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2.3 The Poincaré sphere . . . . . . . . . . . . . . . . . . . . . . . 8

3 Simulations 11
3.1 Field derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Vortex parameters . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Data Analysis 18
4.1 Theory: interference pattern behind an MPI . . . . . . . . . . 18
4.2 Solving the complex field amplitudes . . . . . . . . . . . . . . 20

5 Experimental set-up 23

6 Experimental results on a vortex beam 25

7 Experiments on optical speckle 28
7.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Conclusion and discussion 38
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.2 Discussion: possible future experiments . . . . . . . . . . . . 39

2



Chapter 1

Introduction

1.1 Optical speckle

Speckle is a common phenomenon in optics. It can be synthesized by a ran-
dom coherent superposition of many plane waves which results in a ’speckled’
pattern of light and dark spots. A common way of producing speckle is by
illuminating a rough surface with a laser beam.

So called optical vortices constitute special points in the speckle pattern,
where the amplitude of the field is zero and the phase is singular. Since the
field is continuous, vortices are embedded in the darker regions of the speckle
pattern. Around a vortex the phase varies from 0 to 2πm, where m is called
the vortex charge. Although in principle m could take on any integer value,
in speckle patterns one usually finds m = ±1. Higher order vortices can
occur but are extremely rare [1].

For an isotropic vortex the phase varies linearly on a circular contour
centered around the vortex. For this type of vortex the complex field am-
plitude in the plane perpendicular to the propagation direction of the light
can be described locally with E ∼ reiφ, where r is the distance from the
vortex and φ the polar angle. However, a vortex in a speckle pattern is
in general not isotropic. Several attempts have been made to characterize
anisotropic vortices [2]-[4]. This anisotropy is characterized by an elliptic
contour over which the phase varies linearly and the intensity is constant.
Following [3], we will argue that the vortex can best be described in terms
of the ellipticity and orientation of this contour. We will also introduce an
alternative description in terms of the Poincaré sphere.

1.2 Probing a speckle field

At optical frequencies it is impossible to directly measure the phase of light.
Hence, the detection of vortices traditionally relied on interferometric tech-
niques [5, 6]. We will use a Multi-Point Interferometer (MPI) [7] as a tools
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Figure 1.1: The Multi-Pinhole Interferometer (MPI) consists of a circle of
radius a, with N evenly spaced circular holes in it. The holes have diameter
b. In our experiment, N = 5, a = 100 µm and b = 50 µm.

to directly detect the phase profile of the light. More traditional methods for
the detection of a phase profile rely heavily on interferometric techniques.
Using an MPI has the advantage that it does not require any additional
interferometric set-up.

An MPI (see figure 1.1) consists of a number of small pinholes distributed
uniformly in a circular configuration. Light that falls through the pinholes
will diffract to form an interference pattern. This interference pattern can
be used to extract the relative phases of the light on the individual pinholes
[8] and determine the local vorticity in the incident light [7]. We will expand
on the existing analysis [8] by fully solving the complex amplitudes on the
detection circle, apart from an arbitrary phase.

Since the MPI is smaller than the average speckle size, the field can
be expanded in terms of its derivatives. These derivatives can be used to
characterize the optical vortices present in the speckle pattern. Measurement
at multiple positions allows for the resolving of an entire speckle field.

1.3 Overview of thesis

This thesis attempts to develop a theory for the description of vortices and
the statistics of a speckle field and to measure a speckle field with an MPI
to test the theory.

Chapter 2 aims to explain general properties of the speckle field in gen-
eral and of the vortices in particular. This theory uses the fact that the
measurement of the speckle field is local, such that the description can be
done in terms of the local optical field and its first-order spatial derivatives.
The expressions derived in this chapter which will be used in simulations
and experiments. We will not discuss how this should be measured until
chapter 4.

In chapter 3 we present simulations of an optical speckle field, both to
increase our understanding of speckle patterns and to apply the theory of
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the previous chapter in a situation where we have complete information:
a phase-resolved speckle field. This chapter therefore constitutes both a
validation of the theory of the previous chapter and, more importantly, a
prediction for the experiment.

In chapter 4 we will discuss how to obtain the local speckle field exper-
imentally. The interference patterns generated by the MPI can be used to
obtain the electric fields at the location of the pinholes of the MPI, up to
an arbitrary phase. This allows us to observe the properties of individual
vortices and of the statistics of the speckle pattern.

Chapter 5 discusses an explanation of the experimental set-up. This set-
up comprises an MPI, that can be tranlsated in the plane orthogonal to the
propagation direction of the speckle field, to allow a scan of a 2D-section of
the speckle field.

To support the validity of our method, chapter 6 presents the experi-
mental results of measurements on an isotropic vortex beam. Such a beam
is produced by a fork hologram. Fork holograms, when illuminated with a
laser beam, produce a far-field diffraction pattern with an optical vortex in
each of the diffraction orders. We observe that the experiment on a vortex
beam yields the desired results. This supports the theory laid out in the
first chapters.

In chapter 7 we present the results of similar experiments, performed
on optical speckle patterns. We will treat the properties of the vortices in
the speckle pattern in a statistical fashion, leaning heavily on the theory of
chapter 2 and compare the results to the simulations from chapter 3.

In the last chapter, chapter 8, we will summarize our findings and give
a brief outlook for possible future experiments.



Chapter 2

General theory

This chapter aims to explain the properties of the speckle field in general
and of the vortices in particular. In this chapter expressions are derived
which will be used in simulations and experiments.

2.1 Expansion of the electric field

We will probe the field pattern on a scale that is much smaller than the av-
erage speckle size. Therefore, we are allowed to expand the complex electric
field up to first order.

E(x, y) = E(x0, y0) + ∆x
∂E

∂x

∣∣∣∣
x0,y0

+ ∆y
∂E

∂y

∣∣∣∣
x0,y0

. (2.1)

We can define the alternative circular derivative

α± =
1

2

(
∂E

∂x
∓ i∂E

∂y

)
. (2.2)

Now the first order terms can be written as

E(r, φ) = α0 + ∆r(α+e
+iφ + α−e

−iφ), (2.3)

where α0 = E(x0, y0) [9]. Thus α+ and α− are the derivative with
respect to the l = +1 and l = −1 component of the vortices. For an optical
vortex the ratio

z =
α−
α+

(2.4)

determines the sign of the vortex charge. When |z| < 1, the phase rotates
counterclockwise, which we identify with a vortex charge of m = +1. When
|z| > 1, the phase rotates clockwise and m = −1.
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Figure 2.1: Lines of equal phase of (a) an isotropic and (b) anisotropic
l = −1 vortex. Consecutive phase lines differ by a phase of π/4. The colour
indicates the phase of the field.

