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Abstract

This thesis is about the progresses brought to the two photon speckles experiment, after
the work J.J.D Moerman achived [5]. What one calls a two photon speckle is the pattern of
the coincidental clicks of two detectors in the far-field of a random phase plate (diffuser)
shined by an entangled two photon field -in our experiment, this one is the two photon field
coming Spontaneous Parametric Down-Converted coherent blue beam.

We inherited from Moerman equations and setup already done, as well as first scans
and numbers, but no extensive studies of the speckle size.

We studied in great detail the two photon speckle size, and found out why the two
photon speckles were a lot smaller than theory : the diffuser was not in the actual focus
of the SPDC beam. After replacing the diffuser, we built a setup to be able to tune the
number of excited modes in spatial entanglement by tuning the size of the pump beam
continuously while keeping the focus right at its center. The setup is effective to tune the
Schmidt Number from 30 to 1.5.
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Chapter 1

Introduction

When many random-phased but coherent fields interfere, one calls it random [1]. Speckles
have been present in science, since one thought to illuminatate a rough surface with a laser,
and are used now in astronomy [2][3] and biology [4].

Speckles due to a coherent one photon field (like laser light), called to classical speck-
les, have been well studied [1]. In this thesis are considered the speckles created by a co-
herent two photon beam - even if there is no speckle in the intensity pattern, coincidences
of photon detections show a speckle pattern.

In our case, the two photon beam is the infrared entangled two photon field generated
by Spontaneous Parametric Down-Conversion (SPDC) of a blue laser beam. This two pho-
ton field is focussed on a random phase plate, called also diffuser, which is non-absorbing
but presenting a random thickness (so adding a random phase). It is the contributions of
this scattering that interfere on the far-field of the diffuser to create speckles.

The far field of the random phase plate will be measured by two detectors that can count
single photons. What we call a coincidence is when two photons enter Detectors 1 and 2
-on the far field of the diffuser- simultaneously. The theory showing the speckle in the far-
field coincidence count of the two photon field was already set before the work presented
in this thesis - set by J.J.D. Moerman [5], as well as a setup and first measurements, which
had not yet led to extensive study of the speckle sizes.

In Chapter 2 are going to be presented the ”tools” we worked with, i.e the biphoton
setup and equations describing these two photon speckles. In Chapter 3 is described the
measurement programme we went for, and the results of the 70 scans we ran, and also the
reason why the two photon speckles we had seen were not optimal.

Chapter 4 is all about the next step that we want to go for, what is reducing the number
of modes involved in the two photon field - a short overview of the theory of reducing the
number of modes, a experimental way of doing it and the first results are given.

2



Chapter 2

Setup and Theory of the two
photon speckles experiment

Joining the group in September, I heritated from Hans, Wouter and Martin a working bipho-
ton speckles generating setup, and theory which went with. This chapter, mainly borrowed
to [5] and [6] will be there for the rest of the thesis to be understandable, and not to present
my personal labour.

2.1 Setup
An overview of the setup for the biphoton experiment is given in Figure 2.1

The λp = 413 nm pump beam is coming from a Krypton ion gas laser (Coherent
Innova 300), with a power of 200± mW.

The pump beam is focussed on a 5 mm long periodically-poled KTiOPO4 crystal
(PPKTP) with f = 1000 mm lens A. The waist of the focus in the SPDC crystal is
wp = 170 µm. A small fraction of this beam is converted in a λ0 two photon beam,
via Spontaneous Parametric Down-Conversion (SPDC). A GaP plate is place right after
the PPKTP crystal so as to absord all the blue photons remaining.

A f − 2f − f system is used to make an exact one-to-one image of the near field of
the crystal on the diffuser plate, so as the beam is focussed on the diffuser (f = 200 mm).
The diffuser plate has an opening angle of approximately 1◦, and is placed so as the rough
surface is towards the incident SPDC beam.

Behind the diffuser, a f = 250 mm lens is used in an f−f system to make an image of
the far field of the diffuser (Far Field 2). In between Lenses C and D, a 50-50 beam splitter
is placed to split the photon pair in two outgoing directions. This beam splitter loses half
the coincidence because there is only a 50% probability that the photons of a pair choose
two different paths through the beam splitter (both photons of a pair have to enter another
detector to be counted as a coincidence).

The far field image (Far Field 2) is monitors with two detectors mounted on actuators,
which can move in both tranverse directions. Each detector mode comprises of an f =
8 mm object lens and a single mode fiber. Both object lens, protected by a 5 nm wide
826 nm centered filters, are used to focus the incoming light into the fiber (with a mode
field diameter of MFD = 5.6 µm).

