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Chapter 1

Introduction

In optics, retrieving the phase information of light is a classic problem that cannot be solved
by direct measurement since measurement devices only record the intensity of light, not the
amplitude and phase. Indirect measurement to obtain the phase of light is usually made by
means of interference that produces a fringe pattern from which the phase can be extracted.

In this research, we will examine a different method. We employ surface plasmon excitations
to locally probe the electromagnetic field of an incoming optical vortex beam. We choose to
analyze optical vortex beams as they have a well-defined phase structure, although the principle
of this method should allow to analyze an arbitrary (unknown) input beam.

Surface plasmons (SPs) are travelling oscillations of the electron plasma in a metal. They
are bound to the surface of a metal and can be generated by light radiation incident on a
corrugation of the metal surface. We will use a microscopic slit in a gold film as a localized
coupler to the incident light. At a distance there is another, but larger, slit receiving the
generated surface plasmons from the first slit in order to convert them back into photons which
can then in turn be imaged by a camera.

By scanning the incident beam we construct a tomogram. A tomogram is the result of plot-
ting three-dimensional data into two-dimensional sections without loss of information. SPs are a
convenient tool for this tomography, because they propagate in two dimensions and because we
can achieve subwavelength resolution in our tomograms by translating the subwavelength slits
in subwavelength steps. Since the light-plasmon coupler maintains the phase, the tomogram
will be sensitive to phase differences along the scanned trajectory.

In Chapter 2 we will provide a brief description of the phase retrieval problem together with
some classical methods and their limitations. We also provide a small theoretical description
of surface plasmons. Furthermore, we give an abstract of the Huygens–Fresnel principle which
describes a model of how SPs are generated and travel across the metal-dielectric interface.
And finally, we describe a surface defect scattering, where we learn about the way in which SPs
are generated and converted into free space light.

In Chapter 3 we provide a brief description of our proposed method to solve the phase
retrieval problem. We describe the construction of computational simulations and we discuss
their results, which provide an expectation for the physical experiment.
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In Chapter 4 the experiment is described as performed in the lab. We describe the three
main experimental setups that we constructed as well as the components used in them. Finally,
the results attained from this experimental work are presented.

And finally, in Chapter 5, we present the conclusions of this project together with some
recommendations for future projects.
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Chapter 2

General Theory

2.1 Previous work

2.1.1 Phase retrieval

Measurements of a complex-valued signal are required in many scientific and technological
areas, such as astronomy [1] and X-ray crystallography [2]. Unfortunately, they must be made
with sensors that can only observe the signal’s intensity while in general, important features
of a signal are preserved in phases. For the reconstruction of both one-dimensional and multi-
dimensional signals, the magnitudes and the phases of the Fourier transform play different
roles.

Phase retrieval is the process of recovering the phase, given just the magnitude, of a signal’s
Fourier transform, thereby recovering the signal itself. Phase retrieval determines the phase
error or aberrations of an optical system. Knowledge of the aberrated wave front can subse-
quently be used to design correction optics for the system in order to obtain imagery of higher
quality. There is not a straightforward method of performing phase retrieval. However, the first
widely accepted phase retrieval algorithms, mainly for nonperiodic objects, were developed in
1971 by Gerchberg and Saxton [3], and in 1978 by Fienup [4]. In general, their idea was that if
partial information about the magnitude of the input signal as well as about the magnitude of
the signal’s Fourier transform can be supplied, the phase information may be recovered. Phase
retrieval algorithms [5] use computer modeling that is run several times, giving a pattern as
a result. It is from the comparison of this pattern to the known data of the actual optical
system that the correct parameters can usually be determined and used to accurately model
the system.

Phase retrieval algorithms, as the different existing methods so far, require a priori signal
assumptions to solve phase retrieval problems with complex signals. In many physical scenarios,
the phase retrieval process can be time consuming or expensive.

2.1.2 Wavefront sensing

Wavefront sensing, usually applying phase retrieval algorithms, can provide the means to mea-
sure the shape of an optical wavefront. Since the birth of modern adaptive optics in 1953
[6] wavefront sensors have played an important role in the design of adaptive optics systems.
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Adaptive optics is a technology used to improve the performance of optical systems by reducing
the effect of wavefront distortions. It is used in astronomical telescopes and laser communica-
tion systems to remove the effects of atmospheric distortion, and in retinal imaging systems to
reduce the impact of optical aberrations.

Wavefront sensors may be used either to generate a signal related to the wavefront defor-
mation, or to provide a full reconstruction of the wavefront shape. The phase of a wavefront
can be measured directly or indirectly in a number of ways [7]. Direct methods include in-
terferometric methods, Fraunhoffer diffraction patterns, moments of diffraction and multiple
intensity measurements. It can also be measured indirectly, by compensating for the wavefront
error without explicitly calculating the full wavefront reconstruction (multi-dither technique).

One example is the Shack-Hartmann wavefront sensor, which provides a measurement of
the local first derivative (slope) of the input wavefront. Although it has some advantages that
make it the most widely used sensor, it also has some drawbacks, such as the precision required
in alignment and calibration of this device. Vibration or distortion of the optics could lead to
shifts in the spot positions, which in turn would give incorrect measurements of the wavefront
slope. A second disadvantage is that this type of wavefront sensor is not well suited to dealing
with extended sources. Finally, the number of pixels required in the detector to create one
phase data point is much higher than in other sensors. For high spatial resolutions large CCD
cameras are required and this can be expensive and adds extra weight to the optical system.

