
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Daniël Stolwijk
Report Master Project

July 18, 2008

Optical  
Studies of 
Nano-Hole 
Arrays 



 



Contents

1 Introduction 2

2 Theory 4
2.1 Metal Nano-Hole Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Dielectric Nano-Hole Arrays . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Fano Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Description of the Setup 9
3.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Results and Analysis Gold Array 12
4.1 Conventional GNHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Effect of Pillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Effect of Thin Glass Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Index Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results and Analysis Dielectric Array 28
5.1 Flipping Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Reflection and Transmission Coefficients . . . . . . . . . . . . . . . . . . 28
5.3 Optical Resonator Model for a DNHA . . . . . . . . . . . . . . . . . . . 30
5.4 Loss Channel and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Rotation with Crossed Polarizers . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusion 36

7 Acknowledgement 40

8 Appendix: List of Publications 41

1



1 Introduction

The success of micro- and nano-electronics is based on the precise control of electronics
in a wide range of materials. At the heart of these electronic devices are semiconductors
such as silicon, having the crucial property of an electronic band gap - a range of fre-
quencies where electrons are forbidden from propagating. In the last couple of decades
a lot of research in the field of photonics has been done in order to find materials that
have a photonic band gap, here a range of frequencies of photons are forbidden from
propagating by the material.

By now many of these structures, so-called photonic crystals, are known, produced and
used in different applications. An example of a simple application of a photonic crystal
is a high-efficiency light-emitting diode (LED) [1]. In standard LED’s the efficiency is
rather poor (3-20%) because the light emitted from the source travels in all directions
and therefore only a fraction of the light generated, can actually leave the LED. However,
if the source of the light would be surrounded by a photonic crystal, having a band gap
at the relevant frequency, light would simply not be emitted in the directions where the
crystal is, because there is no state available for the light. It is quantum-mechanically
prohibited. Consequently, light can only escape in the right direction. In principle the
efficiency of a LED could in this way be increased up to the internal efficiency - the
efficiency with which the light is produced - which is about 90% [1]. Examples of other
applications are high-capacity optical fibers, color pigments and photonic integrated
circuits that manipulate light in addition to, or perhaps ultimately instead of, electric
currents [2].

Most photonic crystals are made of dielectric materials. This is because metals are
highly absorbing at optical frequencies. However, interesting phenomena take place when
light is incident on a periodic metal structure, for instance giving rise to extraordinary
high transmission through an optically thick gold layer perforated with a regular array
of holes [3]. It is widely accepted that this effect is due to excitation of surface plasmons,
electro-magnetic waves bound to the surface of a metal and a dielectric. It provides us
with another way of controlling light, opening a range of new possibilities for applica-
tions. The detection efficiencies of certain types of photodetectors can for example be
increased by an order of magnitude by making use of such a metal structures [1].

Currently, a lot of the physics that takes place when light interacts with periodic struc-
tures, both metal and dielectric ones, is not well-understood yet. To fully exploit the
special properties of these photonic materials, a better understanding is required. In this
report results are presented that provide new insight in the physics that takes place. In
the first part of this report we investigate different types of metal structures, for instance
how (nano-)antennas (or nano-pillars) that are placed on the structure, change the op-
tical characteristics. We also examine the influence of the dielectric environment on the
optical transmission through these optically thick structures. The second part of this re-
port presents results of optical studies of a dielectric photonic crystal. Most quantitative
descriptions in literature are based on rigorously solving Maxwell’s equations [4, 5]. We
apply and extend a simple theoretical model to describe observed resonant phenomena
quantitatively.
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The results of this research are published in references [6], [7] and [8]. These papers
are attached in the appendix for completeness.
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2 Theory

This report deals with the optical reflection and transmission of periodic nanostructures.
The structures consist of a regularly perforated, 2-dimensional array. The lattice con-
stant of these structures is comparable to the wavelength of the incident light, the size
of the holes can be much smaller. As explained in the introduction, two types of arrays
can generally be distinguished: metal and dielectric ones. Although quantitatively the
interaction between light and the two types of arrays is quite different, reflection and
transmission spectra show remarkable qualitative similarities. Sections 2.1 and 2.2 de-
scribe the different processes that contribute to the optical transmission and reflection of
a metal and a dielectric nano-hole array, respectively. Section 2.3 discusses the general
concept that is at the bottom of the observed similarities in the spectra.

2.1 Metal Nano-Hole Arrays

In this paragraph the processes that take place when light is incident on a metal nano-
hole array (MNHA) are described. Also, a simple model that predicts where resonances
in the optical transmission are to be expected, is presented.

The paths that light incident on a MNHA can take, are schematically shown in fig-
ure 1(a). In fact, three paths that contribute to the transmission, T , of light through
a MNHA, can be distinguished. The first one is the light directly transmitted through
the metal film and is given by [9]:

T (t, λ) = exp(−4πκt/λ), (2.1)

with κ the extinction coefficient, t the thickness of the metal layer, and λ the wavelength
of the incident light. For an optically thick MNHA, this contribution will turn out to
be negligible (this will be justified in section 4.1).

The second contribution consists of the light transmitted through the subwavelength
holes. It can be calculated by approximating the holes as independently radiating dipoles
in a perfectly conducting, infinitely thin metal sheet. The contribution from this process
to the transmission is given by [10]:

T (d, λ) =
16π3d6

27a2λ4
, (2.2)

with a the lattice constant and d the diameter of the holes. In practice the transmission
due to this contribution will be lower, since real MNHA’s are not ideal conductors, nor
infinitely thin. For an optically thick MNHA, especially the latter reason will lower the
contribution to the transmission.

The third contribution to the transmission is due to the periodicity of the array.
A qualitative description of what takes place is as follows. The periodicity enables
diffraction of the incident light. Evanescent electro-magnetic (EM) waves bound to the
metal surface, called surface plasmon polaritons (SPPs), are excited [11]. The excited
SPPs can tunnel to the other side of the array and can be transmitted as light [12].
Because of the diffraction from the lattice, only light with a well-defined wavelength
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Figure 1: Panel (a) shows the different paths light can travel in a MNHA, panel (b) in a
DNHA. In both panels the brown arrows refer to the incident light, the green arrows to the
direct path and the red arrows to the indirect, resonant path. For the MNHA the direct path
corresponds to the transmission directly through the holes, for the DNHA to the multilayer
character of the system (indicated by multiple reflections at the surfaces). In both panels the
indirect, resonant contribution is due to coupling to the lattice. At the MNHA, light couples
to SPPs, at the DNHA the regularly perforated layer behaves as a leaky waveguide. For the
DNHA the yellow arrow indicates the leak into the substrate side, where, contrary to the air
side, also diffracted light can escape.
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can excite a SPP. Therefore this contribution has a resonant character. We will refer to
this contribution as the indirect contribution. The spectral position of these resonances
can be quantified with a simple model [3]. The SPP dispersion relation for a smooth
interface is given by [13]:

kSPP = neff
ωSPP

c
, (2.3)

with kSPP the (complex) momentum of the SPP, and ωSPP the (real) frequency. The
effective index of refraction neff, is given by:

neff =

√
εmεd

εm + εd

, (2.4)

where εm and εd are the dielectric constants of the metal and the dielectric respectively.
The momentum of the incident light alone is too small to directly to excite SPPs. The
momentum necessary for this excitation is supplied by diffraction of the regular array of
holes. This diffraction condition is expressed as:

kSPP = k// + G, (2.5)

where k// is the parallel component of the incident light (the component of the incident
light projected on the lattice, as in figure 1) and G the reciprocal lattice vector. This
equation reveals the discrete character of the indirect contribution: for a 2-D lattice each
integer linear combination of reciprocal lattice vectors corresponds to a resonance.

It should be emphasized that the contribution in the transmission consists of a non-
resonant, direct process, as can be seen from equation 2.2 and a quantized, indirect
process, as is revealed by equation 2.5.

2.2 Dielectric Nano-Hole Arrays

In a dielectric nano-hole array (DNHA) there are no free electrons and therefore no
SPPs. However, as for the MNHA, light can again travel according several paths, as is
schematically illustrated in figure 1(b). Again two physical processes contribute to the
optical transmission: a direct and an indirect process. To calculate the direct contri-
bution in the transmission, the DNHA can be treated as a homogeneous dielectric film
with an effective refractive index. The film is surrounded by air at the top side and a
substrate layer at the bottom side. Once the effective index is known, it is straightfor-
ward to calculate the reflection and transmission coefficients of this system for s- and
p-polarized incident light (see section 5.2). The reflection and transmission coefficients
have a non-resonant character as function of wavelength of the incident light.

The contribution of the indirect process arises from the coupling of light to a single
leaky waveguide mode of the DNHA. The momentum necessary for the incident light,
with wavevector k, to couple to a guided mode, is supplied via diffraction at the lattice.
This corresponds to adding a reciprocal lattice vector G of the crystal to the parallel
component of the incident wavevector, k//:

kmode = k// + G, (2.6)
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Figure 2: The optical resonator with a
loss channel shown schematically. It de-
scribes the interference between a non-
resonant direct channel and a resonant in-
direct one. The resonant channel has a res-
onant frequency, ω0, and a lifetime, τ . For
both an MNHA and a DNHA coupling to
a resonant frequency occurs due to diffrac-
tion at the lattice as described by equa-
tion 2.7.

where kmode is determined by the dispersion relation (or band structure) of the photonic
material that can accurately be calculated numerically [14]. This equation reveals the
quantized, or mode-like structure of the indirect contribution in the optical transmission.
The perforated layer thus behaves as a leaky waveguide for certain modes. Each mode
can only leave the waveguide at the air interface by again giving up its gained momentum
G. The photon will be re-emitted with momentum k. The situation is different at the
substrate interface. As long as the refractive index of the substrate is higher than the
effective refractive index of the perforated layer, photons can also leave the waveguide
without giving up their gained momentum.

It should be stressed that the optical transmission consists of two contributions: a non-
resonant, direct contribution, arising from the multi-layer character of the system and a
mode-like, indirect contribution, stemming from the waveguide character (equation 2.6)
of the system.

2.3 Fano Resonances

The previous two paragraphs show that the models used to describe the interaction
between light and MNHAs on the one hand and light and DNHAs on the other hand,
are related to different processes. However, as emphasized at the end of both sections
and as indicated in figure 1, the processes contributing to the optical transmission show
strong qualitative similarities: for both MNHAs and DNHAs there is a continuous, direct
contribution and a mode-like, indirect one. The coupling to a resonant frequency occurs
due to diffraction at the periodic structure and is in fact imposed by the same condition:

kres = k// + G, (2.7)

where kres equals kSPP for a MNHA and kmode for a DNHA (compare with equations 2.5
and 2.6). We can describe this mathematically with an optical resonator, as in refer-
ence [15]. The model from this reference applies to a lossless system. In chapter 5 this
model will be shortly presented. Next, we will extend it to include losses from the sys-
tem. Figure 2 shows this model schematically. The model comes down to quantifying
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the interference between the non-resonant (direct) channel and the resonant (indirect)
one.

The problem of interference between a continuum of modes (direct process) and a
single resonant mode (indirect process), has been solved for the first time by Fano,
albeit in a completely different context [16]. The result is known as a Fano resonance: an
asymmetric resonance, having a resonant frequency, ω0, a lifetime, τ and an asymmetry
q. Since at both types of arrays there is interference between a direct and an indirect
contribution in the transmission, we expect the transmission spectra to consist of an
overall background signal, modulated with spectrally well-determined, asymmetric Fano
resonances that strongly depend on the angle of incidence (in equation 2.7 k// is a
function of angle of incidence).
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Figure 3: The setup shown schematically. The first arm allows us to focus white light under
any linear polarization onto the sample. We are able to adjust the second arm in such a way,
that we can measure both transmission and reflection spectra. θ corresponds to the angle of
incidence, ϕ to the orientation of the sample. In the top right corner a top view of the setup
in transmission mode is shown schematically.