The size of the detector modes in Far Field 2 is θD = 0.40 mrad -low enough to see
speckles which will be larger than 0.70 mrad, see Section 3.3

3



4 Setup and Theory of the two photon speckles experiment

Figure 2.1: Schematic picture of the experimental setup for the biphoton speckle experi-
ment. A beam from the laser is focussed onto a PPKTP crystal (Near Field 1) using lens A.
Directly behind the crystal the remaining blue light is filtered out using a AR-coated wafer
of GaP. A one-on-one near field (Near Field 2) image of the crystal is made onto a diffuser
plate using lenses B and C. Behind the diffuser lens D makes a far field image (Far Field 2)
of the diffuser plate on the detector modes. Both detector modes are separated by a beam
splitter. The detector modes are composed of a fiber and an object lens that focusses the
light on the fiber. Both detectors are indicated by the dotted areas denoted as Stage 1 and
Stage 2. The fibers are connected to photon counters 1 and 2. Courtesy of J.J.D Moerman,
reference [5] Figure 1
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The two fibers are connected to single photon counters (SPCM-AQR). The electric
pulses are then going to a fast AND gate that serves as a coincidence circuit with a specified
gate time of τgate = 1.73 ns. The coincidences counts are integrated over τint = 4 s for
each position of the detectors to get the average coincidence count rate.

One has also to consider accidental counts, which are not a manifestation of the bipho-
ton field but just two uncorrelated photons that happen to enter the detector at the same
time. It can be estimated by

Racc = R1R2τgate (2.1)

where R1 and R2 are the single photon count in detector 1 and detector 2. The raw co-
incidences are corrected with these accidentals to obtain the corrected coincidence counts
-accidental and corrected coincidence counts are about of the same order, so it is important
to have this correction.

Equation 2.2 to Equation 2.5 are a recap of the numbers that will play an important role
within Chapters 2 and 3.

Lcryst = 5.09 mm (2.2)
wp = 170 µm (2.3)
λ0 = 826 nm (2.4)

n0 = 1.842 (2.5)

2.2 Theory of the biphoton speckles
In this section will be presented an important result we relied on to process on biphoton
speckles : the statistical shape of the spatial correlation function of the coincidence counts
(handily also written Rcc).

The beam in the SPDC crystal is supposed to be Gaussian, focussed with a width wp
-corresponding to a transverse intensity distribution

Ep(x) = E0 exp
(
− x2

wp
2

)
(2.6)

It gives a biphoton field of the SPDC beam at the crystal center of [7]

ASPDC(x1, x2) = A0 . Ep

(
x1 + x2

2

) ∫
sinc

[
λpL

8πn0
q2
− + φ

]
exp

[
1
2
i (x1 − x2) · q−

]
dq− .

(2.7)
where x1 and x2 are the transverse position vectors for the two photons and the integration
element q− represents the difference in the far field wave vectors. The parameters that
define the field are the size of the crystal L, the frequency of the pump λp and the refractive
index n0 in the crystal for the low energy wavelength and the phase mismatch φ, that we
will consider null in Chapters 2 and 3.

Under a regime in which the pump is weakly focussed in the nonlinear crystal to gen-
erate many entangled spatial modes (Schmidt number K À 1, see Section 4.1), it gives a
remarkable form to the SPDC beam [7] : A can be separated into two functions that depend
one of the sum of coordinates and the other on the difference of coordinates

ASPDC(x1, x2) = A0Ep(
x1 + x2

2
)V (x1 − x2) , (2.8)

where Ep is the pump beam profile and V the phase matching profile -in the near-field, the
latter is much more compact than the first [8].
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As we are using a type I geometry, the condition of weak-focussing is compulsory [6].
Given our geometry and the following approximation - valid as φ ≈ 0 [9]

sinc[b q2
−] ≈ exp[−ab q2

−] , (2.9)

with a = 0.455,

V (x) = exp
(
− x2

w2−

)
(2.10)

w− =
√

aλpL

πn0
(2.11)

is called the phase matching parameter, which can be interpreted as the distance between
the two photons of a photon pair.

The diffuser is placed in the near field image of the crystal. Directly behind the diffuser
the field A picks up a random phase based on the random functions φ(x1) and φ(x2) for
both photons

Ad(x1, x2) = ASPDC(x1,x2) exp (iφ(x1) + iφ(x2)) . (2.12)

This can be propagated to the far field [10]

AFF(θ1,θ2) =
∫ ∫

Ad(x′1,x
′
2) exp

(−2iπf(θ1 · x′1 + θ2 · x′2)
λ0

)
dx′1dx′2 . (2.13)

Actually, the coincidence count of the two detectors in the far field Rcc(θ1,θ2) is pro-
portional to AFF(θ1,θ2), just as the intensity is proportional to the square of the amplitude
of the electric field. Let us choose the units so as

Rcc(θ1, θ2) = |AFF(θ1, θ2)|2 (2.14)

That is why we can confound their two correlation function in what follows.
The key-function for this experiment is the fourth moment Γ(4) in the far field of the

diffuser, defined by

Γ(4)(θ1,θ2,θ
′
1,θ

′
2) = 〈Rcc(θ1,θ2)Rcc(θ′1,θ

′
2)〉D (2.15)

where 〈〉D means averaging over all realizations of the diffuser (or on all positions of a
large diffuser). Here θ1 and θ2 are two-dimensional vectors with the angular position
of detectors 1 and 2. The primed coordinates are also two-dimensional vectors for the
positions of another pair of detectors 1 and 2. It will be useful to introduce new coordinates
that represent the difference in position of the detector modes and their sum

