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Introduction

This master thesis describes the research I did during my master project
in the Quantum Optics group at the University of Leiden. For a number of
practical reasons I have been involved with 3 different experiments, though
these experiments are very much related to one-another. In this introduction
I will present a short overview of these experiments and explain how they
came about.

Chapter 1 deals with the enhanced backscattering project I have worked
on. Enhanced backscattering is an effect observed when light is re-
flected from a scattering random medium. A peak in the backward
direction, the direction opposite to the incident light, is observed. The
phenomenon has been studied extensively over the past years, but a
version of the experiment using entangled photons as a light-source
has never been performed.

Our goal was to attempt first the standard classical version of the ex-
periment, to get a feel for the experimental difficulties we would have
to face in the two-photon version. After we had done this, we decided
to postpone the two-photon version of the experiment, primarily be-
cause an existing setup that would need to be heavily modified for this
new experiment could, with only minor modifications, also be used to
perform another experiment first (the one discussed in Chapter 3).

Chapter 2 is about symmetries in two-photon scattering. When entangled
photons are sent through a scattering medium, they are more likely
to end up on top of each other than apart. This is a result of the
bosonic nature of photons. However, by changing the symmetry of the
input field, we can simulate fermionic and so called anyonic behaviour
as well. Wouter Peeters had already performed extensive measurement
on the bosonic and fermionic behaviour [5]. I performed measurements
for the anyonic case.

It is interesting to note that this experiment is the forward scatter-
ing analogue of the planned two-photon backscattering experiment I
described before. Therefore the results of this experiment heavily in-
fluenced our predictions of what we would see in the backscattering
case (two-photon bunching). On a practical level too, the through-
scattering experiment suggested solutions to experimental problems
in the backscattering experiment (simulating a random media using a
phase plate).

Chapter 3 describes the last experiment I performed, on speckle statis-
tics at a reduced number of modes. This experiment was inspired by
a paper from Beenakker et al. [6]. We took the setup with the vol-
ume scatterer from Chapter 2, and altered it to produce the fewest
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amount of entangled input modes possible. In this regime, contrary to
the many-mode regime we were in before we changed the setup, we
also observe one-photon speckle. Our two-photon speckle pattern now
reduces to the product of two one-photon speckle patterns.

In order to analyse these speckle patterns statistically we wrote a new
measuring routine. After analysing we found out that our results ne-
cessitated a more general theory than the one in the Beenakker paper.
This new theory fits our experimental data quite well.
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1 One-photon Enhanced Backscattering

1.1 Introduction

Enhanced backscattering in random media is an effect that has been known
for quite some time now. It results from the fact that when a scattered ray
exits a random media under the same angle that it entered, its path through
the medium has a time-reversed twin that it interferes with constructively.
As a result the measured intensity of the scattered light in the backward
direction is twice the intensity it is for other directions.[1]

The angular profile of the reflected light is expected to be uniform, except
in the backscatter-direction where a cone of a factor two is visible. The shape
of this cone is found to be [3]
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Here z0 is penetration depth of the light, l∗ is the mean free path and
q = 2πθ/λ, where θ is the angle over which the light is scattered back and λ
the wavelength. We can simplify this equation by replacing the exponential
with a first order approximation and normalizing the background level to 1.
Then we find

I = 1 +
1

(1 + c|θ|)2
(2)

Here c = 2πl∗/λ. This result gives an intensity of 2 if θ = 0 and drops
to 1 when |θ| becomes larger. The backscatter cone can be imaged using a
detector on a rotating arm [2] but also by making a far-field image of the
sample using a CCD. We performed this simpler version of the experiment as
an introduction to a more complex version with a two-photon light-source.
This latter version has not yet been attempted.

1.2 Experiment

Because this was an introductory experiment the setup changed a great deal
as we tried to optimize it. Figure 1 shows the final version of the setup, which
was also used to perform the measurements resulting in Figures 2 and 3.

In the input arm, a lens collimates the 826nm diode laser light coming
from a fiber. The light moves through some optical components and onto a
scattering medium - we used paper and white paint - which can be rotated to
average speckle.Lens 1 (f = 25mm) focuses the laser light coming from the
fiber. Lens 2 (f = 6mm) creates a far-field image of the back-reflected light
in its focal plane, and this plane in turn is imaged by lens 3 f = 6cm onto the
CCD with some suitable magnification (for the final paint measurements,
this was 2/3×, the distance from the back focal plane of lens 2 to lens 3 was
15cm, the distance from lens 3 to the CCD was 10cm). Single-scattering
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Figure 1: Setup of the enhanced backscattering experiment.

events do not contribute to the enhanced-backscattering cone. To get rid of
them we use the technique outlined in the paper by Muskens et al. [2]; the
polarisers combined with the λ/4 plate select the helicity conserving EBS-
light. Lastly, because light coming from the fiber is in general polarized to
some degree, we use the λ/2 plate to rotate this polarization to best match
the the transmission axis of the first polariser.

The biggest experimental difficulties we encountered all had to do with
the stray light. Because the light incident on the scattering medium is scat-
tered over all possible angles you only recollect a small part of the light and
the setup is very sensitive to stray light.

One recurring problem was that any of the components in the sample-
arm of the setup directly reflected some of the incident light. These reflected
coherent beams, though weak, can look very similar to a backscatter cone
on the CCD. We could also see the internal reflection of the beam splitter.
To deal with this problem, the λ/4 plate, the sample, and the beam splitter
were placed under an angle. Rotating the beam splitter did not only affect
the internally reflected light, but the back-reflected light as well, albeit in a
different way, so the CCD-arm of the setup needed to be placed under an
angle as well.

We also tried to collect as much of the light as possible, by putting a
strong lens close to the sample. The disadvantage of this approach is that
the beam incident on the sample won’t be collimated. Because the incident
light doesn’t have a single direction, the backscattered light will effectively
consist of a mixture of backscatter-cones. We will still observe a cone, but its
sharp peak will be degraded. It is possible to compensate for this somewhat
by moving a lens directly behind the fiber, pre-focussing the beam in such
a way that after the second lens, the light is as collimated as possible.

Another form of stray light is simply background light. This could be
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dealt with pretty effectively by putting a color filter in front of our CCD,
and also by performing dark measurements and by subtracting those from
our data.

1.3 Results

Figure 2 shows a CCD image of a typical backscatter cone. In this case a
paint sample (TiO2) was used.

Figure 2: A CCD picture of an enhanced backscattering cone.

By rotationally averaging this image we get Figure 3. The cone-shape is
clearly visible and we can also confirm that its peak is a factor two higher
than the background signal. It has been fitted with equation 2.

For c in equation 2, a measure of the width of the peak, we find a value
of 17. From this we can calculate the mean free path of the scattered light
l∗ and find it to be 2.3µm.

1.4 Discussion

In conclusion, we completed a classical enhanced backscattering experiment.
The things we have learned will be useful when a complex version of the
experiment is performed with a two-photon source. From this experiment,
and also calculations that have been performed on the side, it seems that
the low intensity you expect to get from the back-reflected light will be the
biggest problem in this new experiment.
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Figure 3: A cross-section of an enhanced backscattering cone (blue), fitted with
equation 2 (red).

One possibility to partially overcome the obstacle of low signal strength
(in our final setup roughly one percent of the laser power reaches the CCD),
is to simulate a random medium using a diffuser plate and a mirror [4]. such
a simulated medium would scatter the light only over a limited scattering
angle, thus allowing more light to be collected.
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2 Symmetries in two-photon scattering

2.1 Introduction

When we send entangled photons through a scattering medium and measure
their positions on the other end, there is a relatively large likelihood of
finding the two scattered photons at the same position. This is a result of
the bosonic symmetry of these photons. We can modify this symmetry to
get fermionic or anyonic behaviour.