3 Description of the Setup

To investigate the interaction between light and a nano-hole array we use a reflection-
transmission setup, as shown in figure 3. We use a fiber-coupled tungsten lamp as a
white light source. With a lens the light is focussed into a multimode fiber, unless
otherwise specified the diameter of this fiber is 200 µm. The light emitted at the end of
the fiber is collimated by a lens with a focal distance of 50mm. The parallel beam of
white light is polarized by a Glan-Thompson polarizing cube, with a spectral range of
300 to 2500 nm. The angle of this polarizer can be adjusted to a precision better than 1◦.
The beam is focussed onto the sample by a second lens with a focal distance of 75mm.
The spot size on the sample has a diameter of 300µm (a magnification of 1.5). After
the lens a diaphragm allows us to adjust the numerical aperture (NA). The distance
between the diaphragm and the sample is 60mm, and we can set the diameter of the
diaphragm to less than 1mm, limiting the numerical aperture to less than 0.02, allowing
us to treat the incident light as plane waves. The light path from the fiber until the
diaphragm, we shall refer to as the first arm. We can set both the angle of incidence, θ,
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Figure 4: Reflection spectra of a
multilayer sample with p-polarized
light under various angles of inci-
dence. The theoretical curves cor-
respond very well to the measured
ones, from which we may conclude
that our setup is well aligned.

and the rotation angle of the sample, ϕ, with a precision of less than 1 degree.
We collect the reflected or transmitted light with a second arm, which is identical to the

first arm. Depending on whether we want to measure reflection or transmission spectra,
the angle of the second arm with respect to the first arm is 2θ and 180◦ respectively.
The light at the end of the second arm is collected by a multimode fiber with a diameter
of 400µm. To analyze the visible part of the spectrum (530 till 910 nm), we use a
fiber-coupled spectrometer with a CCD-array (Ocean Optics USB2000; resolution ∼
1 nm). For the infrared part of the spectrum (910 till 1700 nm) we use a fiber-coupled
spectrometer with a linear InGaAs array (Ocean Optics NIR-512; resolution ∼ 3 nm).

To calibrate the setup we measure reflection spectra of a known sample at several
angles of incidence and compared them to calculated reflection spectra. The sample
consists of three parallel layers: a 150 ± 10 nm thick Ga0.35Al0.65As top layer, a 900 ±
20 nm thick AlAs layer, and a GaAs substrate. Theoretical reflection of this multilayer
system as function of wavelength and angle of incidence were calculated [17], taking the
dispersion of the materials into account [18]. Figure 4 shows both the measured and
theoretical curves, showing very good agreement.

3.1 Samples

We investigate four different samples: a conventional gold nano-hole array (GNHA) [19],
two GNHAs with a pillar placed in each hole, and a DNHA. The conventional GNHA
is a 1 × 1mm2 perforated 200 nm thick gold film with square lattice symmetry. The
diameter of the holes is 200 nm, the lattice constant 700 nm. The film is deposited on
top of a glass substrate (Schott-BK7), with a refractive index of n ≈ 1.51 that is almost
independent of wavelength for the range of wavelengths used in the experiment. Between
the film and the substrate is a 2 nm thick Ti bonding layer. The sample is made with
e-beam lithography. Further details of the production procedure of this sample can be
found in reference [20].

We investigate two GNHAs with ∼ 650 nm long pillars sticking out of each hole. The
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Figure 5: SEM image of the the gold nano-
hole array with hexagonal symmetry. The holes
and the pillars are 220 nm and 172 nm in diam-
eter respectively. Each hole contains a 650 nm
high glass pillar. The array has a lattice con-
stant a = 1.09 µm.

samples are produced using an imprinting technique. The arrays are 0.5 × 0.5mm2

perforated 200 nm thick films, deposited on an AF45 glass substrate, having an almost
flat dispersion, n ≈ 1.52. Between the film and the substrate is a 100 nm thick layer
of sol-gel glass with a refractive index of n ≈ 1.41. One of the arrays has square
symmetry, the other one hexagonal symmetry. We will refer to them as ’Philips Square’
and ’Philips Hexagonal’, respectively. The array with square symmetry has a lattice
constant of 760 ± 4 nm and a pillar thickness of 132 ± 5 nm. Figure 5 shows a SEM
image of the GNHA with hexagonal symmetry. The lattice constant is 1090± 6 nm, the
pillar thickness of 172 ± 5 nm and the hole diameter 220 nm. After optical studies of
both the samples, the pillars are selectively removed using hydrofluoric acid. The sample
then becomes a conventional GNHA. After optically investigating the samples without
the pillars, a thin sol-gel glass layer is deposited on top of the array, with a refractive
index, n ≈ 1.41. Further details of the production steps of these two samples can be
found in reference [6], which is included in the appendix.

The DNHA is a 0.32 × 0.32mm2 GaAs array with square lattice symmetry. The
diameter of the holes is ∼ 200 nm, their depth 1.5 − 2µm. The lattice constant is
320 nm. Details of how this sample is produced can be found in reference [8].
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4 Results and Analysis Gold Array

In this chapter results of optical transmission measurements on different types of GNHA’s
are presented. In the first three sections results obtained with the two Philips samples,
as described in the previous section, are discussed. In section 4.1 measurements after
removal of the glass pillars from these samples are analyzed. Without pillars the sam-
ple is in fact a conventional GNHA. The model from section 2.1 is applied. Next, in
section 4.2, measurements on the same samples before removal of the pillars are pre-
sented and the effect of the pillars is studied. In section 4.3 results obtained with the
SiO2-coating on top of these Philips samples are presented. In the last section of this
chapter measurements at the conventional GNHA, as described in the previous section,
are investigated. The GNHA is immersed in liquids with different refractive indices.

4.1 Conventional GNHA

Figure 6(a) shows measured optical transmission spectra from an angle of incidence θ =
0◦ to θ = 15◦ with an interval of 1.5◦. The used GNHA is ’Philips Square’ as described
in section 3.1, after removal of the pillars (note that then it is just a conventional
GNHA). The incident light is p-polarized and the angle ϕ is set to 0◦, see figure 3. The
spectra show several peaks due to the coupling to SPPs. As expected, the peaks show
a Fano shape due to the interference of the non-resonant direct, and mode-like indirect
contribution in the transmission. This is in accordance with previous results [21].

As explained in section 2.1, two direct physical processes contribute to the optical
transmission: transmission through the gold film and through the holes. The former
can be calculated with equation 2.1. The thickness, d, of the GNHA is 200 nm (the
thickness of all our used GNHA’s is in fact 200 nm). According to reference [18], in the
regime 200 nm < λ < 1800 nm the ratio κ/λ > 3.5 · 106 m−1. For these wavelengths
the contribution in the transmission can now be calculated to be T ≤ 0.015%, which
is negligible compared to the observed transmission. Therefore the contribution of this
process can be neglected. The other direct process, the transmission through the holes,
can be calculated with 2.2 and is plotted as function of wavelength in figure 7. If we
compare this to figure 6, we see that the transmission is in the same order of magnitude.

Furthermore we can investigate the spectral positions of the resonances by applying the
model from section 2.1. For this purpose it is convenient to plot the spectra from 6(a) in
the form of a false color plot, as shown in panel (b). The color indicates the transmission
as a function of wavelength and angle of incidence, high transmission is indicated with
yellow, low transmission is indicated with black. To obtain a smoother plot we linearly
interpolated the data five times between every 0.5 degree. The measured GNHA has
a square lattice symmetry, so: G = ka(N1x̂ + N2ŷ). Here ka ≡ 2π/a ≡ ωa/c, x̂ and
ŷ are the reciprocal lattice vectors, and N1 and N2 are integer indices that count the
number of oscillations per lattice period. The angular frequency of the incident light
equals the angular frequency of the SPPs, ωSPP = ω. We define our axes as shown in
figure 3 and set ϕ = 0◦. This allows us to rotate our sample around the ŷ-direction,
making k// = |ki| sin(θ)x̂, with ki the wavevector of the incident light. If we substitute
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Figure 6: Panel (a) shows the transmission spectrum of a GNHA, under angles of incidence
from 0◦ to 15◦, with an interval of 1.5◦. Panel (b) shows a plot of the wavelength against
the angle of incidence, the color indicates the percentage reflected light. The curves show
the theoretically expected resonant modes, calculated with equation 4.1; the blue dashed line
corresponds to the (1,1)glass-mode, the red solid line to the (1,0)air-mode, the red dashed line
to the (0,1)air-mode, the green solid line to the (2,0)glass-mode, the green dashed line to the
(0,2)glass-mode and the solid yellow line to the (1,1)air-mode.
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Figure 7: Theoretical trans-
mission spectrum of a GNHA
with a lattice constant, a, of
760 nm and a hole diameter, d
of 220 nm, as calculated with
Bethe theory.

all this into equation 2.3, we obtain the following equation:(
sin2 θ − n2

eff

)
ω2 + (2N1ωa sin θ) ω +

(
N2

1 + N2
2

)
ωa

2 = 0. (4.1)

This equation reveals how the quantization of the reciprocal lattice implies quantized
resonances: each combination of N1 and N2 corresponds to a resonance. Also, every
combination of N1 and N2 appears at both the gold-glass interface and the gold-air
interface. Each solution corresponds to a mode, for instance: the N1 = 1, N2 = 0
solution at the glass interface we shall refer to as the (1,0) glass-mode. In principle we
can solve this second order polynomial for the frequency exactly. However, the dielectric
constant of gold depends rather strongly on the frequency. Taking this dispersion into
account, this equation can be solved numerically, using exact data for the dielectric
constant of gold [18] and approximating the effective refractive index of the substrate
with a constant of 1.46. Recall that in fact the refractive index of the substrate is 1.52,
and there is a 100 nm sol-gel glass layer with a refractive index of 1.41 between this
substrate and the gold film. Figure 6(b) shows the calculated spectral positions of the
resonances as function of angle of incidence of the incident light. There is good agreement
between the theoretically predicted curves and measured positions of the resonances.
However, there is a slight systematic deviation; the measured resonances are shifted by
∼ 3% towards the infrared compared to the model. This shift is observed in previous
measurements [20] and by another group as well [22], although in our case the deviation
is smaller because we take the dispersion of the refractive index of gold into account. The
deviation may be due to several effects that are not taken into account in the model [20].
In the first place the SPP dispersion relation (equation 2.3) we used, is that of a closed,
smooth gold-air interface, whereas in the GNHA the surface is perturbed with holes. In
addition, the resonances are Fano shaped due to the interference of the resonant with the
non-resonant channel. The actual positions of the peaks of the underlying resonances,
which this model only considers, will therefore shift.
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Figure 8: The green and the
blue graph show the transmis-
sion spectra of a GNHA with
pillars and after removal of the
pillars, respectively.

4.2 Effect of Pillars

In this section it is investigated how the interaction between light and a GNHA changes
when a pillar is placed in each hole of the array. To investigate the effect of the pillars,
we measure the optical transmission through the GNHA’s ’Philips Square’ and ’Philips
Hexagonal’, before and after removal of the pillars, as described in section 3.1. It was
found that the pillars increase the transmission by a factor of ∼ 2 [6]. Also, the pillars
increase the interaction between plasmon modes, resulting for normal incidence in an
observed splitting ∆ω/ω ≈ 6% between the (±1, 0) air-mode for the array with pillars.
For the array without pillars no splitting at all is observed for these modes [6]. In this
section additional measurements on ’Philips Hexagonal’ are discussed and compared to
the results obtained with ’Philips Square’.