2.2 Properties of an optical vortex

An isotropic vortex can be described with E ∼ re±iφ. The phase gradient
is linear from 0 to 2π on a circle around the vortex. This is depicted in
figure 2.1(a). For a general vortex in a speckle pattern the field is a linear
combination of e+iφ and e−iφ as in equation (2.3). The weights of the m =
+1 and m = −1 vortex are given by the moduli of α+ and α−, respectively.

We can construct contours of constant intensity around the vortex in the
following way. First, rewrite the field to

E(x, y) = (α+ + α−)x+ i(α+ − α−)y, (2.5)

where we take α0 = 0 for convenience. To obtain coordinate axes which
coincide with the axes of the ellipse, we split off the phase of the prefactors

x′ = x eiarg(α++α−)

y′ = y eiarg(α+−α−).
(2.6)

We can now write

Ic = |α+ + α−|2x′2 + |α+ − α−|2y′2. (2.7)

This contour takes the form of an ellipse and reduces to a circle for a
pure vortex (i.e. either α+ = 0 or α− = 0). The phase φ increases linearly
on this ellipse. The phase profile of an elliptic vortex is depicted is figure
2.1(b).

The parameters that characterize an optical vortex are therefore the
eccentricity ε and the orientation φ0 (see figure 2.2).

Other characterizations of vortices have been proposed. For instance,
Freund et al. [2] introduced the terms anisotropy and skewness. However,
these properties are not mutually independent and can be altered by adding
an overall phase factor to the complex field. Schechner et al. [3] pointed this
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a

b

Figure 2.2: Properties of an ellipse. We will describe these with two param-
eters, the ellipticity ε and the orientation φ0.

out and introduced the anisotropy of the vortex and the orientation of the
semi-major axis of the ellipse as the truly independent parameters. These
properties have been further described in [6, 9].

The probability distributions of these properties in a speckle field have
also been discussed in [9]. Since the speckle pattern is isotropic, the proba-
bility distribution of φ0 is expected to be uniform on the interval [0, π]. The
probability distribution of ε is [9]

P (ε2) =
4ε2

(2− ε2)3
, (2.8)

P (ε) =
dε2

dε
P (ε2) =

8ε3

(2− ε2)3
. (2.9)

Now we want to express these parameters in terms of the circular deriva-
tives α±. This was also done in [9]:

ε2 =
4|α+||α−|

(|α+|+ |α−|)2

φ0 = 1
2(argα+ − argα−)

. (2.10)

From these equations it is easily seen that α+ and α− fully describe the
ellipse, since these are the only parameters determining ε and φ0.

2.3 The Poincaré sphere

The Poincaré sphere is well known for its description of polarization. It can
however also be used to describe vortex states [9]. The Poincaré sphere is
depicted in figure 2.3. The north and south pole correspond to isotropic
vortices, while the rest of the sphere corresponds to anisotropic vortices of
various orientations.
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Figure 2.3: The Poincaré sphere. The north pole corresponds to a circular
vortex of charge m = +1, while the south pole corresponds to a circular
m = −1. The equator depicts linear vortices, more reminiscent of Hermite-
Gauss type modes. Image taken from [9].

The normalized Stokes vectors can be expressed either in terms of the
parameters ε and φ0 [9], or in terms of the circular derivatives α+ and α−
as

s3 = ±2
√

1− ε2
2− ε2

=
|α+|2 − |α−|2

|α+|2 + |α−|2
s2

s1
= 2 tanφ0 = 2 tan 1

2(argα+α
∗
−)

. (2.11)

For isotropic speckle patterns it has been shown in [9] that equal areas
on the Poincaré shpere have equal probability [9]. This also means that it
is uniform in any direction, for instance in the direction s3. The probability
distribution of s3 over the interval [−1, 1] is thus

P (s3) = 1
2 . (2.12)

When we only look at vortices, different statistics apply. We can now
for instance look at the probability distribution for s2

3. We can relate this
to the expression for P (ε2) in equation (2.9) by

P (s2
3) = P (ε2)

∣∣∣∣dε2ds2
3

∣∣∣∣ . (2.13)

When we use the expression for s3 in equation 2.11 we obtain
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P (s2
3) = 1. (2.14)

This means the vortex properties are uniformly distributed in s2
3, over

the interval [0, 1].
In this chapter we derived expressions for what we argued to be the fun-

damental properties of vortices in terms of derivatives of the field α+ and α−.
In chapter 4 we will discuss how to obtain these derivatives experimentally.



Chapter 3

Simulations

In this chapter we present simulations of an optical speckle field, both to
increase our understanding of speckle patterns and to apply the theory pre-
sented in the previous chapter in a situation where we have complete infor-
mation: a phase-resolved speckle field. This chapter therefore constitutes
both a validation of theory and, more importantly, a prediction for the ex-
periment.

The speckle field was simulated as follows. First we created a grid with
random complex numbers, distributed uniformly on a disc of radius unity in
the complex plane. This grid is then convoluted by means of Fourier trans-
formation with a Gaussian amplitude function to create a smooth speckle
field. The width of the Gaussian in k-space is used to control the aver-
age speckle size after Fourier transformation and the number of vortices in
real-space.

The derivatives ∂xE and ∂yE of the field are determined by the differ-
ence between adjacent pixels in the x- and y-direction, respectively. These
derivatives are then rewritten to α±, as in equation (2.2).
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Figure 3.1: A speckle field was simulated of 1000 × 1000 pixels. Depicted
are 150×150 pixels cut-outs of (a) the intensity of the field and (b)-(c) the
circular derivatives |α+|2 and |α−|2.
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Figure 3.2: Distributions of the simulated speckle field from figure 3.1. As
expected, the intensity I = |α0|2, depicted in (a), obeys an exponential
probability distribution. The red line is a fit, yielding an average value
W0 = 〈I〉 = 1.44× 10−3 W m−2. In (b) |α+|2 and (c) |α−|2 show the same
behaviour, with average values of Wα+ = 3.90 × 10−5 W m−2 pixel−2 and
Wα− = 3.42× 10−5 W m−2 pixel−2.