My contribution to this topic deals mainly with measurements on the
anyonic behaviour, and builds heavily on the work done by Wouter Peeters,
culminating in his thesis [5]. Furthermore, M.P. Exter is writing a paper on
the subject, a recent version of which is included in appendix A.

2.2 Experiment

Figure 4 shows the setup used for this experiment. A 413nm pump laser is
focused inside a type-II PPKTP crystal. This generates red (826nm) photon-
pairs, with orthogonal polarizations. The pump light is blocked out, and the
photon-pairs, henceforth referred to as SPDC-light, go through an f-2f-f
configuration, in the center of which a wave plate can be placed.
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Figure 4: Setup of the bunching experiment. Modified image from Wouter Peeters’
thesis [5]

The light then goes through the volume scatterer. We simulate a volume
scatterer using two diffusers in an f-f configuration. This way we are sure
both the near and far-field of the SPDC light is randomized. By using such
a ‘simulation’ instead of a real volume scatterer we can keep the angles over
which the light is scattered under control, and keep most of the light in the
setup. Both diffusers can be rotated to average out speckle.

A polarizing beamsplitter splits up the photon-pairs. Using two detectors
coupled with coincidence circuitry, the pairs are then counted. The detectors
are looking at a far-field image of the second diffuser.

Without any phase-plate we observe bosonic behaviour in the two-photon
coincidences (see below). We can also add a dual retarder plate to introduce
a total φ/2 or φ/4 phase difference between both photons; this results in
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respectively fermionic and anyonic behaviour (see appendix A). This dual
retarder plate consists of two halves. When placed exactly in the centre of
the beam, most of the time two photons belonging to a pair will go through
opposite halves. The dual retarder plate can be centred relatively easy by
sending a (partially blocked) pump through it, and watching the plate from
the side using a simple camera. When the pump beam hits the centre of the
plate, where both halves meet, light is scattered in every direction. Watching
the scattered light with the camera we move the plate sideways, and note the
positions where the scattered light disappears. The desired centre location
is in between these two positions.

Some time is spend aligning both detectors. When both are centred, they
should look at the same spot in both the near and far-field. To help with
the alignment, a diode laser can be shot back through the detecting single-
mode fibers. Two cameras, positioned in the near and far-field plane of the
detectors, allow us to directly see the detection modes of both detectors.
Each detector has six degrees of freedom: The entire stage can be moved,
which moves the detection mode in the near but not the far-field. Also, the
fiber tip can be moved separately, leaving the lens in front of it in place.
This will affect the detection modes in both the near and far-field. The best
alignment-strategy then is to first put both detection modes on top of each
other in the far-field, using the fibre actuators, and then do the same in the
near-field using the stage actuators (which will keep your far-field alignment
intact).

2.3 Results

In figure 5, results for bosonic and fermionic behaviour are shown. It is clear
that in the bosonic case, the photons bunch together on the diagonal (both
detectors are looking at the same coördinate), whereas in the fermionic case
we observe anti-bunching. The centre image shows cross-sections obtained
by projecting on an axis orthogonal to the (anti)bunching diagonal. For
this projection, only points lying within a 45 degree rotated rectangle are
included.

Figure 6 shows the anyonic case. We see both a bright and a dark line
along the diagonal, and in fact the order of these lines can be switched by
turning around the dual retarder plate.

Figure 7 shows cross-sections for both orientations of the dual retarder
plate (black and blue curves). So far all scans have involved detectors moving
over ranges that lie in the plane of the optics table. When we performed
an anyonic measurement by scanning a vertical range we got a completely
different result (red curve), showing no structure at all. We believe this has
something to do with the fact that the dual retarder plate has an orientation
of its own, the line that separates both halves of the plate. In the first
measurements we scanned orthogonal to this line, in the last measurement
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Figure 5: Two-photon coincidence figures of bosonic and fermionic behaviour.
The left figure shows a false color plot of the coincidence count rate Rcc(x1, x2) as
a function of both detector (stage) positions for the bosonic case. The right figure is
the fermionic equivalent. The center figure shows averaged cross-sections for both
measurements, obtained by projecting along the x = y diagonal.

Figure 6: The anyonic equivalent of the false-colour plots in figure 5.
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we scanned parallel to it. We currently think that the last measurement is
the most ‘natural’ shape of the anyonic behaviour, while the wiggle we see
in the first scans is an artefact resulting from our specific setup, associated
with the fact that the scattering angle of the diffuser plates is comparable
to the opening angle of the incident SPDC light.

Figure 7: Cross-sections similar to the ones found in figure 5, for three different
anyonic measurements. For the black and blue curves, both detectors scanned a
range orthogonal to the orientation of the dual retarder plate (x1-x2), for the red
curve we scanned along the plane (y1-y2).

2.4 Discussion

We have seen that by adding a dual retarder plate into our setup we can
modify our two-photon field to show fermionic or anyonic behaviour, instead
of the bosonic behaviour we naturally expect from photons.
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3 Two-photon scattering at a reduced number of
modes

3.1 Introduction

The setup we used for the measurements in the previous chapter produced
a relatively large amount of modes. The Schmidt number, a measure of the
amount of entangles spatial modes, was about 83 for those measurements[5].
For the last part of my master project, I was aiming for the opposite, mea-
surements at reduced mode or Schmidt number K. Specifically we were
interested in testing experimentally the theoretical paper on this subject
by Beenakker et al. [6]. The key results of this paper are the probability
distributions of coincidences, depicted in figure 8.

H. Di Lorenzo Pires is writing a paper on the subject, a recent version
of which is included in appendix A.

Figure 8: Theoretical predictions of the intensity distributions of two-photon
speckle patterns for pure states (figure copied from a paper by Beenakker et al.
[6]). In this paper, Icc is referred to as I2. Furthermore, modes are counted in a
different way; Our mode number K = 2M .

3.2 Experiment

To minimize the amount of modes our setup produced we use the results in
the paper by Law and Eberly [7], who offer a way to calculate the Schmidt
number as a function of the crystal length and the Raileigh length of the
focused pump laser. We obtained a measured Schmidt number of K = 1.5
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by using a 5mm PPKTP crystal and focussing the pump enough to produce
a 11µm waist.
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Figure 9: The setup used to make the reduced mode measurements.

Our new setup is shown in figure 9. To build it, only minor changes with
regards to the previous setup depicted in figure 4 were needed. The pump
beam is now focussed quite strongly in the crystal using a f = 10cm lens.
Furthermore we swapped our type-II PPKTP crystal for a type-I, because
this provides more SPDC light. As a result of this change, the polarizing
beamsplitter was also replaced with a non-polarizing one. Last we would
like to keep the SPDC spot size on the first diffuser roughly the size it used
to be (140µm), which would allow us to keep the detection part of the setup
the same too. Therefore we replaced the f-2f-f lens configuration by a single
lens that makes a roughly 10× magnified image of the SPDC source on the
first diffuser. As a result of these changes, and in particular the switch to a
type-I crystal, we have dramatically increased the detected coincidence rate.

We had some trouble with aligning the diffusers. While rotating them,
the measured counts per second would oscillate at a frequency correlated
to the angular speed of the diffusers. We realized this was probably due to
the diffusers being mounted under a small angle with regards to the optical
axis. By careful adjustments we managed to minimize this effect.