θs ≡ θ1 + θ2 (2.16)
θd ≡ θ1 − θ2 (2.17)

Using the coordinates

Σθs ≡
(
θ1
′ + θ2

′) + (θ1 + θ2) (2.18)

∆θs ≡
(
θ1
′ − θ2

′) + (θ1 − θ2) (2.19)

Σθd ≡
(
θ1
′ + θ2

′)− (θ1 + θ2) (2.20)

∆θd ≡
(
θ1
′ − θ2

′)− (θ1 − θ2) (2.21)
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Γ(4) can be expressed [6]

Γ(4)(θ1, θ2, θ1
′, θ2

′) = fshell(Σθs,Σθd)×
[
1 + exp

(
−

(
∆θs

θp

)2
)

exp

(
−

(
∆θd

θd

)2
)]

(2.22)
with the two angular widths having a similar expression

θp =
πλ0

wp
(2.23)

θd =
λ0π

w−
(2.24)

The shell function is supposed to depend on the opening angle of the diffuser and
therefore be broader than the scan ranges [5], but in reality we suspect it being not so
cutely wide. However, that is why a 1◦ opening angle diffuser is used, in order that the
shell function keeps flat, but the counts do not go too low.



Chapter 3

Proceeding to experiments

As written in Chapter 2, the setup and equations were waiting for me. But no proper
experimental data was there to prove (or maybe discard) theory. Hans had run a scans, but
he has not studied in great detail the speckles due to the compact V (θx) (diff speckles).
These were obviously not big enough compared to what theory predicted, and that is what
we have studied extensively.

3.1 Measurement programme
So as to have systematic analyzes, we have set a strict measurement programme. The
first issue has been to know which scans to run, in order to have the most relevant two
photon speckles pictures without losing too much time. The easiest could have been to
have a complete 4D scan, letting the two actuators scan both transverse directions. But
unfortunately, a 2D 4000 µm-diameter scan, with steps of 80 µm was already taking a
whole day. That is why we have had to imagine 2D scans which would tell the more
possible about the two photon speckles. The more telling ones we have had are to the
number of three. First ”difference scans” (resp. ”sum scans”), keeping θs (resp. θd)
constant - what means having in both cases X1 and Y1 as variables and setting the couplings
X2 = −X1 (resp. X2 = X1) and Y2 = −Y1 (resp. Y2 = Y1). Then ”X1X2 scans”,
taking X1 and X2 as variables and keeping Y1 and Y2 constant. θd kept constant along a
diagonal, θs along the other, so these ”X1X2 scans” would allow to acquire data on both
sum and difference coordinates, depending on which diagonal we would project the scan
on. Actually, to optimize the frame -save time-, the X1X2 scans axis have been rotated, so
as a X1X2 scan would look like the others, being a square with θd and θs for axis. These
various scans have been repeated with different spots on the LSD illuminated by the beam.
There is one example of diff scan in Figure 3.3, of sum scan in Figure 3.4, of rotated X1X2
scan in Figure 3.5 and of non-rotated X1X2 scan in Figure 3.7.

Actually, a diff scan is equivalent to watching a scattered coherent pump beam Ep(θs),
whereas a diff scan is linked to the SPDC transport field V (θs) (see Equations 2.8 and
2.22).

One could also have thought to monitoring Rcc when moving only one detector, and
keeping the other one fixed. But as illustrated by Figure 3.1, it is almost equivalent to
zoom twice on a sum scan. The reason for them presenting the same pattern is that even if
a single detector moving will have equal ∆θd and ∆θs, because in Equation 2.22 θd À θp,
the effect of ∆θd will hardly be seen compared to the ones of ∆θs. The factor 2 in the
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Figure 3.1: On the left is the Rcc pattern of the single detector scan (i.e. xdetect1 was
moving and xdetect2 fixed, and on the right the Rcc pattern of the sum scan , both centered
on the same spot. The lab-ID of these two experiments are 060701moerman06fixed and
060702moerman02fixed respectively

zooming is only that in a sum scan

∆θs = 2∆θ1 (3.1)

So,as the finite size of the beam is a limitation to our statistics, better have a sum scan
with a twice lower resolution than a single detector scan, which would give four times less
information for the same scan range.

The reason why only the two photon correlations have been scanned is that as the
single photons of a biphoton field are incoherent, the output of one single detector (R1 or
R2) gives no interesting feature : you see only small fluctuations and impurities added to
the Gaussian profile of the beam (the normalized variance will be low, see Equation 4.4).
In Figure 3.2 is given an arbitrary profile of the first detector (the one of a scan named
081015kauffmann-run3).

Actually, for now, information is given only by the width of Γ(4)−1 (which is supposed
to be Gaussian, see Equation 2.22).

