but have some twofold symmetry admixed; this slight symmetry breaking is not
visible for the “pure”lobes in Fig. 6.3(c) and (d), which are intrinsically twofold symmetric.
Notice also the (modest) S-shape in Fig. 6.4(a).

(ii) A closer look at Fig. 6.4 shows slight symmetry breaking in the transmission values
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6. Polarization analysis of propagating surface plasmons in a subwavelength hole array

Figure 6.5: Far-field transmission of the hole array, at a wavelength of 750 nm. The
far-field angles are indicated by the numbers alongside the figures (17.6◦×17.6◦ solid
angle). The input polarization (white arrows) was set at (a) 0◦ and (b) 45◦. Note the
presence of xy-oriented lobes, which is very prominent in (a), but also visible in (b). The
color scales are different for each picture.

of the four outward lobes (ii): Off axis, i.e., in the lobes, typical transmissions for 0◦-input
polarization are 35% (±5%) for 0◦-output polarizer, and 15% (±5%) for 90◦-output polarizer.
Note that these transmissions are normalized to the maximum (center) value in Fig. 6.4(a).
These values differ significantly from the expected 25%, based on the assumption that the
transmission process is mediated by the (±1,±1) modes only.

The observations (i,ii) mentioned above demonstrate that, for certain details, it is too
simple to consider only a single set of SP’s living on one side of the array, i.e., only the
(±1,±1) metal-glass modes. Theoretically, one expects the strongest influence of the (±1,0)
and (0,±1) modes on the air-metal side (at ≈ 750 nm), as they are the nearest resonance. The
coherent admixture of these modes would be consistent with the observations (i,ii).

On the basis of the SP-assisted transmission model, one expects that transmission reso-
nances at different wavelengths have different far-field patterns and polarization properties.
We have confirmed this by far-field measurements for the resonance at 750 nm, as shown
in Fig. 6.5. The 750-nm resonance shows horizontal and vertical lobes [both in Fig. 6.5(a)
and (b)], confirming the expected (±1,0) and (0,±1) nature of the SP’s at this frequency.
However, for this wavelength the patterns are more complicated than those at 810 nm; note,
for instance, the dark bands, which are oriented orthogonal to the input polarization in both
Fig. 6.5(a) and (b). This complication is also visible in the more complex dispersion curves
at this wavelength (not shown).

In conclusion, we have shown that polarization-dependent measurements of the far field
are useful to analyze the optical properties of metal hole arrays. The reason that we can de-
duce useful information from the far field is simply that the SP propagation length is larger
than the optical wavelength; our method does not (of course) give information on subwave-
length scales. The far-field method is conceptually simple and is an important addition (if not
substitute) to near field methods which are inherently more difficult to perform and interpret.
We have shown that the polarization plays an important role, as it is related to SP propaga-
tion. In a way, SP modes act as polarizers that pass only the polarization component that is
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6. Polarization analysis of propagating surface plasmons in a subwavelength hole array

aligned with their propagation directions. Our measurements show that the gross features of
the transmission can be adequately explained by a “single SP resonance”model. The limita-
tions of this simple model show up, however, indicating that more modes have to be taken
into account for a realistic theoretical description of the transmission process.
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CHAPTER 7

Fano-type interference in the point spread function of
nanohole arrays

Measurement of the point-spread function of metal nanohole arrays by using microscopic
imaging reveals two contributions. The first of these is due to propagating resonant sur-
face plasmons and the second to nonresonant transmission through the holes. We observe
a Fano-type interference between these contributions.

E. Altewischer, X. Ma, M.P. van Exter and J.P. Woerdman, accepted for publication in
Opt. Lett.
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7. Fano-type interference in the point spread function of nanohole arrays

Subwavelength hole arrays in metal films show intriguing transmission resonances that
are usually attributed to the resonant excitation of surface plasmons (SPs) propagating along
the array surface [1,6,26]. The important role of SPs has been deduced, amongst others, from
the polarization-dependent angular dispersion of these transmission resonances. The most di-
rect proof yet is the imaging of the SPs as they propagate along the metal film. This imaging
is generally done with scanning near-field optical microscopes (SNOM), which have sub-
wavelength resolution [60,61]. We use a simpler approach, namely, conventional (“far-field”)
microscopic imaging, equivalent to a point-spread function measurement. Being diffraction-
limited, microscopic imaging does not allow single-hole resolution. This is not a problem
however when studying SP propagation, because they propagate over many optical wave-
lengths. Furthermore, conventional imaging gives less ambiguous results and an excellent
signal-to-noise ratio.

A similar imaging technique was demonstrated very recently by Tetz et al. [62]. In con-
trast to their approach our technique is not only sensitive to the propagating SPs, but also
allows the observation of a direct (nonresonant) transmission, the presence of which was al-
ready inferred from the asymmetric Fano-type line shapes in transmission spectra [12,53]. By
comparing the imaging results with a simple model, based on damped two-dimensional Huy-
gens spherical wavelets, we are able to quantify both the relative amplitude and the relative
phase of this important term. We also observe a Fano-type interference with the transmission
carried by the propagating SPs.

We use a simple two-channel Huygens model to describe the spatially resolved optical
transmission of our nanohole arrays [63]. In the “direct” channel each hole transmits a fixed
fraction of the incident optical field. In the “indirect” channel, however, the input and output
profile can be very different. Because the holes are much smaller than the optical wavelength,
we treat them as discrete points. Each hole acts as a dipole emitter of SPs, which propagate
as damped two-dimensional waves along the array surface and can subsequently be coupled
out as photons at any hole they encounter. In certain directions, determined by the SP wave-
length and the lattice spacing and symmetry, constructive interference will give rise to SP
resonances. As a result, the output profile will contain “exponentially” decaying tails in the
direction of these resonantly excited SPs [64]. We stress that the SP modes are not put in by
hand, but appear naturally as resonances in the summation.

In our Huygens model the output field E out is given by a discrete convolution, i.e., a sum
over all lattice points ~ρ , of the propagator G(~ρ) and the input field E in:

E out
i
(

~ρ ′) = ∑
j
∑
~ρ

Gi j (~ρ )E in
j
(

~ρ ′−~ρ
)

(7.1)

Gi j (~ρ ) ∝ σ̃ δ (~ρ )δi j + (7.2)

(1−δ (~ρ ))
[ ρ̂ ⊗ ρ̂ ] i j√

`
exp(−`/LSP)exp(ikSP `),

where ` = |~ρ | is the distance between excitation point and radiation point, ρ̂ = ~ρ/|~ρ | is the
propagation direction, δ (~ρ ) is the discrete Dirac delta function (δ (~ρ) = 1 only at ~ρ = 0) and
δi j is the Kronecker delta; the factor (1−δ (~ρ )) expresses that an SP cannot be coupled out
at the hole it is created at (no “self-coupling” of SPs). This model contains three variables: i)
the complex-valued σ̃ , which specifies the relative amplitude and phase of both transmission
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7. Fano-type interference in the point spread function of nanohole arrays

Figure 7.1: Experimental setup in which the hole array, positioned with its glass side
oriented towards the input beam, is illuminated with a tightly focussed beam. The
position-resolved transmission is obtained through direct imaging onto a CCD.

channels, ii) the SP decay length LSP, and iii) the optical frequency ω , expressed in terms of
the SP momentum kSP = neffω/c for propagation at a speed of c/neff. The subscripts i, j label
the two polarizations orthogonal to the surface normal. The direct channel is polarization
isotropic, since the holes in our arrays are circular. The indirect channel, however, contains
a polarization projection factor [ ρ̂ ⊗ ρ̂ ] i j, which accounts for the projection of the input field
on the longitudinal field component of the SPs (oriented along the propagation direction ρ̂).
The factor 1/

√
` takes care of energy conservation in the two-dimensional plane. This factor

becomes visible only for propagation lengths that are sufficiently large compared with the
excitation spot size, where beam spreading becomes important.

Our nanohole array was fabricated with e-beam lithography and consisted of a 200-nm
thick gold film on a 0.5-mm thick glass plate with a 2-nm thick titanium bonding layer in
between [65]. The holes of 200-nm diameter were spaced in a square lattice with lattice
period a = 700 nm. We address the (±1,±1) mode at the glass-metal interface, which has a
transmission peak at 810 nm (see Chapter 6). Figure 7.1 shows the optical beam line which
starts with a laser beam at 810 nm that is mode-cleaned by a fiber. Two microscope objectives
allow us to adjust the size of the focus on the hole array, which is positioned with its glass side
towards the beam. A third objective projects a magnified image of the back of the array onto
a CCD. To minimize (spherical) aberrations great care was taken in selecting the illumination
objective L2 (40 ×, NA = 0.6 with adjustable glass correction) and the imaging objective L3
(50 ×, NA = 0.6), both with long working distance.

Figure 7.2: Two output profiles of a square hole array excited with a Gaussian input
profile with spot radius w = 1.6 µm (image size is 15×15 µm2). The input polarizations
are oriented along the arrows.
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7. Fano-type interference in the point spread function of nanohole arrays

Figure 7.3: Cross-sections of the output profile along the SP propagation direction
(diagonals of the square array) for excitation with “diagonal” polarization. The cor-
responding spot sizes of the input beam are w = 1.6 (dark curve) and 2.3 µm (gray
curve), respectively. For reference the (w = 1.6 µm) input profile measured through the
bare glass plate is also shown (dashed curve). (a) Logarithmic scale. (b) Linear scale.

Typical output profiles for our square array with circular holes are shown in Fig. 7.2. The
structure of the profiles depends on the size of the input beam waist (see below). The optical
polarization plays a special role: it allows one to selectively excite certain SP modes. This
is illustrated in Fig. 7.2(a) where the input polarization is along one array diagonal, exciting
only the resonant SPs propagating in this direction. In Fig. 7.2(b) the input polarization is
horizontal, thereby exciting the resonant SPs propagating along both diagonal directions.

Cross sections along one diagonal of the output profiles are shown in Fig. 7.3 for two dif-
ferent illumination beam radii w = 1.6 and 2.3 µm, respectively. The curves are normalized to
the total input power and the input polarization was set as in Fig. 7.2(a). In Fig. 7.3(a) (loga-
rithmic scale) a cross section of the smallest input beam (w = 1.6 µm) is also included, which
shows that the input is nicely Gaussian. The obtained images of the hole array transmission
contain speckle, presumably caused by irregularities and surface defects in the hole array.
To remove this speckle, we average over 100 different transverse array positions in the focal
plane. As is visible in Fig. 7.3, this gives high-quality measurements with smooth curves and
a dynamic range of more than four orders of magnitude. We experimentally checked that the
averaged image of the transmission is independent of the longitudinal position of the hole
array with respect to the focus (see Chapter 6). An out-of-focus array position in fact has the
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7. Fano-type interference in the point spread function of nanohole arrays

Figure 7.4: The measured cross-section at w = 1.6 µm (identical to the dark solid curve
in Fig. 7.3) and three fits. The dashed dark line on the right is a simple exponential fit.
The gray solid and gray dashed curves are results of the Huygens model, with σ̃ = 0 and
σ̃ = 4.9× exp(−1.2i), respectively. The inset shows two theoretical curves with σ̃ = 0
(solid) and σ̃ = 4.9× exp(−1.6i) (dashed) demonstrating the Fano-type interference
more clearly.

advantage that the speckle is “averaged out” even more because the input beam covers more
holes than in the focus; however, in order to maintain conceptual simplicity, we did not use
this trick.