3.3 Results

A two-dimensional two-photon speckle pattern for a small amount of modes
can be seen in figure 10. The grid-like shape of the speckle pattern shows
us that it is simply the product of two one-photon speckle patterns, one for
each detector. This is quite the opposite of what we observe when we have
more modes; in that case we observe only two-photon speckle in a seemingly
random two-dimensional pattern, but no one-photon speckle.

In order to analyse these speckle patterns we changed our measurement
procedure somewhat. Instead of letting both detectors scan together we fix
both of them in place, either on top of each other or at separate locations.
We then perform a measurement of typically 5s, rotate the diffusers enough
(about 3◦) to present the detectors with another realization of the scatter-

14



Figure 10: A false colour plot of the coincidence count rate as a function of both
detector positions showing a low-mode speckle pattern.

ing medium, measure again, rotate, etc. With 2 diffusers, this gives us a
maximum of (360/3)2 = 14400 unique measurements.

A small interval in a longer measurements series is presented in figure
11. The counts of one detector are shown. Similar data is generated by the
other detector and the coincidence circuitry.

Figure 12 and 13 present the probability distributions of the measured
coincidence counts.

It is tempting to compare the height of the peak in this figure with
results from the Beenakker paper as seen in figure 8, but this peak can be
heightened or lowered by changing the binning size of the histogram, and
should thus be approached with some scepticism. What we can learn from
the experimental figures is that our speckle patterns without any doubt
exhibit non-exponential statistics. Furthermore, we see a difference between
the x1 = x2 and the x1 6= x2 case.

The Beenakker paper only considers the x1 6= x2 case and these re-
sults show that we need a more general theory. Another limitation of the
Beenakker theory is that it assumes discrete values for the mode number
M = 1, 2, ... which translates to K = 2, 4, .... We work with a mode number
K = 1.5, which is both lower than M = 1 and not discrete. Martin van Exter
worked on a theory that generalizes Beenakkers theory, the result of which
is summarized in the following equations. Equation 4 is a generalization of
Beenakkers theory, equation 5 is new.

V1 =
1

K
(3)
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Figure 11: 50 datapoints out of a 13699 datapoint measurement, showing single-
detector counts at consecutive diffuser settings.
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Figure 12: Probability distributions like the ones in figure 8. These were obtained
from measurements of the coincidence count rates for detector positions x1 = x2
and x1 6= x2. A normalized exponential curve has been plotted alongside.
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Figure 13: Identical to figure 12, but now plotted on a log scale.

Vcc(x1 6= x2) = 1 +
2

K
(4)

Vcc(x1 = x2) = 1 +
4

K
(5)

We can use these results to calculate the visibilities of our measurements
depicted in figures 12 and 13. Of course we can also calculate them directly
from our experimental results, using the standard expression of the visibility

V =

〈
I2
〉

〈I〉2
− 1 (6)

When we put these results next to each other, we obtain table 1. Though
we still need to figure out the proper way to calculate error margins for these
results, theory and experiment seem to be in reasonable good agreement.

Parameter Theory Experiment

V1 0.67 0.70
Vcc(x1 6= x2) 2.3 2.4
Vcc(x1 = x2) 3.7 4.0

Table 1: Experimental and theoretical results for the visibilities of the single and
coincidence statistics (K = 1.5 is used for all three theoretical values).

The purity of the state can be be calculated using these results, using
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P = Vcc − 2V1 (7)

Using the experimental results for the case x1 6= x2 we find it to be 1,
which indicates our state is pure.

We can also use equations 3, 4 and 5 to calculate the experimental num-
ber of modes K from the visibilities. The values we find find this way lie
between 1.3 and 1.4.

3.4 Discussion

A couple of points warrant further investigation. Firstmost we noticed that
our measurements include a small number of points with exceptionally high
coincidence counts, and that these high values have a significant influence
on our calculated visibilities. When for instance we remove the ten highest
count rate values from our data (containing a total of 13699 datapoints),
the visibilities for the coincidence measurements become rougly ten percent
lower. The single detector visibilities change too, but only a little; about 3
percent. These outlying points we find when both detectors hit a rare but
ordinarily high value. We don’t know yet how to deal with these points; they
might be perfectly natural, but because of their rare occurrence they form
an unreliable factor in our statistical analysis. We did not remove them from
the analysis.

A second possibility for trouble comes in the form of the calculation
of accidental counts. To calculate Rcc we take the absolute (uncorrected)
coincidence counts reported by the coincidence circuitry, and subtract the
accidental counts Racc = R1R2τwindow. We find that a small change in detec-
tor gate time τwindow has a significant effect on our statistics. A ten percent
change of τwindow results in a 30 percent change of Vcc.
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Conclusions

• We have successfully performed a classical enhanced backscattering
experiment. We conclude that a two-photon version of the experiment
should be experimentally possible, though it might be necessary to
simulate a backscattering medium to get a setup with acceptable effi-
ciency.

• A two-photon field can be made to exhibit fermionic or anyonic be-
haviour by sending it through a dual retarder plate. Normally en-
tangled photons, when sent through a scattering medium, will bunch
together on the other end. In the case of fermionic behaviour the pho-
tons anti-bunch and in the case of anyonic behaviour, we don’t observe
any structure at all.

• When working with a very low amount of entangled spatial modes,
two-dimensional coincidence speckle patterns can be written as the
factorization of two one-dimensional single detector speckle patterns.
These speckle patterns clearly exhibit non-exponential statistics. We
have measured the single and coincidence visibilities for two cases; one
where both detectors look at the same spot and one where they look
at different spots. A new theory written to accommodate our mea-
surements seems to be in reasonable agreement with the experimental
data.
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A Bosonic, fermionic, and anyonic behavior in two-
photon scattering

The results of chapter 2 are the subject of a paper. The latest version of this
paper, that has as of writing not yet been published, is included for your
convenience.
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Bosonic, fermionic, and anyonic symmetry in two-photon scattering

M. P. van Exter, J. Woudenberg, H. Di Lorenzo Pires, and W.H. Peeters
(Dated: March 21, 2011)

Bunching and anti-bunching of particles is associated with their bosonic or fermionic nature. This
multi-particle behavior is a natural consequence of the symmetry of the total wavefunction under
particle exchange. Here, we experimentally study bunching and anti-bunching in a quantum system
in which the exchange symmetry can be controlled manually. We use two distinguishable photons
and associate their spatial degrees of freedom with the two-particle wavefunction under study. To let
the multi-particle behavior reveal itself, we send the two-photon state through a multiple scattering
system that randomly mixes the positions of the photons. The scattered photons are observed
to cluster together or to avoid each other depending on the imposed symmetry. We also emulate
anyonic behavior.

PACS numbers:

Bunching and anti-bunching refer to the increased or
decreased probability for two particles to occupy the
same quantum state instead of different quantum states.
For light, photon bunching was first observed by Han-
bury Brown and Twiss [1], in an experiment where they
divided light from mercury lamp in two parts and corre-
lated their photon detection events. They later demon-
strated the same bunching effect with star light and
showed how its spatial dependence can be used to de-
termine the star diameter even in the presence of atmo-
spheric turbulence [2]. Two decades later, photon anti-
bunching was demonstrated in the emission of individual
atoms, which act as single-photon sources that emit only
“one photon at a time” [3].