3.2 Procedure to analyze the scans

3.2.1 Quantum Efficiency or Rcc

Previous section describes how Rcc of different scans was recorded. But it is also important
to determine whether it is more relevant to study the correlations of Rcc, or of the so called
Quantum Efficiency (also written Q.E, or η), defined as

η ≡ Rcc√
R1

√
R2

(3.2)

The argument in favor of Rcc is very simple : if its correlation function can be (statisti-
cally) predicted as in Equation 2.22, the theory for the Quantum Efficiency is much wilder,
because of the correcting with R1 and R2 in its definition 3.2.
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Figure 3.2: R1 pattern of the scan named 081015kauffmann-run3

But η has the advantage of removing possible fluctuations or aberrations present in the
single counts. As a whole Rcc pattern took hours to be shot, there could be slight drifting
from the laser, leading to intensity and single count drops.

Another advantage of η is to theoretically allow to work with an infinite scan range.
Experimentally, one cannot rely on too low single counts, but η had always a larger reliable
zone.

To test whether there is a significant difference in the speckle sizes of η and Rcc we have
extracted the speckles sizes in both ways for three experiments : the 1 s integration time,
150 µm resolution, 5400 µm diameter diff scan named 081021kauffmann-run1fixed in
Figure 3.3, the 1 s integration time, 75 µm resolution, 5400 µm diameter sum scan named
081022kauffmann-run1fixed in Figure 3.4 and the 1 s integration time, 80 µm resolution,
8000 µm diameter X1X2 scan named 081026kauffmann-run1 in Figure 3.5.

In Figure 3.3 scan R1 counts keeps almost constant where the speckle is, where as it is
presents a contrast of 2 in Figure 3.4 and a contrast of 10 in Figure 3.5, and one can notice
that the bigger the R1 contrast, the more different Rcc and η patterns are one from the other.
But we can see in these three examples that there is no easy rule on what is the difference
between the size of the speckles for the two patterns. We do not have the number for both
ways for all experiments, but made as if the speckles should have the same size on average.

To conclude, for ”everyday experiments” we have scrutinized the Quantum Efficiency
for its being smoother, but for measuring publishable numbers, Rcc has been preferred.

3.2.2 Discussion on the calculation of the correlation matrix
Once having chosen Rcc or η, one step left towards the autocorrelation width is to decide
how to calculate this autocorrelation function Γ(4).

Actually, to calculate Γ(4), we have used two Matlab routines. The first one, named
ComputeCorrelationMatrix, fills the plane with copies of the η matrix and then calcu-
lates the correlation matrix (filling the plane avoids the boundary issues), and then Av-
erageAroundCenter outputted rotational, vertical and horizontal 1D average of the 2D η
pattern.

The question raised is whether it is relevant to first surround the Rcc pattern with a con-
stant field before the repeating of the fast Fourier transform of ComputeCorrelationMatrix,
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Figure 3.3: All graphes concern the diff-scan named 081021kauffmann-run1fixed : on
the top left is the R1 pattern, on the top right Rcc, on the bottom left η. On the bottom
right is a graph showing Gaussian fits of the central peaks of the rotational averages of the
correlation matrices of the Rcc and η patterns of this very scan.
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Figure 3.4: All graphes concern the sum-scan named 081022kauffmann-run1fixed : on
the top left is the R1 pattern, on the top right Rcc, on the bottom left η. On the bottom
right is a graph showing Gaussian fits of the central peaks of the rotational averages of the
correlation matrices of the Rcc and η patterns of this very scan.
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Figure 3.5: All graphes concern the X1X2-scan named 081126kauffmann-run1 : on the
top left is the R1 pattern, on the top right Rcc, on the bottom left η. On the bottom right
is a graph showing Gaussian fits of the central peaks of the rotational averages of the
correlation matrices of the Rcc and η patterns of this very scan.
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and then which constant to go for. The reason for imagining extending the original pattern
with a constant is to avoid that a speckle to the left of the scan is merging together with
one on the right when the repeating takes place.

Two values for the constant look logical : either black suited more Rcc, as it goes down
to 0 at infinity (the beam has obviously a finite size), or take the average value of the pattern
was more for η, as it should never vanish, and also to avoid too brutal a gap between the
actual scan and its fake surrounding.

In Figure 3.6 is given the three possible η patterns we can build, and then the three
rotational averages of the three possible correlation that come out these three first η pattern,
for a diff scan named 081024kauffmann-run1. One can see on this scan that the speckle
size is the same on the η extended with black and with average, but are 15 %larger for the
”repeated” η.

We have calculated the widths of the autocorrelation matrices (by using a computed
Gaussian fit) with repeated and average-extended η patterns of up to 60 scans. The ra-
tio between the two values of the fitted θd of Equation 2.22 (what is actually difference
speckles size),

θdrepeated

θdextended
= 1.11± 0.11, (3.3)

whereas the same ratio for the values of the θp (sum speckles size) is

θprepeated

θpextended
= 1± 0.04. (3.4)

We can conclude that, as the ”sum coordinate” speckles are small, their border effect
is negligible, so θp is not dependent on the method we use. On the other hand, difference
coordinate speckles are much larger and a merging will have a bigger effect, that is why
the value calculated with a repeated η is somehow ten percent bigger than the one obtained
with an extended η - but may also be a little lower is some experiments, as some scans
show particular features.

3.3 Experimental results
In this section will be presented the extensive experimental results of the first wave of
scans, ran between October and December 2008, with experimental numbers given from
Equation 2.2 to 2.5.

