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Chapter 1

General intro

An entangled photon pair consists of two photons that share a non-classical

correlation: It is impossible to gain knowledge about a physical parameter by

measuring a single particle. However, a measurement on one of the particles

immediately dictates the outcome of the measurement on he other particle.

Entangled photon pairs play an important role in quantum information where

they are used to demonstrate quantum non-locality, quantum teleportation

and quantum cryptography. For quantum cryptography single entangled

photon pair are enough while quantum computation requires a quantum

state of more than two particles that are simultaneously entangled.

In this project we will investigate four-photons states that are simultane-

ously entangled in the spatial degree of freedom. A similar situation in the

time domain has been described theoretically [9] and experimentally [12].

Entangled photon state are commonly created in non-linear crystals by

a process called spontaneous parametric down conversion process (SPDC).

Most often this process is thought of as creating single pairs of photons using

the vacuum state as input. Four photons states can be generated either by

the accidental production of two spontaneous pairs or by stimulated emission,

where one spontaneously generated pair triggers the emission of a second

identical pair. In order to see the effect of generation of a second pair strong

pumping is needed and the four photons have to be generated in a well defined

time bin [4, 10]. To satisfy the strong pumping and the well defined time bin

a pulsed pump is needed.
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This thesis describes the observation of stimulated emission of spatially

entangled photon states. Chapter 2 describes the process of collinear sec-

ond harmonic generation in a PPKTP (periodically poled potassium titanyl

phosphate) crystal using short pump pulses. Second harmonic generation

is linked and compared to the SPDC process in chapter 3. The spatial en-

tanglement of photon pairs generated with a pulsed pump is investigate in

chapter 4. In chapter 5 we finally investigate the spatial entanglement of four

photon states and the role of the stimulated emission process.
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Chapter 2

Collinear second harmonic

generation in PPKTP

2.1 Introduction

Second harmonic generation (SHG), or frequency doubling, is a nonlinear

process that converts incoming light to light with twice the frequency, or

half the wavelength. This process takes place in an appropriately chosen non-

centrosymmetric crystal, with a second-order nonlinearity χ(2). This nonlin-

earity ensures the generation of a nonlinear polarization PNL with a quadratic

response to the electric field of the light PNL ∝ χ(2)E2 ∝ χ(2)eiωteiωt =

χ(2)ei2ωt. This polarization on its turn generates the electric field at double

frequency.

2.2 Phase matching

To generate second harmonic signals efficiently so called phase-matching

conditions are necessary. For a phase-matched configuration the second

harmonic field generated over the length of the crystal interferes construc-

tively. In order to fulfill this condition the wave vector of the pump field

has to be equal to the sum of the wave vectors of the generated fields

∆k = 2kp − ks = 0[1]. Here kp and ks are the wave vector of the pump and

generated field respectively. In isotropic materials with a monochromatic
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pump field this phase-matching condition is equivalent to n(ω) = n(2ω) for

the refractive index of the material. This condition is generally not satisfied

due to index dispersion of the material, typical leading to n(ω) < n(2ω). To

create a phase-matched interaction one can use, among others, angle tuning

of a birefringent nonlinear crystal or quasi-phase-matching in a periodically

poled nonlinear crystal. In this project I will use quasi phase-matching.

For quasi-phase-matching, a ferroelectric material is produced in such a

way that one of the axes is periodically inverted as function of position. This

inversion will cause a periodic flip of the sign of the nonlinear coefficient

and consequently a periodic change in the sign of the nonlinear polarization.

After each half a coherence length, defined via Lcoh = 2
∆k

, the phase of the

dipoles is reversed, and the nonlinear effect will constructively interfere over

the entire length of the crystal. The periodically poling of the crystal results

in an extra factor in the phase-match function that will result in

∆k = 2kp − ks − km = 0 (2.1)

with km = 2πm
Λ

where Λ is the poling period[1] and m is an integer.

The intensity of the SHG light is then given by [1]

I ∝ I2
pL

2sinc2(
1

2
L∆k), (2.2)

where Ip is the intensity of the pump and sinc(x) ≡ sinx
x

.

2.3 Pulsed vs continuous wave second har-

monic generation

The efficiency of SHG is proportional to the power of the pump squared

(equation 2.2). This will result in a much higher second harmonic power

for a pulsed laser compared to a continuous pump laser. On the other hand

when the pulse length ∆t is small the Fourier related frequency bandwidth

∆ω is large as ∆ω · ∆t ≥ 1. This finite bandwidth will give rise to SHG

at multiple frequencies, but also allows for the process of sum frequency

generation (SFG).
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We approximate the shape of the pulsed pump laser, in the frequency and

time domain, by a Gaussian. By integrating all contributions to the second

harmonic we obtain the second harmonic intensity

I ∝ I2
pL

2 τ√
8 ln 2π

∫ ∫
dωp1dωp2 exp

−((ωp1 + ωp2)− 2ω0)2τ 2

8 ln 2
sinc2(

1

2
L∆k)

(2.3)

as described in reference [8]. With τ the pulse length of the laser, ωp1,2 the

frequencies of the pump photons and ω0 the central pump frequency. Note

that ∆k depends on the frequencies ωp1,2. In the cw limit, i.e. τ to infinity,

the Gaussian reduces to a delta function and we obtain the result given by

equation 2.2.