Figure 8 shows transmission spectra for normal incidence using p-polarized incident
light, before and after removal of the pillars. The sample is oriented in such a way
that the projection of the incident wavevector on the sample, k//, points in the same
direction as one of the real lattice directions. We observe the same type of asymmetric
Fano-shaped resonances as for the sample with square lattice symmetry. Again, the
position of the resonances does not depend on the pillars. The transmission decreases
significantly when the pillars are removed. This effect may partly be attributed to the
fact that the pillars have a higher refractive index than air, reducing the wavelength and
effectively making the holes larger. The observed change in peak transmission at 950 nm
is a factor ∼ 3.5.

The expected spectral location of the resonances as function of angle of incidence and
wavelength of the incident light can again be calculated with equation 2.5. Now the
measured GNHA has a hexagonal lattice symmetry, so: G = ka[N1x̂ + 1

2
N2(

√
3ŷ + x̂)].

Following the same procedure as for the square array we find:(
sin2 θ − n2

eff

)
ω2 +

(√
3N1ωa sin θ

)
ω +

(
N2

1 + N1N2 + N2
2

)
ωa

2 = 0 (4.2)
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Figure 9(a) and (b) show measured transmission spectra of the sample before and
after removal of the pillars respectively, in the form of a false color plot, from an angle
of incidence −15◦ to 15◦ with an interval of 0.5◦. To obtain a smoother plot, we linearly
interpolated 5 times between each measured angle. The curves are the theoretically
predicted spectral positions of the resonances, obtained by numerically solving the above
equation, again taking the dispersion of the refractive index of the gold into account [18].
As for the investigated samples with square lattice symmetry, there is good agreement
between the model and the experiment. If we compare panels (a) and (b) the same
effects as observed for the square lattice appear. For the sample without pillars, the
(0,±1) air-modes are absent for small angles and the (±1, 0) air-modes are uncoupled.
When a pillar is placed in each hole, the degenerate (0,±1) air-modes are apparent
for small angles of incidence. The (±1, 0) air-modes now do show coupling at small
angles of incidence. They split into two non-degenerate modes that show an avoided
crossing. Contrary to the sample with the square symmetry, the glass mode does not
obscure the avoided crossing. However, all the modes have shifted towards the infrared
due to the larger lattice constant. This results in a very low transmission (recall that
for the indirect process T ∼ 1/λ4, see equation 2.2). Figure 10 also shows the infrared
part of the false color plot of figure 9(a). Because of the lower sensitivity of the IR-
spectrometer, data with wavelengths larger than 1000 nm suffer from a lot of noise. We
attribute the observed discontinuity at this wavelength to the fact that transmission is
lower than the sensitivity of the IR-spectrometer. This makes it hard to investigate the
splitting of the (1, 0) air- and (−1, 0) air-mode, which is exactly around this point. The
IR minimum of the resonance is estimated at 1005 ± 10 nm, the visible minimum at
940 ± 2 nm, corresponding to a splitting of 7.5 ± 2%. The fill fraction of the sample is
(πd2)/(2

√
3a2) · 100% = 2.3%.

Although hard to observe, the (0,±2) glass-modes seem behave slightly different for a
square array compared to a hexagonal one. This can be seen when we compare figure 6(b)
to 9(a). Contrary to the square array the (0,±2) glass-modes now are apparent for
very small angles, then disappear, to show up again at angles of ∼ ±10 degrees. This is
indicated with the white circles in figure 9(a). We do not know what causes this different
behavior. However, when a pillar is placed in each hole, nothing changes for these glass
modes, implying that it does not have anything to do with the antenna effect of the
pillars. For comparison it would be convenient to see whether this effect is apparent at
the air interface as well, however the (0,±2) air-modes are too far in the blue part of
the spectrum to be observed.

4.3 Effect of Thin Glass Layer

In this section the effect of a thin glass layer on top of a GNHA is investigated. The
sample we use is ’Philips Hexagonal’, the same one as the one from the previous section.
After the optical characterization of this sample with pillars, and after removal of the
pillars, a thin glass layer is coated on top of the gold array. The sample now consists
of a glass substrate with an optically thick gold film with perforated nano-holes in a
regular pattern, and on top of this a ∼ 460 nm thick layer of sol-gel glass. Figure 11(a)
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(a)

(b)

Figure 9: Both panels show a plot of the wavelength against the angle of incidence, the
color indicates the percentage transmitted light. The curves show the theoretically expected
resonant modes, calculated with equation 4.2. The blue lines correspond to glass-modes, the
red lines to air-modes. The (1, 0) and (−1, 0) air-modes are indicated by the red graphs that
go approximately linear with the angle of incidence and cross each other at normal incidence
at a wavelength of ∼ 950 nm. The degenerate (0,±1) air-modes are indicated with the other
red graph that crosses this point. The degenerate (0,±2) glass-modes are indicated with the
blue graph that is ∼ 720 nm at normal incidence and approximately constant at small angles.
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Figure 10: False color plot of the same data as the previous figure, but now the infrared part
of the spectrum is shown as well. This infrared part is very noisy due to the low transmission
and the relative low sensitivity of spectrometer. This makes it hard to accurately determine
the spectral position of (the minimum of) the IR part of the resonance of the (±1, 0) air-modes.
The general shape of the avoided crossing of these modes is clearly visible.
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(a)

(b)

Figure 11: Panel (a) shows a false color plot of the same sample as the one from the previous
graph, but with a thin layer of glass coated on top of the gold layer. The graphs are the modes
calculated by solving equation 4.2 numerically. The blue ones correspond to SPP resonances
at the substrate side and are in fact the exact same ones as the ones in figure 9. The red ones
correspond to SPP resonances at the top side of the array and compared to the ’air’ modes
from before, they have shifted towards the glass-modes due to the higher refractive index of
the coated glass compared to that of air. Also new modes occur, this is because the layer of
coated glass supports waveguide modes. In panel (b) these observed resonances are indicated
with (manually determined) yellow dotted lines.
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Figure 12: This figure shows a distribution of
the electric field as a function of position. The
lowest two graphs show surface plasmon modes
that are bound to the interface. The top graph
shows a waveguide mode, confined by internal
reflection. The spectral position of each waveg-
uide mode is quantified by the model presented
in section 4.3.

shows transmission spectra, measured with p-polarized incident light at different angles
of incidence in the form of a false color plot. The blue lines correspond to the plasmon
modes at the glass side, and are in fact the exact same ones as the plasmon modes in
figure 9. The plasmon modes that were initially on the air side have shifted towards the
ones on the glass side because of the increased refractive index at this side of the sample.
The blue curves are calculated with an effective refractive index of 1.41. Contrary to
the previously presented measurements, not all the observed modes are due to SPPs. As
can be observed from figure 11 new modes appear, as indicated with the yellow dotted
lines in panel (b). The reason for the existence of these new modes lies in the fact that
the coated layer of glass behaves as a waveguide. This behavior is shown schematically
in figure 12. To quantify the spectral position of the modes as a function of angle of
incidence, we apply the model presented in reference [23]. To find the k-vectors that are
supported by the waveguide we numerically solve the following eigenvalue equations for
s- and p-polarized modes respectively:

tan(kDd) =
kD(kV + kM)

k2
D − kV kM

, (4.3)

tan(kDd) =
n2

DkD(n2
MkV + kM)

n2
Mk2

D − n4
DkV kM

, (4.4)

where d is the thickness of the sol-gel layer on top of the gold and nD and nM are the
refractive indices of the dielectric and the metal respectively. Furthermore:

kV =
√

k2
EM − (ω/c)2, (4.5)

kD =
√

(nD · ω/c)2 − k2
EM, (4.6)

kM =
√

k2
EM − (nM · ω/c)2, (4.7)
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with kEM the parallel wavevector of the guided electro-magnetic mode. Equations 4.3
and 4.4 can be solved numerically. The number of solutions increases as the the sol-gel
layer becomes thicker. Due to the lattice structure light can only couple to modes with
certain kEM vectors. For a hexagonal structure these modes are given by:

Re(kEM) = ω/c sin(θ)x̂ + ωa/c

[
N1x̂ +

1

2
N2

(
x̂ +

√
3ŷ

)]
, (4.8)

where θ is the angle of incidence, ωa = 2π/a, with a the lattice constant, and N1 and
N2 integers that count the number of oscillations per lattice period. The length of the
real part can now be calculated to be:

Re(kEM) =
1

c

√
[ω sin(θ) + ωa(N1 + N2/2)]2 + 3/4 [ωaN2]

2. (4.9)

The spectral positions of the resonances as function of angle of incidence are given by
the intersections between the plane spanned by this equation and the plane(s) spanned
by the the real part(s) of kEM as from equations 4.3 and 4.4 for s- and p-polarized modes
respectively. Figure 13 shows the results of solving this system of equations, using the
above mentioned values for nD, d and a, and again taking the dispersion of the gold,
nM(λ) into account. The red lines correspond to the manually determined observed
position of the resonances, they are the same as the yellow dotted lines in figure 11. The
figure shows good agreement between the measured and the predicted spectral positions
of the resonances, for both s- and p-polarized incident light. Some theoretically predicted
modes are not observed in the measurements. This is partly due to the fact that some of
the modes are obscured by the much stronger surface plasmon modes. Another reason
is the polarization of the incident light. The measurement is performed with p-polarized
incident light, making the excitation of the (0,±N) TM-waveguide modes, with N and
integer, very inefficient for small angles of incidence. In figure 13 these modes correspond
to the black markers with limited dispersion, crossing normal incidence at ∼ 700 and
∼ 945 nm.

The same measurements and analysis are also performed on the sample ’Philips
Square’. Using the same values for nD and d, good agreement between theory and
experiment was found again [24].

4.4 Index Tuning

To investigate the effect of tuning the refractive index at the top-side of the sample we
put a GNHA in several liquids with different refractive indices. For this experiment we
use the conventional GNHA, as described in section 3.1. We use the following liquids:
water, dimethyl sulfoxide (DMSO) and methoxybenzene (Anisole) with an index of
refraction, nD, of 1.33, 1.48 and 1.52, respectively [25]. Transmission measurements at
normal incidence are shown in figure 14. As is accurately predicted by equation 4.2
the resonances at the liquid side of the GNHA shift towards the infrared part of the
spectrum. For the index-matched case the index of refraction of the used liquid is the
same as the index of refraction of the substrate. This is the case for Anisole: at both
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Figure 13: The observed waveguide-modes in panel (b) from the figure 11 are compared with
the model presented in section 4.3. The red curves correspond to the observed resonances,
indicated with the yellow dotted lines in panel (b) from the previous figure. The markers cor-
respond to calculated modes: the blue ones, corresponding to s-polarized modes, describe the
intersection between the planes spanned by equations 4.3 and 4.9, the black ones, corresponding
to p-polarized modes, between the planes spanned by equations 4.4 and 4.9.
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Figure 14: Transmission measurements at normal incidence. The discontinuity at 910 nm is
due to the use of two spectrometers. The index of refraction at the gold side of the GNHA
is tuned by using different liquids. As a result the modes that are apparent at this side of
the sample shift towards the infrared part of the spectrum. The vertical stripes indicate the
spectral positions of the (±1, 0)- and (0,±1)−modes at this side, as predicted with equation 4.1.
Note that these modes are degenerate at normal incidence. In the index-matched situation
the refractive index of the liquid is equal to that of the glass. The modes on both sides are
indistinguishable and lie on top of each other.
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Figure 15: A false color plot of a conventional GNHA immersed in an index-matching liquid,
measured with p-polarized incident light. The color indicates the percentage of the transmitted
light. The modes at both sides of the array have shifted exactly on top of each other. The red
lines indicate the (−2,−2)- to the (2, 2)-modes, calculated with equation 4.1.

sides nD = 1.52. Figure 15 shows spectra measured under angles of incidence from −60◦

to 15◦ as a false color plot. It shows that the modes propagating at both sides of the
array have shifted exactly on top of each other.