Theory predicts a pump angle of θp = 0.77 mrad . We also obtain θd = 14.5 mrad,
what corresponds to a Fourier-related near-field size w− = 18.1 µm.

The output of this extensive study is mainly two measured numbers (coming from
Equations 2.23 and 2.23) : θp = 0.71 mrad ± 0.09 mrad and θd = 3.4 mrad ± 1.25 mrad.

It is striking on how, if the measurements were almost in agreement with theory for
the sum speckles, the diff speckles we measured were on average more than 4 times too
smaller than predicted !

It can be explained by two major ideas.
The first one is that they should be approximately as big as the scan range (limited by

mechanical issues and also by the size of the diffracted cone of the diffusor), so they may
be ”cut”. But this does not explain so big a non-sticking to theory.

The major reason is that if the LSD is not precisely positioned in the near-field of
the crystal, the V (θd) profile may present too big a width, and therefore induce smaller
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Figure 3.6: All graphes concern the diff-scan named 081024kauffmann-run1 : on the top
left is the η pattern extended with average, on the top right it is extended with black, on
the bottom left it is ”3-times repeated”. On the bottom right is a graph showing Gaussian
fits of the central peak of the rotational averages of the correlation matrices of these three
types of η.
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Figure 3.7: η pattern of the scan named 090521peeters01, which presents a lot larger diff
speckles. Courtesy of W. H. Peeters for the experiment data.

speckles. This was likelier realizing that, as w− = 18.1 µm, the Rayleigh range of this
profile is 1.2 mm.

Since this issue was tackled, diff speckles show the right size - in Figure 3.7 is given
an example of ”new” scan in which one can see much larger diff speckles.

A rapid calculation shows that on the first wave of experiments,

θdexp =
θdtheory

4.26
(3.5)

Assuming this difference comes all from the mispositioning of the diffusor, the width
of V (θd) in the diffusor was equal to 4.26 w−, what implies, thanks to Gaussian beam
properties, if z is the mispositioning value (in meters),

w−

√(
1 +

(
z

zR

))
= 4.26 w− . (3.6)

The number that we can extract is
z = 5 mm . (3.7)

Having a low number for the estimated displacement justifies the hypothesis of misposi-
tioning, considering that the diffuser was placed so as to be withing a pump Rayleigh range
(which is larger than 20 cm).

One can also notice that θp is much more stable over the different positions on the LSD
than θd, even if there is six times more measurements of the latter (ten compared to sixty).
We can interpret this fact by the fact that as θpexp

= 4.8 θpexp
, sum speckles are 4.82 = 23

times more numerous than the difference speckles within a scan of the same range. So that
could be a first explanation to why even with 6 times more data, the variance on the θd
measured was bigger than the one on the θp - but actually, this is only partial, as because
with a statistical, 23/6 = 4 more sum speckles should bring a sum variance only twice as
small as the difference variance.

A counter-effect was that, even if we would lower the resolution for a sum scan (step
size down to 75 µm), it was not 5 times as low as the resolution we have used for diff scans
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(which would oscillate between 100 µm and 150 µm). So the sum speckles have been less
precisely spotted, and the variance has been raised by this effect.



Chapter 4

Reducing the mode numbers

Now that we have a better comprehension of the two photon speckles in the regime in
which the SPDC beam can be factorized 2.8 and comprises many excited mode, we are
looking forward to seing what differences a lower number of excited modes would bring
on the two photon speckles experiment. We are suspecting that a low number of excited
mode would induce less averaging in the far-field. And we are also excited by seing how
the SPDC beam on itself looks like in a non-factorized regime.

4.1 Schmidt Number

4.1.1 Definition and first results
The Schmidt number is a well known number to characterize the spatial entanglement of a
biphoton field such as ours - one can call it ”number of modes”, even if this denomination
is looser.

It follows the Schmidt decomposition of the input state

A(x1, x2) =
∑

µ

√
λµuµ(x1)vµ(x2) , (4.1)

with eigenvalues λµ and normalized eigenstates uµ and vµ.
The Schmidt number is the defined as

K ≡

(∑
µ λµ

)2

∑
µ λ2

µ

(4.2)

what is, if A is normalized,

K =
1∑
µ λ2

µ

. (4.3)

If N is the number of excited modes, K will go from N for a fully entangled field (flat
distribution over all the modes) to 1 for a pure state (all photons in one single mode).

For the usual experiments using spontaneous parametric conversion, K À 1 -Henrique
Pires has created an rather precise (less than 10 % error) algorithm named SchmidtNum-
berAuto [11] showing that in our standard setup, with a 5 mm long crystal, a pump beam
waist of 170 µm and a null phase mismatch, K = 52.

18
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One very interesting effect of the Schmidt Number on the two photon speckles experi-
ment is that the fine structure of the single and coincidence counts rates have a normalized
variance equal to [6][12]

Var(R1,2) ≡
〈
R2

1,2

〉
D

〈R1,2〉2D
− 1 =

1
K

(4.4)

Var(Rcc) ≡
〈
R2

cc

〉
D

〈Rcc〉2D
− 1 =

K + 2
K

(4.5)

One can see that with these two equations that a many-modes field will have no local
fluctuation on the single count rate (Var(R1,2) ≈ 0) (Figure 3.2 gives an example) but
fully developed two-photon speckles. Please notice that this K À 1 was the regime in use
in all results of previous sections.