Another example is the curvature sensor, a special class of wavefront sensor which measures
the local wavefront curvature using a pair of intensity images with equal and opposite aber-
ration, captured symmetrically about the image plane of the optical system. The wavefront
phase can be calculated from the relative intensities using iterative algorithms. These solutions
are computationally expensive and the time taken to calculate the solution sometimes is not
sufficiently short for real-time adaptive optics applications.

Some other examples, such as the hybrid wavefront sensor which combines the Shack-
Hartmann and curvature sensors, are discussed in reference [7] together with a short description
of their own advantages and disadvantages. In general, the author shows that direct measure-
ment of the wavefront phase can be computationally very expensive, but in indirect methods
the burden is shifted to the accurate measurement of the chosen quality metric. At the end,
the selection of a method mainly depends on the application.

In this work, we aim for finding an alternative method for determining the phase of an input
wavefront to the ones referred above. Our inspiration comes from [8], and it makes use of the
properties of surface plasmons described in section 2.2. As in the reference, the experiment
employs a subwavelength slit in a gold film to cut slices from a beam with a certain phase
distribution in the transverse plane and measure the diffraction of the surface plasmons by
scattering them off a second “infinite”1 slit. The main difference in the work presented here
with that in [8], is that by moving the slits across the vortex beam, we try to determine the
phase of the incident beam.

1For practical purposes
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2.2 Physical Phenomena

2.2.1 What is a surface plasmon?

A surface plasmon is an electromagnetic oscillation on the surface of a metal due to its free
electrons which can easily interact with incident light, becoming involved in a series of optical
phenomena, such as enhanced photoeffect by SPs or surface enhanced Raman scattering. This
interaction occurs mainly in corrugated surfaces that act as couplers and this coupling can be
in both directions, with SPs radiating light and with light exciting SPs. Simple isolated surface
defects such as a groove or a slit on an otherwise planar surface can also provide a mechanism
for exciting SPs.

The physics of SPs follows traditionally from Maxwell’s equations describing the electro-
magnetic field caused by the free electrons on an interface between a metal and a dielectric.
These electrons are considered as an electron liquid whose density fluctuates longitudinally and
propagates through the bulk plasmons of the metal. Surface plasma oscillations, as they are
alternatively named, have a frequency ω tied to their wave vector ksp by a dispersion relation
ω(ksp), and are accompanied by an electromagnetic field which disappears at |z| → ∞ as it
decays exponentially away from the maximum at the surface (z = 0) and can be written as
(Fig. 2.1)

E = E±0 exp [i(kspx± kzz − ωt)] (2.1)

using + for z ≥ 0 and − for z ≤ 0. Here ksp = 2π/λsp where λsp is the wavelength of the plasma
oscillation and kz is imaginary, which causes the decay of the field Ez. Note that kz>0 6= kz<0

as kz depends on the dielectric constant of either the diectric layer or the metal.

z

Ez

propagation

E

Hmetal

dielectric

- - - + + + - - - + + + x

y

Figure 2.1: Schematic picture of the charge distribution of a surface plasmon and the associated
electromagnetic wave.

The Maxwell’s equations for this specific geometry (metal plane surface - dielectric interface)
together with Eq. 2.1 result in the dispersion relation [9, pp. 4-7]

k2
sp =

ω2

c2
εdεm(ω)

εd + εm(ω)
, (2.2)

where εd is the dielectric constant of the dielectric material, εm(ω) is the frequency-dependent
dielectric function of the metal, and c is the speed of light. The electric field of the surface
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plasmon has both longitudinal (x) and transverse (z) components. Surface plasmons can be
most elegantly described by the associated magnetic field Hy as it is purely transverse.

Surface plasmons are attenuated during propagation, basically due to dissipation in the
metal or re-radiation as light if the surface is not smooth or in the Kretschmann configuration2.
The field attenuation length, Lsp, is

Lsp =
1

2k′′sp
(2.3)

where k′′sp is the imaginary part of the propagation constant of a SP (in Eq. 2.2, εm has a
complex value). Lsp is the length after which the intensity decreases by 1/e and for gold and
silver extends from millimeters in the mid-infrared range to less than a micron in the blue part
of the visible spectrum. The surface roughness causes the SP energy to couple to light, i.e. it
radiates into the environment.

2.2.2 Huygens-Fresnel principle for surface plasmons

The Huygens - Fresnel principle is a method of analysis applied to problems of wave propagation
both in the far-field limit and in near-field diffraction. Dutch physicist Christiaan Huygens
considered every point of a given wavefront of light as a source of secondary spherical wavelets
and French physicist Augustin-Jean Fresnel added the assumption that the actual field at any
point beyond the wave front is a superposition of all of them.

Surface plasmons behave differently from light in a number of ways, such as propagation,
interference and diffraction, and are bound to a two-dimensional surface. Therefore, an adapted
form of the general (three-dimensional) Huygens-Fresnel principle for surface plasmons should
be considered.