The two channels can be recognized immediately: the central part of the figure, resem-
bling the input profile, originates from the direct channel, whereas the exponentially decaying
tails show the SP propagation in the indirect channel. The changing of the input beam waist
has two effects: it changes the peak power originating from the direct contribution and it
changes the way the two channels interfere. The first effect is seen more clearly in Fig. 7.3(b)
(with a linear scale), where there is a factor 1.9 difference between the transmitted peak in-
tensities for the two input beam waists. The second effect produces the “dips” in the curve
for w = 1.6 µm; these are not present in the curve for w = 2.3 µm.

The relatively large peak transmission for the direct channel seems surprising, because
the opposite is true in transmission spectra, where the SP resonances are much stronger than
the direct transmission. This surprise disappears when the spatially integrated output power
is considered. Because the direct contribution is localized to the excitation spot, and the
SP-mediated contribution is spread out and diluted over a much larger area because of SP
propagation, the spatially integrated SP part still dominates the total transmission. This is in
agreement with published optical far-field measurements where the direct channel was hardly
observable (see Chapter 6).

To further explore the interference between the two channels, we compare the experi-
mental cross-section at w = 1.6 µm (taken from Fig. 7.3) with three fits in Fig. 7.4. A simple
exponential fit of the wings (shown here for the right-hand wing only) gives an average SP
propagation length of LSP = 1.9±0.1 µm. The two other curves in the main panel of Fig. 7.4
show simulated results from the full Huygens model, where the gray dashed curve is the best
fit to the experimental data with |σ̃ | = 4.9 ± 0.7 and arg(σ̃) = −1.2 ± 0.2, and the gray
solid curve has σ̃ = 0; both use the value for LSP determined above and are calculated at the
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7. Fano-type interference in the point spread function of nanohole arrays

resonance kSP = 2π
√

2/a. The absence of a contribution for ` = 0 in the indirect channel
causes the lower transmission at the position 0. The differences between the gray dashed and
solid curves at the position indicated by the arrow in Fig. 7.4, are caused by a Fano-type in-
terference effect: when both channels are active, interference between the two gives a lower
intensity at the mentioned positions than when only the indirect channel contributes. The in-
terference is best observable at the arrow positions where the two channels are approximately
equally strong. The exact shape of the curve at these points depends strongly on the value of
arg(σ̃), as can be seen from the inset in Fig. 7.4 with arg(σ̃) =−1.6, where prominent “dips”
appear. The curve shape can thus be used to estimate this phase.

A comparison of a measured transmission spectrum for plane-wave illumination with
the theoretical spectrum calculated on the basis of the Huygens model, requires a value of
arg(σ̃) = −0.7 rad to get a good fit. The deviation from the value of arg(σ̃) = −1.2 rad
given above, can be due to a slightly “out-of-focus”position of one of the lenses, causing a
wave-front curvature with an associated additional phase difference. Another reason might
be a small detuning of kSP from resonance, for which the model is rather sensitive.

In conclusion, we have shown that direct imaging of the transmission of nanohole arrays
can provide valuable insights into their transmission mechanism. A simple Huygens model
including Fano-type interference is able to explain the measured data quite well.
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CHAPTER 8

Polarization tomography of metallic nanohole arrays

We report polarization tomography experiments on metallic nanohole arrays with square
and hexagonal symmetry. As a main result we find that a fully polarized input beam is
partly depolarized after transmission through a nanohole array. This loss of polarization
coherence is found to be anisotropic; i.e., it depends on the polarization state of the input
beam. The depolarization is ascribed to a combination of two factors: (i) the nonlocal
response of the array as a result of surface plasmon propagation and (ii) the nonplane-
wave nature of a practical input beam.

E. Altewischer, C. Genet, M.P. van Exter, J.P. Woerdman, P.F.A. Alkemade, A. van Zuuk,
and E.W.J.M. van der Drift, Opt. Lett. 30, 90-92 (2005).
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8. Polarization tomography of metallic nanohole arrays

Currently there is much interest in the optical properties of thin metal films perforated
with arrays of subwavelength holes, or nanohole arrays. The optical transmission of these
arrays shows a strongly peaked spectrum with anomalously large transmission peak values;
this is usually ascribed to resonant excitation of propagating surface electromagnetic waves
or surface plasmons (SPs) [1, 4, 13]. In this Letter we focus on the polarization properties of
the anomalous transmission and show that these are strongly influenced by the propagating
nature of the SPs.

So far, polarization properties of nanohole arrays have been studied in a limited context:
a beam with a given uniform state of polarization (SOPin) is transformed, by an anisotropic
array or an isotropic array with nonspherical holes, in a different uniform state of output polar-
ization (SOPout ) [9,66,67]. This corresponds to a mapping of the Poincaré sphere onto itself;
for instance, a rectangular array or a square array with elliptical holes acts as a birefringent
and (or) dichroic element that may convert a linear SOP into an elliptical SOP, conserving
polarization coherence. In the present Letter we focus instead on cases where the degree
of polarization (DOP) is reduced, DOPout < DOPin, corresponding to a reduction in radius
and, in general, a deformation of the Poincaré sphere [68, 69]. To underline this point we
have chosen for our experiments square and hexagonal arrays, i.e., arrays that, for symmetry
reasons [70], cannot modify the SOP for plane-wave illumination at normal incidence. As
we will show, depolarization occurs when two (quite common) conditions are simultaneously
fulfilled: (i) the response of the array is nonlocal because of SP propagation, and (ii) the input
beam is not a plane wave [but e.g. a Gaussian beam, with a finite numerical aperture (NA)].

In general, depolarization occurs when an optical system acts nonuniformly on polar-
ization within the (spatial or temporal) bandwidth of the incident wave, thereby coupling
polarization to other degrees of freedom. Experimentally, a study of depolarization requires
a measurement of the Mueller matrix by a tomographic method [68, 69]. Here we report
such polarization-tomography experiments on nanohole arrays and interpret the results in the
context of SP propagation.

We start by recapitulating the essence of our theoretical model [70]. The input and output
optical fields of the array are related via a nonlocal linear response as ~Eout(~r,ω) =

∫

t(~r −
~r′,ω)~Ein(

~r′,ω)d~r′. In the far-field, or Fourier domain, this is equivalent to ~Eout(~kt ,ω) =

t(~kt ,ω)~Ein(
~kt ,ω), where ~kt is the transverse wavevector component; the output ~kt is equal to

the input ~kt for the zeroth-order transmission. If the nonlocal response depends on polariza-
tion, the four elements of the 2×2 transmission tensor t(~kt ,ω) will exhibit a different angular
dependence and the output field ~Eout(~kt ,ω) will have a spatially dependent polarization even
for a polarization-pure input field, see Chapter 6. After spatial integration, this transmission
process can be captured in the simple relation Sout = MSin, which relates the input and output
Stokes vectors through the 4× 4 Mueller matrix M. For ideal square and hexagonal arrays
the Mueller matrix has been predicted to be diagonal (no mixing of Stokes parameters) [70].
For hexagonal arrays, the additional symmetry relation M11 = M22 holds.

The magnitudes of the diagonal elements M00, M11, M22 and M33 depend on the dimen-
sionless product of the SP propagation length and the wave-vector spread of the input beam,
`SP∆kt . A full theoretical description thereof would require a microscopic model; however,
from physical considerations it can be seen that an appreciable deviation of Mii/M00 from 1
requires `SP∆kt > 1. In any case there will be no depolarization if either there are no propa-
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8. Polarization tomography of metallic nanohole arrays

Figure 8.1: Transmission spectra of nanohole arrays under almost plane-wave illumi-
nation at normal incidence for the square and hexagonal array. The dashed vertical
line indicates the resonance wavelength of 810 nm used in the experiments. The insets
show scanning electron-beam micrographs of the arrays, with 2-µm scale bars.

gating waves (`SP = 0) or there is plane-wave illumination (∆kt = 0); both propagation and a
wave-vector spread are necessary. This statement holds for hole arrays of any symmetry (i.e.,
not only for the square and hexagonal arrays used in our experiment).

To measure the Mueller matrices we use a linearly polarized titanium:sapphire laser at a
wavelength of 810 nm, which is the approximate resonance wavelength of the hole arrays (see
Fig. 8.1), to illuminate the input lens of a symmetric telescope. After transmission through a
hole array positioned at the focus of the telescope, the light is imaged onto a photodiode. The
SOP of the incident light is set by a rotatable quarter- or half-wave plate in front of the first
lens. The Stokes parameters at the output are measured with a rotatable quarter-wave plate
and a polarizer positioned in front of the photodiode. The polarization isotropy of all optical
components was checked by measuring the Mueller matrices of the setup in the absence of
hole arrays. These matrices were practically equal to the identity matrix, with individual
elements deviating by not more than 0.02 (typically 0.008).

Our arrays were fabricated in Au films on glass substrates. We used a square array made
with electron-beam lithography, with a lattice spacing of 700 nm and a nominal hole diam-
eter of 200 nm, and a hexagonal array made with ion-beam milling, with a lattice spacing
of 886 nm and a nominal hole diameter of 200 nm. Transmission spectra of both arrays un-
der almost plane-wave illumination at normal incidence are shown in Fig. 8.1. Both arrays
show a resonance wavelength of 810 nm; the polarization experiments were performed at this
wavelength. These resonances correspond to SPs propagating in the (±1,±1) direction at the
metal-glass interface for the square array, and the (six-fold degenerate) (1,0,0) direction at
the metal-air interface for the hexagonal array (the labeling is with respect to the recipro-
cal lattice vectors) [71]. The linewidths are 40 nm and 25 nm for the square and hexagonal
arrays, respectively, from which we estimate `SP ≈ 2µm and `SP ≈ 4µm, respectively [61].
The difference in `SP values is probably caused by both the different array structures and the
different resonant surfaces (less damping on the air-metal interface than on the glass-metal
interface).

We have characterized the arrays with almost plane-wave illumination (numerical aper-
ture of NA = 0.01 or ∆kt ≈ 0.08µm−1) and focussed illumination (over a range up to NA ≈
0.15 or ∆kt ≈ 1.2µm−1). Figure 2 shows the dependence of the diagonal elements of the
Mueller matrix on the NA of the incident light for both arrays. The figure shows that, for
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Table 8.1: Mueller matrices measured under four different conditions. Normalization
constants (absolute intensity transmission for unpolarized light) of the matrices are
1.4% (hexagonal NA 0.01), 0.47% (hexagonal NA 0.10), 7.1% (square NA 0.01) and
2.2% (square NA 0.15).