The common explanation for these results is that the one photon field of a SPDC field
is incoherent, but the two photon field in itself is coherent.

On the other part of the scale, a single-mode field will show a one photon field which
is also coherent, as seen in the result Var(R1,2) = 1. As Rcc(q1, q2) = R1(q1)R2(q2) ,
in this case one can retrieve the result Var(Rcc) = 3.

Before starting to observe these different speckles, a way to vary the Schmidt number
between 30 and as low as possible was needed.

4.1.2 How to create a low Schmidt number field ?
There are several parameters coming into account into the Schmidt Number. The SPDC
crystal length, the pump wavelength, the refractive index of the crystal are part of these
[11], but are, if possible, inconvenient to tune continuously.

The phase mismatch plays also a role into the value of the Schmidt Number. Actually,
it comes out from SchmidtNumberAuto that the minimum for the Schmidt Number is very
close to a null phase mismatch. That is why we took φ ≈ 0 in our setup.

The very parameter reasonably easy to tune is wp, the pump beam waist in the crystal
-in the center of the crystal is more precise, as for wp = 30 µm, the Rayleigh range zR

goes down to 7 mm, to be compared to the 20 mm length of the SPDC crystal we went for.
Based on SchmidtNumberAuto, we have computed the curve given in Figure 4.1 to

know what range wp should sweep.
As you can see in Figure 4.1, the answer is that, with a 20 mm long crystal and a null

phase mismatch (which corresponds to a temperature of the crystal of 60.4◦C), to have a
Schmidt Number varying from the minimum (K = 1.46) to 30, wp has to sweep all values
from 30 µm to 260 µm.

So, having this idea, all what was left was to find a way to build what we could call a
”fixed-focus telescope”.

4.2 Fixed-focus telescope theoretical setup

To achieve the fixed-focus telescope, we have had the idea to combine a few lenses,
two of them being mounted on translating stages.

The restrictions we have fixed to ourselves to construct the setup that could be imple-
mented on the biphoton setup were :
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Figure 4.1: A computed curve giving a good approximation of the Schmidt Number in
function of the (focussed) beam waist in the crystal, assuming a null phase mismatch and
a 20 mm long crystal

• To have the beam varying from wp = 30 µm to wp = 240 µm

• To keep the beam focussed within a Rayleigh range of the center of the crystal

• To have not to move the lenses of more than the 40 mm of the translating stage

• To have all intermediate foci not larger than 10 µm, so as to avoid aberrations

• To keep all beams on lenses smaller than 1 mm, so as to avoid spherical aberrations

• To keep the blur ring due to spherical aberrations smaller than 10% of the beam’s
foci

• To keep this separate setup being a future add-on to the biphoton setup (as seen in
Figure 2.1

An overview of the setup is given in Figure 4.3.
The laser input of the fixed-focus telescope setup was 2.4 mW diverted from the bipho-

ton setup laser, via a wedge and a single mode fiber (MDF ≈ 2.6 µm, reference Thorlabs
PM-S405-HP). A first duty was to transform a very divergent beam -1.3 µm at the output
of the fiber- into something which looks like the laser beam of the biphoton setup seen
in Figure 2.1 -1 mm broad almost collimated beam in between Lenses 1 and 2 in Figure
4.3. To calculate how turning the input fiber beam into to 1 mm collimated beam, we have
used a Maple computation sheet named ”Calculation of the Input.mws”, and it was quite
obvious that a first lens which would suit would be around f = 10.8 mm, from an easy
calculation of divergence. However, a Maple sheet was necessary to know were to place
the two first lenses, because we had to go for a f = 11 mm lens instead of a f = 10.8 mm,
for reason of availability.

To build the main part of the fixed-focus telescope, we have used another Maple sheet
named ”Fixed-focus-telescope Computation.mws”. The two computation sheets use the
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Figure 4.2: On the top is the beam profile between first intermediate focus (w1) and PPKTP
crystal (wp) for the regime wp = 30 µm, and on the bottom is the same profile for wp =
250 µm.

ABCD matrices theory, so as it is easy to keep the only solutions which have a focus at the
center of the crystal.

The tricky part of the computation was to find out the right lenses strengths. Too strong
a lens, too small would be the intermediate foci. Too weak a one placed on a translating
stage, too short the translating stage would be to tune all wp from 30 to 240 µm. A little
feeling of Optics, and several tests and tries were required.

In Figure 4.2 are given the two beam profiles (after the first focus, as the beginning of
the beam is not varying) under the regimes wp = 30 µm and wp = 250 µm.

All references to lenses used can be found in Figure 4.4.
The solution chosen for turning the input fiber beam into a collimated 1 mm beam was

to place the 11 mm focal-length aspherical Lens 1 at 10.8 mm of the fiber output, then the
150 mm biconvex Lens 2 98.6 mm further.