A general representation of a surface plasmon field along a planar surface z = 0 in the
direction of positive x (i.e. the propagation direction of the SP) is given by [10, 11]:

Hsp
y (x, y) =

∫
dky
2π

Hsp
y (ky)e

i
√
k2
sp−k2

yx+ikyy (2.4)

Eq. 2.4 represents a cylindrical wave, hence, we can make use of the Hankel function3 in
the asymptotic form, valid for distances larger than the wavelength. This results in:

Hsp
y (x, y) = − i√

λsp
eiπ/4

∫
dy′ cos θHsp

y (x = 0, y′)
eikspρ
√
ρ

(2.5)

where λsp = 2π/ksp is the surface plasmon wavelength, ρ =
√
x2 + (y − y′)2 and θ = arccos(x/ρ).

Here, the propagator is a damped cylindrical wave eikspρ/√ρ instead of the spherical wave eikr/r
in the case of light propagation in a 3D vacuum. The derivation of Eq. 2.5 is given in [11].

2 In the Kretschmann configuration, the light illuminates the wall of a glass block, typically a prism, and is
totally internally reflected. A thin metal film (for example gold) is evaporated onto the glass block. The light
again illuminates the glass block, and an evanescent wave penetrates through the metal film. SPs are excited
at the outer side of the film.

3The Hankel functions are used to express propagating cylindrical wave solutions of a cylindrical wave
equation.
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Eq. 2.5 can be viewed as a Huygens-Fresnel principle for surface plasmons, in which the
surface plasmon field at (x, y) is resulting from the interferences of surface plasmons emitted
by secondary sources located at (x = 0, y′) with an amplitude Esp

z (x = 0, y′). Also, the phase
of the surface plasmon field can be calculated from its complex amplitude.

The integral in Eq. 2.5 is the Fourier transform of the product of two functions of ky and
by employing the convolution theorem,4 we can rewrite it as a convolution product in direct
space:

Hsp
y (x, y) =

∫
dy′ Hsp

y (x = 0, y′) · h(x, y − y′) = Hsp
y (0, y) ∗ h(x, y) (2.6)

where h(x, y) is the convolution kernel and can be rewritten as:

h(x, y) =
−i√
λsp

eiπ/4
x

ρ

eikspρ
√
ρ

(2.7)

Eq. 2.6 is used in the numerical calculation of the two-slit system in the experiments
described in this text.

2.2.3 Surface-plasmon excitation

When not in Kretschmann configuration, because a SP is a bounded mode, i.e. it decays
exponentially on both the metal and the dielectric sides, it cannot be directly excited when a
flat interface is illuminated by a plane wave, even at highly oblique incidence. However, SPs are
launched whenever there exists a perturbation in the smooth surface, for example, by etching
a subwavelength indentation in a metal thin film.

The value of the SP wave number ksp is larger than that of the light in free space k0.
Consequently, there is a wave vector mismatch between the surface plasmon and free space
radiation, and it is therefore not possible to directly excite the SP by light on a smooth bulk
metal surface. By adding a defect on the surface, the diffraction order in the incident beam
changes and the wave vector k = ω/c is increased by a ∆kx value allowing the photons to be
transformed into SPs.

The polarization of the incident radiation has also to be chosen so as optimally couple with
a surface plasmon. In our experiments, we use two slits to launch and detect surface plasmons
and the incident light is polarized perpendicular to the slit axis.

The present work focuses on a two-slit system. Each slit functions as a coupler, thus
scattering part of incident light into a plasmonic channel, and as a decoupler, turning a surface
plasmon back into free space radiation. The separation between the slits is comparable to the
decay length of the surface plasmons (Ch. 3) to allow a generated SP to reach the other slit. The
direct transmission at the two slits would also give rise to conventional Young-type interference

4The convolution theorem states that

F{f · g} = F{f} ∗ F{g}

where F{f} denotes the Fourier transform of f and * denotes the convolution operation.
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patterns as described in [12]. In our experiment however, we tried to prevent illumination of
one of the slits in order to avoid this interference.

When the incident light is TM-polarized the surface plasmon that is excited at one of the
slits propagates towards its partner slit where it is partially converted into light again. If not
avoided, the plasmon amplitude would interfere with the amplitude of the light that is directly
transmitted by the same slit. The plasmon amplitude is weaker than the direct transmission at
the first slit because the plasmon has lost amplitude due to reconversion into light, reflection
and/or transmission (through the indentation) [13]. This would unfavorably make the direct
transmission light intensity overcome the plasmon intensity.

2.2.4 Surface defect scattering

As mentioned in [13], recent experimental studies on SP scattering by single surface defects
have shown evidence of drastically distinct scattering properties depending on the defect size.
In search of a theoretical explanation that is still missing, the authors focus on the case of one-
dimensional surface defects, including near-field and far-field calculations and their dependence
on defect size parameters. Specially, they analyze the SP-photon coupling, looking for the
adequate defect parameters that maximize radiation.