3.1 Field derivatives

In figure 3.1(a) the intensity of the simulated speckle pattern is plotted,
alongside the ’intensity’ of the derivatives, in 3.1(b) and (c). At first glance,
|α+|2 and |α−|2 look like a speckle pattern as well, albeit with a smaller
speckle size. We will use statistic tools to investigate this claim.

It is well known [10] that the intensity of a speckle pattern shows expo-
nential statistical behaviour. In figure 3.2(a) this result is reproduced. The
probability distribution is given by

P (I) = P0e
−I/W0 (3.1)

where P0 is a normalization constant and W0 = 〈I〉 is the average value
of the intensity. Figures 3.2 (b) and (c) show interestingly enough the same
statistical behaviour for |α+|2 and |α−|2. So expressions similar to 3.1 can
be written down for |α+|2 and |α−|2. The values 〈|αpm|2〉 are obtained by a
linear fit of log P (I).

Here we introduce the width of the speckle W for the different modes.
In principle the α± are derivatives, so these have units equal to those of α0

divided by distance [pixel]. We consider the ratio of widths, which is

W0/Wα+ = 36.9 pixel2

W0/Wα− = 42.0 pixel2

It would be expected from their definitions in chapter 2 that α+ and α+

are statistically independent. To verify this we use a concept from quantum
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mechanics, called the fidelity of states. It is a measure of the ”closeness” of
two quantum states:

F
(
|ψ〉, |φ〉

)
= 〈ψ|φ〉 (3.2)

where we assume both states to be normalized. The fidelity gives 1 if the
two states are equal and 0 if the states are orthogonal. We can generalize
this in terms of the normalized probability distributions P

(
|α+|2, |α−|2

)
and

P
(
|α+|2

)
·P
(
|α−|2

)
. These distribution functions are equal if |α+|2 and |α−|2

are statistically independent, in which case the fidelity should give 1. We
calculate the integral

F =

∫ √
P
(
|α+|2, |α−|2

) √
P
(
|α+|2

)
P
(
|α−|2

)
d|α+|2d|α−|2. (3.3)

For the speckle field of figure 3.1 this calculation yields a fidelity of F =
0.99986. Thus, according to simulations α+ and α− are indeed statistically
independent, as expected.

Now we return to the question whether the derivatives of the field α+

and α− form a speckle pattern similar to that of the field itself. We saw
that these have the same probability distributions. However, this only
gives information about the distribution of the complex amplitudes, but
not about the shape of the spots. To this end, the auto-correlation func-
tions 〈E∗(~x)E(~x+ ∆~x)〉 of the speckle pattern should be considered. Since
we work in the plane orthogonal to the direction of propagation, the vectors
are ~x = (x, y) and ~k = (kx, ky).

First, we note that we can expand a speckle field in its Fourier domain

E(~x) =

∫
f(~k)ei

~k·~xd~k. (3.4)

Then we can rewrite the auto-correlation function

〈
E∗(~x)E(~x+ ∆~x)

〉
= 2π

∫
|f(~k)|2ei~k·~xd~k. (3.5)

Since we used a Gaussian profile as input of the simulations, the Fourier

components are simply |f(~k)|2 ∼ e−|
~k|2/∆k2 where ∆k2 is the width of the

Fourier component. The correlation function then becomes〈
E∗(~x)E(~x+ ∆~x)

〉
∼ e−|~x|2∆k2/4. (3.6)

When we consider the correlation function for the derivatives of the field,
we obtain

〈
α∗±(~x)α±(~x+ ∆~x)

〉
∼ ∆k2

4

(
1− |~x|

2∆k2

4

)
e−|~x|

2∆k2/4. (3.7)
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Figure 3.3: A 2 × 2 mm cut-out of the auto-correlation functions of (a)
the speckle field E, (c) α+ and (e) α−. The graphs (b), (d) and (f) show
cross-sections along the x-axis of the figures on the left. The dots show the
simulation values, the lines depict the analytical curve fitted to the data.
The fit parameters are mutually consistent. These figures are obtained from
the speckle field of figure 3.1.
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So we expect the correlation functions of the derivatives to display a
different profile than the speckle field itself.

These correlation functions are calculated numerically from the simu-
lated speckle pattern and plotted in figure 3.3. The figures on the left
are false colour plots of the correlation functions over the two-dimensional
speckle field. The graphs on the right are cut-outs along the x-axis, where
the dots are the numerical values. We fitted equations (3.6) and (3.7) to
the numerical values to obtain the value for ∆k2. The fits are depicted in
figure 3.3(b), (d) and (f). They show excellent agreement with the simulated
values. The obtained values for ∆k2 are

Correlation function ∆k〈
E∗(~x)E(~x+ ∆~x)

〉
0.33426 pixel−1〈

α∗+(~x)α+(~x+ ∆~x)
〉

0.33259 pixel−1〈
α∗−(~x)α−(~x+ ∆~x)

〉
0.33254 pixel−1

These values are in good correspondence with one another. It is remark-
able to see that the correlation function of the α± shows a slight anticorre-
lation at around ∆x = 8 pixels. This could correspond with observations of
attracting and repelling vortices [12].

3.2 Vortex parameters

In the previous section we have discussed the speckle pattern and its deriva-
tives in general. Now we turn our attention to the special points in the
speckle pattern: the optical vortices. A vortex is defined by the presence
of a phase discontinuity, around which the phase rotates. To determine if a
point in the speckle field is a vortex, one has to look at the pixels surround-
ing that point. For isotropic vortices one could fit a line through a plot
of phase versus angle, thus determining the vorticity [8]. For anisotropic
vortices, this is not an accurate method, as the phase gradient is not linear
with angle. This forms a non-linear curve, such that the slope of a fitted
line would vary greatly with the choice for the zero of the angle.

Instead we use a condition also used in phase unwrapping of a signal.
We will therefore call it the “phase unwrapping method.” We consider eight
pixels surrounding the pixel of interest. Their phases are defined in the
interval [−π, π]. We calculate the phase difference between each pair of
neighbouring pixels. When the phase difference between two neighbouring
pixels is larger than π (or smaller than −π), we assign a value of −1 (or +1).
The contributions from all the eight pixels are added to obtain the actual
vortex charge at the central pixel. This way we exclude any discontinuities
that are due to anisotropies or noise, which is relevant for the experiments.