The resonance is still accurately described by a Fano resonance, as one would expect
because of the interference between the direct and the indirect contribution in transmis-
sion [21]. This is confirmed by figure 16, where one of the resonances is fitted with a
function that describes a Fano shape [16]:

T =
(ω − ωres + q)2

(ω − ωres)2 + C
, (4.10)

with ωres, q and C free fitting parameters. Note that it is hard to isolate a single
resonance, because of the length of the tail of each resonance and the fact that there
are a lot of resonances apparent. In this case, below 1050 nm another mode starts to
contribute to the signal obscuring this resonance, as can be observed from figure 14. In
principle we could fit with the sum of multiple independent Fano resonances, resulting
in a more accurate fit. However, the amount of fit parameters also increases drastically.

Figure 17 shows the enhancement in transmission of both the maximum of the (±1, 0)
liquid- and (0,±1) liquid-modes and the average transmission between 530 and 1350 nm.
The enhancement in the peak transmission is ∼ 2.5 for the index-matched situation,
being significantly more than a factor of 2, the amount one could expect if the modes
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Figure 16: The data are the same
as the data of the green graph in
figure 14. As the fit shows, the
shape of the data can be accu-
rately described by a Fano reso-
nance. This effect occurs due to the
interference between the contribu-
tion of the direct and the indirect
channel.
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Figure 17: The red graph corre-
sponds to the enhancement in the
maximum transmission of the peak
corresponding to the (±1, 0)- and
(0,±1)liquid modes. The black
graph shows the enhancement in
the average transmission between
530 and 1350 nm. The green dot-
ted line corresponds to the refrac-
tive index of the substrate.
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Figure 18: Measured data from reference [26].
They claim to observe a factor ∼ 10 enhance-
ment in the transmission through a GNHA,
whereas we observe a factor ∼ 2.5 enhance-
ment. Reasons for this discrepancy are ex-
plained in the text.

at both sides of the array were completely uncoupled. However, contrary to claims
from reference [26], it is far from the their claimed observed factor of 10. Figure 18
shows their measured data. We attribute this discrepancy to two reasons. In the first
place they performed their measurements with a much too large numerical aperture.
This can immediately be observed from figure 18 with the experimental data. A little
’bump’ occurs at ∼ 900 nm instead of the ’hard zero’ that should occur due to destructive
interference between the direct and the indirect contribution, as is for example confirmed
by figure 8. This bump is in fact the (±1, 0)-glass mode integrated over a small, but
significant range of angles. In the second place they are not justified to treat their nano-
hole arrays as an infinitely large array. The fact that the arrays they use are so small
(only 17 × 17 holes) results in diffraction effects, probably obscuring the effects they
claim to investigate.

The enhancement in the average transmission also seems to confirm that there is some
form of coupling between the modes propagating at the two sides of the array. However,
at the same time more modes at the liquid side have shifted towards the IR part of the
spectrum. This also contributes to a higher average transmission. For a more detailed
investigation of the coupling between the two sides of the GNHA, further research with
more liquids with different indices has been performed. Results of this analysis are
published in a paper [7] that is attached in the appendix.

In the next chapter the model from reference [15] will be extended. This model is based
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on the idea that the interaction of light with a nano-hole array that is symmetric in the
plane parallel to the lattice, can be described with an optical resonator. It assumes that
there is a direct, non-resonant contribution in the transmission and an indirect, resonant
one. By introducing a third channel, leaks from the system can be taken into account.
This model in principle also applies to the index-matched case of a GNHA. Here, the
transmission through the direct channel corresponds to the transmission directly through
the holes. The transmission through the resonant, indirect channel corresponds to light
that is diffracted by the lattice and excites SPPs. The SPPs can couple to the other
side of the array and can be emitted as photons again. The loss channel takes the
evanescent character of the SPPs and the absorption of light into account. The fact that
the refractive indices at both sides of the array is the same guarantees the symmetry of
the system on which the model from reference [15] is based. In principle we can calculate
the reflection (the transmission can be calculated in a similar way) with equation 5.12,
if we would have accurate values for r and t, the reflection and transmission coefficients
of a single interface respectively. Here the first problem occurs, namely that the phase
of these coefficients depends on the complex part of the refractive index of gold, which
is a rather wild function at the wavelengths that we want to investigate. A second
problem arises due to the fact that the leak is in this case related to the absorption of
light by the gold. This also depends on the complex part of the refractive index of gold.
Therefore this is strongly varying as a function of the wavelength of the incident light.
The model explicitly assumes that the loss channel is independent of the wavelength (Λ
is a wavelength independent fitting parameter).

27



5 Results and Analysis Dielectric Array

In this chapter results of different types of reflection measurements on a DNHA are
presented and analyzed. Technical details of this sample can be found in section 3.1. In
order to explain some of the observed phenomena, we extended the Fano model presented
in reference by including absorption and scattering losses [15]. In this chapter, first
the reflection measurements are described qualitatively, after which the Fano model is
described and extended in order to analyze the measurements quantitatively. Finally,
additional measurements are presented in which the sample is rotated around its axis,
while keeping the angle of incidence constant.

5.1 Flipping Resonances

Figure 19 shows reflection spectra for different angles of incidence from 20◦ to 70◦, with
steps of 10◦. The spectra are offset vertically for clarity. In these measurements the
rotational angle φ is set to zero degrees, so that the polarization always points in the
same direction as one of the lattice vectors. In panel (a) both the polarizer and the
analyzer are set to s-polarization, in panel (b) to p-polarization. For both polarizations
we observe a single peak at a wavelength of∼ 950 nm on top of an oscillating background.
The resonance varies with the angle of incidence, as does its shape. For s-polarized
light (figure 19(a)) the resonance is observed to be asymmetric with a tail pointing
towards the blue for every angle of incidence. For p-polarized light (figure 19(b)) the
resonance behaves differently, the asymmetry flips. For angles of incidence below ∼ 70◦

the resonance is asymmetric with a tail pointing towards the red, at an angle of incidence
of ∼ 70◦ it is symmetric, and for angles of incidence larger than ∼ 70◦ the tail points
towards the blue.

5.2 Reflection and Transmission Coefficients

To calculate reflection and transmission coefficients that describe the direct process we
approximate the DNHA with a homogeneous dielectric film. In terms of the angle of inci-
dence of the incident light, θ, the known refractive index of the Gallium Arsenide DNHA,
nGaAs [18], and the thickness of the perforated layer ,d, the reflection and transmission
coefficients of the film are respectively given by [27,28]:

r =
Υ0m11 + Υ0Υsm12 −m21 −Υsm22

Υ0m11 + Υ0Υsm12 + m21 + Υsm22

, (5.1)

t =
2Υ0

Υ0m11 + Υ0Υsm12 + m21 + Υsm22

, (5.2)

where Υ0 = cos(θ), and Υs = nGaAs cos(θGaAs) for s-polarized incident light and Υs =
cos(θGaAs)/nGaAs for p-polarized incident light, with θGaAs = arcsin(sin(θ)/nGaAs). The
coefficients mij are the elements of the transfermatrix of a homogeneous dielectric film [27]:
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Figure 19: Both panels show reflection spectra under angles of incidence from 20◦ (bottom
graph) to 80◦, every 10◦. Panel (a) shows data measured with s-polarized incident light,
panel (b) with p-polarized incident light. In both cases the analyzer is set parallel to the
polarizer. Both spectra show an angle dependent asymmetric resonance on top of an oscillating
background. For the resonance measured with s-polarized light, the tail points towards the
blue for all angles of incidence, for the one with p-polarized light the tail points towards the red
for angles of incidence smaller than ∼ 70◦, becomes symmetric at ∼ 70◦ and points towards
the blue for angles larger than ∼ 70◦.
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m11 = m22 = cos(h)/λ, with h = 2πnDNHAd cos(θDNHA), where nDNHA the effective re-
fractive index of the perforated GaAs layer and θDNHA = arcsin(sin(θ)/nDNHA). Fur-
thermore, m21 = −i sin(h/λ) · ΥDNHA and m12 = −i sin(h/λ)/ΥDNHA, where for s-
polarized incident light ΥDNHA = nDNHA cos(θDNHA) and for p-polarized incident light
ΥDNHA = cos(θDNHA)/nDNHA.

To get an estimate of the effective refractive index of the perforated GaAs layer, we
use Maxwell-Garnett theory [29, 30]. In this theory the perforated layer is treated as a
layer of lossless cylinders of subwavelength diameter, in a uniform, lossless medium. The
effective refractive index can be calculated as a function of the polarization of the incident
light. The advantage of this model is that it uses only the fill fraction of the cylinders (so
the volume fraction of air and GaAs) as an adjustable parameter. For transverse electric
(TE-) polarized light, the E-vector is perpendicular to the cylinders and for transverse
magnetic (TM-) polarized light it points in the direction of the cylinders. The effective
refractive indices of TE- and TM-polarized light are then given by:

nTE
eff = nGaAs

√
1+2·f ·α
1−f ·α

nTM
eff =

√
f · n2

Air + (1− f) · n2
GaAs

(5.3)

with f = 0.31, the fill fraction and α ≡ (n2
Air − n2

GaAs)/(n
2
Air + n2

GaAs), the polarizability.
The refractive indices for both TE- and TM-polarized waves as a function of wavelength
are plotted in figure 20. For s- and p-polarized incident light the effective refractive
index of the perforated layer becomes respectively:

ns
DNHA = nTE

eff

np
DNHA = nTE

eff

√
1 + sin(θ)2

(
1

(nTE
eff )2

− 1
(nTM

eff )2

) (5.4)

The reflection and transmission coefficients can now be calculated with equations 5.1
and 5.2, as function of wavelength, angle of incidence and polarization.

5.3 Optical Resonator Model for a DNHA

In this section the most essential principles of the model from reference [15] are high-
lighted and applied to our measurements. In the next section this model will be extended
for a more accurate description. The model treats the DNHA as a single-mode optical
resonator with m ports, mathematically the same as a driven harmonic oscillator [11].
For this system the dynamic equations can be written as:

da

dt
=

(
iω0 −

1

τ

)
a + (〈κ|∗) |s+〉, (5.5)

|s−〉 = C|s+〉+ a|d〉, (5.6)

where a, ω0 and τ are the amplitude, the angular frequency and the lifetime of the
resonant mode respectively. The incoming waves and the coupling to the resonator are
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Figure 20: Real part of the ef-
fective refractive indices as a func-
tion of wavelength, calculated with
equation 2.4, for a fill fraction f =
0.31. The complex part is zero for
wavelengths larger than 900 nm.
Note the birefringent character of
the system.

described by the m× 1 vectors |s+〉 and |κ〉 respectively. The coupling to the outgoing
field and the outgoing field itself are described by the m × 1 vectors |d〉 and |s−〉. C
is the scattering matrix that describes the direct contribution. For a system with no
inherent losses energy conservation and time reversibility impose several conditions:

� 〈d|d〉 = 2/τ ;

� |κ〉 = |d〉;

� C|d〉∗ = −|d〉.

This allows us to write the scattering matrix of the total system, S, and the conditions
it has to meet, in the following general form:

S = C +
|d〉〈d|∗

i(ω − ω0) + 1/τ
, with furthermore

{
C|d〉∗ = −|d〉
〈d|d〉 = 2/τ

(5.7)

For an exact mathematical description of this optical oscillator we need to solve this
system of equations. However, for the general case this is unsolvable since we have m+1
equations and m complex unknown parameters.