The work showed that in the case of wide indentations, the behavior differs from that for
protuberances, and exhibits a richer phenomenology. Upon increasing the width of the inden-
tation, transmission of the SP, along the surface and through the defect, reaches a minimum
value leading to maximum radiation, and then slowly grows towards total transmission (no
radiation) in an oscillatory manner. Defect depth determines the oscillations and the value of
the defect width that results in a maximum radiation. The increase of the SP transmission
starts from an absolute minimum in transmission for small half-widths. The period of the
oscillations is related to the defect impedance, that is in a way reminiscent of a cavity-like
effect. It is reported that for sufficiently deep indentations, this maximum radiation value can
be extremely large (even larger than 90%), so that the Gaussian indentation thus behaves as a
light emitter.

In our experiment we chose to have slits (indentations) that strongly couple radiation and
SPs in order to be able to observe the re-emitted light. The indentation must be sufficiently
deep (d/λsp > 0.2). According to [13], the ideal width of the slits for maximum coupling cannot
be exactly determined so far. We chose slits of 100 nm wide and 200 nm deep. It satisfied the
depth requirement for the wavelength (≈ 800 nm) and this width proved effective in earlier
experiments [16].
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Chapter 3

Numerical simulations

In a general way, the experiment consists of the generation of SPs by scattering an incoming
vortex beam off a narrow emitter slit milled in a gold film (Fig. 3.1). The incident beam
is TM-polarized in order to allow coupling to SPs [12]. A second receiver slit picks up the
diffracted SP wave, converting it back to free-space optical radiation. We translate the sample
along the positive x-axis and y-axis in 0.1 µm and 1 µm increments so that the emitter slit
travels through the incident beam and the gold film translates transversely to the optical axis
of the vortex beam. We image the light emerging from the receiver slit on a CCD and record
this illumination pattern. We stitch the various recorded patterns together and this way, we
construct a tomographic pattern of the plasmonic diffraction where each vertical slice of the
tomogram corresponds to one slice of the incident vortex beam after propagation from emitter
to receiver.

y

x

Figure 3.1: SPs are generated by scattering an incoming vortex beam off a narrow emitter slit milled
in a gold film. A second receiver slit picks up the diffracted SP wave, converting it back to free-space
optical radiation. We translate the sample along the positive x-axis and y-axis so that the emitter slit
travels through the incident beam and the gold film translates transversely to the optical axis of the
vortex beam. We image the light emerging from the receiver slit on a CCD and record this illumination
pattern.

The sample consists of a gold film, 200 nm thick, attached to a glass substrate by a 10
nm titanium adhesion layer. The titanium layer ensures that SPs can only propagate from
emitter to receiver slit on the gold-air interface. The sample contains pairs of double slits that
are ion-beam milled through the gold. The slits used in this experiment are 2 µm (emitter)
and 50 µm (receiver) long, 100 nm wide, and are separated by 75 µm. For comparison, the
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damping length of SPs on gold at λ = 830 nm is around 50 µm. This value is calculated as
done similarly in [9, p. 7], using Eq. 2.3 in which the complex dielectric constant of gold is
given by εm = n2

m/µ. Here µ ≈ 1 for this wavelength and nm is given in Table 3.1.

An optical vortex is a beam of light whose phase varies in a corkscrew-like manner along the
beam’s direction of propagation. There are several types of phase singularities in a monochro-
matic light wave, and the necessary condition for their existence is that the wave amplitude
vanishes at the singularity, resulting in a “dark spot” within a light wave, where the phase
becomes undetermined. Optical vortices are topological objects on wavefront surfaces which
possess so-called topological charge, or vortex charge, attributed to the structure of the wave-
front around a phase singularity: a positive charge Q > 0 is attributed to a right-handed
helicoid, and the sign of the charge is negative for a left-handed helicoid. The vortex charge Q
determines the number of cycles with which the phase increases on a closed loop around the
vortex. An ordinary plane (or spherical, or Gaussian) wave without any phase singularity is
uncharged, Q = 0.

The amplitude and phase structure of a singular beam depends on the “host” beam that is
used. In the most common case, the incident beam has a Gaussian amplitude profile centered
at a radius r = 0 with the waist plane coinciding with plane z = 0 . The expression for a
Gaussian light wave carrying a Q-charged axial optical vortex written in polar coordinates is
[14]

E(r, θ) = E0
ρ√
2
e−iQθe−

ρ2/2
[
I |Q|−1

2

(ρ2/2)− I |Q|+1
2

(ρ2/2)
]

(3.1)

where ρ = r/w0, w0 is the host beam waist parameter1 and Iα is the modified Bessel function
of the first kind. The host Gaussian beam is expressed in its simplest form as an unbounded
plane wave

E(r) = E0e
−ρ2 (3.2)

where we chose E0 = 1. Eq. 3.2 represents the amplitude distribution in the waist plane of a
lowest-order transverse electromagnetic Gaussian-beam wave.

The transverse cross section of a vortex beam has a doughnut-shaped intensity distribution.
The phase increases azimuthally around the doughnut and the intensity vanishes at the center
because the phase is undefined there. Figure 3.2 represents the intensities of the three input
beams used in the computer simulations in section 3.1. The first one (a) corresponds to a
Gaussian beam in its focus (λ0 = 830 × 10−9 m) with a waist parameter w0 = 15 µm and the
other two are vortex beams generated with the aforementioned Gaussian beam as a host beam
through Eq. 3.1 with charges (b) Q = 1 and (c) Q = 3. Notice that for Q = 0, Eq. 3.1 reduces
to E(r) = E0

√
π
2
e−ρ

2 which is proportional to Eq. 3.2.
Fig. 3.3 represents the phase of these beams in the transverse plane.