In the previous chapter we saw that we could express the parameters of
an optical vortex, namely ε and φ0, in terms of α± (Eq. (2.10)). We use



16 CHAPTER 3. SIMULATIONS

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000
(a)

ε

P
(ε

)

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300
(b)

φ
0
 (rad)

P
(φ

0)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

s
3
2

P
(s

32 )

(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

4

|s
3
|

P
(|

s 3|)

(d)

Figure 3.4: Four probability distributions of vortex properties in the simu-
lated speckle field. The distributions of the two independent vortex param-
eters ε and φ0 are depicted in (a) and (b), respectively. Figure (c) shows the
(almost) uniform distribution of s2

3 at the vortex locations. Figure (d) shows
that |s3| is approximately uniform when averaged over the whole speckle field
(note the increased occurrences on the vertical scale).

this relation to construct the probability distributions of these properties of
vortices in the simulated speckle pattern. These are shown in figure 3.4(a)
and (b). The theoretical distribution for ε given by equation 2.9 is plotted
as a red line in figure 3.4(a). As mentioned in the previous chapter, the
orientation φ0 is expected to be uniform from 0 to π. This also holds for
the simulations, since we introduce no anisotropies in the construction of
the speckle pattern.

The description in terms of Stokes vectors lead to the prediction in equa-
tion (2.14), namely that P (s2

3) at the vortices is uniform. This is clearly
visible in figure 3.4(c). There is, however, one clear, anomalous peak in the
histogram. This would suggest a preference for vortices with s2

3 = 0. These
vortices lie on the equator of the Poincaré sphere. In terms of an ellipse,
these vortices are highly eccentric (ε almost 1). It is as yet unclear why this
seems to be the case.
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Finally, we check the observation of the previous chapter that the whole
speckle field is distributed uniformly over the Poincaré sphere by plotting
P (|s3|) of all the points in the simulated speckle field. This is depicted in
figure 3.4(d). We can only determine the absolute value, since we obtain s3

from equation (2.11), which does not unambiguously determine the sign of
s3. It is however very clear that P (|s3|) is a uniform distribution. We have
no reason to assume that P (s3) (so with positive and negative values distin-
guished) will not be uniform. That would mean there is a disproportionate
fraction of vortices which is either positive or negative. This, however, we
do not observe.

To conclude, the simulations indicate that the defined vortex properties
indeed have statistics which were predicted by the theory in the previous
chapter. Now, the most important question is if this is also observed in an
experiment. That will be discussed in the next chapters.



Chapter 4

Data Analysis

The interference patterns generated by the MPI can be used to obtain the
electric fields at the location of the pinholes of the MPI. This gives complete
information about the speckle field and allows us to observe the properties
of individual vortices.

To extract information on the fields from this pattern, it is necessary to
understand how the interference pattern is formed. We will start with that
discussion, before we solve the complex field amplitudes. Finally we will
describe how we can obtain the circular first-order derivatives of the field,
which we will need to describe the vortices.

4.1 Theory: interference pattern behind an MPI

A general MPI consists of N pinholes with diameter b. The pinholes are
positioned on a circle with radius a. We assume that a and b are much
smaller than the average speckle size such that (i) the field is constant over
a single pinhole and (ii) only first derivatives of the field have to be included
in the analysis.

The complex amplitudes directly at the pinholes are

E(x, y) =

N∑
m=1

Emcirc(x− xm, y − ym), (4.1)

where Em represents the complex field amplitude at the m-th pinhole
(Em = Ame

iφm) and circ(x − xm, y − ym) is the transmission function of
pinhole m, defined by

circ(x, y) =

{
1 if

√
x2 + y2 ≤ b/2

0 if
√
x2 + y2 > b/2.

(4.2)
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Figure 4.1: Illustration of the three steps in the analysis process. (a) The
pinhole configuration for an MPI with N = 5. The fields impinging the
pinholes are labeled Em. (b) The far-field diffraction pattern of an optical
vortex (l = +1) behind the MPI, as it is captured by a CCD-camera. (c)
False colour plot of the Fourier transform of (b). The brightness of the
colours represents the amplitude of the Fourier image, while the colours
themselves depict the phase. The labels m, n of the fields E∗mEn correspond
to those in (a).

The coordinate (xm, ym) is the center of pinhole m, as given by

(
xm, ym

)
= a

(
cos

2πm

N
, sin

2πm

N

)
. (4.3)

The far field interference pattern of the light coming through the pinholes
is given by

I(u, v) = I0

∣∣∣ N∑
m=1

EmF{circ(x− xm, y − ym)}
∣∣∣2, (4.4)

where F denotes the Fourier transform.
This interference pattern can be analyzed quantitatively by taking the

inverse Fourier transform of the interference pattern [8]:

g(x, y) = F−1{I(u, v)} = I0

N∑
m,n=1

Pmn(x, y)EmE
∗
n, (4.5)
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where Pmn is the auto-correlation function of the pinholes:

Pmn(x, y) =
〈

circ(x′ − xm, y′ − ym)circ(x′ − xm + x, y′ − ym + y)
〉
. (4.6)

The Fourier transform g(x, y) therefore comprises a series ofN(N − 1) + 1
discrete spots, as depicted in figure 4.1(c). Each of these spots is the corre-
lation of two pinholes m,n. The moduli of these spots are cone-shaped with
peak values of |g(xm − xn, ym − yn)| = I0|EmE∗n|. The single central spot is
real-valued and has a peak value of

I =

N∑
n=1

|En|2. (4.7)

For a square CCD-image of n by n pixels of size d, the central position
of the spots (xmn, ymn) in the expression of equation (4.5) in pixel units is

(xmn, ymn) =
nd

λz
(xm − xn, ym − yn). (4.8)

where z is the distance between the MPI and the CCD and λ is the
wavelength of the light. The diameter of the spots in this inverse Fourier
image of the interference pattern is

s =
nd

λz
b. (4.9)

4.2 Solving the complex field amplitudes

The analysis of the data starts with locating the spots in the Fourier image of
the interference pattern. A good estimate can be made from eguation (4.8).
The amplitudes (Am) and phases (φm) have to be solved for separately.