Photon bunching and anti-bunching effects have also
been observed with sources that emit photons only in
quantum-entangled pairs. Such photon pair sources gen-
erally operate on the nonlinear optical process of sponta-
neous parametric down-conversion (SPDC), where a sin-
gle pump photon occasionally splits up in two photons,
each carrying approximately half the energy [4]. Hong,
Ou, and Mandel [5] demonstrated photon bunching, by
combining two photons out of a pair on a beam split-
ter to show that they always leave via the same out-
put channel and never choose different channels. Later
experiments have also demonstrated the occurrence of
anti-bunching in two-photon interference when a spa-
tially anti-symmetric pump profile is used [6].

Coherent scattering in random media has attracted
lots of interest on account of its intriguing physics, which
includes speckle formation [7], conductance fluctuations
[8, 9], enhanced backscattering [10], and Anderson local-
ization [11]. Other experiments have focused on multi-
particle effects such as the propagation of quantum noise
and quantum entanglement through random media [13–
16].

This paper describes the statistics of quantum-
entangled photon pairs scattered from a random medium.
A central concept in the description is the two-photon
function A(ρ1,ρ2), which is the probability amplitude to
observe photon 1 at transverse position ρ1 and photon 2
at ρ2. We find that the natural bosonic symmetry of the
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FIG. 1: Experimental setup. From left to right: quantum-
entangled photon pairs pass through an optional retarder (to
modify their state), scatter from a random medium compris-
ing two rotating diffusors, and are detected by two photon
counters and coincidence logic.

input two-photon field (A(ρ1,ρ2) = A(ρ2,ρ1)) survives
the ensemble averaging that we apply by rotating the
scattering medium. We introduce an experimental tech-
nique that allows us to tune the particle symmetry from
bosonic to fermionic and anyonic. For an anti-symmetric
input field, we observe photon anti-bunching where the
photons try to avoid each other and never scatter into
identical spatial modes. For anyonic symmetry, we ob-
serve how the exchange interaction between the two pho-
tons combines effective attraction with repulsion.

Figure 1 shows the experimental setup. Pairs of pho-
tons, with orthogonal H and V polarization, are gen-
erated via SPDC in a nonlinear optical crystal and fo-
cused into a scattering medium. The spatial correlation
of the scattered photons are measured with two single-
photon detectors, located in the far field of the scattering
medium and connected to fast electronics that records
both individual and coincidence counts. The symmetry
of the input two-photon field can be modified by an op-
tional “dual retarder” plate, to be discussed below. We
mimic a volume scatterer by two random phase plates po-
sitioned in conjugate planes [14]. The limited (1◦) scat-
tering angle of these plates strongly enhances the signal.
Both plates are rotated to allow ensemble averaging.

The left image in Fig. 2 shows the experimental result
obtained without retarder. This false-color plot depicts
the coincidence rate Rcc(xH , xV ) ∝ |A(xH , xV )|2 as a
function of the transverse positions xH and xV of the
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FIG. 2: Observation of bosonic and fermionic symmerty in two-photon scattering.(left,right) False-color plots of
the coincidence count rate, observed in the far field of a random scattering medium, versus the detector positions xH and xV .
The (left/right) figure is measured for a (symmetric ϕ = 0/anti-symmetric ϕ = π) two-photon input field. (middle) Projected
coincidence rate versus the position difference xH − xV . The upper (blue) ϕ = 0 curve exhibits photon bunching; the lower
(red) ϕ = π curve exhibits photon anti-bunching.

H- and V -polarized photon in the detector plane, where
the bar denotes ensemble averaging. Previous correla-
tion measurements on a stationary scattering medium ex-
hibited two-photon speckle in the absence of one-photon
speckle [12, 14]. Being interested in ensemble-averaged
pair correlations only, we now apply a sample rota-
tion to average over many (À 100) speckle patterns.
This removes most features from the two-photon speckle,
apart from a prominent enhancement along the diagonal
xH = xV .

The enhanced coincidence rate observed along the
xH = xV diagonal is the photon bunching that we wish to
study. For a quantitative analysis, we select data within a
rectangular box oriented at 45◦ and project/average the
data along this direction. The upper (blue) curve in the
central image of Fig. 2 shows the projected coincidence
rate as a function of the position difference xH − xV .
Photon bunching is observed as an increase of the co-
incidence rate around xH − xV ≈ 0 by a bunching fac-
tor F ≡ Rcc(xH = xV )/Rcc(xH 6= xV ) = 1.90 ± 0.03
with respect to neighboring values; this is close to the
expected value of 2. The width of the bunching peak
(FWHM = 0.54 ± 0.02 mm for a high-quality Gaussian
fit) denotes the size of a spatial mode. It is compara-
ble to the size of the two-photon speckles observed for
a static (non-rotating) sample and Fourier related to the
average two-photon illumination on the final diffusor (see
supplementary material).

Next, we discuss two-photon scattering of input states
with a different symmetry. We modify this symmetry by
passing the photon pairs through a custom-made dual
retarder plate, comprising two identical zero-order re-
tarders with retardation phase ϕ/2 that are rotated 90◦

with respect to each other and mounted side-by-side to
fill two half spaces (x′ < 0 and x′ > 0). As the plate is po-
sitioned in the far-field of the source and as the emission
angles of the photons are anti-correlated, the two photons
will generally pass through opposite plate segments. The
retardation phases imposed by the dual retarder thereby

modify the bosonic symmetry of incident field into a new
symmetry

Aplate(ρ
′
2,ρ

′
1) = eiϕAplate(ρ

′
1,ρ

′
2) (1)

for x′
1 > 0 and x′

2 < 0. We will neglect the weak field
associated with photon pairs that don’t split up, but in-
stead both pass through the same plate segment; the
probability of these rare pairs is ≈ 0.05 in our experi-
ment.

After modification, we send the two-photon state
through a multiple scattering system that randomly
mixes the positions of the photons. Despite this mixing,
the symmetry between the two dominant contributions
remains intact throughout the system if (as in our case)
the propagation and scattering are practically polariza-
tion insensitive. The combined two-photon field in any
transverse plane that follows can thus be written as

A(ρ1,ρ2) ≈ Aq(ρ1,ρ2) + eiϕAq(ρ2,ρ1) , (2)

where Aq(ρ1,ρ2) singles out the scattered field that orig-
inates from all photon pairs at positions x′

1 > 0 and
x′
2 < 0 on the retarder plate.
Figure 3 shows how the observed bunching effects orig-

inate from the interference of the field Aq with its mirror
image. When the detectors are displaced with respect to
each other (ρ1 6= ρ2) these two contributions will gen-
erally differ and thus sum incoherently to the ensemble-
averaged signal. At ρ1 ≈ ρ2, however, the field propaga-
tors become identical and the ensemble-averaged signal
will be the coherent sum of the probability amplitudes
associated with the two pictures. The two-photon coin-
cidence rate at ρ1 ≈ ρ2 will thus be enhanced by a factor
|1+ exp (iϕ)|2/2 = 1+ cosϕ as compared to neighboring
positions ρ1 6= ρ2. Photon bunching occurs for the sym-
metric (ϕ = 0) two-photon input, while anti-bunching
occurs for the anti-symmetric (ϕ = π) input.

The right image in Fig. 2 is a false-color plot of
the coincidence rate Rcc(xH , xV ) observed for an anti-
symmetric input field (ϕ = π). A drastic reduction of the
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FIG. 3: Graphical explanation of bunching effect. The
observed bunching effects originate from the interference of
two generic scattering paths of the photon pair from the re-
tarder plane (left), via propagation and scattering (denoted
by sharp ss-symbols), to the detectors (right).

coincidence count rate is observed for all pairs around the
diagonal xH = xV , irrespective of the individual values
of xH and xV . We again select a rectangular box, project
onto the diagonal, and plot the projected coincidence rate
versus the position difference xH − xV . The lower (red)
curve in the central image of Fig. 2 shows the occurrence
of photon anti-bunching around xH ≈ xV . The central
minimum decreases to a bunching factor F = 0.09 ± 0.04
of neighboring values, to be compared with an ideal value
of 0. At a FWHM of 0.40 ± 0.02 µm, the central min-
imum is slightly narrower than the maximum observed
under photon bunching and two small shoulders appear
(see supplementary material for discussion).