A system that can be solved exactly is the symmetric two-port DNHA slab. In the
first place we consider only two ports, so |d〉 = (d1, d2)

T. This simplification of the
system allows us to rewrite C as follows:

C = eiφ

(
r it
it r

)
, (5.8)

where r, the reflection coefficient, t, the transmission coefficient are real functions of
the wavelength and can be calculated as in the previous section. The phase φ is a real
number. Secondly, the material on both sides of the perforated layer is (optically) the
same. This makes our system symmetric in the plane of the DNHA slab, demanding
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that the diagonal elements of S are equal, so d2
1 = d2

2. These two extra relations allow
us to write equation 5.7 as:

S = eiφ

{(
r it
it r

)
+

1/τ

i(ω − ω0) + 1/τ

(
−(r ± it) ∓(r ± it)
∓(r ± it) −(r ± it)

)}
, (5.9)

where the ± signs depend on whether we are considering an even or an odd mode with
respect to the plane of the slab. From this the reflection, R = |S11|2, can be calculated
to be:

R =
r2(ω − ω0)

2 + t2/τ 2 ∓ 2rt(ω − ω0)/τ

(ω − ω0)2 + 1/τ 2
. (5.10)

This equation reveals some interesting properties of a reflection spectrum of a symmetric
DNHA slab. It predicts a resonance on top of an oscillating background. Typically the
resonance takes a Fano shape [16], due to the interference between both channels. Only
in the case that either r or t is zero a Lorentzian shape is reproduced. In other words,
when either one of the direct contributions is turned off, the interference disappears and
therefore Fano shape vanishes. Furthermore the ∓ sign and the sign of the product of r
and t, determine the orientation of the asymmetry of the Fano, so whether the tail points
towards the blue or the red part of the spectrum. We can apply this model qualitatively
to the modes in figure 19. For s-polarized incident light r has the same sign for all
angles of incidence. Therefore the sign of the product of r and t is the same and the
tail of the resonance points in the same direction, the blue, for all angles of incidence.
For p-polarized incident light on the other hand, it is shown that at Brewster’s angle,
θB, the reflection coefficient r flips, from positive to negative. This explains why the
asymmetry of the resonance flips at Brewster’s angle: it has a tail towards the red for
θ < θB, it is symmetric for θ = θB and it has a tail pointing towards the blue for θ > θB.

To conclude, most of the observed phenomena, like the oscillating background and the
flipping of the Fano at Brewster’s angle, are predicted by this equation. However, there
are also some discrepancies, for instance the fact that the minimum and the maximum
of the resonance are always at 0% and 100%. In the next section we extend the model
by introducing a loss channel to take this effect into account.

5.4 Loss Channel and Data

In order to get better agreement between the model and our experiment, we introduce
a loss channel. This channel takes both scattering in the waveguide and diffraction
that occurs due to the higher diffractive index of the substrate into account. The op-
tical resonator is shown schematically in figure 2. We have to solve for the system
of equations 5.7. If we assume no coupling occurs between the incident light and the
loss channel, neglecting scattering from the incident light, we can rewrite the scattering
matrix of the direct contribution as follows:

C = eiφ

 r1 t 0
t r2 0
0 0 1

 , (5.11)
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Figure 21: The solid lines indicate reflection spectra under angles of incidence of 50◦ (a), 70◦

(b) and 80◦ (c). The dashed lines are fits obtained with equation 5.12. The insets show the
Fresnel reflection coefficient, r1, for an interface between air and neff = 2.5 as function of angle
of incidence. The circles indicate the value corresponding the measurement.

where the Fresnel coefficients, r1, r2 and t are now complex. In order to incorporate the
losses in our model, we assumed that a factor Λ of the light entering the resonator leaks
into the third, loss channel, or |d3|2 = Λ ·2/τ . Assuming the coupling from the resonator
to the outgoing field to be the same at both sides of the perforated layer, again imposes
the condition d2

1 = d2
2. Now the system of equations can be solved again and we can

calculate the intensity reflection coefficient to be:

R =

∣∣∣∣ i(ω − ω0)r1 ± 1/τ [Λr1 + (1− Λ)t]

i(ω − ω0) + 1/τ

∣∣∣∣2 . (5.12)

After setting the thickness and the fill fraction of the perforated layer, the Fresnel coef-
ficients are fixed. There are three fit parameters left: the resonance angular frequency
ω0, the lifetime τ and the leakage to the third channel Λ. Figure 21 shows measured
reflection spectra under three different angles of incidence, and fits with equation 5.12.
The fill fraction was set once and Λ, τ and ω0 were the only three free fitting param-
eters. Despite small quantitative deviations, qualitatively all phenomena are explained
by the model. We attribute most deviations to the simplifications we made in the model.
Maxwell-Garnett effective medium theory is only valid if the cylinders are much smaller
than the wavelength of light. Also, the holes are not exactly cylindrical, as is clearly
illustrated in figure 1(b) of reference [8]. Furthermore we assumed the coupling to both
sides of the resonator to be equal, which is most probably not the case, as the coupling
between the waveguide and the air side and the waveguide and the GaAs side is likely
to be different.

5.5 Rotation with Crossed Polarizers

In this section we discuss the rotational dependency of the reflection. We measured
reflection spectra at a fixed angle of incidence of 60◦, while rotating the sample over
405◦, with an interval of 3◦. ϕ = 0◦ corresponds to the (1,0)-direction, as shown in
figure 3. The polarizer is set to p-polarization, the analyzer to s-polarization. A false
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color plot of this measurement is shown in figure 22(a). The sample and the polarization
of the incident light are mirror symmetric every 45 degrees in the plane being spanned
by k and k//. This symmetry must be conserved in the reflected light, implying for
figure 22 that the ’slices’ [−45◦, 0◦], [45◦, 0◦], [45◦, 90◦], [135◦, 90◦] etc. should all be
the exact same. Figure 22(b) shows measured reflection spectra from ϕ = −315◦ to
ϕ = 90◦ with an interval of 45◦. Clear quantitative differences show up. In fact, for
these angles, 0◦ ± n · 45◦ with n an integer, the symmetry of the system forbids any
changes in polarization. Because the polarizers are crossed with respect to each other,
the reflection should drop to zero. This is not the case, as shows up most strikingly for
an angle of −180◦. These observations seem to imply that we suffer from an asymmetry
in our sample due to imperfections in the fabrication process.
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Figure 22: Panel (a) shows the reflection as a function of wavelength and angle of the sample
as a false color plot. The color scale ranges from 0% to 16% reflection. For a fixed angle
of incidence of 60◦, we measured the reflection every three degrees. We linearly interpolated
the data eight times between each angle in order to obtain a smoother plot. The incident
light is p-polarized, the analyzer is set to s-polarization. Note that in this figure the interval
[−315◦,−270◦] in principle is the same measurement as [45◦, 90◦]. Panel (b) shows reflection
spectra every 45◦, from −315◦ to 90◦. Due to the symmetry of the system at these angles, the
reflection should be 0% for every wavelength.
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6 Conclusion

We performed angle-dependent optical reflection and transmission measurements on dif-
ferent types of GNHAs and a DNHA. Diffraction from a GNHA enables excitation of
plasmon modes, resulting in an extraordinary transmission. We applied a well-known,
simple model to predict the spectral position of these modes as function of angle of inci-
dence [3]. We demonstrated that this simplified model is more accurate than previously
assumed, if the dispersion of the refractive index of the metal is taken into account.

When a dielectric pillar is placed in each hole of a conventional GNHA, the trans-
mission through the array is increased. Also, the degeneracy of modes at the pillar side
of the array is lifted, both for arrays with hexagonal and square lattice symmetry. For
both types of arrays a fill fraction of pillars of only 2.3% results in a remarkably large
splitting of ∼ 6% at normal incidence.

When the GNHA is coated with a thin layer of glass, the modes at the ’air’-side of the
array shift towards longer wavelengths. Also, new types of resonances appear. This is
due to the fact that the thin layer of glass acts as a dielectric waveguide. We calculated
the spectral position of these new modes as a function of angle of incidence and found
good agreement between this model and the measurements.

We investigated the effect of tuning the refractive index at the ’air’-side of a conven-
tional GNHA, by placing it in liquids with different refractive indices. If the difference
between the refractive index at the ’air’-side and the substrate-side is more than 3%
two separate resonances, due to the excitation of SPPs at both sides of the array, can
be distinguished. As the difference in refractive index is reduced the low-energy mode
broadens and gains amplitude at the expense of the high-energy mode. Eventually, if
the refractive indices at both sides of the array are matched, a single, broad resonance
remains. The enhancement in the peak-transmission of this mode is a factor ∼ 2.5,
contrary to reference [26] that claimed an enhancement of an order of magnitude. We
ascribe the difference to the fact that in reference [26] the size of the sample and the
large numerical aperture were not taken into account.

Finally, we extended the Fano model from reference [15] to include loss and explain
reflection measurements on a DNHA. The model treats the array as an optical resonator
where interference occurs between a direct and an indirect channel. We demonstrated
that the agreement between this model and the measurements is good, i.e. it explains all
qualitative observed effects. For instance, it reveals the observed asymmetry reversal of
the resonance that occurs at Brewster’s angle, where the phase of the directly reflected
light changes sign.
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We compare the angle-dependent transmission spectra of a metal hole array with dielectric pillars in each
hole with that of a conventional metal hole array. The pillars enhance the optical transmission as well as the
interaction between surface plasmon modes. This results in an observed splitting �� /� as large as 6%, at
normal incidence, for the modes on the pillar side of the array. © 2008 Optical Society of America

OCIS codes: 240.6680, 290.0290, 230.5298.
Metal films perforated with an array of subwave-
length holes have intrigued researchers since the dis-
covery that these arrays show extraordinary trans-
mission [1]. It is generally accepted that the
enhanced transmission is mediated by surface plas-
mons, i.e., electromagnetic surface waves that are
bound to a metal-dielectric interface. On a smooth in-
terface these waves cannot be excited directly be-
cause their momentum is larger than that of light in-
cident from the dielectric. Diffraction from a regular
array of holes enables efficient excitation of the plas-
mon modes and increases the transmission.

The transmission spectra of metal hole arrays
show a number of asymmetric resonances that corre-
spond to different diffraction orders. Each resonance
can be labeled by a specific reciprocal lattice vector
[2]. The asymmetric line shape of the resonances can
be explained in terms of a phenomenological (Fano)
model [3–5]. Each peak features a maximum in
transmission and a profound minimum, known as
Wood’s anomaly [6]. The frequencies of these features
depend on the angle of incidence and can be com-
pared to the dispersion relation of a plasmon on a
smooth surface folded back to the first Brillouin zone
of the periodic lattice [2].

In this Letter we study the p-polarized transmis-
sion spectra of metal films perforated with a square
lattice of subwavelength holes. We compare the
transmission of an array with a dielectric pillar in
each of the holes with that of a conventional hole ar-
ray. Transmission spectra of conventional hole arrays
have been studied previously [7,8] and show that dif-
ferent modes can be excited depending on the input
polarization. The p-polarized input light dominantly
excites plasmon modes, which propagate in the direc-
tion parallel and antiparallel to the projected wave
vector of the incident light. For small angles of inci-
dence, coupling to modes that propagate in the ap-
proximately orthogonal direction is inefficient. We
show that the excitation of these modes is strongly
enhanced for the hole array with pillars. The pillars
in the holes act as antennas that enhance the cou-

pling to these modes. This provides a way of control-

0146-9592/08/040363-3/$15.00 ©
ling the interaction between light and surface plas-
mon modes.