Measurement Mueller matrix M

Square
array
NA = 0.01
`SP∆kt ≈ 0.2











1.00 0.00 −0.02 0.00
−0.02 1.01 −0.01 0.00

0.00 0.00 1.01 −0.01
0.00 0.00 0.02 0.99











Square
array
NA = 0.15
`SP∆kt ≈ 2











1.00 0.01 −0.02 0.01
0.01 0.55 −0.04 −0.03

−0.04 0.02 0.84 0.01
−0.01 0.01 0.01 0.41











Hexagonal
array
NA = 0.01
`SP∆kt ≈ 0.3











1.00 0.06 −0.14 0.00
0.04 1.00 0.00 −0.07

−0.12 0.01 1.01 −0.03
0.00 0.06 0.02 0.97











Hexagonal
array
NA = 0.10
`SP∆kt ≈ 3











1.00 0.03 −0.11 0.00
0.02 0.78 0.00 −0.08

−0.13 0.01 0.78 0.00
0.00 0.06 0.02 0.51











the case of almost plane-wave illumination (NA ≈ 0), the Mii values are close to 1 for both
arrays. There is no depolarization, as ∆kt ≈ 0. However, for increasing wavevector spread, or
decreasing spot size on the array, the depolarizing effect of the arrays quickly increases. Fur-
thermore, the depolarization is clearly anisotropic, i.e., the amount of depolarization depends
on the input SOP, because the Mii are not all equal. For the hexagonal array the depolarization
sets in faster with increasing NA than for the square array, because of the smaller resonance
linewidth (larger `SP) of the hexagonal array.

The effect of the different array symmetries on the curve shapes are prominent. For
the square array [Fig. 8.2(a)], the observed inequality M22 > M11 shows that there is less
depolarization for an input polarization along either of the array diagonals than for a polar-
ization along the main axes. This observation is consistent with the (±1,±1)-propagation
directions of the resonantly excited SPs on the metal-glass interface; as SPs are mainly lon-
gitudinally polarized, they preserve polarization along their propagation direction. However,
the deviation of M22 from 1 indicates that the (±1,±1) SPs are not the only SPs involved
in the transmission process; other (nonresonant) SPs on both surfaces apparently contribute,
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Figure 8.2: Diagonal elements Mii of the Mueller matrix, normalized to M00, as a
function of the NA of the incident light beam on the (a) square and (b) hexagonal hole
array. Squares, M11; triangles, M22; circles, M33; dashed vertical lines indicate the
NAs at which the full Mueller matrices were measured (see Table 8.1).

see Chapter 6. For the hexagonal array [Fig. 8.2(b)] the theoretical equality M11 = M22 also
holds quite well. For both arrays, M33 is the smallest diagonal element. This shows that de-
polarization is most dramatic for circularly polarized light, a case that, to our knowledge, has
not been studied before. We note that M33 ≈ M11 +M22−1 for both arrays; this follows from
an extension of the symmetry-based theory used here by explicit modeling of SP propagation
(see Chapter 9).

The full Mueller matrices for both arrays are shown in Table 8.1. The diagonal elements
(marked with boxes in the table) conform to the discussion given above. The off-diagonal
elements of a perfectly symmetric square or hexagonal array should theoretically be zero.
For our square array they are indeed relatively small and do not show any systematic behav-
ior. For the hexagonal array, however, these elements are much larger, both for plane-wave
and focussed illumination. Furthermore, the off-diagonal elements have a clear pattern and
similar values in both cases, where the odd off-diagonal elements M02, M20, M13 and M31 (un-
derlined in the Table 8.1) are substantially larger than the others. This pattern was checked
to be present also for an intermediate NA of 0.03. The pattern is compatible with a birefrin-
gent and (or) a dichroic 45◦ axis, which is apparently due to array errors, such as a spatially
variant lattice spacing or ellipticity of the holes. These errors could be created by alignment
errors or even intrinsic imperfections in the ion-beam optics (astigmatism and deflection er-
rors). Our work shows that polarization tomography provides for sensitive diagnostics of
array symmetry imperfections.

From a general perspective, Mueller tomography is a purely phenomenological tool to
characterize the polarization behavior of optical systems. Still, it can give new insight into the
physical mechanisms active in hole arrays, in our case SP propagation. It would, for instance,
be interesting to perform Mueller tomography on metal hole arrays in the (sub)millimeter-
wave regime, as SPs propagate much farther in this part of the spectrum, which is expected
to increase the depolarization. Another area of interest is the connection between classical
polarization properties and entanglement degradation.

In conclusion, we have demonstrated surprising consequences of SP propagation for the
polarization behavior of nanohole arrays. The nonlocality of the array response forms an
essential ingredient of the physics of these intriguing devices.
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CHAPTER 9

Analytic model of optical depolarization in square and
hexagonal nanohole arrays

We present a simple analytic model, based on surface plasmon propagation, that explains
the depolarization induced by metal hole arrays illuminated with linearly and circularly
polarized light of varying numerical aperture. Arrays with square and hexagonal lattices
of circular holes are compared. We relate this model to experimental data.

E. Altewischer, M.P. van Exter and J.P. Woerdman, accepted for publication in J. Opt.
Soc. Am. B.
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9. Analytic model of optical depolarization in square and hexagonal nanohole arrays

9.1 Introduction
Some years ago, the optical transmission of thin metal films perforated with arrays of sub-
wavelength holes, or nanohole arrays [1, 4, 6], has been shown to have a strongly peaked
spectrum with anomalously large transmission peak values. This phenomenon is usually as-
cribed to the resonant excitation of propagating surface electromagnetic waves or surface
plasmons (SPs) [13]. Recently, a number of papers have studied the polarization properties
of arrays of noncircular holes [9, 67, 72], but we limit ourselves here to the case of circu-
lar holes. The polarization properties of square and hexagonal arrays of circular holes are
trivial for plane-wave illumination at normal incidence because the input and output state of
polarization (SOP) are equal (see Chapter 8). For a plane wave at nonnormal incidence, the
output SOP can be different from the input SOP, but it will still be a pure state. Only in a
focussed light beam, consisting of many plane waves at different angles of incidence, will
the output polarization not be pure anymore. A spatially uniform input SOP will generally
be transformed into a spatially varying output polarization, which translates into a depolar-
ization of the beam considered as a whole. The purpose of this paper is to introduce a simple
model that relates depolarization to hole array symmetry and SP propagation and compare
the predictions of our model to published measurements (see Chapter 8).

In general, depolarization, or a loss of polarization coherence, occurs when an optical
system couples polarization to spatial or temporal degrees of freedom, within the spatial or
temporal bandwidth of an incident wave [68]. The most convenient theoretical tool to de-
scribe depolarization is the Mueller matrix [Mi j] [68,69], where we use the notation Mi ≡ Mii
for the diagonal elements. This real-valued 4× 4 matrix couples input and output Stokes
vectors [S j] ( j = 0,1,2,3), which represent (spatial and time) averages of the optical polar-
ization. The Mueller formalism is thus capable of handling partially polarized or incoherent
waves. Conversely, the also widely used Jones formalism is applicable only to coherent and
spatially uniformly polarized light [68, 69].

In nanohole arrays, depolarization is induced by SP propagation. SPs propagate along
well-defined directions, determined by momentum conservation in the array surface plane.
They have well-defined polarizations along these propagation directions, where the polar-
ization is determined by the longitudinal component of the SP electric field [13]. A sketch
of the depolarizing process is shown in Fig. 9.1, where SP propagation transforms a spa-
tially uniform linear-polarized input beam into a spatially more extended output beam with
nonuniform polarization. The diagonal “lobes” that point in the propagation directions of the
resonantly excited SPs are polarized accordingly (indicated by the arrows in Fig. 9.1). This
near-field description can equivalently, but mathematically more conveniently (see Chapter 6
and 8), be translated into the far field. This can be done through the angle and polarization
dependence of the array transmission tensor t(~θ), which relates the input optical field to the
output field. It follows from Fourier-transform arguments that depolarization becomes ob-
servable if the product of the transverse [73] wavevector spread ∆ktr of the incident light and
SP propagation length `SP is of the order of 1 or larger (see Chapter 8). So far, an analytical
model for this depolarization has been lacking; this is what we aim for in the present paper.
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Figure 9.1: Experimental setup used to measure the Mueller matrix of the hole arrays.
The incident polarization state is set by a quarter-wave plate (QWP) or half-wave plate
(HWP); the output polarization state is measured with a combination of a QWP, polar-
izer (POL), and CCD. Lenses L form a symmetric telescope, with the hole array placed
in its focus; an aperture (A) sets the maximum numerical aperture (opening angle θA)
of the illumination. The two figures at the top contain sketches of the field profiles and
local polarization (arrows) in transverse planes just in front of and behind a square
hole array in which diagonal SP modes are excited. The incident circular field profile
is distorted by the SP propagation to a shape with lobes in the propagation directions.
The incident uniform vertical polarization is thus changed by the array to a nonuniform
polarization distribution.

9.2 Model
A theoretical description of the depolarization properties of square and hexagonal hole arrays
is simplified considerably by symmetry arguments. Under rotationally symmetric focusing,
the Mueller matrix of a perfect square lattice of circular holes has been shown to be diago-
nal, with generally all Mi different [70]. For hexagonal lattices of circular holes, the Mueller
matrix is diagonal as well, with an additional symmetry restriction in the form of the relation
M1 = M2. For special cases, further relations between the Mi functions can be derived. In
this paper we will do so by introducing an analytical model based upon two basic approxima-
tions, which we will apply in consecutive order. The first approximation is that we assume
that the optical transmission of the hole array is carried by a single set of (SP) modes, which
are frequency-degenerate for plane-wave illumination at normal incidence. This single-
resonance approximation therefore assumes that the resonant SP wavevectors all have the
same lengths and can be written, for instance for a square array, as~kSP = (2π/a)(±m,±n) and
(2π/a)(±n,±m) [1]. The integers n and m label the distance from the origin to a point |~kSP|
away on the reciprocal lattice of the hole array, with a real-lattice spacing a. After some initial
calculations, we will introduce our second approximation, the Lorentzian-shape approxima-
tion. This assumes that the angular and frequency dependence of the amplitude transmission
function are related in a simple way, both dependencies giving Lorentzian shapes around
resonance.
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9. Analytic model of optical depolarization in square and hexagonal nanohole arrays

In the single-resonance approximation, the transmission tensor t(~θ) evaluated at the SP
resonance frequency can be written as

t(~θ) = ∑
k

fk(
~θ)~ek ⊗~e T

k , (9.1)

where the summation index k = {0,±1,±2, ...}. The vector ~θ = (θx,θy) specifies the two
components of the angle of incidence,~e T

k is the transpose of the (normalized) SP propagation
direction~ek (i.e.,~ek ‖~kSP,k) and ⊗ denotes the direct product. The summation is over pairs of
counterpropagating SPs, because this allows us to easily implement symmetry relations. The
scalar functions fk(

~θ) quantify the amplitude transmission that can be attributed to the k-th
SP pair out of the considered set. The product ~ek ⊗~e T

k describes the polarization properties
that are determined by projection on ~ek, pointing in the propagation direction of the k-th SP
pair. Note that Eq. (9.1) is also valid in the presence of a polarization-isotropic contribution
to the transmission, as expected for the nonresonant or Bethe-type [2] transmission through
the hole array, which we use in Section 9.4.