1The waist parameter of a Gaussian beam is the distance from the beam axis where the optical intensity
drops to 1/e2 of the value on the beam axis.
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Figure 3.2: Transverse cross sections of (a) a Gaussian beam and of a vortex beam with (b) Q = 1
and (c) Q = 3. The waist parameter of the host Gaussian beam is w0 = 15 µm for the three profiles.
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Figure 3.3: Phase distribution of (a) a Gaussian beam and of vortex beams with (b) Q = 1 and (c)
Q = 3. The waist parameter of the host Gaussian beam is w0 = 15 µm for the three profiles.

3.1 Tomograms creation
We calculate the expected tomograms by modeling the emitter slit as a SP source with its field
amplitude proportional to the free-space field amplitude of the incident vortex beam (Eq. 3.1)
at that point on the sample. We then calculate the evolution of this field under propagation
from emitter to receiver, using the Huygens-Fresnel principle in the form of Eq. 2.6. We
model the receiver slit as a line, which scatters SPs into free-space light whose amplitude is
proportional to the SPs amplitude it receives.

Figures 3.5 to 3.11 show the calculated tomograms for incident vortex beams. The vortex
beams have a charge Q = 1,−1, 3 or −3. Tomograms of incident Gaussian beams are expected
to be similar to those with incident Q = 0 vortex beams, therefore they won’t be displayed sep-
arately. The values listed in Table 3.1 are the ones inserted into the simulations and correspond
to the real physical values used in the experiment. There are two possible ways to translate
the input beam along the SP emitter slit, horizontally (x-direction) and vertically (y-direction).
Horizontal movement is in all cases, performed through the center of the beam. For vertical
movements, we define d0 as the distance from the center point of the respective incoming beam
to the position of the path in which the emitter receiver is translated (Fig. 3.4).
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Figure 3.4: Example of a vortex beam Q = 1 with host beam’s waist parameter w0 = 40 µm where the
emitter slit travels along the dotted line at a distance d0 = 10 µm from the center. In this example,
the emitter slit is 10 µm long for clarity purposes.

l = 2× 10−6 m SP emitter slit length.
L = 50× 10−6 m SP receiver slit length and size of simulation domain.
res = 1× 10−7 m Size of a pixel.
λ0 = 830× 10−9 m Light wavelength in free space.

nAu = 0.18927 + (5.4182)i Index of refraction of gold at 830 nm [15, pp. 286-295].
εd = 1 Dielectric constant of dielectric (air), n = 1.

w0 = 7× 10−6 m Waist parameter of Gaussian beam.
Table 3.1: Physical values used for tomogram calculation reported in this section.

In the following simulations (Figs. 3.5 to 3.11) it is not considered that direct light could
travel through the SP receiver, i.e. only the light proceeding from SP transmission is taken
into account.
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(b)
Figure 3.5: Tomograms corresponding to a Gaussian beam in (a) horizontal movement through the
beam’s center and in (b) vertical movement through the beam’s center (d0 = 0). The elongated shape
of the spots visualized in the tomograms are due to the length of the receiver slit. They are almost
alike because the input beam is rotationally invariant about the optical axis and because the size of
the emitter slit is small compared to the size of the beam. Therefore, the light arriving to the emitter
slit at each step during the vertical movement has the same phase and the intensity varies almost in
the same way than in the horizontal movement.
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(b)
Figure 3.6: Tomograms of a vortex beam in horizontal movement through the beam center, (a) Q = 1
and (b) Q = −1. They are each other’s mirror because their phase profiles are mirrored.
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(b)
Figure 3.7: Tomograms of a vortex beam in horizontal movement through the beam center, (a) Q = 3
and (b) Q = −3. They are each other’s mirror because their phase profiles are mirrored.
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(b)
Figure 3.8: Tomograms of a vortex beam in vertical movement outside the beam center (d0 = 7 µm),
(a) Q = 1 and (b) Q = −1, presenting ovoid shapes with opposite orientation (highlighted in red).
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(b)
Figure 3.9: Tomograms corresponding to a vortex beam in off-center vertical movement with d0 =
7 µm, (a) Q = 3 and (b) Q = −3.
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(b)
Figure 3.10: Vertical scan of a vortex beam through the center (d0 = 0), (a) Q = 1 and (b) Q = −1.
Compared with Fig. 3.6, these aren’t slanted because the slit only travels through two constant phases.
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(b)
Figure 3.11: Vertical scan of a vortex beam through the center (d0 = 0), (a) Q = 3 and (b) Q = −3.
Compared with Fig. 3.7, these aren’t slanted because the slit only travels through two constant phases.
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Because the experiments suggest that this may be happening, for the next set of figures
(Figs. 3.12 to 3.14) we considered that some remaining direct light can travel through the SP
receiver slit and therefore, interfere with scattered SPs. We model this simply by calculating
the field generated by the scattered SPs plus the field of the transmitted light of the vortex
beam through the receiver slit. The field transmission coefficient that we used, T =