The metal hole arrays in the experiment were
made using an imprinting technique. An array of pil-
lars was defined by electron-beam lithography and
was used to create a rubber stamp. A replica of the
array was created by pressing the stamp into a layer
of liquid sol–gel glass. This second array is then
coated with a layer of gold. The gold was selectively
removed from the pillars by making use of the fact
that the gold layer deposited on the side of the pillars
is thinner than the layer on the substrate. The result
is a metal hole array with an �650 nm long glass pil-
lar sticking out of each hole as shown in Fig. 1. The
0.5 mm�0.5 mm array was created on an AF45 glass
substrate with n�1.52. A 100 nm thick layer of sol–
gel glass with a refractive index n�1.41 was left be-
tween the substrate and the gold layer. The gold
layer is 200 nm thick and is perforated by a square
array of pillars with a lattice constant a=760±4 nm
[9] and a diameter d=135±5 nm. After measuring
the transmission of this array, we selectively re-
moved the pillars using hydrofluoric acid and re-
peated the transmission measurement.

Fig. 1. Scanning electron microscope image of the metal
hole array created using an imprinting technique. The
holes are 132 nm in diameter and each hole contains an
�650 nm high glass pillar. The array has a lattice constant

a=760 nm.

2008 Optical Society of America
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The optical transmission of the hole array was
measured using an incandescent lamp coupled to a
200 �m multimode fiber. A set of lenses was used to
create an �300 �m diameter spot on the sample. The
transmitted light was sent to a fiber-coupled grating
spectrometer with a CCD detector (resolution
1.2 nm) to measure the spectral content. The numeri-
cal aperture of the incident and transmitted light
beam was limited to �0.01. Polarizers were placed in
parallel parts of the incident and transmitted beams.
The substrate was placed onto a rotation mount with
the rotation axis aligned with the (0, 1) direction of
the hole array. The wave vector of the incident light
was perpendicular to this direction.

Figure 2 shows measured transmission spectra
(normalized to the lamp spectrum) of the metal hole
array both before (dashed curves) and after (solid
curves) removing the pillars. Spectra are shown for
normal incidence (bottom) and a 15° angle of inci-
dence (top). The maximum transmission, shown in
Fig. 2, decreases and at the same time the resonance
narrows, while the maximum shifts to shorter wave-
lengths. The observed change in line shape corre-
sponds to a Fano resonance for which the amplitudes
of both the direct and resonant channels as well as
the linewidth of the resonance are reduced by a factor
of 2. Note that the spectral positions of the transmis-
sion minima do not shift when the hole size is re-
duced [6,10]. The marginal shift that we do observe is
attributed to the fact that the pillars change the ef-
fective index of the surface plasmon.

Each resonance in the transmission spectra can be
labeled by a specific choice of a reciprocal lattice vec-

Fig. 2. (Color online) Transmission spectra for p-polarized
light of a conventional metal hole array (solid curve) and a
metal hole array with pillars (dashed curve). Spectra are
shown for normal incidence (bottom) and 15° angle of inci-
dence (top). The arrows indicate the �0, ±1� resonance for a
15° angle of incidence. The inset shows the wave vector k�

� ,
a reciprocal lattice vector G� in the (0,1) direction and the

propagation direction of the two �0, ±1� modes.
tor. The labels �i , j� in Fig. 2 refer to the reciprocal
lattice vector G� = iG� x+ jG� y, where G� x,y are the two ba-
sis vectors of the reciprocal lattice. The condition for
exciting a surface plasmon mode is given by

k� � = k�SP + G� , �1�

where k� � is the projection of the wave vector of the in-
coming light onto the metal-dielectric interface and
k�SP is the wave vector of the surface plasmon. To de-
scribe the dispersion, we approximate the wave vec-
tors of the surface plasmons on both sides of the
metal hole array with that of a plasmon on a smooth
metal-dielectric interface

kSP��� =
�

c � �d�m���

�d + �m����
1/2

, �2�

where c is the speed of light, �d is the dielectric con-
stant of the dielectric, and �m��� is the frequency de-
pendent dielectric constant of the metal.

Figure 3 shows gray scale plots of the transmission
as a function of the angle of incidence (horizontal
axis) and the wavelength (vertical axis) for the
sample without pillars (top) and with pillars (bot-

Fig. 3. Gray scale plots of the measured transmission as a
function of angle of incidence and wavelength for the metal
hole array without pillars (top) and with pillars (bottom).
The gray scale ranges from 0% to 3% transmission. The
lines indicate the frequencies calculated from Eqs. (1) and
(2). The solid lines are for modes on the glass side, while

the dashed lines are for modes on the air side.
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tom). The dark bands in the figure correspond to the
minima in the transmission spectra. The white lines
are calculated from Eqs. (1) and (2) for different re-
ciprocal lattice vectors G� using the frequency depen-
dent dielectric constant of gold [11] and an effective
index of n�1.46 for the glass substrate [12]. A dis-
tinction is made between the surface plasmon modes
on the air side (dashed lines) and on the glass side
(solid lines). The �±1,0� and �0, ±1� modes on the air
side are degenerate at normal incidence. When the
angle of incidence is changed, the degeneracy is
lifted, and the resonance splits into a (1,0), a
�−1,0�, and a degenerate �0, ±1� resonance. The (1,0)
and �−1,0� modes have a strong dispersion, because
k�
� and G� are parallel. For the �0, ±1� modes the dis-
persion calculated from Eq. (1) is limited, correspond-
ing to the fact that k�

� and G� are perpendicular. For
the conventional array the �0, ±1� resonance is
barely visible for small angles, consistent with earlier
work [8]. The resonance is strikingly visible in the
transmission of the array with pillars. The large dif-
ference in amplitude for this resonance is also clearly
visible in the top part of Fig. 2 (arrows).

In our geometry, the scattering plane coincides
with a (1,0) direction of the square lattice. This plane
is a mirror plane of the hole array, and the modes can
be classified as either odd or even relative to this
plane. Relative to this plane, the p-polarized input
light has an odd H-field distribution, and only plas-
mon modes with an odd H-field distribution can be
excited. At normal incidence, this corresponds to
plasmon modes that propagate in the direction of the
E-field vector [13], i.e., the �±1,0� directions. For non-
zero angles of incidence it is possible to couple to a
combination of �0, ±1� modes. The direction of propa-
gation of these modes is sketched in the inset of Fig.
2. The pillars in the holes do not change the symme-
try. They act as antennas and affect the efficiency
with which the modes are excited. The interaction be-
tween light and a dielectric pillar is strongest when
the E-field is parallel to the long axis of the pillars.
As a result, the coupling to the �0, ±1� modes on the
air side is enhanced for p-polarized light.

For both arrays, the angle dependent transmission
in Fig. 3 shows that the �±1,0� air modes have an al-
most linear dispersion at sufficiently large angles of
incidence. For smaller angles, this only holds for the
conventional hole array. For the hole array with pil-
lars the �±1,0� modes on the air side are clearly
coupled. At normal incidence we observe two minima
in the spectra at 775 and 825 nm. The minimum at
825 nm coincides with the minimum of the (1,1) glass
modes. At normal incidence, the excited plasmon
modes are standing waves. The resonances occur at
different energies depending on the position of the
nodes and antinodes of the standing waves relative to
the holes [4,14]. Without pillars, this energy differ-
ence is small and the splitting is not resolved. The
pillars only lower the energy of the mode that has an-
tinodes at the position of the pillars. For our array,

with a fill fraction of pillars of only 2.3%, this leads to
an observed splitting of the resonances of 6% of the
center frequency. Note that we used the separation
between the minima as a measure of the splitting, be-
cause the minima do not shift when radiation losses
are increased [6,10]. We have compared this splitting
to a two-band model and to a model that uses the po-
larizability per unit volume. The splitting calculated
from these simplified models is much smaller than
the observed splitting.

Increasing the fill fraction of pillars will certainly
increase the energy difference between the modes.
However, a larger hole size also leads to larger radia-
tion losses [4] and broadens the spectral features.
This may obscure the effect. Similar effects can be re-
alized when dielectric hole arrays are placed on top of
a metal hole array, although the interaction with
p-polarized light is generally weaker for holes when
compared to pillars. These hybrid structures can be
used to (locally) tune the dispersion of the surface
modes of a metal film. By locally adding or removing
pillars (holes), control of the excitation and propaga-
tion of plasmons on a wavelength scale can be
achieved. When the interaction between plasmon
modes can be increased, it becomes conceivable that
two-dimensional periodic metal-dielectric structures
exist that do not allow coupling of light waves to sur-
face modes in any direction for a certain range of fre-
quencies. This effect would be analogous to the exis-
tence of photonic bandgaps in two-dimensional
dielectric structures.
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Observation of coupling between surface plasmons in index-matched
hole arrays
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We measured the transmission of a large array of holes in an optically thick gold film, immersed in liquids
of different refractive indices. For a large difference in refractive index between the substrate and the liquid
��n�0.05�, the transmission spectra contain separate resonances, due to surface plasmons propagating on each
of the metal-to-dielectric interfaces. When the index difference is reduced we observe an avoided crossing
between a strong low-energy mode and a weak high-energy mode. The low-energy mode becomes broader and
gains amplitude at the expense of the high-energy mode. For an index-matched array, a single broad resonance
remains. These observations provide direct evidence that the two surface plasmon modes on both sides of the
interface are coupled.

DOI: 10.1103/PhysRevB.77.115437 PACS number�s�: 73.20.Mf, 42.25.Fx, 78.66.Bz, 41.20.Jb

The observation of enhanced transmission of light
through a periodic array of subwavelength holes in an opti-
cally thick metal film1 triggered interest in the coupling be-
tween light and surface plasmons. This coupling occurs via
diffraction of the periodic lattice, effectively adding a recip-
rocal lattice vector to the wave vector of the incoming light.
The diffraction enables efficient excitation of a surface plas-
mon mode on one of the metal-to-dielectric interfaces. Due
to this excitation, the transmission of the hole array exceeds
that what is expected based on diffraction from a set of in-
dependent single holes.2

It is well known that coupling of different surface plas-
mon modes on the same interface, via Bragg scattering, leads
to the formation of bright and dark modes in one-
dimensional arrays of slits or wires.3–5 Alternatively, plas-
mons on a single interface can be coupled to a waveguide
mode.6,7 The coupling between plasmons on different inter-
faces is more difficult to observe, because in most cases the
plasmon resonances on different sides of the metal film are
detuned in frequency. This is due to the inherent asymmetry
of a metal film on a substrate. This asymmetry can be re-
moved by either fabricating a symmetric sample or by using-
index matching liquids.8–10 The observed transmission spec-
tra generally resemble the calculated spectra,9,11 but the finite
size of the arrays and the numerical aperture of the incoming
beam limit a proper observation of the coupling between the
modes.

Here, we present transmission measurements on a large
two-dimensional metal hole array, using a white light beam
with a numerical aperture that is small enough to resolve the
coupled modes. We obtain the frequency, the linewidth, and
the amplitude of the resonances by fitting the transmission
spectra to multiple Fano resonances.5,12 When the index dif-
ference between substrate and liquid is reduced we observe
an avoided crossing between a broad low-energy mode and a
narrow high-energy mode. At the same time the linewidth
and the amplitude of the low-energy mode increase at the
expense of the high-energy mode. These modes correspond
to the two peaks in the transmission spectrum that can be
identified as surface plasmons propagating on either the sub-
strate or the liquid side of the metal film. Our observations

can be described by coupled-mode theory and are consistent
with calculations9,11 that use tunneling of light through the
holes as the coupling mechanism.