The rotational symmetry of the hole array is reflected in simple relations between the
various fk(

~θ)’s and~ek’s, which are taken in the direction of the reciprocal lattice vectors. To
describe the lowest-order modes it is sufficient to assume, apart from the single-resonance
condition, that we deal with either two SP pairs (fourfold frequency degenerate) for a square
array or three SP pairs (sixfold frequency degenerate) for a hexagonal array. In this case, the
elements Mi of the Mueller matrix can be expressed as linear combinations of two functions
only. These functions quantify the integrated squared amplitude of a single SP pair and
the overlap between neighbouring SP pairs, respectively, and are given by the real-valued
expressions

As,h ≡
∫

| fk(
~θ)|2dθxdθy , (9.2a)

Bs,h ≡
∫

fk(
~θ) f ∗` (~θ)dθxdθy . (9.2b)

The integrals run over the angular range of illumination (assumed rotationally symmetric
around the origin [74]), k and ` label neighboring SP pairs, and the subscripts s and h label
the array symmetry. If the illumination is nonuniform within the angular range but still obeys
the lattice symmetry, the integrand should be multiplied by the input intensity profile I(~θ).

Under the single-resonance condition described above, the Mueller matrix of a square
array obeys the additional relations M0 = M1 = As and M2 = M3 = Bs, where the x axis
is taken along an ~ek direction. The degree of polarization (DOP) for a polarization-pure
input state, with S0 = Si = 1 and S j = 0 for i 6= j, is Πi ≡

√

∑m (Mm0 +Mmi)
2/(M00 +M0i).

For our diagonal Mueller matrix Πi = Mi/M0, making Π1 = 1 and Π2 = Π3 = Bs/As. The
explanation for the absence of depolarization for S1 =±1 (pure x- or y-polarized) injection is
simple: An optical transmission that is carried by only two orthogonal pairs of SP modes does
not lead to depolarization if the incident polarization is orthogonal to the eigenpolarization
of one pair. In this case, only the SP pair aligned with the input polarization can be excited,
which then sets the (pure) output polarization. Only under this condition will polarization
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dephasing be absent; in all other hole arrays, dephasing will be an unavoidable consequence
of SP propagation.

For a hexagonal array the nonorthogonality between the eigenvectors ~ek leads to the
slightly more complicated relations M0 = (6Ah + 3Bh)/4 and M1 = M2 = (3Ah + 6Bh)/4,
which yield Π1 = Π2 = (Ah + 2Bh)/(2Ah + Bh). The depolarization of circularly polarized
input is governed by M3 = 9Bh/4 and Π3 = 3Bh/(2Ah + Bh). The relation Π1 = Π2 =
(1 + Π3)/2 shows that the depolarization of linear-polarized light is half as strong as that
of circularly polarized light: 1−Π1 = 1−Π2 = (1−Π3)/2. For linearly polarized input,
the DOP behind the hexagonal hole array is always at least 50%, because of the selective
excitation and subsequent reradiation of the SP modes that are best aligned within the set of
three pairs (see also the discussion of Fig. 9.3 below).

To obtain analytic expressions for A and B, we now impose the Lorentzian approximation
mentioned above. First, we use the fact that there is a one-to-one correspondence between the
angle and frequency dependence of the optical transmission. The SP dispersion relations [1,4]
show that paraxial angle tuning in the SP direction~ek leads to a linear shift of the resonance
frequency:

ωres,k(
~θ) = ω0/{1− sin(θk)/ne f f } ≈ ω0(1+θk/ne f f ). (9.3)

In this equation we took θk = ~θ ·~ek as the projected angle and introduced the SP resonance
frequency for normal incidence ω0 and the effective-refractive index ne f f =

√

ε/(ε +1) (≈ 1
for an air-metal boundary). Angle tuning in the direction orthogonal to ~ek over an angle θ⊥
produces only minor spectral shifts of order θ 2

⊥, which have been neglected. Second, the
amplitude transmission spectrum at normal incidence is approximated by a (complex-valued)
Lorentzian of the form

t(ω) ∝ 1/(ω −ω0 + i∆ω), (9.4)

where ω is the optical frequency and ∆ω is the spectral width of the transmission resonance.
Experimentally obtained hole-array spectra usually show somewhat different lineshapes, but
Lorentzians are a good starting point and keep the model manageable analytically. Finally,
by combining Eqs. (9.3) and (9.4) we can write the angle-dependent amplitude transmission
as

t(~θ ,ω) ∝ ∑
k

1

ω −ωres,k(
~θ)+ i∆ω

= ∑
pairs

fk(
~θ), (9.5)

where the last equation holds at the SP resonance frequency (ω = ω0) and fk(
~θ) is the func-

tion introduced in Eq. (9.1), summed over counterpropagating pairs with ~ek = −~e`. When
evaluated on resonance the SP pair transmission function is a (real-valued) Lorentzian:

fk(
~θ) = C





1
(

θk
∆θ + i

)

∆ω
+

1
(

− θk
∆θ + i

)

∆ω



= C
∆θ 2

θ 2
k +∆θ 2 , (9.6)

with ∆θ ≡ ne f f ∆ω/ω0. Equation (9.6) is Fourier related to an electric field on the array that
decays exponentially in the SP propagation direction. Using θ = k‖/k0, the Fourier transform
of a profile t(x) ∝ exp(−|x|/2`SP) becomes equal to Eq. (9.6) if we take ∆θ = λ0/4π`SP.
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9. Analytic model of optical depolarization in square and hexagonal nanohole arrays

Apart from interference, Eqs. (9.1) and (9.6) predict that the overall angle-dependent inten-
sity transmission |t(~θ)|2 will look like two or three stripes that cross at 90◦ or 60◦ angles
for the square and hexagonal array, respectively. Such patterns have indeed been observed
experimentally: For the square array we refer to Chapter 6; for the hexagonal array we refer
to Fig. 9.3, which will be discussed in more detail in Section 9.3.

With the proposed Lorentzian transmission model, a simple substitution in Eqs. (9.2)
yields A and B as a function of the normalized opening angle Θ≡ θA/∆θ of a circular uniform
input (aperture A in Fig. 9.1). The resulting expressions

As = Ah =
πΘ2

√
1+Θ2

(9.7a)

Bs = 2π arctan
(

Θ2

2
√

1+Θ2

)

, (9.7b)

Bh = (4π/
√

3)arctan

( √
3Θ2

4
√

1+Θ2

)

, (9.7c)

allow us to calculate both the Mi’s and the degrees of polarization Πi as a function of the
normalized opening angle Θ.

The calculated DOPs Πi (i=1,2,3) for a square array, following from our model, are shown
in Fig. 9.2(a). Note that Π1 = 1 and Π2 = Π3 in this case, as stated above. The corresponding
DOPs for a hexagonal array are shown in Fig. 9.2(b). In this case M1 = M2 and M1 + M2 =
1+M3. In the limit of a very small opening angle, the DOP remains high for both square and
hexagonal arrays, because Πi ≈ 1−O(Θ4). At large opening angles Θ � 1, we expect Π3,s ≈
π/Θ and Π3,h ≈ π

√
3/Θ for the square and hexagonal arrays, respectively. The hexagonal

array has a large Θ limit of M1 = M2 → 0.5, which is a consequence of the relation M1 +M2−
1 = M3. However, as our model is strictly paraxial, these large-angle limits are not expected
to be very meaningful.

9.3 Comparison with experiment
We checked the validity of our model by a comparison with measured Mueller matrices of
a square and a hexagonal hole array, as reported in Chapter 8. Recapitulating briefly, both
arrays were made in 200 nm thick smooth Au films on a glass substrate. The square array
was made with electron-beam lithography, with a lattice spacing of 700 nm and nominal hole
diameter of 200 nm. The hexagonal array was made with ion-beam milling, with a lattice
spacing of 886 nm and nominal hole diameter of 200 nm. Both arrays exhibit a transmis-
sion maximum around a wavelength of 810 nm, which for the square array is identified as a
(±1,±1)-SP resonance on the glass-metal interface and for the hexagonal array as the lowest-
order resonance on the air-metal interface. Note that in the following we continue to take the
x direction (corresponding to S1 = 1) along one of the SP propagation directions, i.e., along
one of the diagonals for the square array.

The experimental setup used to measure the diagonal Mueller elements is shown in
Fig. 9.1. A linearly polarized Ti:Sapphire laser beam at a wavelength of 810 nm is passed
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9.3 Comparison with experiment

Figure 9.2: Theoretical DOP Πi behind the (a) square and (b) hexagonal hole array as
a function of the dimensionless quantity Θ (lower scale) and the NA of the incident co-
herent light (upper scale), calculated with the Lorentz model; the multiplication factors
relating the two scales are ∆θ = 1/30 (square) and ∆θ = 1/90 (hexagonal). Triangles
are used for Π1, squares for Π2, and circles for Π3.

through a 10 µm mode-cleaning pinhole (not shown), to homogeneously illuminate the input
lens (L) of a symmetric telescope. After transmission through a hole array, positioned at the
focus of the telescope, the light is imaged onto a CCD with a relay lens; the CCD is situated
in the far field of the array. The SOP of the incident light is set by a rotatable quarter-wave
or half-wave plate in front of the first lens. The Stokes parameters at the output are measured
with a rotatable quarter-wave plate and polarizer positioned in front of the CCD. The obtained
CCD images are further processed by summing the pixel intensities within circular regions
of increasing radii centered on the telescope axis to yield plots of Stokes parameter values
as a function of numerical aperture (NA). The hardware aperture (A in Fig. 9.1) is used to
calibrate the NA scale. We performed a check of this method, by measuring intensity versus
the NA both with hardware and software aperturing; these agreed well, indicating that lens
aberrations can be neglected.

To illustrate the previously discussed depolarization mechanism, a measured far-field
transmission pattern of the hexagonal array is shown in Fig. 9.3 for array illumination with
horizontally oriented linearly polarized light and circularly polarized light. Figure 9.3(a)
shows that a horizontal input polarization (indicated by the arrow in the inset) does not ex-
cite the SP pair that propagates in the vertical direction, but does excite the two remaining
SP pairs. The lobe that is absent in Fig. 9.3(a) as compared to Fig. 9.3(b) is compact in the
vertical direction, which by Fourier relations corresponds to a wide near-field distribution in
this direction because of SP propagation. In other words, the high-intensity regions (lobes) in
the far field are oriented orthogonal to the input polarization, which is indicated by the arrows
around the edges of Fig. 9.3. Figure 9.3(b) shows that a circularly polarized input produces
an equal distribution over all three excitable SP pairs, whereas a linearly polarized input can
excite at most two pairs equally. After angular integration, this implies that M1 = M2 should
be larger than M3 for the hexagonal array, which is in agreement with the model prediction
M1 + M2 − 1 = M3. Note, that similar far-field patterns of the square array are discussed in
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9. Analytic model of optical depolarization in square and hexagonal nanohole arrays

Figure 9.3: Measured far-field transmission of the hexagonal hole array for illumina-
tion with (a) horizontally oriented linear-polarized light (as indicated by the arrow in
the inset) and (b) circularly polarized light. The pictures span 23◦ × 17◦ each. The
inset shows the orientation of the array (lattice spacing 886 nm). The (predominant)
polarization of the output lobes is indicated by the arrows around the figure edges.