Solving the amplitudes

We start by solving the amplitudes. These are obtained from the abso-
lute value of the Fourier image |g(x, y)|. The peak values at each spot are
obtained by fitting a cone to each of the spots:

f(x, y) = |Smn| − b
√

(x− xmn)2 + (y − ymn)2. (4.10)

The parameter of interest is the peak value |Smn|, which is proportional
to the product |EmE∗n| = AmAn.

Now we have to solve these products AmAn for the amplitudes Am. To
obtain these solutions we look at the collection of spots where the index m
remains fixed. This traces out polygons in the Fourier image. This is drawn
for N = 5 in figure 4.1(c).
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From the fitting routine we obtain the product of the amplitudes from
the Fourier image

Smn = AmAn. (4.11)

The value of the center spot was given in 4.7 and can be rewritten in
terms of Smn:

I =

N∑
n=1

|En|2 = A2
m +

N∑
n 6=m

S2
mn

A2
m

. (4.12)

Since I and Smn are obtained from the Fourier image, we can solve for
A2
m:

A2
m =

1

2

I −
√√√√I −

N∑
n 6=m

Smn

 . (4.13)

We can now use equation (4.11) to solve for the other amplitudes An6=m.
This analysis is repeated for the other N − 1 polygons, reducing the errors
in the determination of the amplitudes.

The background noise of the CCD-image accumulates in the central pixel
of the Fourier transform, resulting in a systematically overestimated value
for I. This is solved by omitting the central pixel from the fit routine.

Solving the phases

The phases on the pinholes are embedded in the Fourier image as phase
differences φm − φn at every spot. To obtain a more accurate value for this
phase difference, the phase of each spot is obtained by averaging over four
pixels in the center of the spot. When we again consider the polygons of
fixed index m, we find for each m a series of N phase differences, which we
can order in a vector:

∆~φm =

φm − φ1
...

φm − φN

 . (4.14)

Since we can only know the phases at the pinhole relative to one another
we set φ1 = 0. This gives us

∆~φm6=1 =


φm − 0
φm − φ2

...
φm − φN

 , ∆~φ1 = −


0
φ2
...
φN

 . (4.15)
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In principle, we could read off the phases from the components of ∆~φ1.
However, if we want to achieve the same experimental accuracy in the deter-
mination of the phases as we attained in the determination of the amplitudes,
we must average over the N times that the phase information is present in
the Fourier image. We obtain this information by subtraction of the vectors

∆~φm6=1 −∆~φ1 =

φm...
φm

 . (4.16)

Taking the average over all N components yields a value for φm.
In conclusion, this analysis yields values for the complex field amplitudes

Em = Ame
iφm at all N pinholes, with phases relative to E1.

Obtaining the derivatives of the field

Finally, we’d like to acquire an expression for the circular derivatives α± of
the field. To this end, reconsider equation 2.3. The α+ and α− are basically
the weights of the l = +1 and l = −1 vortex modes. So we calculate the
weight of each of the ring modes λl from the fields, by using the relation

λl =
N∑
n=1

En e
−2πinl/N . (4.17)

For an odd number N , there are N different ring modes that can be
identified with the MPI [7], ranging from l = −(N − 1)/2 to +(N − 1)/2.
So for N = 5, l = 0,±1,±2. These ring modes relate to the α± from the
previous chapter in the following way:

λ0 = α0

λ±1 = aα±1
, (4.18)

where a = ∆r from equation (2.3). In a way the modal amplitudes λl
are more natural than the field amplitudes α0 and derivatives α±, since they
all have the same units.

There is no direct relationship between λl’s with |l| ≥ 2 and higher order
derivatives of the field. But higher order λ’s can be interpreted as corrections
to the linear expansion of the field around the center of the MPI.

Since we defined the phases of our fields with respect to a semi-arbitrary
phase, namely that of E1, the λl will also pick up an extra phase factor.
This however does not matter, since we will only use their absolute values
and relative phases. (see chapter 2)



Chapter 5

Experimental set-up

This chapter describes the experimental set-up. The set-up is shown in figure
5.1. Optical speckle is produced by illuminating a light shaping diffuser
with a beam from a HeNe laser. At sufficient distance, where the speckle is
fully developed, an MPI is mounted on a translation stage. A CCD-camera
behind an f-f optical system records the far field diffraction pattern of the
light passing through the MPI.

The MPI consists of 5 holes distributed uniformly on a circle with radius
a. The size of the pinholes is denoted by b. The smallest available a (100 µm)
is chosen to satisfy the linearization condition required for equation (2.1).
The average speckle distance in our geometry is about Xsp ∼ 1mm, so this
should be small enough. Since we are most interested in the darkest areas
in the speckle field, the largest available pinhole size b (50 µm) is chosen to
maximize the throughput.

The translation stage can be moved in the x- and y-direction, so we can
analyze the speckle field at different positions. We will scan the MPI through

f f

HeNe M1

M2

FW

LSD

DMPI CCDL

TS

z

x
y

Figure 5.1: Schematic view of the setup used to detect optical vortices.
After reflection of two mirrors (M1 and M2) a helium-neon (HeNe) laser
beam illuminates a light shaping diffuser (LSD) to create a speckle pattern.
Parts of the speckle pattern are allowed to pass through, onto a multi-
pinhole interferometer (MPI). The resulting interference pattern is recorded
by a CCD-camera (CCD). The MPI is mounted on a translation stage (TS)
that can be moved in the x- and y-direction.
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the speckle field in a square grid with distances of 10 to 40 µm. At every step
an interference pattern is acquired and analyzed to obtain the complex fields
at the pinholes and the corresponding ring mode decomposition, following
the procedure described in the previous chapter.

Because the MPI moves through the speckle field while the CCD remains
fixed, the central position of the interference pattern changes with every step
of the translation stages. Therefore the image first has to be centered before
the Fourier analysis is performed. Otherwise there will be a phase gradient
in the Fourier image, rendering the analysis of the previous chapter useless.
This centering is done by convoluting the image with a Bessel function. The
maximum in the convolution corresponds to the center of the interference
pattern. An image of 512×512 pixels is cut out around this center.