For pulsed lasers, the finite spectral bandwidth requires us to consider

the frequency dependence of n(ω) and n(2ω). In general, this group velocity

of the signal and pump beam will not be the same in a nonlinear crystal.

This difference in group velocity will lead to the effect that the pump and

signal beam will not overlap anymore after propagating a distance Lgvw in

the crystal. This group velocity walk off length is given by[7]

Lgvw = τp

(
1

vgs
− 1

vgp

)−1

. (2.4)

Here τp is the pulse length of the pump and vgp and vgs are the group velocities

of the pump and the second harmonic beam respectively. The group velocity

is given by vg = dω
dk

=
(
dk
dω

)−1 ≈ c
(
n+ ω dn

dω

)−1
. This length Lgvw is typically

a few mm by pump pulses with a duration in the order of picoseconds.

For many crystals a judicious choice of signal, idler wavelength and poling

period can be made where the group velocity is matched ( 1
vgs
− 1

vgp
= 0) as

well as the phase-match function 2.1. This results in an infinity long group

velocity walk off length. Group velocity matching possibilities for PPKTP

can be found in [5, 7]. For this report we want the signal and idler wavelength

to be equal and around 800 nm. At this wavelengths group velocity matching

is not possible.

To calculate the group velocity walk off for our setup we first calculate the

group velocities from the Sellmeier equations for the refractive index. The

Sellmeier functions for PPKTP are given in reference [3] and the pulse time
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of the laser is specified by the factory as 2 ps. With this values equation 2.4

results in Lgvw = 5.4 mm. Here the polarization of the light is vertical to

vertical, the ordinary axes of the crystal.

An alternative way is to write it as frequency spread instead of a walk-off

length.

A ∼ sinc

(
π

(ω − ω)

∆ωSHG

)
(2.5)

with

∆ωSHG =
2

Lπ

(
1

vgs
− 1

vgp

)−1

= 1.02 · 1012s−1, (2.6)

which corresponds to ∆λ = 0.37 nm at λ = 826 nm.

2.4 Results

Figure 2.1: Second harmonic generation setup. The PPKTP Type I crystal is

2 mm long and has a poling period of Λ = 3.675 µm. The λ
2 -plate and the polarizer

are used to tune the power. The red power is measured by placing a power meter

in the beam at the place of the dotted box. The SHG power is measured at the end

with a power meter.

Figure 2.1 shows the setup used to generate and measure second harmonic

from a Ti:sapphire laser operating at a wavelength of 826 nm. The laser can

be operated either as a cw-laser or as a pulsed laser with pulses of length

τ = 2 ps by switching on or off the mode-locking. The second harmonic is

generated in a 2 mm long PPKTP crystal with a poling period Λ = 3.675 µm.

This 2 mm crystal is safe from the group velocity walk off limit Lgvw = 5.4 mm

calculated in the previous section. We use a Peltier element together with a

PID controller to tune the temperature from 10 ◦C to 90 ◦C. The combination

of λ/2-plate and polarizer is used to vary the pump power. A power meter
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placed just in front of the crystal is used to measure the average power of

the pump.

Figure 2.2: Log-log plot of the measured output power at optimal phase-matching

temperature as a function of input power. The squares are for a pulsed pump and

the circles for cw pump. The triangles are measurements where the pulsed pump

laser is not properly mode-locked. The lines though the data represents a quadratic

dependence.

The measured SH output power as a function of pump power is plotted

in figure 2.2 on a log-log scale. Data are shown for pulsed (red squares) and

cw-pump (blue circles) and are compared to a quadratic power dependence

indicated by the lines though the data. For both the pulsed and continuous

pump the output power depends quadratic on the input power. The pulsed

pump is expected to give a factor 1
τf

higher output power. Here τ is the pulse

duration en f the repetition rate of the laser. For the factory specification

values of the laser this would be a factor 6000. The measurements show

nearly a factor 103 difference in efficiency. This lower efficiency difference

could be caused by a not fourier limited pulse and a longer pulse duration.