Chapter 6.
Measurements of the DOPs of the hexagonal array are shown in Fig. 9.4(b) (from Chap-

ter 8). As expected, the two linear input polarizations give the same output DOP, i.e.,
Π1 = Π2. The predicted relation Π3 = Π1 + Π2 − 1 also holds very well. The agreement
between the measurements and the predictions of our model (Fig. 9.2) is, however, not so
good. This may be because of the slightly off-resonant illumination (ω 6= ω0) of the array,
whereas the model is strictly valid only on resonance. An additional complication is that,
probably because of production errors, the hexagonal array is not perfectly symmetric, as
indicated by nonzero off-diagonal elements of the measured Mueller matrix (see Chapter 8).
By fitting the model result to the measured curve, we estimate `SP ≈ 6± 3µm from the pa-
rameter ∆θ = λ0/(4π`SP), where the large error bar is an indication for the limited quality of
the fit.

The measured DOPs Πi (i=1,2,3) of the square hole array are shown in Fig. 9.4(a) (also
from Chapter 8). The general shape of Π2 and Π3 is in reasonable agreement with the
model results, and the observation Π1 > Π2,Π3 confirms the prediction that the depolariza-
tion should be smallest for input polarizations along the dominant SP propagation directions.
However, the observations that Π1 6= 1 and decreases for increasing NA, and that Π2 6= Π3,
shows that the single-resonance assumption does not hold well for our square array; although
the glass-metal and air-metal interface play a different role in the transmission process (res-
onant versus nonresonant) the influence of the latter on the transmission apparently cannot
be neglected. Fitting of ∆θ , similar to above, gives `SP ≈ 2± 1µm for the square array. In-
terestingly, the relation Π3 = Π1 + Π2 −1 seems to hold for the square array as well, which
indicates that this relation may be more generally valid than the model from which it was
obtained.
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Figure 9.4: Measured DOP Πi behind the (a) square and (b) hexagonal hole array as a
function of the NA of the incident coherent light. Triangles are used for Π1, squares for
Π2 and circles for Π3. Note that, for the square array, Π1 corresponds to a polarization
along the array diagonals, i.e., the SP propagation directions; in Chapter 8 we used a
different convention.

9.4 Model extensions
It is relatively easy to extend our model by incorporating more realistic resonant lineshapes
as well as off-resonant excitation. This extension can in principle increase the accuracy of
the model, but has the disadvantage that one looses the simple connection between SP prop-
agation length and spectral and angular widths of the SP resonance. One good candidate
for describing experimentally obtained spectra, is the Fano-type lineshape, which arises from
interference between the resonant SP-mediated transmission and a nonresonant Bethe-type
transmission [12, 53]. On the basis of a general Fano-type spectral line we can write the
hole-array transmission function for the k-th SP pair [see Eq. (9.6)] as

fk(
~θ ,ω) = C







1+
α + iβ

2





1

δ ω −
(

θk
∆θ

)

+ i
+

1

δ ω +
(

θk
∆θ

)

+ i











. (9.8)

This function has three dimensionless parameters: The real and imaginary part α and β of the
Fano parameter determining the relative strength of resonant and nonresonant terms, and the
relative frequency detuning δ ω ≡ (ω−ω0)/∆ω . In this description we have written the non-
resonant term as a constant term of magnitude unity (i.e., 1). Note that we can easily regain
Eq. (9.6) by inserting δ ω = 0 and taking the limit α → ∞ (to let the resonant term dominate).
The accuracy of this description with regard to spectral data can be seen in Fig. 9.5. Here the
measured transmission spectrum of our hexagonal array, for illumination with a nearly plane
wave at normal incidence, is shown (black curve) together with a theoretical fit (gray curve),
based on Eq. (9.9) with θk = 0. The fit is of the shape C

[

(λ −a)2 +b2
]

/
[

(λ − c)2 +d2
]

,
with the zero position a = 766.3 nm, b = 0(< 10−4) nm, the peak position c = 806.7 nm and
the half-width at half-maximum point d = 7.1 nm. From these values we infer α = −6.1,
β = −1 (as a direct consequence of b = 0), and ω0 = 2πc/806nm = 2.34× 1015 Hz. Note,
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9. Analytic model of optical depolarization in square and hexagonal nanohole arrays

Figure 9.5: Measured transmission of the hexagonal hole array for illumination with
an approximately plane wave at normal incidence (black). Also shown is a theoretical
fit based upon a Fano-type model (gray).

that the restriction β = −1 is already contained in the original Fano model [11].
To calculate the DOP as a function of the opening angle of the input light in this extended

model, one can follow the recipe given above for the Lorentzian case. The integrals become
more difficult, but remain analytically solvable. As the resulting expressions are quite lengthy,
we will not list them here but discuss only two striking aspects. First, the DOP curves in this
Fano-type description have a completely different asymptotic behavior, tending back to 1 for
large opening angles. The reason is that the nonresonant contribution, which is polarization
isotropic in our case (spherical holes), starts to dominate at large angles of incidence. Second,
in the small-angle regime, the differences between the Fano-type and the simple Lorentzian
model are relatively small for resonant (δ ω = 0) excitation. For off-resonance excitation,
however, the depolarization curves can deviate considerably.

Figure 9.6: Measured DOP of the hexagonal hole array (circles) compared with the
best fit obtained from the Lorentz model (dashed curve) and two theoretical fits based
upon the Fano-type model: The dark solid curve belongs to values in agreement with
the spectral fit of Fig. 9.5 with α = −6.1, δ ω = 2.50 and ∆θ = 0.012; the light solid
curve corresponds to α = −0.98, δ ω = 1.02 and ∆θ = 0.14.

Figure 9.6 shows how the experimental data for the hexagonal array compare with a fit
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based on the Lorentzian model (dashed curve) and two fits based on the extended Fano-type
model (solid curves). For the square array, fits of similar quality were obtained (not shown).
Although the Fano model is clearly able to produce a better fit, both at large and at small
NAs, the precise values needed for the best fit are somewhat unrealistic. The dark solid fit
curve is based on the (realistic) Fano parameter deduced from the transmission spectrum, but
needs a somewhat large detuning δ ω = 2.5, whereas the light solid curve fits better, but is
based on α = −0.98, β = −1 and δ ω = 1.02. The remaining deviations between model and
experiment are most probably caused by a breakdown of the single resonance condition that
formed the basis of Eq. (9.1). Deviations are expected if SP resonances on both interfaces are
important or if other SP modes on the same interface, with different resonance wavelengths
than those of the resonant set, are excited sufficiently.

9.5 Conclusion
We have described an analytic model for depolarization in metal hole arrays that is based on
symmetry arguments and the additional assumption of a single Lorentzian SP resonance. Our
polarization measurements confirm the overall expected depolarization features predicted by
the model. At a more detailed level, a generalization to the Fano-type resonant structure was
studied. The single-resonance assumption is both the strength and the weakness of our model.
Its strength is that it allows for simple analytic expressions for the amount of depolarization.
Its weakness is that its use is restricted to hole arrays in which only one set of SP modes
dominates the optical transmission in a specific frequency range.
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CHAPTER 10

Quantum decoherence versus classical depolarization in
nanohole arrays

We present a theoretical model of the quantum decoherence experienced by a pair of
polarization-entangled photons, after one of them is sent through a nanohole array, and
compare this with the classical depolarization experienced by light with a fixed polariza-
tion when this is sent through the same array. We discuss the conditions under which the
quantum visibility and the classical degree of polarization are the same. Experimental
verification is performed with arrays of square and hexagonal symmetry.

E. Altewischer, M.P. van Exter and J.P. Woerdman, accepted for publication in Phys. Rev.
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10. Quantum decoherence versus classical depolarization in nanohole arrays

10.1 Introduction
Since the first experiment that demonstrated the extraordinary transmission of metal nanohole
arrays [1], a number of studies have stressed the importance of the optical polarization and
its relation to surface plasmon (SP) propagation [9, 13, 66, 67]. These issues show up most
prominently if the array is illuminated with a strongly focused beam, since in this case the
coupling of the SP propagation to the incident polarization leads to spatial nonuniformities.
In a previous experiment the hole-array transmission was probed with single photons out of
polarization-entangled photon pairs (see Chapter 4), i.e., with pairs where the polarization of
each photon is undetermined, but quantum correlated to the other photon in the pair. This
experiment showed that the entanglement could be fully transferred to the excited SPs for
plane-wave illumination, but that quantum decoherence occurred for focused illumination
(where the focal spot is still covering many holes).

In this paper we address the question how this observed quantum decoherence is related
to the classical depolarization experienced by light with a fully determined polarization that
passes through the nanohole array in an identical configuration. This distinction between
undetermined and determined lies at the heart of quantum measurement theory and the in-
terpretation of the projection postulate. Although a theoretical description of the quantum
experiment has already been given in Ref. [75], we consider that description too compli-
cated for practical use. Furthermore, there are several subtleties involved that took us some
time to resolve experimentally. We will discuss the conditions under which both the classi-
cal depolarization and the quantum decoherence can be simply expressed in the angle- and
polarization-dependent transmission (“transfer function”) of the hole array. Note that this
description in terms of a transfer function does not depend on the details of the transmission
process and is completely general in that respect. We present data for both the classical and
the quantum experiments and compare these, for square as well as for hexagonal arrays. Spe-
cial attention is given to an averaging procedure that allows one to remove spurious effects of
linear anisotropies in practical hole arrays (see Appendix).

10.2 Theoretical comparison of classical depolarization and
quantum decoherence

We start our theoretical description of classical depolarization by recapitulating the transmis-
sion properties of a hole array in the paraxial limit. Restricting ourselves to the zeroth-order
diffraction, these properties can be fully captured in a 2× 2 transfer matrix t(~θ ,ω), which
relates the optical input field at angle of incidence ~θ and frequency ω to the output field at
the same angle and frequency:

~Eout(~θ ,ω) = t(~θ ,ω)~Ein(
~θ ,ω). (10.1)

Depolarization can occur when an array is illuminated with a wide-angle beam and the trans-
fer matrix also shows a combined angular and polarization dependence, producing different
output polarizations for the same input polarization at different angles of incidence. This
process can be fully quantified by measuring the (4× 4) Mueller matrix, which relates the
spatially averaged input to output polarizations via Stokes vectors [68, 69].
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Figure 10.1: The setup used for the classical polarization experiment, with the source a
Ti:sapphire laser at 813 nm wavelength (on the left, not shown). The input polarization
state is prepared by a combination of polarizer and half-wave plate, and analyzed with
a polarizer. The hole array is centered inside the confocal one-to-one telescope.