As a final experiment, we replace our ϕ = π plate by
a similar ϕ = π/2 dual retarder plate. This plate trans-
forms the generated state into a two-photon field with the
unusual symmetry A(x′

2 < 0, x′
1 > 0) = exp (iϕ)A(x′

1 >
0, x′

2 < 0), where exp (iϕ) = i for the considered ϕ = π/2.
The symmetry of this state interpolates between bosonic
and fermionic and can hence be called anyonic.
The term anyon was introduced by Wilczek [17] to

describe the statistics of composite quasi-particles in a
two-dimensional system, formed by charged particles and
flux tubes. These composites behave as quasi-particles
with fractional quantum statistic [18, 19], as they ac-
quire a phase factor ± exp (iϕ) upon exchange, where
the sign depends on the sense of rotation around the vor-
tex. In solid-state physics, the introduction of anyons
is a convenient means to incorporate long-range interac-
tions, associated with the Aharonov-Bohm phase, into
the description.[17] Anyonic symmetry in quantum op-
tics was previously introduced as a means to describe
interference in four- and six-photon events [20, 21]. Our
experiment shows that anyonic symmetry is also relevant
for the scattering statistics of entangled photon pairs.

Figure 4 shows the results obtained under illumina-
tion with a two-photon field with anyonic symmetry
(ϕ = π/2). The inset is a false-color plot of the coinci-
dence count rate versus the detector positions. The main
figure shows a diagonal projection of this data, using
the method described earlier. The two wiggly (blue and
black) curves are obtained for two different orientation of
the retarder plate, where the front side of the plate was
facing either the source or the scattering medium. These

ï! ï" ï# $ # " !
$

$%&

#

#%&

"

"%&

!

!%&

'
(
ï'

)
*+,,-

.
/
01
2
03
4
1
2
4
*5
6
74
*+
(
8
-

 

 

 

 

FIG. 4: Observation of anyonic symmetry in two-
photon scattering. Projected coincidence rate versus the
position difference xH − xV for an input field with anyonic
symmetry. The two wiggly (blue and black) curves are mea-
sured for ϕ = π/2 (original data top right) and ϕ = −π/2,
respectively. The non-wiggly (red) curve is measured while
scanning in the orthogonal transverse direction yH−yV (orig-
inal data bottom right).

two curves are approximate mirror images, in agreement
with the inversion (ϕ → −ϕ) or (x → −x) associated
with the reorientation of the plate. Each curve demon-
strates an intriguing combination of bunching and anti-
bunching. The exchange interaction between the two
photons is now asymmetric, such that the H-polarized
photon prefers to be on the righthand side of the V -
polarized photon, but avoids the lefthand side for one
orientation of the plate, and vice versa for the other ori-
entation. This unusual asymmetry originates from the
spatial structure of the Aq-field at the second diffusor
(see supplementary material); it disappears at increased
scattering angles and is absent if we scan the detectors
in the orthogonal transverse direction yH − yV (see red
non-wiggly curve in Fig. 4).

From a general perspective, our experiments demon-
strate the importance of exchange symmetry in multi-
particle scattering. For the extreme cases of Bosonic
(ϕ = 0) and Fermionic (ϕ = π) symmetry, this ex-
change symmetry applies to any (ρ1,ρ2) combination
and Eqs. (1) and (2) are equivalent. For intermediate
symmetries (0 < ϕ < π) only the more general Eq. (2) ap-
plies. To quantify the exchange symmetry also for these
cases, we introduce the global (spatially-averaged) sym-
metry parameter

S ≡
∫ ∫

A∗(ρ2,ρ1)A(ρ1,ρ2)dρ1dρ2∫ ∫
|A(ρ1,ρ2)|2dρ1dρ2

. (3)

This real-valued symmetry parameter S is conserved un-
der unitary scattering and propagation if these processes
are identical for both particles. The parameter S deter-
mines the bunching factor after random scattering via
F ≈ 1 + S. For our system S = cosϕ, with fermionic
(S = −1) and bosonic (S = 1) symmetry as extreme
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cases.
In conclusion, bunching effects are inevitable in multi-

particle scattering. In our description of the field of
two distinguishable (H and V polarized) photons these
bunching effects originate from the conservation of the
global symmetry S and its link to particle exchange.
We acknowledge support from the Stichting voor Fun-
damenteel Onderzoek der Materie (FOM) and the EU
under the FET-Open Agreement HIDEAS, No. FP7-
ICT-221906.

I. METHODS

Photon pairs are generated in a 5-mm long
periodically-poled KTP crystal, using a 200 mW cw
single-mode beam from a Krypton ion laser operating
at a wavelength of 413 nm. The crystal is phase matched
for frequency-degenerate type-II spontaneous parametric
down-conversion, generating pairs of photons of opposite
(H,V ) polarization at λ ≈ 826 nm. The pump light is
remove with an AR-coated GaP wafer positioned behind
the KTP crystal, while the frequency-degenerate photon
pairs are selected with narrow-band (∆λ = 1 nm) inter-
ference filters. A polarizing beam splitter (not shown in
Fig. 1) separates the scattered H and V photons before
detection and allows us to position the two single-photon
detectors effectively on top of each other. Each detec-
tor is connected to a single-mode optical fiber, whose
compact image can be scanned in the far-field plane of
the scattering medium. The detector modes are small
enough (140 µm) to allow for accurate imaging in the
detector plane, but large enough to collect enough light.
All discussed two-photon features are observed in the ab-
sence of one-photon speckle, at approximately constant
single-photon count rate, and after subtraction of a small
fraction (≈ 10 %) of accidental coincidence counts. Inte-
gration times are typically 12 s per date point.

II. SUPPLEMENTARY MATERIAL

The observed bunching effects originate from the in-
terference between the two dominant contributions to
the speckle field given in Eq. (2). The symmetry be-
tween these contributions allows us to express the spatial
structure of the bunching effect in terms of the ensemble-
averaged correlation between the speckle fields Aq(ρ1,ρ2)
and its mirror image exp (iϕ)Aq(ρ2,ρ1), such that

Rcc(ρ1,ρ2) ∝
(
1 + Re[eiϕµ(ρ1 − ρ2,ρ2 − ρ1)]

)
, (4)

where the normalized correlation function µ(ρ1−ρ2,ρ2−
ρ1) ∝ 〈A∗

q(ρ1,ρ2)Aq(ρ2,ρ1)〉. This correlation function
is Fourier related to the illumination profile at the final
diffusor [14], or more precise to that part of the illu-
mination rate Rcc that originates only from Aq(ρ1,ρ2).
Hence we expect approximately equal widths and shapes
for the bunching structures observed for bosonic and
fermionic states. Both measured widths (0.54± 0.02 µm
and 0.40 ± 0.02 µm) are indeed comparable to the typi-
cal speckle size observed for a static medium and as ex-
pected from the above Van Cittert-Zernike type argu-
ment [14]. We attribute the somewhat smaller width of
the fermionic structure and its additional weak shoulder
(a remnant of photon bunching) to the small contribu-
tion of photon pairs with x′

1.x
′
2 > 0 that we neglected in

the main text. Both aspects also show up in numerical
calculations that simulate our system in one transverse
dimension.