√
0.38, was

determined experimentally in [16]. We calculated waist parameters matching the ones used in
our experiments (Ch. 4) and we only show vertical movement calculations because most of the
experimental results were obtained in that direction.
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Figure 3.12: Tomogram corresponding to a Gaussian beam with waist parameter w0 = 40 µm in
vertical movement with d0 = 7 µm. Without the interference added we should obtain a tomogram
similar to the one showed in Fig. 3.5(b).
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(b)
Figure 3.13: Tomograms corresponding to a vortex beam in vertical movement with d0 = 7 µm. (a)
Q = 1 and (b) Q = −1. The waist parameter of the host Gaussian beam is w0 = 30 µm. Compare to
Fig. 3.8 for no interference tomograms.
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(b)
Figure 3.14: Tomograms corresponding to a vortex beam in vertical movement with d0 = 7 µm. (a)
Q = 3 and (b) Q = −3. The waist parameter of the host Gaussian beam is w0 = 7 µm. Compare to
Fig. 3.9 for no interference tomograms.
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In order to provide a better visualization of how the simulations are constructed, we show
with two examples (Figs. 3.9 and 3.14) the profile intensities in three different positions of the
tomograms (Figs. 3.15 and 3.16).
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(b)
Figure 3.15: Intensity profiles on the receiver slit for selected positions of the vortex beam in Fig.
3.9(a).
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(b)
Figure 3.16: Intensity profiles on the receiver slit for selected positions of the vortex beam in Fig.
3.14(a).
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3.2 Discussion
Figure 3.5 shows the results for two tomograms of a Gaussian beam, one in horizontal movement
through the beam’s center and the other in vertical movement through the beam’s center
(d0 = 0). Note that both translations are almost indistinguishable. This happens because the
input beam is rotationally invariant about the optical axis. Therefore, in both movements, the
light arriving to the emitter slit has the same phase and the intensity varies in the same way.
The angle of the emitter slit to the movement direction differs 90◦ between both movements,
but the effect is negligible. Tomograms using a vortex beam Q = 0 as input beam produce
identical results.

If we now select singly charged (Q = 1 and Q = −1) vortex beams (Fig. 3.6), the single
bright spot splits into two and a zero-intensity singularity is visible. We can also notice that
Q = 1 and Q = −1 are not identical (while their beam intensity profiles are), but produce
mirrored tomograms [8] about the vertical axis. As we increase the vortex charge to Q = ±3
(Fig. 3.7), we note an increase in the split between the two bright areas and in their size.

The results are drastically different if a tomogram of a vortex beam is calculated by moving
the slit vertically over a path located outside the beam’s center. In Fig. 3.8, we find that
the tomogram for a Q = ±1 vortex beam does not show the zero-intensity singularity as the
traveling path is displaced from the beam’s center (d0 = 7 µm) when the waist parameter of
the vortex is w0 = 7 µm. Instead, a single ovoid shaped bright spot is seen. Still, the sign of
the charge of the input vortex beams can be easily recovered.

Keeping the same displacement of the input beam’s traveling path (d0 = 7 µm) and in-
creasing the charge to Q = ±3 (Fig. 3.9), we have tomograms with two bright spots slightly
separated, that are each other’s mirror, this time about the horizontal axis.

Figs. 3.10 and 3.11 show two vertical scans of Q = ±1 and Q = ±3 vortex beams, re-
spectively, traveling through the beam’s center (d0 = 0). Compared with Fig. 3.6 and Fig.
3.7, these aren’t slanted because the slit only travels through two constant “phases”. These are
features that will allow us to characterize a possible unknown incoming vortex beam.

Finally, because the experiments suggest that this may be happening, (Figs. 3.12 to 3.14)
were calculated considering that some remaining direct light can travel through the SP receiver
slit and therefore, interfere with scattered SPs. Although once we suspect that we have inter-
ference in our measurements, we know that the phase can no longer be recovered, it may be
still possible to measure the sign of the charge of the input vortex beam, as shown in these
tomograms.

17



In Figs. 3.17(a) and 3.17(b) we highlight the position and the intensity value of the max-
imum in each slice of the tomogram shown in Fig. 3.9(a). We also include in Fig. 3.17(c)
the Q = 3 vortex beam phase profile as calculated from Eq. 3.1 from which we take the field
amplitudes and the phase derivative taken over the path of the emitter slit movement (Fig.
3.17(d)). By comparing this two images, we find a good agreement, despite artifacts due to the
finite resolution in the simulations and the size of the emitter slit, between the position and
amplitude of the maximum value in each slice of the tomograms and the derivative of the field
phase and the field amplitude.
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Figure 3.17: Distribution of (a) the position of the maximum and (b) its intensity in each slice of
tomogram for a vortex beam Q = 3 in vertical movement (Fig. 3.9(a)). In (d) we show the calculated
phase derivative and intensity over the path of the emitter slit movement (d0 = 7µm) as highlighted
in (c) the phase profile of the same input vortex beam.
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By integrating 3.17(b) we can obtain the phase of the input beam shown in Fig. 3.18(a).
For comparison, the phase directly calculated from the input vortex beam is shown in Fig.
3.18(b).
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Figure 3.18: By integrating 3.17(b) we can recover the phase as shown in (a). The phase directly
calculated from the input vortex beam is shown in (b).