For perfectly square and hexagonal hole arrays the Mueller matrix is diagonal [70], with
elements Mii (i = 0,1,2,3), and it suffices to express the depolarization by the three numbers
Πi ≡ Mii/M00. These quantities are equal to the degree of polarization (DOP) [68, 69] of the
output light of the array for linear input polarization along 0◦ (corresponding to i = 1) and
45◦ (i = 2), and circular input polarization σ+ (i = 3), respectively; M00 is the transmitted
power for unpolarized input light. In practice, off-diagonal elements of the Mueller matrix
cannot always be neglected due to array imperfections (see Chapter 8). However, even in this
case, the Πi remain useful to characterize the polarization behavior of such arrays, provided
that the off-diagonal elements are small compared to the diagonal elements. The Πi are
approximately equal to the average of the DOPs of the output light of the array for input
polarizations corresponding to i and to its orthogonal direction, respectively (see Appendix);
therefore we can use the term DOP for Πi also in the case of slightly nonperfect arrays.

The degrees of polarization Πi can be determined experimentally with the setup shown
in Fig. 10.1. Here a hole array is illuminated with light of a given spectral and angular band-
width, where the latter is set by a lens, with focal length f , plus a diaphragm. To determine
the DOP, we use an averaging procedure conforming to the discussion above, where for each
i two input polarizations are prepared, one corresponding to i and one to its orthogonal di-
rection. Subsequently, for each input polarization, the power of the output beam P‖ and P⊥ is
measured for settings of the analyzer parallel and perpendicular to the preparer, respectively.
The Πi is then computed from

Πi =
Pav
‖ −Pav

⊥
Pav
‖ +Pav

⊥
, (10.2)

where each quantity is the average over the two orthogonal input polarizations. In this paper,
we will concentrate on two specific choices for the input polarization, namely 0◦ and 45◦. By
expressing the optical fields in terms of Stokes parameters and using the fact that the incident
field is transformed by the hole array via

E(~θ ,ω)~eH → tHH(~θ ,ω)E(~θ ,ω)~eH + tV H(~θ ,ω)E(~θ ,ω)~eV , (10.3)

one can express the degree of polarization Π in terms of the input field and the elements of
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10. Quantum decoherence versus classical depolarization in nanohole arrays

Figure 10.2: The SPDC setup used in the quantum experiment, with the source a non-
linear BBO crystal plus the standard compensation scheme of half-wave plate and com-
pensating crystals (not shown in detail). The hole arrays are placed inside the confocal
telescope in one of the beams.

the transmission matrix t as:

Π0◦ =
〈〈(|tHH |2 −|tV H |2 + |tVV |2 −|tHV |2) |E|2 〉〉
〈〈(|tHH |2 + |tV H |2 + |tVV |2 + |tHV |2) |E|2 〉〉

(10.4a)

Π45◦ =
〈〈2Re{tHHt∗VV + tV Ht∗HV}|E|2 〉〉

〈〈(|tHH |2 + |tV H |2 + |tVV |2 + |tHV |2) |E|2 〉〉
. (10.4b)

Here the double brackets denote the integration over all angles and frequencies contained in
the beam, and the input intensity |E|2 should have identical angular and spectral distributions
for each of the four measurements.

Although Eqs. (10.4a) and (10.4b) are strictly valid, their relation to the experimental
configuration of Fig. 10.1 is straightforward only if the illumination has sufficient spatial
coherence. This is a valid assumption if the illumination of the telescope-input lens has a
negligible wave-vector spread; alternatively, this assumption can be formulated in terms of
the size of the focus inside the telescope: this has to be much smaller than the beam size
on the telescope lenses, as can be seen from ray-optics arguments. Under this condition the
internal angle ~θ inside the telescope can be mapped one-to-one to the transverse position~r
on the input lens via ~θ =−~r/ f . Assuming this makes our description much simpler than that
of Ref. [75]; we consider the angle-dependent transmission of the hole array t(~θ ,ω), which
in Ref. [75] is denoted by F(~q2), to be the only physically relevant quantity.

The quantum decoherence experienced by polarization-entangled photons depends on the
biphoton state or amplitude function, just as the classical depolarization depends on the (one-
photon) field E. Most descriptions of polarization-entangled photons start from the biphoton
state:

|ψ〉 =
1√
2

(

|H1V2〉 + eiα |V1H2〉
)

, (10.5)

where the two photons, with horizontal and vertical polarizations, travel along directions
labeled by 1 and 2. For instance, in the standard type-II spontaneous parametric down con-
version (SPDC) setup, as shown in Fig. 10.2, a nonlinear crystal is able to convert an incident
pump photon to two orthogonally polarized photons at the double wavelength, which are
emitted along two intersecting cones. At the exact crossings of these cones the polarization
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10.2 Theoretical comparison of classical depolarization and quantum decoherence

of the individual photons is undetermined, and Eq. (10.5) correctly describes the polarization
properties of the biphoton state if the spatial and frequency selection is sufficiently narrow. In
an experiment, this state can only be produced approximately, because the photons can also
be labeled by their frequency and wave vector. Both of these have to be taken into account
because a practical detector will measure a finite part of the crossings, set by the apertures
in Fig. 10.2, within a finite frequency window. In this case, the paraxially exact SPDC state
behind the apertures at the ring crossings can be written as:

|ψ〉 =
∫

d~q1d~q2 dω1dω2 [ΦHV
(

~q1,ω1;~q2,ω2

)

|H,~q1,ω1;V,~q2,ω2〉

+ΦV H
(

~q1,ω1;~q2,ω2

)

|V,~q1,ω1;H,~q2,ω2〉
]

,
(10.6)

showing explicitly the wave vector ~q and frequency ω dependent (two-photon) amplitude
functions Φi j (i, j = H,V ) for each of the two-photon combinations [30]. The integration is
over the angular area contained in the apertures and the frequency window of the detectors.

A simple experimental measure for the degree of entanglement can be obtained from the
two-photon fringe visibility:

Vϕ1
≡ Rav

Max −Rav
Min

Rav
Max +Rav

Min
, (10.7)

which can take values between 0 and 1. It is measured in the setup of Fig. 10.2 by setting the
transmission axis of one of the polarizers at the appropriate ϕ1 and ϕ1 + π/2, respectively,
and measuring in each case the maximum and minimum coincidence rates Rmax and Rmin at
the corresponding settings of the second polarizer. By defining the visibility V in terms of the
coincidence rates Rav averaged over the two input settings the visibility becomes more robust
against imperfections of the hole array that will be considered below, in a manner analogous
to the discussion above for the DOP Πi.

For a type-II SPDC source, producing the state |ψ〉 of Eq. (10.6), the visibility in the
linear polarization basis oriented at 0◦ with respect to the crystal axes (along H and V) is
always 1 because there is no interference between ΦHV and ΦV H in this case. The visibility
along 45◦ however is given by

V45◦ =
〈〈2Re(ΦHV Φ∗

V H)〉〉
〈〈|ΦHV |2 + |ΦV H |2〉〉

, (10.8)

where the brackets denote the integration over ~q and ω . Therefore the source produces per-
fectly polarization-entangled photons (V45◦ = 1) only if ΦHV and ΦV H are identical within
the considered angular and frequency bandwidths. This is the case for either an infinitely thin
crystal or a properly corrected thick crystal [20], followed by detection within sufficiently
small angular and frequency windows. Note that the overlap integral of ΦHV and ΦV H in
the numerator has the shape of a coherence function, so that two perfectly entangled photons
can be considered to be mutually fully coherent (within the considered angular and spec-
tral bandwidths). This two-photon coherence is independent of the one-photon coherence
of each of the beams separately; in fact, the one-photon properties of a SPDC source are
indistinguishable from those of a thermal source with identical bandwidths [76].
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By putting a hole array (with transmission matrix t) at the focus of a confocal telescope
in beam 1 of the SPDC setup (see Fig. 10.2) the SPDC state is changed in the following way:
∫

d~q1,2 d ω1,2 ΦHV

∣

∣H,~q1,ω1;V,~q2,ω2

〉

−→
∫

d~q1,2 d ω1,2 ΦHV

×
{

tHH

(

~θ1,ω1

)

∣

∣H,~q1,ω1;V,~q2,ω2

〉

+ tV H

(

~θ1,ω1

)

∣

∣V,~q1,ω1;V,~q2,ω2

〉

}

,
(10.9)

and analogously for the |V H〉 term. We again assume “sufficient spatial coherence” and,
additionally, that the telescope input lens is in the far field of the source. This allows us
to relate the angle inside the telescope ~θ to the transverse momentum of the photon ~q as
~θ1 =−L~q1/( f k), where L � f is the distance from the input lens to the source and k = 2π/λ .
Because the hole array can create additional |HH〉 and |VV 〉 terms, the visibilities observed
behind the hole array (see Fig. 10.2) are given by

V0◦ =
〈〈(|tHH |2 −|tV H |2) |ΦHV |2 +(|tVV |2 −|tHV |2) |ΦV H |2 〉〉
〈〈(|tHH |2 + |tV H |2) |ΦHV |2 +(|tVV |2 + |tHV |2) |ΦV H |2 〉〉

(10.10a)

V45◦ =
〈〈2Re{ΦHV Φ∗

V H(tHHt∗VV + tV Ht∗HV )}〉〉
〈〈(|tHH |2 + |tV H |2) |ΦHV |2 +(|tVV |2 + |tHV |2) |ΦV H |2 〉〉

. (10.10b)

If we now compare Eqs. (10.4a), (10.4b),(10.10a) and (10.10b), we see that for perfectly
entangled photons, i.e., ΦHV = ΦV H = Φ, the input one-photon distribution |E|2 in the clas-
sical experiment and the two-photon distribution |Φ|2 in the quantum experiment play the
same role, i.e., Πi = Vi if |E|2 = |Φ|2. We repeat that the identity Πi = Vi is only valid un-
der the following additional restrictions: (i) The input angular distribution |E|2 should be
identical for all input polarizations in the classical measurements, (ii) the entangled-photon
source should be of high quality, i.e., ΦHV ≈ ΦV H , and (iii) the telescope should be a perfect
(double) Fourier transformer.