Chapter 6

Experimental results on a
vortex beam

To support the validity of our method, we first present the experimental
results of measurements on an isotropical vortex beam. Such a beam is
produced by a so-called fork or edge dislocation hologram. Fork holograms,
when illuminated with a laser beam, produce a far-field diffraction pattern
with an optical vortex in each of the diffraction orders, except for the zeroth
order (figure 6.1). The charge of the vortex corresponds to the number of
the diffraction order. Since a speckle pattern contains almost exclusively
l = ±1 vortices, we pick the diffraction order that contains a vortex with
l = 1.

This vortex is scanned with the setup as described in chapter 5, where
we replaced the light shaping diffusor by a fork hologram. We acquire 20×
20 images of interference patterns with distances of 20 µm between each
consecutive image. Each interference pattern is then analyzed with the
method described in chapter 4, to yield the complex field amplitudes at
each of the pinholes and the corresponding ring mode amplitudes λl.

Figure 6.1: The diffraction pattern produced by a fork hologram. Each of
the diffraction orders contains an optical vortex, with charge corresponding
to the order of diffraction (except of course in the zeroth order). Photo
by Azure Hansen, Stony Brook University, 2004. Released in the Public
Domain.

25
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Figure 6.2: Detection of an optical vortex beam of l = 1. At intervals of 20
µm an image is acquired of the interference pattern behind the MPI. Each
interference pattern yields a value for |λl|2 (with l ranging from -1 to +1),
which constitutes one pixel in the data shown here. (a) shows the intensity
|λ0|2 of the vortex beam as function of position. (b) shows the vortex charge
of the beam, determined by counting the phase discontinuities at each point.
(c) and (d) show the intensities of the first-order modes |λ+1|2 and |λ−1|2,
respectively; only the l = +1 mode gives a significant contribution. (e) and
(f) show the intensities of the second order ring modes; these are significantly
smaller.
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The results of this series of measurements are shown in figure 6.2. 6.2(a)
shows the intensity of the vortex beam. It shows that the scan was centered
around a minimum of the intensity. In figure (b) the net vortex charge
is plotted at every measured position. This was determined by use of the
phase unwrapping method, described in chapter 3. The shape of a pentagon
is clearly visible in this image. This corresponds to the pentagon-shaped
MPI we used and means that an isotropic vortex will only be detected when
it is inside the configuration of pinholes.

Figures 6.2(c)-(f) show the intensities |λl|2 higher-order ring modes. As
expected, only the λ+1 mode gives a significant contribution in the center
of the beam. In fact, roughly at the positions of the detected vortex it
dominates over the λ0 contribution.

The intensities |λ±2|2 of the higher order modes are about an order of
magnitude weaker than the |λ1|2. The l = +2 component, with the same
sign as the vortex charge, is the one that gives the largest contribution of
the two. This concurs with the observation that a vortex that is aligned
off-center in the MPI will mix in l = ±2 components into the interference
pattern [11].

With the equations (2.10) that relate ε, φ0 to α± and (4.18) that relates
α± to λ±1, we can calculate the elliptic properties of this vortex:

ε = 0.19
φ0 = -0.48π

We can relate this to the description in terms of Stokes vectors with equation
(2.11), which yields

s3 = 1.00

We observe that the experiment on a vortex beam yields the desired
results. This supports the theory laid out in the first chapters. We will
perform the same experiments on speckle patterns in the next chapter.



Chapter 7

Experiments on optical
speckle

In this chapter we present the results of experiments on optical speckle
patterns. We will treat the properties of the vortices in the speckle pattern in
a statistical fashion, leaning heavily on the theory of chapter 2 and compare
the results to the simulations from chapter 3.

7.1 Experimental results

We present the results of three independent experiments. They differ in
the step size between successive image acquisitions and in the total scanned
area.

Dataset Step size Scanned area
A 10 µm 800×800 µm2

B 20 µm 4000×4000 µm2

C 40 µm 6400×6400 µm2

Figure 7.1 shows the result of measurement A, which was done on a
single vortex in a speckle pattern. Steps of 10 µm were made between each
acquisition of an interference pattern. Figure 7.1 shows the same trends
as figure 6.2, albeit less smooth, as expected from a speckle pattern. The
vortex charge as determined by the phase unwrapping method in (b) shows
a single vortex of charge m = +1, in the darkest part of the speckle pattern.
Correspondingly in (c) the |λ+1|2 mode lights up at the same position. In
(d) the contribution of |λ−1|2 is visible, but it is negligible at the vortex.
The contribution from the higher order ring modes |λ±2|2 is again an order
of magnitude smaller. The mode with the same sign as the vortex, in this
case |λ+2|2, still dominates over the mode with opposite sign.

It is remarkable to see that the elevated values of |λ+1|2 extend to beyond
the positions where the vortex falls within the MPI. There also seems to be
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Figure 7.1: The results of measurement A on a single optical vortex (m =
+1) in a speckle pattern. Steps of 10 µm were made. (a) shows the intensity
of the speckle pattern. The position and charge of the vortex is determined
in (b) by looking at phase jumps at the pinholes which are larger than π. (c)-
(f) depict the modal intensities |λl|2. It is obvious that the only significant
contribution at the vortex position is from the |λ+1|2 component. The |λ±2|2
components are again much smaller than the |λ±1|2.
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a substructure in the speckle of this mode, which was not observed in the
experiment on the vortex beam.

The properties of this vortex are calculated:

ε = 0.88
φ0 = -0.05π
s3 = 0.77

Figure 7.2 shows a plot of measurement B. Steps of 20 µm were taken
between consecutive probings of the field. There are several vortices visible
in (b). The vortices shown in (b) can visually be correlated with the bright
spots in the plots of |λ±1|2 in (c) and (d). There are a few pairs of oppositely
charged vortices close together, where it is hard to separate them. The
attraction and repulsion of vortices has been studied in more detail in [12].

The second-order ring modes are again small, save a few bright points
which we can further neglect. The second-order modal amplitudes do how-
ever respond to the presence of vortices. Bright spots in |λ±2|2 are visible
in the same areas as the first-order ring mode with concurrent sign.

Measurement C is a scan over an area of 6.4×6.4 mm speckle field, with
step sizes of 40 µm. Figure 7.3 shows plots of a 3.6 × 3.6 mm section of
that measurement. With the stepsize of 40 µm we are still able to locate
the vortices with the criterium of phase discontinuities (b). Again we see
pairs of oppositely charged vortices close together. However it is now hard
to visually correlate these vortices to bright spots in the plots of (c) λ+1 and
(d) λ−1.