In our experiments, a metal hole array on a glass substrate
was mounted inside a closed glass cuvette with a 2.5 mm
optical path length. The array was immersed in different re-
fractive index solutions: we used mixtures of ethanol and
benzyl alcohol to cover the range n=1.36–1.54 and mixtures
of benzyl alcohol and bromonaphtalene for the range
n=1.54–1.66. The refractive index of each mixture was de-
termined by Abbe refractometry and is close to the volume
average of the refractive index of the two liquids. The glass
substrate �Schott-BK7� has a nearly constant refractive index
n=1.51 over the wavelength range of interest. The metal
hole array is a large �1�1 mm2� square array of 200 nm
diameter holes with a lattice constant a=700 nm in an opti-
cally thick �200 nm� gold film. A 2 nm thick Ti bonding
layer ensures proper adhesion of the gold layer. The optical
transmission was measured at normal incidence. We used a
fiber-coupled lamp to illuminate an �300 �m diameter spot
on the sample, thus avoiding edge effects. The transmitted
light was sent to a fiber-coupled grating spectrometer with
a Si charge-coupled device array �resolution 1.2 nm,
550–1000 nm� or an InGaAs linear array �resolution 3.0 nm,
900–1700 nm�. Apertures in the incident and transmitted
light beam were used to limit the numerical aperture �NA�
below 0.01.

Figure 1 shows the measured transmission as function of
frequency. Spectra are shown for the metal hole array in air
�solid line�, and immersed in a liquid with refractive index
nL=1.50 �dashed line�. The spectra show a number of reso-
nant peaks for which the transmission is enhanced. This is a
result of coupling of incident radiation to surface plasmons
that propagate on either the metal-to-air or metal-to-substrate
interface. The condition for coupling to such a surface plas-
mon is given by k� =kSP+G, where k� is the component of
the wave vector of the incident light along the interface, kSP
is the wave vector of the surface plasmon, and G is a recip-
rocal lattice vector. For normal incidence this condition leads
to a set of resonance frequencies given by
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�res =
�G�c

n
�1 +

n2

�m���
, �1�

where c is the speed of light in vacuum, n is the refractive
index of the dielectric, and �m��� is the frequency-dependent
dielectric constant of the metal. For a square lattice,
the length of the reciprocal lattice vector is �G�
=��Nx

2+Ny
2�2� /a, with Nx and Ny integers. Therefore, the

resonances can be labeled as �Nx ,Ny�S,A, where the subscript
indicates whether the resonance occurs on the substrate �S�
or on the air �A� side of the metal hole array. To calculate the
resonance frequencies we use literature values of the dielec-
tric constant of gold13 and take the dielectric constants of air
and glass as constant. The vertical lines in Fig. 1 indicate the
calculated positions of the different resonances. For an asym-
metric structure with air on one side and glass on the other
side, the resonances from the two sides are well separated.

When the air is replaced by a nearly index-matching liq-
uid, the transmission spectrum changes drastically �see the
dashed line in Fig. 1�. The �1,0�A mode on the metal-to-
liquid interface shifts in frequency from 1.387 �m−1

�721 nm� to 0.922 �m−1 �1085 nm� to coincide with the
�1,0�S mode on the metal-to-substrate interface. The peak
transmission of the combined �1,0� mode is roughly a factor
of 2 higher, and a significant broadening of the resonance is
observed.

The frequencies of the maxima in the transmission spectra
are plotted in Fig. 2 as a function of the refractive index of
the liquid �symbols�. The dashed lines are the frequencies of
the different modes as predicted by Eq. �1�. The modes can
be classified in two categories: modes on the metal-to-

substrate interface �labeled “S”�, which do not shift when the
index of the liquid is changed, and modes on the metal-to-
liquid interface �labeled “L”�, which show a strong redshift
in frequency when the refractive index of the liquid is in-
creased. To correctly predict the resonance frequencies from
Eq. �1� the frequency-dependent dielectric constant of the
metal should be included. The index dispersion of the liquids
and the glass can be neglected.

The transmission through a metal hole array can be de-
scribed as a combination of a nonresonant direct transmis-
sion through the holes, and a resonant component that
couples to surface plasmons.5,11,12,14,15 Interference between
these two contributions gives an asymmetric line shape. The
transmission spectra T���= �t����2 can be expressed as a sum
over a finite number of �uncoupled� resonances

t��� = anr�
2 + �

j

bj� j exp�i	 j�
�� − � j� + i�� j + 
 j�

, �2�

where � j is the radiative loss and 
 j is the intrinsic Ohmic
loss of mode j. The resonance at frequency � j has an ampli-
tude bj and a phase 	 j. The slowly varying nonresonant con-
tribution has an amplitude anr and is proportional to �2 to
reflect the fact that the transmitted intensity is proportional to
�4 for a single subwavelength hole in a thin film of a perfect
conductor.2 In the limit of long wavelengths the dielectric
constant of the metal approaches that of the perfect conduc-
tor, while the film thickness relative to the wavelength be-
comes negligible and Eq. �2� gives the correct result. In
principle, Eq. �2� allows a separation of resonant and non-
resonant contributions, but in practice the number of separate
resonances that can be identified in measured transmission
spectra is limited. This complicates the interpretation of anr
because the nonresonant term now also contains a contribu-
tion from resonances at higher frequencies.

Figure 3 shows the frequency of the peaks as a function of
the refractive index in more detail �a�, and corresponding
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transmission measurements in the frequency range between
0.7 and 1.1 �m−1 �b�. The solid lines are fits to Eq. �2�,
containing up to four resonant contributions. In these fits, the
Ohmic losses 
 j were set to zero.16 This description is valid
for the typical situation that the radiative loss is much larger
than the intrinsic Ohmic loss. The number of fit parameters
can be reduced by setting all phases 	 j equal to �. This
corresponds to the normal situation, where the resonant
channel is out of phase with the direct channel. This choice
does not affect the values of the other fit parameters signifi-
cantly.

The crosses in Fig. 3�a� refer to the frequencies of the
transmission maxima determined directly from the experi-
mental data. These maxima are close to the resonance fre-
quencies obtained from the fits �solid symbols�. When the
refractive index of the liquid is close to that of the substrate,
the transmission spectrum is reduced to a single peak. Two
distinct peaks can be observed for an index difference be-
tween liquid and substrate larger than �0.05. In addition, the
linewidth and amplitude of the resonances depend strongly
on the refractive index. The low-frequency resonance broad-
ens and grows in amplitude when the refractive index is in-
creased, while the high-frequency resonance narrows and di-
minishes in amplitude.

Figure 4 shows the linewidth � j and square amplitude bj
2

obtained from the fit of Eq. �2� to the transmission data. The
triangular symbols refer to a fit where all parameters were
kept free, while the circular symbols refer to a fit with all
phases 	 j equal to �. The data in Fig. 4 confirm that the

low-frequency mode �mode 1� gains amplitude and broadens
while the high-frequency mode �mode 2� is reduced in
amplitude and narrows. Note that a typical value of
�=0.01 �m−1 corresponds to a propagation distance
x=1 / �2����16 �m. This is much smaller than the illumi-
nated spot size �300 �m� and the coherence length
D�� /NA, which we estimate 100 �m for a NA of less than
0.01. The avoided crossing together with the data in Fig. 4
prove that the two surface plasmons on different sides of the
optically thick metal film are coupled.

A coupled-mode theory with only two modes is sufficient
to describe our data. These modes correspond to the two
surface plasmons that propagate on either the substrate or the
liquid side of the metal film. In this analysis, we treat the
plasmon modes on the same interface that are coupled via
Bragg reflection3–5 as a single mode. The time evolution of
the amplitudes a and b of the two modes in our model is
given by the equation of motion

i
d

dt
	a

b

 = H	a

b

 . �3�

The Hamiltonian H that describes the coupled system has the
following form:

H = 	�a + V − i�a W + i�C

W + i�C �b + V − i�b

 . �4�

The diagonal elements of the matrix contain the frequencies
�a,b and linewidths �a,b of the uncoupled modes, and a fre-
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quency shift V. The off-diagonal elements contain param-
eters W and �C that describe conservative coupling �leading
to mode splitting and an avoided crossing�, and dissipative
coupling �leading to mode pulling or frequency locking�,
respectively.17,18 The complex eigenvalues of the Hamil-
tonian H give the frequencies �1,2 and linewidths �1,2 of the
coupled modes.

The solid lines in Figs. 3�a� and 4 are a fit of the model to
the experimental data.19 The fit parameters are summarized
in Table I. There is a small frequency redshift V, compared to
the resonance frequencies predicted by Eq. �1� consistent
with the theory in Ref. 11. The conservative coupling rate W
causes the avoided crossing in Fig. 3�a�. The frequencies � j
can be fitted satisfactorily by setting the dissipative coupling
rate �C to zero. However, a system with only conservative
coupling gives linewidths �1,2 that are independent of refrac-
tive index. This is inconsistent with the data in Fig. 4. To
describe the fact that the damping of one mode increases
while the damping of the other mode decreases, a dissipative
component in the coupling is needed. Conservative coupling
is still important because a model with only dissipative cou-
pling �W=0� gives significant mode pulling which is not
observed in Fig. 3.

As a refinement of our model, we have also used damping
rates �a,b that depend on the refractive index of the liquid via
the optical density of states.5,20,21 Introducing these extra fit
parameters indeed results in a better fit. However, it does not
affect the values of the fit parameters V, W, and �C signifi-
cantly, and thus does not change our interpretation of the
measurements. The fit parameters in Table I indicate that the
mode on the liquid side is somewhat more lossy than the
mode on the glass side. It is reasonable to assume that this is

due to the fact that the roughness of the metal-to-liquid in-
terface is larger than the interface between the metal and the
polished glass substrate. From atomic force microscopy mea-
surements on the sample we indeed find roughness �root
mean square� values of 4.4 nm for the gold surface and
0.8 nm for the glass surface. In addition, some particles from
the fabrication process are present on the gold-air interface
adding to the scattering of surface plasmons on this interface.

The modes in our coupled-mode theory are consistent
with the states calculated using a scattering formalism.9,11 On
resonance, the eigenmodes correspond to a situation where
the plasmons on the two interfaces oscillate in phase �low-
frequency mode� or out of phase �high-frequency mode�.
Close to resonance, the calculated spectra show a split reso-
nance �avoided crossing� and a linewidth of the low-energy
mode that becomes larger, while the linewidth of the high-
energy mode becomes smaller. Without absorption the am-
plitude of the modes is equal. If absorption is included, the
amplitude of the peaks is reduced depending on the linewidth
�resonance time� of the mode.9 This explains the dependence
of the squared amplitude b1,2

2 of the modes as function of
refractive index given in Fig. 4.

In conclusion, we have performed index-matching experi-
ments on large metal-hole arrays. Two plasmon modes, on
different sides of the metal film, can be identified if there is
a large mismatch in refractive index. The resonance in the
transmission spectra is reduced to a single broad resonance
when the sample is index matched. This behavior can be
explained by a coupling between the two surface plasmon
modes through the hole array. A coupled-mode analysis
shows that the modes have an avoided crossing and correctly
predicts the change in linewidth of the coupled modes when
the refractive index is changed.

We thank Arjen van Zuuk �DIMES, Delft� for fabrication
of the hole array and Federica Galli for help with AFM mea-
surements. The refractive index measurements on the liquids
were done by Paul Junger of the “Leidse Instrumentmakers
School �LIS�.” This research was funded by the Dutch Asso-
ciation for Scientific Research �NWO� and the Foundation
for Fundamental Research of Matter �FOM�.
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The measured, angle-dependent, reflection spectra of a two-dimensional GaAs photonic crystal consist of an
asymmetric peak on top of an oscillating background. At large angles of incidence ��70° �, the asymmetry of
the peak is observed to flip for p-polarized light. We explain the observed spectra with a Fano model that
includes loss and interference between a resonant waveguide component and direct Fresnel reflection of the
layered structure. We show that the reversal of the asymmetry of the line is due to a change in sign of the
direct reflection at Brewster’s angle. © 2007 Optical Society of America

OCIS codes: 230.3990, 230.7400, 230.5750, 050.2770.
Two-dimensional (2D) photonic crystal slabs have
been studied widely, both theoretically and experi-
mentally. These slabs contain a periodic arrangement
of holes on a wavelength scale. Due to their structure
they can prevent propagation of guided modes for a
range of frequencies. The existence of this so-called
bandgap and the related dispersion allow control of
light on a wavelength scale [1].