10.3 Experimental comparison of classical depolarization
and quantum decoherence

For an experimental verification of the theoretical expectations given above, we have used
two different hole arrays, one with a square and one with a hexagonal hole patterning. Both
consisted of a 200 nm-thick gold layer on a 0.5 mm-thick glass substrate with a 2 nm-thick
bonding layer (of either titanium or chromium) in between. The square array was made with
electron-beam lithography and had a lattice spacing of 700 nm and a nominal hole diameter
of 200 nm. The hexagonal array was made with ion-beam milling and had a lattice spacing
of 886 nm with again a nominal hole diameter of 200 nm. Figure 10.3 shows measured
transmission spectra of the square array (black curve) and the hexagonal array (gray curve).
At the experimental wavelength of 813 nm the resonant modes can be assigned to the glass-
metal (±1,±1) and the air-metal (1,0,0), (0,1,0), and (0,0,1) modes for the square and
hexagonal array, respectively. The insets in Fig. 10.4 show scanning electron microscope
pictures of the two arrays.
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Figure 10.3: Transmission spectra under almost plane-wave illumination at normal
incidence for the square (black curve) and hexagonal array (gray curve). The dashed
vertical line indicates the resonance wavelength of 813 nm used in the experiments.

The classical depolarization induced by the hole arrays was measured with the setup
shown in Fig. 10.1. A Ti:sapphire laser beam (wavelength 813 nm) is weakly focused on a
10-µm diameter pinhole which is positioned at 50 cm in front of a 15-mm focal length lens;
the pinhole diffracts the beam enough to produce a nearly plane-wave illumination of the lens.
A diaphragm in front of the lens sets the maximum opening angle of the light impinging on
the hole array, which is positioned at the focal plane. The transmitted light is recollimated
by an identical 15 mm-focal length lens. The far field of the hole-array transmission is then
imaged onto a CCD by a relay lens, making the positions on the CCD correspond to angles in
the array illumination. The input polarization state is prepared by a combination of polarizer
and half-wave plate in front of the first lens. A polarizer behind the second lens constitutes
the polarization analyzer. To determine the total power within a given opening angle of the
output (and input) beam the intensities per pixel of the CCD image were summed within
a circle of corresponding radius. We checked that this software procedure gave the same
result as setting the input-beam opening angle with the diaphragm, thus showing that lens
abberations are negligible. Further details of the experimental setup are given in Chapter 8.

The measured DOP curves (Πi versus opening angle) for the square (a) and hexagonal (b)
array are marked with solid symbols and solid lines in Fig. 10.4. These results are discussed
in Chapter 8. Circles denote measurements with input polarization along 0◦ (gray arrows in
inset) and squares with input polarization along 45◦ (black arrows). For the square array,
the decrease in Π0◦ upon increasing the numerical aperture [27] (NA) is stronger than that
of Π45◦ , because of the (±1,±1) propagation directions of the resonant SPs on this array
(see Chapter 8). For the hexagonal array the equality Π0◦ = Π45◦ holds, as expected from
general symmetry arguments [70]. The faster decrease of both Π’s of the hexagonal array as
compared to the square array is caused by the smaller resonance linewidth and therefore larger
SP lifetime of the hexagonal array (see Fig. 10.3 and Chapter 8). A more detailed analysis of
the measured Πi’s and a comparison with a Fano-type model is discussed in Chapter 9.

The quantum decoherence was measured with the setup shown in Fig. 10.2 (see Chap-
ter 4). A BBO crystal is pumped by a continuous-wave Kr-ion laser beam (wavelength
406.7 nm) in a type-II SPDC scheme. The down-converted photons at the ring crossings
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Figure 10.4: Measured degree of polarization Πi (solid lines and symbols) and two-
photon visibility Vi (dashed lines and open symbols) for (a) the square and (b) the hexag-
onal array. In both figures the polarization bases are 0◦ (circles) and 45◦ (squares). The
insets show scanning electron microscope pictures of the arrays (scale bar 2 µm) with
arrows indicating the incident polarizations of 0◦ (light) and 45◦ (dark). The crosses in
(b) are measured with a smaller SPDC aperture in beam 2 (4 mm diameter, equivalent
to NA≈ 0.068 at the array position).

are selected by two variable-aperture diaphragms D1 and D2 and further frequency selec-
tion was applied by two 10 nm full-width-half-maximum frequency filters centered at the
degenerate-frequency point of 813 nm. After passing through polarizers P1 and P2, the pho-
tons are detected with APD’s. The rate of coincidences is determined with an AND gate
(2 ns time window) coupled to a counter. To compensate for birefringence-related walk-off
effects we used the standard compensator comprising a half-wave plate and two BBO crys-
tals, each having half the thickness of the generating crystal [20]. Finally, the hole array was
positioned at the focus of a one-to-one telescope, with the first lens positioned directly be-
hind the diaphragm D1. For the square and the hexagonal array two 15-mm and 30-mm focal
length lenses were used, respectively; the weaker lenses were used to obtain more accurate
data at low NA values. In the absence of hole arrays we regularly obtained coincidence count
rates of 40×103 s−1 with V0◦ = 99.6% and V45◦ = 96.0% for a setting of the diaphragm D1
at 4.0 mm and diaphragm D2 at 8.0 mm diameter. Note that even for an empty telescope,
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on the basis of Eq. (10.6) we expect a slight decrease of V45◦ with increasing NA, because
ΦHV 6= ΦV H . This is confirmed by measurements: from fully closed (1 mm diameter) to fully
open (6 mm) lens apertures we obtain count rates of 2 to 110× 103 s−1 and V45◦ = 98.4%
to 91.2%, whereas V0◦ was constant at 99.6%. From this perspective, the spectral detection
bandwidth plays a similar role as the angular aperture width; the 10 nm filters were found
to be sufficiently narrow as compared to both the spectral width of the SPDC source and the
linewidth of the transmission spectra of both arrays.

The measured quantum visibility curves (Vi versus NA) are shown with dashed symbols
and dashed lines in Fig. 10.4, to enable direct comparison with the classical depolarization.
An input polarization of 0◦ is denoted by circles and 45◦ by squares. Note that the visibility
axis has the same scale as the DOP axis. By comparing the two sets of curves in Figs. 10.4(a)
and 10.4(b) we see that there is a good agreement between the visibility Vi and DOP Πi,
which confirms the theoretical discussion given above. The consistently slightly lower value
of V45◦ as compared to Π45◦ for the square array is probably caused by the limited quality of
the source (V45◦ < 1). The slight deviation of the small-NA points for the hexagonal array
might be caused by a slight misalignment of the telescope axis c.q. array surface normal
with respect to the center of diaphragm D1. Note that in both the classical and the quantum
measurements the previously discussed averaging procedure in the measurements of Πi and
Vi was applied because our hexagonal array was not of perfect symmetry (see Chapter 8).

To illustrate a case where the quantum and classical results seem to differ due to a vi-
olation of the restrictions discussed earlier, the crosses in Fig. 10.4(b) show a measure-
ment of V45◦ that was made with diaphragm D2 set at a diameter of 4 mm (equivalent to
NA≈ 68 mrad). Compared to the previously discussed measurement (with D2 at 8 mm diam-
eter), the crossed Π points start to deviate at an NA of approximately 50 mrad and become
constant at approximately 70 mrad. Mathematically, the size of the aperture D2 determines
the integration range in Eqs. (10.10); a smaller integration range leads to a larger visibility.
A more conceptual explanation can be given in terms of the Klyshko picture [77]: a photon
starting at detector 2 and travelling back along beam 2 is diffracted by diaphragm D2 and,
after reflection on the pump-spot mirror, no longer provides for a uniform illumination of the
aperture of the lens in beam 1.

10.4 Conclusions
In conclusion, we have reported an experimental comparison between the classical depolar-
ization and the quantum decoherence induced by subwavelength metal hole arrays of square
and hexagonal symmetry. We find that there is an identity relation between two suitable
measures of these effects, for ideally prepared input sources. This identity relation can theo-
retically be completely expressed in the hole array transmission tensor. Deviations show up
if the input sources are not polarization isotropic or have insufficient spatial coherence.
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Appendix

10.A Degree of polarization for nonperfect arrays
To be able to characterize the depolarization induced by square and hexagonal arrays which
have some (slight) symmetry deformations, we extend the definition of the degree of polar-
ization (DOP) as follows. In the simplest case, we can define a measure for the depolarization
of a system in terms of the Stokes vector of the output light:

Πi ≡
(

Si
S0

)

out
=

P‖−P⊥
P‖ +P⊥

, (10.11)

for a fully polarized input Sin = (1, δi1, δi2, δi3) (i = 1,2,3). The Πi so-defined are only
equal to the DOP of the output light if the output Stokes vector contains the same two zero
components as the input Stokes vector, i.e., if the medium can be described by a diagonal
Mueller matrix.

A more generally useable measure for depolarization can be defined by symmetrizing Πi
with respect to the input Stokes vectors:

Πav
i ≡ S+

i −S−i
S+

0 +S−0
=

P+
‖ +P−

‖ − (P+
⊥ +P−

⊥ )

P+
‖ +P+

⊥ +P−
‖ +P−

⊥
=

Mii
M00

, (10.12)

where S±i ≡ Sout
i for Sin = (1, ±δi1, ±δi2, ±δi3). This expression is exactly equal to the

respective diagonal Mueller-matrix element Mii, normalized to M00, as indicated by the last
equality in Eq. (10.12). If the nondiagonal elements of the Mueller matrix are small compared
to the diagonal elements, Πav

i is also approximately equal to the average of the DOP’s of the
output light for both input Stokes vectors. This follows from a Taylor expansion of the DOP’s
via

DOP+ +DOP−

2
=

1
2

(

√

(M10 +M1i)
2 +(M20 +M2i)

2 +(M30 +M3i)
2

M00 +M0i

+

√

(M10 −M1i)
2 +(M20 −M2i)

2 +(M30 −M3i)
2

M00 −M0i

)

≈ Mii
M00

(

1+
∑ j 6=0

j 6=i M2
j0 +M2

ji

2M2
ii

− M0iMi0
M00Mii

+
M2

0i
M2

00

)

.

(10.13)

The DOP+ and DOP− are each sensitive to first-order in the relative strength of the off-
diagonal elements Mi j. However, as the respective first-order terms differ in sign, the averag-
ing removes these terms to leave only terms of second-order and higher. The final expression
is accurate for Mi j � Mii (for i 6= j) (Note, M00 ≥ Mii always). In the main text we will use
Πav only, and drop the “av” superscript label.
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Samenvatting

Licht als golfverschijnsel
In de meeste situaties die we in het dagelijks leven tegenkomen kan licht worden beschouwd
als een golfverschijnsel, vergelijkbaar met golven in water. Een belangrijke eigenschap van
golven is de golflengte. Bij watergolven, bijvoorbeeld aan het oppervlak van de zee, is de
golflengte zichtbaar als de afstand tussen de toppen van twee naastgelegen golfjes (typisch
loopt deze van een paar cm tot tientallen m). De golflengte van licht bepaalt welke kleur het
licht heeft. Blauw licht heeft een kleine golflengte (0.4 µm) en rood licht een grotere (0.6 tot
0.8 µm; ter vergelijking, de dikte van een haar is ongeveer 50 µm).