So a more quantitative method is required to obtain the vortices from
the speckle pattern using the ring modes λl. We propose a method where the
largest of the modes |λ0|2, |λ+1|2 and |λ−1|2 determines the vortex charge
to be 0, +1 or -1, respectively. The results hereof applied on measurement
C are shown in figure 7.4(b), alongside the results of the phase unwrapping
method in (a). The intensity is plotted, with the vortices highlighted in
white. First of all, note that the vortices only occur in dark spots of the
speckle pattern. More importantly, both methods seem to be able to detect
optical vortices in a speckle pattern. As mentioned before, the method of
(b) seems to detect the vortices in a larger area than just the area of the
MPI.

In order to perform a statistical analysis on just the vortices, it is impor-
tant which of these methods is more accurate. If either too many or too few
points in the field are marked as vortex, the statistics will be biased either
towards the statistics of the whole speckle field or towards the statistics of
a subset of the vortices.

Method (b) seems to be better equipped to deal with more elongated
vortex structures, where the ellipticity ε is probably very high. We see
this in figure 7.4(b), where the amount of detected vortex points increases
drastically in the dark ’gutters’ of the speckle field. In the extreme case of
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Figure 7.2: The results of measurement B on an optical speckle pattern.
The step size is 20 µm. (a) shows the intensity of the speckle pattern. The
positions of the vortices are determined in (b) by looking at phase jumps.
The positions and charges of these vortices clearly match the positions in
(c) and (d) where |λ+1|2 and |λ−1|2 light up.
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Figure 7.3: The results of measurement C on an optical speckle pattern with
a step size of 40 µm. For visibility only a quarter of the scanned area of
6400×6400 µm2 is shown. (a) shows the intensity of the speckle pattern.
The positions of the vortices can still be determined in (b), but it is however
more difficult to correlate these vortices to light spots in the plots of |λ±1|2
in (c) and (d).
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Figure 7.4: The intensity of experiment C with +1 and -1 vortices high-
lighted in white. In (a) the vortices are detected by the presence of phase
unwrapping, while in (b) the largest of the modes |λ0|2, |λ+1|2 and |λ−1|2
determines the vortex charge. The obtainedd results are comparable, but
both methods yield an unexpected and seamingly noisy structure.

ε = 1 (or s3 = 0) the vortex is linear. Then there are two phase jumps on a
contour around the vortex. This means that the phase unwrapping method
will give a vortex charge of zero, hence the vortex is not detected.

On the other hand, since the vortex is a point structure, it seems more
natural to pick the method which confines the location of the vortices the
most. This would favour method (a). Method (b) indicates a bigger spread
in the position of the vortices. A good fraction of the points marked as
optical vortex does not actually contain a vortex and will not obey the
statistics expected for the vortices.

We will continue to work with method (a), since it yields less false posi-
tive reports of a vortex.

The auto-correlation functions of the field and the first-order ring modes
is determined from measurement C. The results are plotted in figure 7.5.
Because of the limited number of data points in a measurement, the statistics
are not sufficient for a quantitative comparison with the simulations. We
can, however, point out similar trends. First of all, the autocorrelation of the
field show a reasonably Gaussian profile. The correlation function of the ring
modes l = ±1 definitely has a smaller width than the l = 0 mode, but does
not show a Gaussian profile (being more strangely peaked in the center),
nor any clear dips to the side of the central peak. Only a significantly larger
set of data points would allow for a more accurate plot and a quantitative
comparison.
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Figure 7.5: Auto-correlation functions corresponding to measurement C.
Auto-corelation of (a) the speckle field E, (c) α+ and (e) α−. The graphs
(b), (d) and (f) show intersections along the x-axis of the left figures.
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Figure 7.6: From a collection of five experiments the statistical distribu-
tions of the different l-modes is calculated. As expected, in (a), |λ0|2 or
I is distributed exponentially, with average value W0 = 0.0153 W m−2.
In (b) |λ+1|2 and (c) |λ−1|2 yield a similar exponential distribution, also
as expected, with average values of Wλ+1 = 3.29 × 10−4 W m−2 and
Wλ−1 = 2.97× 10−4 W m−2. Finally, the second order modes in (d) and (e)
are also exponentially distributed with average values of Wλ+2 = 4.67×10−5

W m−2 and Wλ−2 = 3.61× 10−5 W m−2.

7.2 Statistics

To perform a statistical analysis on the speckle, we used five different datasets,
including measurements B and C. These consist in total of more than 150,000
data points, of which over 2,000 points are indicated as vortices. This num-
ber makes a statistical analysis meaningful and allows us to compare such
an analysis with the simulations from chapter 3.

The probability distributions of the different λl are plotted in figure 7.6.
As expected, the intensties |λ0|2 and |λ±1|2, and even |λ±2|2 are distributed
exponentially. Similar to the simulations, we fit the logarithms of these
distributions to obtain average values Wλl over the speckle field:

P (|λl|2) = P0e
−|λl|2/Wλl . (7.1)

The zeroth and first order modes can be quantitatively compared with
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the probability distributions of the α0,± modes in figure 3.1, since they differ
by a constant factor a (see eq. 4.18). For these modes we calculate the ratios:

W0

Wλ+1

= 46.5

W0

Wλ−1

= 51.6
.

The ratios

Wλ+1

Wλ+2

= 7.05

Wλ+1

Wλ−2

= 8.22

indicate if the linearization of the field is a valid approximation. These
ratios are larger than unity, although not much larger. This means we are
at the limits of the linearization condition.

To verify that λ+1 and λ−1 are indeed independent, as the simulations
predict, we apply the same method as we did for the simulated speckle.
Formula 3.3 can be restated in terms of λl

F =

∫ √
P
(
|λ+1|2, |λ−1|2

) √
P
(
|λ+1|2

)
P
(
|λ−1|2

)
d|λ+1|2d|λ−1|2, (7.2)

assuming the involved probability distributions are normalized. A cal-
culation yields a value of F = 0.992. It can thus be safely concluded that
λ+1 and λ−1 are indeed statistically independent.