If we compare this result with that in Fig. 3.19 we can see that for opposite charge Q the
orientation of the maximum position line tells us the sign of the charge.
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Figure 3.19: Distribution of (a) the position of the maximum and (b) its intensity in each slice of
tomogram for a vortex beam Q = −3 in vertical movement (Fig. 3.9(b)).
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If we incorporate the interference of incoming remaining light that may reach the receiver slit
in Fig. 3.17, the maximum position line changes completely and no longer gives us information
about the original incident beam as shown in Fig. 3.20 as we would expect. This is a main
reason why it is so important to isolate the receiver slit from any interference.
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Figure 3.20: Distribution of (a) the position of the maximum and (b) its intensity in each slice of
tomogram for a vortex beam Q = 3 in vertical movement with remaining light in receiver slit causing
interference.
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Chapter 4

Experiment

The original experiment design included a sample with a collection of slit-groove pairs (Fig.
4.1(a)) where the depth of the grooves remained constant and the only variables were the
length of the slits and the distance between the slits in the pair. Unfortunately, in practice,
the grooves didn’t convert the light back into free space. As an alternative, we tried to use
the only structure in the sample were we could observe re-emitted SPs (Fig. 4.1(b)). This
structure is the slit-slit pair that we have described through the rest of this work. Because
we already know, as explained in section 3.2, that the interference of any remaining light with
the re-emitted SPs in the receiver slit would hinder the capacity of this method to extract
the desired phase information, the following experimental set-ups were constructed with the
additional requirement of preventing any remaining light from the vortex beam from reaching
the receiver slit.

(a) (b)

Figure 4.1: Scanning electron microscope (SEM) pictures of (a) a wide field of the sample and (b) a
magnification of the slit-slit pair that we used in the experiment. In the first picture, we can see a set
of 3 slit-slit pairs (dotted line) and a set of 3 slit-groove pairs (solid line) that didn’t work. The slit-slit
pair in the second picture, is broadly described in Chapter 3.
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4.1 Set-ups
This section describes the experimental set-up, which is shown in Fig. 4.2. One fiber-coupled
diode laser emits a Gaussian beam (λ = 830 nm) that goes through a polarizer, a half-wave
plate and finally to a dislocation holographic grating with broken grooves forming so called
“fork” structures (more below). The linearly polarized beam is rotated using the half-wave
plate such that it is perpendicular to the long dimension of the slits (TM polarization). The
holographic grating produces many diffracted beams, each containing a vortex beam with dif-
ferent Q depending on the diffraction order. After selecting only one of the output vortex
beams, we focused this beam onto the gold film through a scan lens using a motorized scanning
mirror. This mirror can rotate about two axes and together with the scan lens, it is specialized
in translating the vortex beam over the SP emitter slit during the measurements while main-
taining the focus. Finally, the generated beam in the SPs receiver slit will be imaged onto a
CCD camera by an objective.

P λ/2 HG SL S
OB CCDLaser

SM

M

D

Figure 4.2: First experimental set-up. P is a polarizer, λ/2, a half wave plate, HG, an holographic
grating, D, a diaphragm, M, a fixed mirror, SM, a motorized scanning mirror, SL, a scan lens, S, the
sample, OB, an objective and CCD, a CCD camera.

A scan lens is a telecentric objective named liked that because it is usually used to scan a
laser beam across the back aperture of the objective lens in order to form the image of a given
sample. Each position that the laser is scanned over corresponds to one point in the image
formed. This approach results in a focal spot on the sample that is not, in general, coincident
with the optical axis of the scan lens. In traditional lenses, this would result in the introduction
of severe aberrations that would significantly degrade quality of the resulting image. However,
the scan lens used in this experiment creates a uniform spot size and optical path length for
the laser for every scan position, which allows a uniform, high-quality, image of the sample to
be formed. A telecentric scan lens also maximizes the coupling of the light scattered or emitted
from the sample (the signal) into the detection system. In addition, the spot size in the image
plane is nearly constant over the entire field of view so that resolution of the image is constant.

A fork holographic grating is a diffractive element containing a fork dislocation [17]. This
grating, when illuminated with a Gaussian beam, for example, from a single-mode fiber, pro-
duces the helical mode in the first diffraction orders (Fig. 4.3). Physically, a diffracted beam
is formed as a result of interference between the “regular” diffracted wave originating from the

22



grating and the divergent “singular” wave that originates from the bifurcation point in the holo-
gram center. The singular wave amplitude possesses much lower magnitude rapidly decreasing
with growing topological charge of the resulting beams. The grating used in this experiment
produces vortex beams with only odd values of Q for this wavelength.

(a) (b)

Figure 4.3: (a) Image of a fork holographic grating (reproduced from [17]) that produces beams with
a first-order dislocation. (b) A fork holographic grating transforms a beam from a single-mode fiber
into a series of doughnut shaped beams (Giorgio Volpe 2011 c© Optics & Photonics Focus).