Figure 2.3 shows the SH power as a function of temperature of the crystal

for cw (blue circles) and pulsed (red squares) pump. The solid lines are fits
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Figure 2.3: Measured second harmonic in a 2 mm PPKTP crystal as function

of crystal temperature. Data are shown for a cw pump (blue circles) and a pulsed

pump (red squares) at a pump wavelength of 826.4 nm. The lines through the data

are fits using equations 2.2 and 2.3 respectively.

to the data using equation 2.2 and equation 2.3 respectively. To this end

we use the temperature dependent phase-mismatch ∆k(T ), which is easily

derived from the temperature dependence of the refractive index n(T ) =

n0+c1T+c2T
2 reported in literature [2, 11]. To avoid the integral of equation

2.3, the integral is approximated by a summation over the signal and idler

wavelengths. The summation limits are chosen to be 823.9 nm till 828.9 nm,

with steps of 0.1 nm. This summation limits are much wider than the width

of the Gaussian pump pulse ∆λp = 0.6 nm. To be able to fit the top of the

sinc for both the cw and pulsed pump an extra phase had to be added into

the sinc resulting into sinc2(1
2
L∆k + φ). This is probably due to the fact

measured temperature is not exact and discrepancy in literature values of

the refractive index of PPKTP. To compare the width of the cw and pulsed

peak, both peaks are fitted with a Gaussian to calculate the ratio of there

FWHM. The pulsed phase-match function is a factor 1.3 wider than the cw

pump SH phase-match function.
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Figure 2.4: Optimal phase-matching temperature as a function of pump wave-

length. The line through the data is a linear fit with a slope of 18.1± 3.3 ◦C/nm.

Based on the change of refractive index with temperature we expect a shift

in optimal temperature with pump wavelength. To investigate this in more

detail we tuned the laser wavelength and recorded the phase-match curve as

function of temperature as above. Figure 2.4 shows the optimal phase-match

temperature as a function of pump wavelength. The line through the data

is a linear fit with a slope of 18.1± 3.3 ◦/nm.

During our experiments we found that the temperature where maximum

SH power is generated depends on pump power. The measured power depen-

dence is shown in figure 2.5 for CW (blue circles) and pulsed (red squares)

laser operation. The linear change in the optimal temperature for a cw pump

(blue circles) is consistent with heating of the light. This heating is not mea-

sured by the temperature sensor because it is installed in the holder under

the crystal and does not measure the actual crystal temperature at the posi-

tion of the laser beam. In contrast, the temperature for optimal power with a

pulsed pump (red squares) can not be explained by a heating argument only,

because we expect the heating effect to depend on the time average power
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Figure 2.5: Measured optimal phase-match temperature as a function of pump

power for cw (blue circles) and pulsed laser (red squares). The decrease in set

temperature with pump power is a factor 5.6 larger for pulsed laser.

which is equal for the pulsed and cw pump beam. Therefore, we speculate

that other non-linear effects, e.g. Kerr effect, are important.
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Chapter 3

Angular distribution of SPDC

light in PPKTP for a pulsed

pump

3.1 Introduction

Spontaneous parametric down conversion (SPDC) is the inverse process of

sum frequency generation. In this process a pump photon splits sponta-

neously into two photons, in such a way that the total energy is conserved.

In this process only the pump photon has a well-defined direction and fre-

quency. This gives freedom to the two photons generated via SPDC to exit

at different angles and frequencies as long as they obey energy conservation

and fulfill the phase-matching condition. For SPDC the phase-matching con-

dition dictates that the wave vectors of the two generated photons must add

up to the wave vector of the pump photon.

3.2 Experimental setup

To investigate the angular distribution of the light generated by degenerate

SPDC, we place a camera in the far-field behind the crystal as depicted in

figure 3.1. A GaP filter blocks the pump light, while a bandpass filter selects

only the degenerate frequency that is exactly half of the pump frequency,
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Figure 3.1: Experimental setup used to record the far-field of 826nm light produced

by parametric down conversion of 413nm laser pulses. The pump beam is focused

into the crystal with a f = 10 cm lens. The output from the PPKTP crystal is

collected by a lens with f = 10 cm, and imaged on a CCD camera with a f = 2.5 cm

lens filtered by a GaP wafer and a 1 nm bandpass filter at a center frequency of

826.34 nm. All the lenses are put as good as possible at there focal distances, so

that the pump pulse, that we consider to be a parallel beam, makes a far-field image

on the CCD.

ensuring that the two generated photons have the same frequency. This

bandpass filter is centered at 826.34nm and has a fill-width-half-maximum

(FWHM) of 1 nm.