Optical reflectivity measurements are a relatively
easy way to characterize the properties of these
slabs. The wavelength dependent spectra show a
number of features related to leaky modes of the slab
[2,3]. A lot of effort has been devoted to calculating
these spectra by rigorously solving Maxwell’s equa-
tions using scattering matrices [4,5], Green’s func-
tions [6], and finite difference time domain methods
[2,7]. Although being able to reproduce the spectra,
these calculations do not give physical insight into
the origin of the spectral features. Therefore it is im-
portant to develop simpler models that can explain
the measured resonances. Such models can be used
as a diagnostic tool for fabricated structures and can
facilitate the first design of a photonic crystal
structure.

In this Letter, we present reflection measurements
on a 2D photonic crystal slab. The asymmetry of the
(Fano) lineshape [8,9] in the reflection spectra is ob-
served to change as a function of angle of incidence.
Our observations can be described with an extended
coupled mode theory, linking the reversal of asymme-
try to the change of sign of the Fresnel reflection co-
efficient of the layered structure. This change of sign
occurs at Brewster’s angle.

The photonic crystal in this study was fabricated in
GaAs using e-beam lithography and reactive ion
etching. It consists of a square lattice of 1000�1000
holes with radius r�100 nm and lattice constant a
�320 nm. Figure 1 shows scanning electron micro-
scope (SEM) images from the top (a) and a cross sec-
tion (made with a focused ion beam) (b). Due to de-
tails of the fabrication process, the cross section of
the holes consists of two slightly tapered parts, as

can be seen in Fig. 1(b). The holes become wider until

0146-9592/07/213137-3/$15.00 ©
a depth of �600 nm and then narrow down until a
depth of 1.5–2 �m.

We measured the specular reflection from the pho-
tonic crystal along the �–� direction [indicated with
the arrow in Fig. 1(a)] as a function of the angle of
incidence from 25° to 80° in steps of 2.5°. White light
from a spectrally broad lamp was polarized and fo-
cused onto the sample. The specular reflection was
polarization-filtered, imaged onto a fiber, and ana-
lyzed in a spectrometer with a spectral resolution of
�2 nm. The numerical aperture (NA) of the incoming
beam was limited to NA�0.04. The spot size on the
sample was �100 �m. We measured the spectra for
both polarizations, but show only the results for
p-polarized light.

Reflection spectra for angles of incidence of 50, 70,
and 80° are shown in Fig. 2. The spectra show a
large, asymmetric peak on top of an oscillating back-
ground. By changing the angle of incidence, the peak
shape in changes from asymmetric with a tail on the
red side [Fig. 2(a)], to symmetric [Fig. 2(b)], to asym-
metric with a tail on the blue side [Fig. 2(c)].

To explain our measurements, we extended the
temporal coupled-mode theory in [9] by including an
additional loss channel. Light incident onto the pho-
tonic crystal slab can be reflected through different
channels: a nonresonant (direct), a resonant, and a

Fig. 1. (a) SEM image of the photonic crystal (top view)
showing a square lattice of holes with a lattice constant of
320 nm and a diameter of �100 nm. The arrow indicates
the direction along which the reflectance is measured. (b)
SEM image of the cross section of the photonic crystal slab
(taken under an angle of 59°). The approximate shape of

the holes is indicated with the black curves.

2007 Optical Society of America
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loss channel. The direct channel corresponds to the
Fresnel reflection of the layered system, while the
resonant channel is created by coupling to a (leaky)
waveguide mode. This waveguide mode has a well-
defined dispersion relation and coupling at a specific
frequency occurs via diffraction. The asymmetric
Fano line shape can be explained by interference be-
tween the direct channel and the resonant channel.
The additional loss channel allows to include the ef-
fects of scattering from surface roughness and dif-
fraction into the substrate. All input and output
channels of the system are linked by a direct-
scattering matrix C and a resonant scattering matrix
U. A vector d contains the (complex) coupling coeffi-
cients of the resonant mode to the three different
channels.

The direct channel contains the reflection and
transmission coefficients of the layered system. At
each angle of incidence, we use Maxwell–Garnett’s
theory [10,11] to describe the photonic crystal layer
as a birefringent layer with a refractive index neff. We
then calculate the Fresnel reflection and transmis-
sion coefficients [12] of the layered system shown in
Fig. 3(a), incorporating the known refractive index
dispersion of GaAs [13], which includes absorption
for wavelengths shorter than 950 nm. Taking the loss
channel into account, we write the scattering matrix
for the direct process as

C = �
r1 t 0

t r2 0

0 0 1
� , �1�

where r1, r2, and t are the (complex) Fresnel reflec-
tion and transmission coefficients for the electric
field.

The resonant channel, due to the leaky waveguide,
is formed by the photonic crystal layer. As pictured in
Fig. 3(b), the incident light is partially diffracted into
the waveguide and confined by internal reflection.
The light that is diffracted back interferes with the
directly reflected and transmitted light (channels 1
and 2 in Fig. 3). The resonance angular frequency �0
is determined by the dispersion relation of the wave-
guide mode involved. The average lifetime in the
waveguide is parameterized by an escape time � and
is a function of angle of incidence. The scattering ma-

Fig. 2. Experimental reflection spectra of the photonic crys
The dashed curves are fits using the model discussed in the
face of air and neff=2.5, as a function of angle of incidence.
trix describing the resonant channel is given by
U =
ddT

i�� − �0� + 1/�
, �2�

where � is the angular frequency of the incident
light.

In our experiment, the tapered form of the holes ef-
fectively ensures that there is a waveguide in the up-
per part of the photonic crystal layer. However, since
the refractive index of the substrate is higher than
the effective index of the photonic crystal layer, light
propagating in the waveguide mode can still leak to
the substrate without being diffracted. To incorporate
these losses in the model, we added a third channel
to the scattering matrix [channel 3 in Fig. 3(b)]. In
this relatively simple model, we assume that a frac-
tion 	 of the light is irreversibly lost in the resonant
channel. This is valid as long as losses in the reso-
nant channel are much larger than losses in the di-
rect channel. This generally holds as long as the
losses in the direct channel are small, since in this
case the interaction length for light in the resonant
channel is much larger than that in the direct chan-
nel. The effect of adding a loss channel is that the re-
flectivity no longer reaches 100% nor 0% as is the
case for a system without loss [9].

Time-reversal symmetry and energy conservation
put the following constraints on the coupling con-
stants d [9]:

Cd* = − d, �3�

Fig. 3. Model for the (a) nonresonant and (b) resonant
pathways in the model. The numbers indicate the different
channels in the scattering matrix model. (a) Nonresonant
pathways are modeled by applying effective medium theory
to the photonic crystal layer and calculating the Fresnel re-
flection and transmission coefficients of the layered system.
(b) For the resonant pathway, the incident light is refracted
into a waveguide mode, which can diffract back to channels
1 and 2, but can also propagate into the substrate (3) lead-

lab for three angles of incidence: (a) 50°, (b) 70°, and (c) 80°.
t. The insets show the reflection coefficient r1 for an inter-
circles indicate the angle of the measurement.
tal s
tex

The
ing to loss.
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d†d = 2/�. �4�

Furthermore, the diffractive coupling to the resonant
mode is assumed to be equally large on both sides of
the photonic crystal slab (i.e., �d1�= �d2�). With these
constraints, we can write the coupling constants d in
terms of the Fresnel coefficients and the parameters
�0, �, and 	. The reflectivity R= �U11+C11�2 for the
system is then given by

R = � i�� − �0�r1 + 1/�		r1 + �1 − 	�t


i�� − �0� + 1/� �2

. �5�

After setting the fill fraction and the thickness of
the photonic crystal slab once, the Fresnel coeffi-
cients are fixed and there are only three free param-
eters left in the model: the resonance angular fre-
quency �0, the resonance life time �, and the leakage
to the third channel 	.

The dashed curves in Fig. 2 show the best fit of the
model to our data. Although the fits deviate on detail
from the measurements, qualitatively all elements of
the measurements are contained in the model. We at-
tribute most deviations from the measurements to
simplifications we made with respect to the vertical
shape of the air holes. Also, Maxwell–Garnett’s effec-
tive medium theory is only valid when all relevant
length scales in the system are much smaller than
the wavelength, which is not true in our case.

Using the model described here, one can under-
stand the origin of the change in asymmetry of peak
shape when changing the angle of incidence. Since
the peak is a product of interference between a reso-
nant Lorentzian line and a nonresonant direct contri-
bution, the relative phase between these two contri-
butions will determine the asymmetry of the
resulting line shape.

The Fresnel reflection coefficient for p-polarized
light for a dielectric interface vanishes and changes
sign at Brewster’s angle. This is shown in the insets
of Fig. 2, for an interface between air and a dielectric
with neff=2.5. It is exactly this change of sign that
causes the line shape to vary from red-tailed asym-
metric to Lorentzian at Brewster’s angle to blue-
tailed asymmetric for larger angles. For s-polarized
light, we observed the line shape to be blue-tailed
asymmetric for all angles of incidence, which con-
firms this explanation since the Fresnel reflection co-
efficient for s-polarized light is always negative.

The rough shape of the holes causes relatively
broad spectral features that are easily resolved. The
fact that we are able to describe our data with an ex-
tended version of a coupled mode theory and observe
a change in asymmetry of the spectral line shows
that the description is robust and also valid for less-
than-perfect crystals.

In conclusion, the reflection spectra from a 2D pho-
tonic crystal show a large asymmetric peak on top of
an oscillating background. With increasing angle of
incidence, the asymmetry of the peak reverses. We
explained all observations with an extended scatter-
ing matrix model [9] that includes additional loss.
The reversal of the asymmetry is a consequence of
the change in sign of the Fresnel reflection coefficient
when crossing Brewster’s angle. The presented
model gives good qualitative as well as quantitative
agreement with the measurements, while having
only three fit parameters describing the resonance
frequency and lifetime of the resonant waveguide
mode, and its losses.

Although the model does not predict the position of
the resonances for a given structure, these can be es-
timated for the case of a true waveguide (i.e., neff
�nsubs, with nsubs the refractive index of the sub-
strate) [14,15]. The model can easily be extended to
incorporate multiple uncoupled waveguide modes,
thus forming a powerful tool in explaining the ob-
served phenomena in reflection spectra from 2D pho-
tonic crystals.
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the Dutch Association for Scientific Research (NWO)
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Index Matching of Surface PlasmonsIndex Matching of Surface Plasmons

The optical transmission through a metal nano-hole array is increased due to the excitation of surface 
plasmons. Most experimental structures are asymmetric and therefore the plasmons on different interfaces are not 
resonant. It is not clear what happens if a symmetric structure is created, such that the plasmons become 
resonant. To answer this question, we measured transmission spectra for gold arrays with a liquid or dielectric 
layer on the top side of the structure, and a hole array with glass pillars placed in each of the holes.

Thin layer of glass supports both 
surface plasmon modes and 
waveguide modes
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the refractive index is varied
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Conclusion and References

• Liquid index matching reveals coupling between plasmon modes

• A glass cover on top of the array shows waveguide modes

• Pillars enhance coupling to (0,±1)-modes and induce a large splitting
D. Stolwijk et al., “Enhanced Coupling of Surface Plasmons”, accepted for Opt. Lett.

M.J.A. de Dood et al., “Observation of coupling between surface plasmons in index-matched hole arrays”, submitted to 
Phys. Rev. B.
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