Then we have been for two lenses mounted on 40 mm long translating stages, so as
to be able to change beam size without changing the focus position. The first one, named
Lens 3, was a 20 mm biconvex lens, positioned from 325.6 to 357 mm from the fiber
output, whereas the Lens 4 was a 175 mm biconvex lens, positioned from 605 to 625 mm
from the fiber. The center of the PPKTP crystal was positioned 125, 5 cm after the output
of the fiber. In between the last lens and the PPKTP crystal, a flip mirror was placed to
let us monitor the crystal with the Spiricon Camera (the distance from the flip mirror to
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Figure 4.3: Overview of the setup of the fixed-focus setup. The key-role is played by lenses
3 and 4, as they are mounted on translating stages. In the far-field of the crystal is placed
an Intensified CCD so as to see the SPDC-generated two photon field

the Spiricon Camera being the same as from the mirror to the center of the crystal). After
the PPKTP crystal, a 200 mm biconvex lens and an Intensified CCD camera were placed
in a f-f configuration with respect to the crystal so as the Intensified CCD would be in the
far-field of the crystal. A GaP wafer is placed in between the crystal and the Intensified
CCD camera so as to absorb all blue photons remaining after the SPDC process.

A theoretical curve giving the positions at which one should position Lenses 3 and 4
for a wanted wp is given in the down curve of Figure 4.7.

A table of important numbers for this experiment is given in Figure 4.4.

4.3 On the table
After having theoretical numbers, we have tested them on the optical table. Facing numer-
ous difficulties listed in Subsection 4.3.1, we could have results given in Subsections 4.3.2
and 4.3.3.

4.3.1 Deformations of the beam

The beam in the crystal have often showed severe deformations to what should be Gaus-
sian. As the beam coming out the fiber was Gaussian, it means the beam faced deforma-
tions during the setup. In Figure 4.5 are given the Spiricon print screens of a solution to
the problem, with a value of wp = 100 µm, 15 cm in front of the focus, at the focus and
15 cm after the focus (no crystal is in between, as the Spiricon was in another path than
the crystal, thanks to a flip mirror).

One reason for this distortion is the poor quality of the density filters we used (a two
density-filters wheels back to back, which could behave as a slight Fabry-Pérot interfer-
ometer), but it is not the only one at all, as even with single good-quality filters, some
aberrations were still present.

Another major reason is aberrations due to lenses. If in Figure 4.4 one can see that, if
correctly manufactured, Lenses 2, 3 and 4 should not bring aberrations, the blur ring due
to Lens 1 may be blurring the beam in a significant manner, even if blur ring size given in
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Figure 4.4: Overview of the setup of the fixed-focus setup important numbers. They are
given for the two extreme wp = 30 µm and wp = 248 µm regimes. The calculation for
the size of the blur ring due to lenses aberrations of lenses is given by OFR’s wblur =
K · f · NA3, with K = 0.067 for a refraction index of n = 1.5. Blur ring size due to
first lens is calculated for a biconvex lens, whereas Lens 1 was aspherical. So wblur1 is
overestimated in this table.
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Figure 4.5: On the top left is the wp = 100 µm 15 cm in front of the focus, on the top right
is the same beam at the focus and on the bottom is the same beam 15 cm after the focus.
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4.4 is overestimated. Actually, this number was calculated after all theoretical predicting
was done, as the computations were done for the add-on to the biphoton setup, and not for
the part to transform the input beam into a 1 mm collimated bean.

Fortunately, Lens 1 will no be present in the biphoton setup (Figure 2.1). Still, we
suspect aberrations due to misalignment to occur.

A first tough gate was the f = 11 mm Lens 1, which had a diameter not so much
larger than the beam’s one. This one could bring easily aberrations, if the beam was not
rigorously aligned with the center of the lens. By the time it was positioned, the beam
did not present aberrations, but it may have happened that it was banged, or that the fiber
output slightly drifted (due to mechanical reason).

But the main reason for this misalignment problems is probably Lens3, the f = 20 mm
lens placed on a translating stage. This lens is indeed a strong one, and, because it being
translated, needed that the axis of the translating stage was very parallel to the beam,
and required also that the beam was very horizontal (less than 10 mrad of vertical angle).
This lens was positioned as carefully as possible, superposing the beams with and without
the lens being placed on a one meter far away screen -the longest distance possible with
2.4 mW of power because of the large divergence of the beam without the second lens. We
would advise for the next time this setup is used to have the screen more than one meter
far away, with a more power so as to see the divergent beam.

But fortunately aberrations were almost non existing on the tight foci regime, which is
the one we wanted to study extensively. That is why the measurements we have taken are
more reliable on the high Schmidt number part.

4.3.2 Experimental results of the fixed-focus telescope
Lenses 1 and 2, as well as the PPKTP crystal have been placed at the theoretical positions,
the very fine adjustment of the first focus size was done thanks to the fine tuning knob
of the fiber output mount in the longitudinal direction - a very sensitive knob, as the fiber
output beam is very divergent.