The most important aspect to uncover is the statistical behaviour of the
vortex properties in terms of its elliptic properties ε and φ0 and in terms
of the stokes parameter s3. The resulting histograms are plotted in figure
7.7(a)-(c).

The result is exactly the same as what we obtained with simulations
of a specklefield (figure 3.4). The experimental distribution of ε is plotted
alongside the theoretical prediction. It reproduces the distribution that was
found by [6]. The orientation φ0 is uniformly distributed between −π an π,
indicating isotropy in the speckle field.

The distribution of s2
3 at the vortices from the simulations is perfectly

reproduced, including the sharp peak towards s2
3 = 0. Besides that the

distribution is uniform, validating the description in terms of Stokes vectors
as a natural one.

Figure 7.7(d) again shows the distribution of |s3| over the entire speck-
lefield. The fact that this distribution is uniform means that the derivatives
of a speckle field can be represented as a uniform quantity over the Poincaré
sphere.
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Figure 7.7: Figures (a), (b) and (c) depict the measured probability distri-
butions of the different vortex parameters; ε, φ0 and s2

3. Figure (d) depicts
the distribution of |s3| over the entire specklefield.



Chapter 8

Conclusion and discussion

8.1 Conclusion

In chapter 2 we saw that a speckle field could locally be expanded in first-
order derivatives of the field. We defined circular derivatives α+ and α−,
which were the amplitudes in a linear combination of an m = +1 and an
m = −1 vortex, respectively. In chapter 4 we described how a Multi-Pinhole
Interferometer (MPI) could be used to find these circular derivatives exper-
imentally. An MPI is a small structure and therefore suitable for probing
the local optical field. The field on the pinholes can be determined up to a
single phase. Chapter 6 described the proof of concept with measurements
of a vortex beam. In chapter 7 the results of measurements on a speckle
pattern were presented. We were able to fully reconstruct the local field and
the circular derivatives of the speckle field in a 2D plane.

In the theory we argued for a description of a vortex with two inde-
pendent properties, namely the eccentricity ε of the phase gradient and the
orientation φ0 of the resulting ellipse (chapter 2). These properties can be
calculated from the derivatives of the electric field. We could therefore also
determine these properties experimentally. In chapter 6 this was done for
a single optical vortex in a vortex beam. In chapter 7 the properties ε and
φ0 were measured on many vortices, allowing for a statistical analysis. This
matched predictions made by theory (chapter 2) and simulations (chapter
3).

We showed that the speckle field could also be characterized with Stokes
vectors on the Poincaré sphere. We stated that the speckle field would be
distributed uniformly over the Poincaré sphere. In chapter 2 we made the
specific prediction that there is a uniform distribution along the s3 direction.
The vortices constitute special points in the speckle field and obey different
statistics. We predicted that the vortices ar distributed uniformly in s2

3,
rather than in s3. Both these predictions were confirmed by simulations
(chapter 3) and experiments (chapter 7).

38
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It is however still unclear why the probability distribution P (s2
3) of the

vortices has a sharp peak at s2
3 = 0, both in the experiment and the simula-

tions. The situation where s2
3 = 0 represents very elliptic - or even linear -

vortices, so a study of this type of vortices could elucidate this observation.

8.2 Discussion: possible future experiments

Now that we have fully developed a method to probe speckle patterns, many
more experiments can be designed to study speckle. First of all we note that
an increase of the number of pinholes (N) will benefit the accuracy in the
determination of the electric fields. In this thesis the principle of the MPI
was demonstrated with N = 5, the minimum number at which the fields can
be determined in ring modes up to order l = ±2. However, when N = 7 or
higher are used (pinholes with even numbers of N don’t distinguish between
l and −l) the accuracy in the determination of the ring modes increases,
since there are more data points in the sum in equation (4.17). This is
especially true for anisotropic vortices, where the phase may change rapidly
between adjacent pinholes.

A possible employment for the MPI would be as a wavefront-sensor, in
the sense of a Shack-Hartmann detector. A Shack-Hartmann sensor can
detect the local tilt of a wavefront, but does not respond to singularities in
the phase. An MPI can detect singularities as well as tilts in the wavefront,
so it can potentially improve the workings of such a device. Since a vortex is
a point object and has no internal structure, it could fall between adjacent
MPI’s. However, when vortices are detected by looking at the first-order
derivatives, we’ve seen that vortices can also be detected when the vortex
does not fall into the MPI (see figure 7.4). Alternatively, the array could
be translated laterally to create a resolution smaller than the radius of the
MPI. If steps of 0.2a are taken, only 25 steps would have to be made to
obtain the same resolution obtained in this thesis.

For further studies of the behaviour of vortices in a speckle pattern, the
field can also be scanned in the z-direction, the direction of propagation. In
our experiments this distance was fixed, but other experiments have been
done where the speckle field was studied at different positions of z [14].
A possible subject of study could then be the attraction or repulsion of
vortices with opposite or equal charges. This topic is to some extent al-
ready studied theoretically in ref. [12]. It could for instance be expected
that this attraction and repulsion will be visible in the correlation function
〈λ∗+(~x)λ−(~x+ ∆~x) 〉.

An attempt can even be made to let two equally charged vortices fuse to
make an l = ±2 vortex. This last experiment could also be done by lateral
translation of the diffusor plate in our experiment. The resulting change
in the speckle pattern will reflect the rough and discrete structure of the
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diffusor plate. It is unclear if the corresponding displacement of vortices is
predictable. This is required to be able to control their movements.

The advantage of the MPI is that it can be scaled to arbitrary size, since
only a finite number of point detectors is needed. In this light, an interesting
observation we made was the fact that detection of vortices could also be
possible with two pinholes. This could be interesting for applications where
it is either too costly or inconvenient to work with multiple ’pinholes’. Here
one of the pinholes overlaps with a vortex, where the phase changes arbitrar-
ily fast, while the other serves as a source of a plane wave. A condition for
this to work is that there is no vortex impinging the second pinhole. When
an inverse Fourier transform is made of the resulting interference pattern
(corresponding to g(x, y) from equation 4.5 and figure 4.1(c)), the E∗1E2

and E∗2E1 spots show a fork-like phase profile, which allows for the deter-
mination the vortex charge. Once you determine on which of the pinholes
the vortex impinges, the position of the vortex can even be determined up
to the size of the pinholes, b.
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