The intriguing wiggle in the anyonic curve also follows
naturally from Eq. (4). It originates from an asymmetry
in the (Aq-part of the) illumination profile Rcc at the final
diffusor, which translates into a complex and asymmetric
correlation function µ(ρ1−ρ2,ρ2−ρ1) for x1 6= x2. Our
simulations show that this asymmetry is a remnant of
the spatial separation imposed by the dual retarder plate
that is still visible at the second diffusor on account of
the limited (1◦) scattering angle of the first diffusor plate.
The wiggle disappears if we increase the scattering an-
gle of the plates in the computer or if we scan in the y
instead of the x direction. It also disappears if we add
a third scattering plate to the simulations. In contrast,
the bosonic and fermionic bunching features survive both
modifications of the scattering. These observations show
that the bosonic and fermionic symmetries are in a way
more fundamental than the anyonic symmetry. The first
two are global exchange symmetries, where Eq. (1) is
valid in any transverse plane. The anyonic symmetry,
on the other hand, is local in the sense that Eq. (1)
is valid only in the retarder plane, where the available
phase space separates in two natural segments, but has
to be replaced by the more general Eq. (2) for consec-
utive planes. After sufficient scattering, the exchange
contributions with phase factors exp (iϕ) and exp (−iϕ)
combine to the global symmetry parameter S = cosϕ,
as conserved quantity, and an associated bunching factor
F ≈ 1 + S.
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C.H. Generation of two-photon singlet beam. Phys. Rev.
Lett. 92, 043602 (2004).

[7] Goodman, J.W. Some fundamental properties of speckle.
J. Opt. Soc. Am. 66, 1145-1150 (1976).

[8] Washburn, S. & Webb, R.A. Quantum transport in small
disordered samples from the diffusive to the ballistic
regime, Rep. Prog. Phys. 55, 1311-1383 (1992).

[9] Beenakker, C.W.J. Random-matrix theory of quantum
transport. Rev. Mod. Phys. 69, 731-808 (1997).

[10] Van Albada, M.P. & Lagendijk A. Observation of Weak
Localization of Light in a Random Medium. Phys. Rev.
Lett. 55, 26922695 (1985).

[11] Wiersma, D.S., Bartolini, P., Lagendijk, A. & Righini,
R. Localization of light in a disordered medium, Nature
390, 671-673 (1997).

[12] Beenakker, C.W.J., Venderbos, J.W.F. & van Ex-
ter, M.P. Two-Photon Speckle as a Probe of Multi-
Dimensional Entanglement. Phys. Rev. Lett. 102, 193601
(2009).

[13] Lodahl, P. & Lagendijk, A. Transport of quantum noise

through random media. Phys. Rev. Lett 94, 153905
(2005).

[14] Peeters, W.H., Moerman, J.J.D. & van Exter, M.P. Ob-
servation of Two-Photon Speckle Patterns, Phys. Rev.
Lett. 104, 173601 (2010).

[15] Ott, J.R., Mortensen, N.A., & Lodahl P. Quantum inter-
ference and entanglement induced by multiple scattering
of light. Phys. Rev. Lett 105, 090501 (2010).

[16] Lahini, Y., Bromberg, Y., Christodoulides, D. N., & Sil-
berberg, Y. Quantum Correlations in Two-Particle An-
derson Localization, Phys. Rev. Lett. 105, 163905 (2010).

[17] Wilczek, F. Quantum mechanics of fractional spin parti-
cles. Phys. Rev. Lett. 49, 957-960 (1982).

[18] Laughlin, R.B. Anomalous quantum Hall effect: an in-
compressible quantum fluid with fractionally charged ex-
citations. Phys. Rev. Lett. 50, 1395-1398 (1983).

[19] Halperin, B.I. Statistics of quasiparticles and the hierar-
chy of fractional quantized Hall states. Phys. Rev. Lett.
52, 1583-1586 (1984).

[20] Pachos, J.K. et al. Revealing anyonic features in a toric
code quantum simulation, New J. Phys. 11, 083010
(2009).

[21] Lu, C-Y., Gao, W-B., Gühne, O., Chen, Z-B. & Pen,
J-W. Demonstrating anyonic fractional statistics with
a six-qubit quantum simulator, Phys. Rev. Lett. 102,
030502 (2009).

[22] Jeltes, T. et al. Comparison of the Hanbury Brown-Twiss
effect for bosons and fermions, Nature 445, 402 (2007).

[23] Peeters, W.H. Two-photon interference, PhD thesis, Lei-
den University 2010.



B Statistical properties of non-local speckles

The results of chapter 3 are the subject of a paper. The latest version of this
paper, that has as of writing not yet been published, is included for your
convenience.
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Statistical properties of non-local speckles
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We experimentally study the statistics of non-local speckle patterns, obtained when spatially
entangled photon pairs are scattered through a random medium. Striking differences arise between
the scattering of highly entangled states and almost separable states. Both the purity of the field
and the Schmidt number, which quantifies the number of entangled modes, can be obtained from
the visibility of the speckles. We observe non-exponential statistics for both the intensities and the
two-photon correlations.

PACS numbers: 42.50.Dv, 42.25.Dd, 42.30.Ms, 42.65.Lm

Introduction – Speckles are the random intensity pat-
terns that appear when a wave is reflected from or trans-
mitted through a random scattering medium [1, 2]. At
the time of its discovery, speckles were mainly seen as a
drawback in coherent imaging systems. Further studies
revealed, however, that the speckle pattern carries infor-
mation both on the coherence properties of the radiation
and on the microscopic details of the scattering object.
After averaging over many realizations of the disorder,
useful information can be retrieved through statistical
arguments. The study of wave propagation in random
media has revealed many interesting phenomena, such as
conductance fluctuations [3, 4], enhanced backscattering
[5], and Anderson localization [6].

More recently, considerable effort has been devoted to
understand how the quantum nature of light manifests af-
ter multiple scattering [7–18]. A broad range of subjects
have been investigated, such as the degradation of po-
larization entanglement [7–9], the transport of quantum
noise [10, 11], and the dynamics of photons in disordered
lattices [12]. It has also been shown that entanglement
can be induced by multiple scattering of squeezed states
and that quantum interference can survive ensemble av-
erage [16, 17].

The special features of scattering of quantum light are
best appreciated in the spatial domain. When a pure
two-photon state is scattered by a random medium, it
will produce so-called “two-photon speckles” [18]. These
patterns are remarkable because they exist in the more
abstract space of fourth-order correlations. They show
up in the coincidence count rate of two (scanning) detec-
tors and are a function of two position coordinates.

In this Letter we present the first experimental investi-
gation of the statistics of two-photon speckles. We show
that either non-local or separable speckle patterns can
be observed, depending on the degree of spatial entan-
glement of the initial state. By averaging over many
realizations of the disorder, important properties of the
source can be retrieved. In this way, the two-photon
state can be proven to be pure and the Schmidt num-
ber K, which quantifies the number of entangled modes,
can be obtained. Experimentally quantifying multi-
dimensional entanglement is an important, but very de-
manding task [19]. Our approach provides a feasible and

theoretically sound solution for this problem. Finally,
we recover the probability distributions of single-photon
intensities and two-photon coincidences, which, contrary
to most classical speckles, are in general non exponential.