Een andere belangrijke eigenschap van het soort golven waartoe licht behoort (de zoge-
naamde transversale golven) is de polarisatie. Dit is de richting waarin de golf op en neer
gaat en deze staat voor transversale golven altijd loodrecht op de richting waarin de golf
beweegt. Voor golven aan het oppervlak van de zee is de polarisatierichting de verticale
richting, want het water beweegt omhoog en omlaag terwijl de golf zich voortbeweegt langs
het wateroppervlak naar het strand toe. Bij licht kan de polarisatie in alle richtingen lood-
recht op de voortbewegingsrichting staan. Door gebruik te maken van materialen die geen
licht doorlaten als de polarisatie langs een specifieke richting staat, kunnen we laten zien dat
licht inderdaad gepolariseerd kan zijn. Als we een stukje van dit ”polariserend” materiaal, of
“polarisator”, in een bundel gepolariseerd licht zetten en het vervolgens draaien om een as
parallel aan de lichtbundel, zien we bij een bepaalde stand van de polarisator het licht erach-
ter volkomen uitdoven; We hebben daarmee de polarisatierichting van het licht bepaald. Van
dit licht-uitdovende effect van polarisatoren wordt gebruik gemaakt in polaroid zonnebrillen,
waarin polariserend materiaal verwerkt is zodanig dat de schittering van zonlicht (in water
bijvoorbeeld) weggehaald wordt; deze schitteringen bestaan namelijk altijd uit licht dat voor-
namelijk langs het aardoppervlak (horizontaal) gepolariseerd is, terwijl de rest van het licht
niet deze “voorkeurspolarisatie” heeft.

In de optica, de tak van de natuurkunde die licht bestudeert, is bekend dat er “problemen”
optreden als voorwerpen kleiner worden dan de golflengte van licht. Een voorbeeld is dat
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Figuur 1: Een dwarsdoorsnede van een “gatenrooster”: een patroon van zeer kleine
gaatjes in een dunne metaallaag. De afmetingen en materialen van de gatenroosters
die door ons zijn bestudeerd zijn in de figuur aangegeven.

zulke kleine voorwerpen niet meer scherp waargenomen kunnen worden met gewone opti-
sche microscopen; er moeten daarvoor in de plaats andersoortige microscopen (electronen
microscopen) gebruikt worden. Een ander voorbeeld is dat er nauwelijks meer licht door een
gaatje komt als de diameter van dat gaatje klein is ten opzichte van de golflengte van het
licht. Van dit laatste effect wordt handig gebruik gemaakt in magnetrons, waar de doorzich-
tige magnetrondeur bedekt wordt door een electrisch-geleidend gaas van vierkante gaatjes.
Het “licht” (zogenaamde microgolven, niet zichtbaar) waarmee de gerechten binnen in de
oven worden opgewarmd heeft een te grote golflengte (tot zelfs enkele cm) en komt niet door
de gaatjes heen, zodat je veilig voor de magnetron kunt staan. Daarentegen heeft het licht
van het lampje binnenin een veel kleinere golflengte en komt wel door de deur heen, zodat je
toch de gerechten in de magnetron van buitenaf door de deur kunt zien.

Rasterpatronen van zeer kleine gaatjes in metaallaagjes
In 1998 ontdekte Thomas Ebbesen dat als je patronen van kleine gaatjes in een dunne laag
metaal maakt, zoals geschetst in Figuur 1, er (bij bepaalde kleuren) veel meer licht doorheen
komt dan je zou kunnen verwachten op basis van het magnetrongeval. In sommige gevallen
komt er zelfs meer licht doorheen dan er direct op de gaatjes valt. De verklaring hiervoor is
dat het metaal zelf een actieve rol speelt bij het doorlaten van licht: het werkt als een soort
“gootsteen” waarbij het licht dat op het metaal valt langs het metaaloppervlak stroomt en
zo door de gaatjes gestuwd wordt. Het licht dat als het ware “gevangen” is op het metaal-
oppervlak heeft net iets andere eigenschappen dan het licht dat in de vrije ruimte (de lucht)
beweegt, en heeft daarom een speciale naam gekregen: oppervlakteplasmon. Deze naam
geeft aan dat om een oppervlaktegolf gaat, die zich voortbeweegt langs het grensvlak van een
diëlectricum (bijvoorbeeld lucht) en een metaal, en dat deze gekoppeld is aan een ladingsgolf
in het electronenplasma (elektrisch geladen gas) in het metaal.

In de Hoofdstukken 2 en 5 tot en met 9 van dit proefschrift bestuderen we de optische
eigenschappen van gatenroosters en de rol van oppervlakteplasmonen hierin. We beschrijven
hierin onder andere twee methoden om gatenroosters te maken en een aantal methoden om de
eigenschappen van gatenroosters te meten. Door te kijken naar hoe verschillende gatenroos-
ters de polarisatie van invallend licht veranderen als het er aan de andere kant weer uitkomt,
kunnen we het aandeel van de oppervlakteplasmonen in de optische eigenschappen van de
gatenroosters vergelijken met de bijdrage van de gaten zelf.
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Licht als deeltjesverschijnsel
Als licht heel erg zwak is kunnen we het niet meer goed beschrijven met het hierboven be-
sproken golfbeeld. Als we namelijk proberen dit zwakke licht te detecteren zullen we merken
dat we steeds “pulsjes” waarnemen en niet langer een continu op en neer golvende energie-
stroom. De genoemde pulsjes zijn kleine pakketjes energie, waarvan de energie-inhoud enkel
afhangt van de golflengte en die enkel als geheel kunnen worden waargenomen (ze kunnen
niet gesplitst worden in nog kleinere pakketjes). Het is alsof de detector deeltjes invangt, net
zoals een “tennisballen telmachine” die elke keer als hij een tennisbal invangt een tellertje
met 1 verhoogt. Vandaar dat de genoemde energiepakketjes ook wel lichtdeeltjes of fotonen
worden genoemd. De natuurkundige theorie die deze deeltjes beschrijft heet de “quantumme-
chanica” (quantum is Latijn voor hoeveelheid en wordt hier gebruikt om het energiepakketje
aan te duiden).

Quantumverstrengeling en quantumcomputers
Een speciale voorspelling die de quantummechanica doet is het bestaan van “verstrengeling”
van de eigenschappen van twee deeltjes. Door deze verstrengeling is het mogelijk om te we-
ten wat een bepaalde eigenschap is van het ene deeltje door slechts aan het andere deeltje een
meting van dezelfde eigenschap te verrichten. Dus zonder aan het eerste deeltje iets te meten
weet je meteen zijn eigenschappen, en dit onafhankelijk van de afstand tussen de twee deel-
tjes! Dit was door Albert Einstein reden om bezwaar te hebben tegen de quantummechanica;
hij noemde de beı̈nvloeding van de eigenschappen van het tweede deeltje door meting aan
het eerste deeltje “spookachtige beı̈nvloeding op afstand”. Niettemin is in de laatste 25 jaar
in een aantal verschillende experimenten aangetoond dat deze verstrengeling wel degelijk
bestaat.

Een gevolg van het bestaan van verstrengeling is dat het mogelijk is, in ieder geval in
theorie, om een computer te maken die met behulp van verstrengelde systemen volgens een
quantummechanische rekenmethode kan rekenen. Deze zogenaamde “quantumcomputer”
zou voor bepaalde toepassingen, onder andere het breken van codes (cryptografie), veel snel-
ler kunnen zijn dan de huidige computers. Er zijn al demonstratie-experimenten geweest
waarin met kleine getallen (een paar bits) gerekend is volgens de quantummethode. Voor het
maken van een echte quantumcomputer, waarin gewerkt zou kunnen worden met grote getal-
len, is het waarschijnlijk nodig om verstrengelde systemen in een vaste stof te maken, zoals
de halfgeleider materialen waarvan de chips in de huidige computers gemaakt worden. Op dit
moment zijn die vaste stof systemen er nog niet of nauwelijks, en wordt voor een groot deel
gebruik gemaakt van licht (fotonen) als drager van verstrengeling. Een groot voordeel van
licht is dat het ideaal is om over grote afstanden informatie mee te versturen. Het is echter
niet mogelijk om quantumberekeningen alleen met licht te doen, daarvoor is (ook) materie
nodig.

Een veelgebruikte methode om verstrengelde fotonen te maken is de zogenaamde “spon-
taneous parametric downconversion”; deze methode bestuderen we in Hoofdstuk 3. In deze
methode wordt een speciaal kristal gebruikt dat in staat is om een invallend “moederfoton”
op te splitsen in twee “dochterfotonen”, zoals geschetst in Figuur 2. De dochterfotonen zijn
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Figuur 2: Het principe achter “spontaneous paramteric downconversion”: een moe-
derfoton wordt gesplitst in twee dochterfotonen in een speciaal kristal (een zogenaamd
niet-lineair kristal). De twee fotonen zijn verstrengeld met betrekking tot hun polarisa-
tie. Eén mogelijke polarisatie van de fotonen wordt aangegeven door de lichte pijltjes,
een andere door de donkere (rechts); de polarisaties van de twee fotonen staan in beide
gevallen loodrecht op elkaar.

verstrengeld in polarisatie, voor de juiste combinatie van hun golflengtes en voortbewegings-
richtingen. Deze polarisatieverstrengeling houdt in dat de polarisatie van een enkel foton elke
richting kan hebben, deze richting is volledig onbepaald, maar dat de polarisaties van de twee
fotonen wel altijd loodrecht op elkaar staan.

Quantumverstrengeling en oppervlakteplasmonen
Wij hebben onderzocht of het mogelijk is om oppervlakteplasmonen te gebruiken als dragers
van verstrengeling. Als dit zo zou zijn, dan zijn oppervlakteplasmonen mogelijk te gebrui-
ken in een quantumcomputer. Het voordeel van oppervlakteplasmonen boven fotonen in dit
opzicht is dat de oppervlakteplasmonen in het metaal “gevangen” zijn en zo een stap in de
richting van een vaste-stof quantumcomputerchip vertegenwoordigen.

Om te onderzoeken hoe oppervlakteplasmonen de verstrengeling tussen fotonen beı̈nvloeden
hebben we de hierboven besproken gatenroosters gezet in het pad van één foton uit een paar
verstrengelde fotonen, en gekeken of de verstrengeling behouden bleef achter het gatenroos-
ter. De resultaten hiervan zijn dat verstrengeling enkel behouden is onder bepaalde condities:
als het niet mogelijk is om op de een of andere manier informatie te halen over de polarisatie
van de invallende fotonen uit de bewegingsrichtingen van de oppervlakteplasmonen op het
gatenrooster, dan is de verstrengeling volledig behouden. Zou je hiertoe echter wel in staat
zijn in principe, zonder dat je dit daadwerkelijk hoeft te meten (!), dan gaat de verstrengeling
(gedeeltelijk) verloren. Deze resultaten zijn uiteengezet in Hoofdstuk 4 en een theoretische
verklaring voor het gevonden gedrag wordt gegeven in Hoofdstuk 10, waarbij de link wordt
gelegd met de metingen van de optische eigenschappen van gatenroosters van Hoofdstuk-
ken 6 en 8.
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