Whatever the deformations of the beam were, we have still measured actual precise
positions of every lens for the fixed-focus telescope. The method to be sure to have the
focus in the crystal was the make the beam have the same waist 15 cm in front of and
15 cm after the crystal. This would mean, for a Gaussian beam, that the focus is at the
middle between this two points, i.e. in the center of the crystal.

In Figure 4.6 is given a table of the experimental results we had. Are given the positions
of Lens 3 and Lens 4 with respect to the fiber output, the beam waist in the crystal, the beam
waist 15 cm in front of or after (equal numbers from method used), and the theoretical
number the latter waist should be, assuming Gaussian beam theory and a focus waist being
the wp measured.

In Figure 4.7 is given the experimental setup ”manual”, i.e. a curve given the positions
you should set Lens 3 and Lens 4 for a wanted wp.

One can see that several points of the experimental data are obviously wrong. It is
partly due to deformations which changed the curve, but also to the difficulty of collecting
data : we used a Gaussian fit to know the size of the beams, method which brings majors
failures whenever the beam is not Gaussian. But the trend of the position of the Lens 3 in
function of the desired wp is more or less the same, what leads us to hope that with less
deformations, the fixed-focus telescope would work efficiently. The bigger variations on
the position of the Lens 4 are due to beam aberrations, but also to the fact that its position
is less sensitive, as it is a much weaker lens. Moving it from 5 mm often keeps the focus
at less than a Rayleigh range of the crystal.
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Figure 4.6: Experimental numbers of the fixed-focus telescope : positions of L3 and L4
with respect to the fiber output, beam waist in the crystal, beam waist 15 cm in front of or
after (equal numbers from method used), and the theoretical number the latter waist should
be, assuming Gaussian beam theory and a focus waist being the wp measured.

4.3.3 First experimental pictures of low Schmidt Number SPDC beam
In this section, we will give only the first pictures of the SPDC beam, in Figure 4.8. The
pictures of both wp = 31 µm and wp = 71.1 µm under null and slightly negative phase
mismatch have been shot with an Intensified CCD camera, with a gain of 100 and an
integration time of 3s.

It is not the goal of this thesis to study them intensively, because, as written in 4.3.1,
the setup will work much more properly on the biphoton setup table. But we can still guess
that the structure is more compact for a tight focus regime, and the rings are thicker, what
means that the ratio wp

w−
is larger for tight foci -even if there is no factorization of the SPDC

foreseen (Section 4.1 or [6]).
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Figure 4.7: On the top is the experimental curve giving the position of Lens 3 and Lens 4
(origin being the output of the fiber) in function of the focussed beam waist in the crystal,
on the bottom is the same curve but as computed by Maple
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Figure 4.8: On the top are the pictures of the SPDC light under a null phase mismatch
regime (T = 60.4 ◦C) for wp = 31 µm (left) and wp = 71.1 µm (right). On the bottom
are the pictures for the same wp, at a slight negative phase mismatch (T = 59.2 ◦C)



Chapter 5

Conclusion

We have found out that there is no systematic trend in the results given by the calculation of
the correlation matrix of the Quantum Efficiency or of the coincidence counts, at least for
a K À 1 regime. We have also thought about how to calculate the correlation matrix, and
showed that deepening the Quantum Efficiency pattern into a constant background (with
the average of the Quantum Efficiency as value of the constant) lowers of around 10% the
size of the speckles, compared to calculating the correlation matrix with the bare Quantum
Efficiency matrix. We have then presented the results we had for 70 scans, showing four
times too low diff speckles size, using this strict measurement programme we have settled.

We have also given the reason why these diff speckles were a lot smaller than predicted
by theory -the diffuser being within a Rayleigh range of the focus of the pump, but not at all
of the phase matching profile, which is much more compact in the diffuser plane, so much
more divergent. A little calculation gives the number of 5 mm for the former distance
between the diffuser and the focus. Now that we have made so that as this distance is
less than a Rayleigh range of the phase-matching profile, the diff speckles have the size
foreseen by theory.

We built a way to reduce the Schmidt Number of the experiment down to the minimum
possible, which is taking place for wp = 30 µm. We have showed than it is possible to build
a setup that varies the size of the beam without moving the crystal, and this experimental
setup has the same trend as the one we computed before. In more, when implemented on
the biphoton setup, aberrations that spoiled the large foci regime should no more occur.
We have showed four pictures of the two photon beam under this low K regime, and we
can see, even with no extensive study of the subject (which we do not underestimate at all),
that the structure is more compact and the rings are thicker.
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Chapter 6

Further research

The first further research will be of course to go for an extensive study of the few excited
modes two photon beam, and of the two photon speckles that go with. We are expecting
that the two photon beam is no more separable into a sum of coordinates and a difference
of coordinates parts. And, even if this factorization would still hold, as the pump is going
down to wp = 30 µm, the sum speckles would have a comparable size to the former
difference speckles we had -they were created with a width a the phase matching profile
of 18 µm. This mixing of sum and diff speckles would be enhanced by the fact that the
two photon beam phase matching profile looks looser under the low K regime, as shown
by thicker rings for wp = 30 µm.

Another orientation that one may bring is to average the speckles via a rotating dif-
fuser.
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