Theory – Statistical distributions of two-photon speck-
les were first theoretically discussed by Beenakker et al.
[15]. In this Letter we will greatly benefit from their re-
sults. But in order to extend their conclusions to more
realistic experimental conditions, our analysis will devi-
ate at several points. First of all, we do not use a ran-
dom matrix description, with its discrete number of input
and output channels, but instead we use a continuous de-
scription. The only requirement we will impose on the
scattering is that it is sufficiently random and unitary
(i.e. energy conserving). Second, we will start from the
most general pure input state, whose Schmidt coefficients
are not necessarily equal, i.e., we show how the Schmidt
number K can be measured, instead of the Schmidt rank.
Finally, we do not separate the two-photon phase space
into half-spaces, q > 0 and q < 0. This allows us to
investigate separable states (K = 1) as well.

We begin by reviewing some properties of classical
speckles. When a field f(x) is scattered by a random
medium, all possible light paths will acquire arbitrary
phases. When these components are added together,
they will form a complex interference pattern known as
speckle. For unitary scattering, we can describe this pat-
tern by the transformation F (x) = U [f(x)]. If the num-
ber of scattering centers is very large, the Central Limit
Theorem assures that the probability density function
for both the real and imaginary components of F (x) is
asymptotically Gaussian. The intensity I = |F |2 then
has an exponential distribution P (I) ∝ exp(−I/ 〈I〉),
with average 〈I〉. The visibility or contrast of any speckle

pattern is defined by V =
〈
I2

〉
/ 〈I〉2−1, where the brack-

ets denote ensemble average. The exponential distribu-
tion has unity visibility.

These results can be generalized to a two-photon field
A(x1, x2), which describes the probability amplitude of
finding one photon at transverse position x1 and the
other at x2. The quantum-entangled nature of the state
is best appreciated in the so-called Schmidt decomposi-
tion [20], where the two-photon state is expressed as a
discrete sum over factorizable two-photon states of the
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form Ak(x1, x2) = fk(x1)gk(x2). Part of the beauty of
the Schmidt decomposition is that it remains intact upon
unitary scattering, as orthogonal states remain orthogo-
nal under this scattering; only the eigenstates are modi-
fied. If we write the input state in the Schmidt form, the
output state will be

Aout(x1, x2) =
∑

k

λk Fk(x1)Gk(x2), (1)

where λk are the Schmidt coefficients and, analo-
gously to the classical case, Fk(x) = U [fk(x)] and
Gk(x) = U [gk(x)] are the speckle fields corresponding to
the transformation of the Schmidt modes fk and gk. The
coincidence rate measured by two photon counters at po-
sitions x1 and x2 is Rcc(x1, x2) ∝ |Aout(x1, x2)|2. If the
initial state is separable, i.e., just one term in the Schmidt
decomposition, the two-photon speckles observed in Rcc

will also be separable. On the other hand, if the in-
put state is highly entangled, Rcc will reveal a nonlo-
cal speckle pattern. The effective number of entangled
modes in the decomposition (1) is usually quantified by
the Schmidt number K = 1/

∑
k |λk|4. The Schmidt co-

efficients are normalized such that
∑

k |λk|2 = 1.
We will now study the statistics of the intensities I

(single photon rate) and of the coincidences Rcc. From
Eq. (1) we immediately obtain

Rcc = α
∑

j,k

λ∗
jλk F ∗

j FkG∗
jGk, (2)

R2
cc = α2

∑

i,j,k,m

λ∗
i λ

∗
jλkλm F ∗

i F ∗
j FkFmG∗

i G
∗
jGkGm, (3)

where we omit the coordinates x1 and x2. The propor-
tionality constant α incorporates the experimental fac-
tors that relate the theory to the measured coincidences
rate. Let’s first assume that x1 6= x2. In this case,
the speckle fields F and G are statistically independent.
Furthermore, the fields Fi and Fj are also statistically
independent, unless i = j. The same holds for G. Due
to the Gaussian-random nature of the scattered fields,〈
|Fi|2n

〉
= 〈In〉 = n!, where I is the exponentially dis-

tributed intensity, but
〈
F 2n

i

〉
= 0. With these ingredi-

ents, it is straightforward to show that

For x1 6= x2





〈Rcc〉 = α,

Vc = 1 +
2

K
,

(4)

where K is the Schmidt number and Vc is the visibility
of the two-photon speckle pattern. We see that Vc varies
from 3 (separable state) to 1 (maximally entangled state).

The single photon intensities can be obtained by a par-
tial trace of the two-photon state as

Iout(x) =
∑

k

|λk|2 |Fk(x)|2 =
∑

k

|λk|2 |Gk(x)|2, (5)

which is an incoherent sum of many speckle patterns.
The more terms in the distribution, the more uniform

FIG. 1: (Color online) Entangled photon pairs are obtained
via type I SPDC by pumping a 5-mm thick periodically poled
KTP crystal with a laser beam (λp = 413.1 nm and 200 mW
power). The crystal center is imaged onto the incident plane
of the scatterer with two f1 = 200 mm lenses. The far field
of the scattering medium is imaged with a fd = 250 mm
lens onto the detection plane. Detection occurs via pro-
jection onto two single-mode fibers. The size of the detec-
tion modes (wdet = 140 µm) determines the spatial resolu-
tion in the far-field plane. Narrow band spectral filters (5
nm at 826.2 nm) are used to selected down-converted light
close to frequency degeneracy. The inset shows our scattering
medium, which comprises two light shaping diffusers posi-
tioned in each other’s far field (using a lens fc = 10 mm).
This configuration mimics a volume scatter [18], but it also
allows sufficient counts to be measured. (a) Generation of a
state with Kth = 80. The pump is weakly focused to a waist
wp = 160 µm. (b) Generation of a state with Kth = 1.4.
The pump lens (not shown) is removed and a f2 = 100 mm
lens focuses the beam to a spot wp = 11.5 µm at the center
of the crystal. The two f1 lenses are removed and a single
f3 = 59 mm lens images the center of the crystal on the scat-
ter.

the intensity becomes. The visibility of the one-photon
speckle reduces with the number of modes as

VI =
1

K
. (6)

When the number of terms in (5) is very large, the Cen-
tral Limit Theorem can be used to show that P (I) is
normally distributed with mean 〈I〉 and standard devia-

tion 1/
√

K.

We have assumed so far that the input state is pure.
In a more general sense, the purity P of the two-photon
state can be calculated from the visibilities VI and Vc of
the single-photon and two-photon speckles as

P = Vc − 2VI . (7)

This crucial result, which was first derived in [15], can
also be proven using our formalism.

The probability distributions for Rcc and I can be de-
duced from Eqs. (2) and (5), which are weighted sums
of products of random Gaussian variables. For the spe-
cial case of K equally weighted Schmidt modes, with
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FIG. 2: (Color online) Coincidence counts measured by two
scanning detectors for a single realization of the scattering
medium. (a) A non-local speckle pattern, corresponding to
the scattering of a highly entangled state with Kth = 80. (b)
Separable speckle pattern, corresponding to the scattering of
a state with a small number of modes, Kth = 1.4.

λk = 1/
√

K, we recover the closed expressions of Ref. [15]

P1(Ĩ) = ĨK−1 e−KĨKK

Γ(K)
, (8)

P2(R̃cc) =
K

Γ(K)
(KR̃cc)

K−1
2 KK−1

[
2

√
KR̃cc

]
, (9)

where Ĩ = I/ 〈I〉 and R̃cc = Rcc/ 〈Rcc〉 , Γ is the Gamma
function and KK−1 is a modified Bessel function of the

second kind. The single-photon probability density P1(Ĩ)
is a Gamma distribution while, the two-photon probabil-
ity P2(R̃cc) is known as the “K”-distribution [21].