Eventually, due to practical difficulties at obtaining the desired results, two extra set-ups,
modified versions of the original one, were constructed. These difficulties were mainly caused
by some remaining light coming from the vortex beam, that was traveling directly through the
receiver slit, interfering with the SPs. Fig. 4.4 shows the second set-up, where a razor blade
is placed at the working distance of the scan lens in order to block all the remaining light
that could reach the receiver slit. Also, a single lens is introduced at twice the focal length, in
between the razor and the sample to image the reshaped beam on to the sample.

P λ/2 HG SL S
OB CCD

Laser

SM

M

D
Razor

L
2f 2f

Figure 4.4: Second experimental set-up based on the first one. A single lens and a razor blade are
introduced in order to block the excess light from reaching the sample.

The third set-up (Fig. 4.5), simply introduces a screen next to the sample at a distance
less than 1 mm, just in front of the receiver slit with the same purpose. The improvements in
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the second and third set-ups were successfully applied by at least one member of our research
group in his own experiments (unpublished).

P λ/2 HG SL S
OB CCD

Laser

SM

M

D

Screen

Figure 4.5: Third experimental set-up based on the first one. A screen is introduced in order to block
the excess light from reaching the sample.

4.2 Results
In this section, we present the experimental results we obtained in the second and third set-ups
at reproducing the simulations in the lab. The approximate value of the waist parameter of
the host Gaussian beam varies in every case. We start with the tomograms for a Gaussian
beam in horizontal (Fig. 4.6(a)) and vertical movements (Fig. 4.6(b)). We can see that
experimental and expected results shown in Fig. 3.5 differ in the size and shape of the bright
spot although our experimental results are comparable in size and shape between each other
as expected. However, when we compare these results to the ones in Fig. 3.12 where we
incorporate interference with directly transmitted light through the receiver slit, we find a clear
similarity in structure.
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Figure 4.6: Experimental tomogram of a Gaussian beam with a waist parameter, w0 ≈ 40 µm, in (a)
horizontal and (b) vertical movements obtained using the third set-up.
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In Fig. 4.7 we show two experimental attempts of tomograms of a vortex beam Q = 1 with
vertical movement. Comparing them with the corresponding simulations without interference
(Fig. 3.8), we find that both are quite different in structure. However, looking at the simulations
with interference (Fig. 3.13) we do find some similarities. Note, for example, how the edges
and outer fringes of the central feature are comparable.
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(b)
Figure 4.7: Experimental tomograms of a Q = 1 vortex beam in vertical movement obtained using the
third set-up with d0 ≈ 20 µm. The waist parameter of the host Gaussian beam is w0 ≈ 30 µm.

Fig.4.8 is an example of tomograms obtained for a vortex beamQ = −3 in vertical movement
in the second set-up. As can be seen, no clear similarity was found between these results and
the simulation shown in Fig. 3.9(b) for a vortex beam with this charge. The simulation shown
in Fig. 3.14(b) however, clearly resembles the arrow-like shape as found in the experiment.
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(b)
Figure 4.8: Experimental tomograms of a Q = 3 vortex beam in vertical movement obtained using the
second set-up with d0 ≈ 10 µm. The waist parameter of the host Gaussian beam is w0 ≈ 7 µm.

It is interesting to note that even though the interference in all our results do not allow us
to recognize the phase of the incoming beam, it does tell us what the sign of its charge is.
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Chapter 5

Conclusions

The aim of this project was to find an alternative method for the phase retrieval problem using
SP properties. By simulating the generation of SPs by scattering an incoming vortex beam on a
narrow emitter slit milled in a gold film and the re-conversion to light of the diffracted SP wave
by a receiver and then, by translating the sample along the positive x-axis and positive y-axis,
we constructed a tomographic pattern of the plasmonic diffraction where each vertical slice of
the tomogram corresponded to one local sample of the incident vortex beam after propagation
from emitter to receiver. These simulated tomograms gave us both the phase and intensity of
the incoming vortex beam as intended, thus, solving the phase retrieval problem at least on
paper.

The first attempt to perform this experiment in the lab included the use of a gold film
with different slit-groove pairs. These structures weren’t able to convert the SPs back to light.
Trying to find an alternative approach for this problem, we decided to use a slit-slit structure
milled in the same sample. We tried with different experimental set-ups to avoid incoming
light reaching the receiver slit that could interfere with the re-emitted light coming from the
SPs, since we demonstrated that this interference is a major obstacle in the retrieval of phase
information. Unfortunately, none of these attempts successfully avoid such interference.

The main possible explanation for the failure of the original slit-groove structures, as dis-
cussed in section 2.2.4, is related to the depth of the grooves. Because of our results using the
slit-slit system show that the original approach of using emitter grooves instead of emitter slits
is still a possible solution, since it avoids the interference problem, we strongly suggest that the
next step in this project will be the construction of a sample with the same features as the one
that we used, but with a set of slit-groove structures where the only variable will be the depth
of the groove.

Some of the designs already constructed in the gold film used in this work included variations
of the slit-groove pairs such as the distance between the indentations and their relative size.
Moreover, by changing the emitter slit into an L-shaped slit and by allowing two receiver
grooves to radiate at either end, we would expect to measure the two polarization components
of the local input field, creating a polarization sensitive structure (2-dimensional scanning of
the input field). Along with the intensity and the phase information, knowing the polarization
would result in a complete characterization of an unknown incoming beam. These structures
should not be ignored in future projects.
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