We finally consider the case x1 = x2 = x. Because of
the symmetry A(x1, x2) = A(x2, x1) of the two-photon
field, the Schmidt modes Fi(x) and Gj(x) are not all
statistically independent. Taking this into consideration,
we can repeat the steps above and show that Eqs. (4)
and (9) retain their form, but with the substitution K →
K/2, which implies that Vc = 1+ 4

K . The average 〈Rcc〉 =
2α is twice as large. This photon bunching effect survives
averaging over many realizations of the disorder.

Experimental results – Figure 1 shows the experimental
setup used to generate entangled photon pairs and to
measure the statistics of the speckles. We investigate
two different regimes, namely, a highly entangled state
with theoretical Schmidt number Kth = 80 and an almost
separable state with Kth = 1.4.

Figure 2 shows measurements of two-photon speckle
patterns for a fixed realization of the scattering medium.
These figures are obtained by scanning both detectors
horizontally, keeping y1 = y2 fixed, and recording the
coincidences count rate. The results are corrected for
accidental counts. Figure 2(a) corresponds to a highly
entangled state, while Fig. 2(b) shows the results for
an almost separable state. The differences are striking.
When operating under reduced number of modes, the co-
incidences rate is practically separable in the product of

TABLE I: Overview of the measured statistics, obtained for
x1 6= x2. The theoretical Schmidt number Kth is calculated
via the procedure in [20]; VI and Vc are the visibilities of the
intensities and coincidences respectively, P is the purity, and
Kex is the measured Schmidt number.

Kth VI Vc P Kex

1.4 0.83 ± 0.02 2.65 ± 0.15 0.98 ± 0.15 1.20 ± 0.03

80 0.014 ± 0.002 1.04 ± 0.04 1.01 ± 0.04 70 ± 9

single-photon intensities, Rcc(x1, x2) ≈ I(x1)I(x2). On
the other hand, when the number of modes is very large
the pattern is clearly non-separable. By measuring pho-
ton 1 at a certain position, photon 2 is “nonlocally” pro-
jected into a speckle pattern that depends on the position
of detector 1. Notice also that both patterns are symmet-
ric with respect to the x1 = x2 diagonal; this reflects the
symmetry of the field A(x1, x2) = A(x2, x1).

We will next discuss the statistical distributions of the
coincidences Rcc and intensities I under various condi-
tions. To this end, the detectors are placed at fixed po-
sitions, either x1 = x2 or x1 6= x2. Different realizations
of disorder are obtained by rotating the first or the sec-
ond diffuser in steps of 3◦. In this way, we can measure
14,400 realizations of the scattering medium. The ac-
quisition time for each measurement was 5 seconds. An
overview of the results for x1 6= x2 is shown in table I.

Figure 3 shows the probability distributions measured
for Kth = 1.4, i.e., for an almost separable state. The
dashed red curves are the theoretical curves, obtained
using Eqs. (8) and (9) with the measured Schmidt num-
ber K instead. The dashed black lines correspond to an
exponential distribution and confirm that all three dis-
tributions are non-exponential. When Kth = 1.4, the
field is not only coherent in fourth order, but it is also al-
most coherent in second order. The single photon speck-
les exhibit high visibility, VI = 0.83 ± 0.02, not very far
from unity visibility, which holds for completely coherent
light. This visibility allows us to estimate the experimen-
tal Schmidt number to be K = 1.20 ± 0.03, confirming
that our state is practically separable. The associated
probability distribution P1 is shown in Fig. 3(a). The
distribution is slightly concave on a semi-log scale and is
theoretically described by a Gamma distribution. This
distribution would have been exactly exponential in the
limit K = 1.

The results for the coincidence counts are more inter-
esting. Figure 3(b) shows the probability distribution P2

of two-photon speckles for x1 6= x2. The associated visi-
bility Vc = 2.65±0.15 has a relatively large error margin.
The main reason for this error is the occurrence of a few
very large fluctuations, associated with the extreme tail
of the P2 distribution. As we can see, the distribution
has a convex shape on a semi-log scale, such that the
probability of very small and very high fluctuations are
higher than for an exponential distribution. The error in
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FIG. 3: (Color online) Probability distributions measured for Kth = 1.4. The (red) dashed curves are the theoretical distribu-
tions and the (black) dashed lines correspond to an exponential distribution. The insets show the results on a linear scale. (a)
Distribution P1 of intensities. (b) Distribution P2 of coincidences for x1 6= x2. (c) Distribution P2 of coincidences for x1 = x2.

Vc will propagate to the purity P . We obtain an average
value P = 0.98 ± 0.15 for the purity of the two-photon
state.

Figure 3(c) shows the probability distribution of Rcc

for x1 = x2. The convexity is even more pronounced and
the peak close to Rcc ≈ 0 is twice as large, as can be
seen in the insets. Theoretically, the peak at Rcc = 0
should be much higher. The measured shape and peak
around Rcc = 0, however, are limited by the exper-
imental noise that inevitably dominates at the small-
est count rates. The two-photon speckle contrast is
Vc = 4.45 ± 0.30, which reflects the almost classical, i.e
local, nature of the fluctuations. For a fully factorizable
speckle, the visibility of Rcc ≈ I2 is V⌋ = 5.

Figure 4 shows the probability distributions for a
highly entangled state with Kth = 80. In the limit of high
K, the two-photon speckles are a genuine two-coordinate
function and can be considered as a more authentic gen-
eralization of classical speckles to fourth-order optics.
The fluctuations at x1 = x2 are now not more special
than those at x1 6= x2; only the average level will be
different due to the photon bunching effect. The proba-
bility distribution P2 for x1 6= x2, shown in Fig. 4(a), is
practically exponential and the visibility Vc = 1.04±0.04
is close to unity. Extreme fluctuations do not occur very
often for this distribution. As a result, the error in Vc is
smaller. The distributions for x1 = x2 and x1 6= x2 have
approximately the same shape, but since the number of
modes is still finite, the visibility for x1 = x2 is slightly
higher, namely, Vc = 1.10 ± 0.05.

Figure 4(b) shows the probability distribution P1 on
a linear scale. Because the reduced one-photon state is
now practically incoherent, the intensity will exhibit only
limited fluctuations around the average 〈I〉. As expected
from the Central Limit Theorem, the curve is approxi-
mately Gaussian. The associated one-photon visibility is
only VI = 0.014 ± 0.002. To measure this value, we had
to correct for a small wedge effect in the diffusors. This
correction introduces a relative larger error, which prop-
agates when calculating the Schmidt number. Nonethe-

less, the obtained value Kex = 70 ± 9 agrees reasonably
well with the large number of modes expected. Finally,
we obtain P = 1.01 ± 0.04 for the purity of the state.
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FIG. 4: (Color online) Probability distributions measured for
Kth = 80. The (red) curves are the theoretical distributions
and the (black) dashed lines correspond to an exponential
distribution. (a) Distribution P2 of coincidences for x1 6= x2.
(b) Distribution P1 of intensities.

Conclusion – We have studied the statistics of two-
photon speckle patterns. These patterns are a general-
ization of classical speckles to fourth-order optics. De-
pending on the degree of spatial entanglement of the in-
put state, the scattered field can exhibit very different
structures and statistics. We have measured the Schmidt
number of both an almost separable state and a highly
entangled state. We have also proven that both gener-
ated states are pure to a good degree of accuracy. These
results provide new insights into the role of spatial en-
tanglement to the scattering of light and opens the door
to new developments in the field of quantum optics in
random media.
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