Figure 3.2 shows the recorded far-field images for a crystal temperature of

20, 30 and 40 ◦C. The position on the CCD was converted to a far-field angle

using the focal distance f = 25 mm of the lens. At increased temperature the

exit angle of the generated photons is observed to decrease, to compensate

for the change in the phase-matching condition. The invariance of the type-

I SPDC process for rotation around the z-axis results in a ring of photons

collected in the far-field. Collinear SPDC is achieved for a set temperature

of about 40 ◦C. This temperature can be compared directly to the optimal

phase-matching temperature for collinear SHG described in chapter 2.

Comparing this results with a continuous pump is not possible in our

setup due to the to low pump power with a cw-pump. To generate our

413 nm pump we use the SHG process to convert our 826 nm pump. This

process is very inefficient with a cw-pump.

To describe the SPDC process quantitatively we will assume a plane wave

for the pump field and a collinear setup. The interaction Hamiltonian is then
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Figure 3.2: Far-field images of the angular distribution of SPDC light generated

from a 2 mm PPKTP crystal. The CCD images are recorded with a 1 nm bandpass

filter at crystal temperatures of: a) 20 ◦C, b) 30 ◦C and c) 40 ◦C.

given by

HI(t) =

∫
d~k1

∫
d~k2

∫
d~rCei(

~kp−~k1−~k2 )̇~re−i(ωp−ω1−ω2)ta†(~k1)a†(~k2) + h.c.

(3.1)

and the output state is

|Ψ〉 = e−iHI(t)|vac〉 ' (1− iHI(t)−
1

2
H2
I (t))|vac〉 (3.2)

Typically the pre-factor C, that depends on pump power, is small for realistic

pump powers and the term linear in HI , which corresponds to the generation

of single pairs by SPDC, is small as compared to vacuum.

The integrals for the linear term in equation 3.2 results in a bi-photon

amplitude behind the crystal given by

A(qs, qi) = Csinc(
L

2
∆k(qs, qi)) ' Csinc(

L

4kp
|qs − qi|2)), (3.3)

where C a constant, qs,i = k⊥s,i are the components of the wave vector normal

to the pump propagation direction and ∆k(qs, qi) is the phase mismatch. In

the last step we took k||p = k||1 + k||2 + km and we neglect birefringence of

the crystal. The two-photon amplitude can be written in angles by making

use of ks,iθs,i = qs = −qi to yield,

A(θs, θi) = Csinc(
kp,airθ

2
sL

4n
) (3.4)
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Equation 3.4 predicts a sinc function with distinct minima, which would

result in multiple rings as in reference [11]. Instead the experimental data

in figure 3.2 shows one big ring. Similar to the SHG with a pulsed pump

in figure 2.3, the difference is due to the Fourier related frequency spread

related to the short pump pulses. We could add this to the above equation

by adding the term from the SHG equation 2.5 resulting in

A(θs, θi,∆ωs,∆ωi) = Csinc(π
ωp − ωp0
∆ωSHG

+
kp,airθ

2
sL

4n
) (3.5)

3.3 Quantitative description SPDC

In this section we present experimental results for SPDC generated with

pulsed laser excitation in order to gain a better quantitative idea of the

SPDC process. In particular we study the temperature dependence of the

SPDC process and report the opening angle of the SPDC light in figure 3.3

and the intensity in figure 3.4 as function of crystal temperature. Figure

3.3 shows a false color plot of SPDC ring after radial integration as function

of temperature. The SPDC light is filtered by a 1 nm bandpass filter at

826 nm. The radius of the ring is indicated on the vertical axis, while crystal

temperature is indicated at the horizontal axis. SPDC becomes collinear

when the light makes an angle of 0 mrad, at a temperature of 40.3 ◦C. As

expected the radius of the SPDC light changes with the square root of the

temperature. A fit to the data with r = A
√

1− T
B

with T in Celsius results

in A = 64.2 ± 0.4 mrad and B = 41.3 ± 0.4 ◦C. Here A is the radius at

0 ◦C and B the temperature for collinear SPDC.

Figure 3.4 shows the total intensity of the SPDC light filtered with a 1 nm

bandpass filter at 826 nm as function of temperature. For temperatures below

20 ◦C clipping of the SPDC light by the finite numerical aperture of the setup

decreases the intensity of the SPDC light. At the colinear phase-matching

temperature of 41.3 ◦C the intensity of the SPDC light is halved. This is due

to the fact that the phase-mismatch can only be positive and effectively half

of the ring has disappeared.
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Figure 3.3: Radially integrated intensity of the SPDC rings for a 2 mm PPKTP

crystal as a function of temperature. The SPDC light is filtered by a 1 nm FWHM

bandpass filter centered at 826.34 nm.
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Figure 3.4: Total intensity of the SPDC rings from a 2 nm PPKTP crystal

filtered with a 1 nm bandpass filter as function of temperature. Clipping of the

SPDC light by the finite numerical aperture of the setup decreases the intensity for

temperatures below 20 ◦C.
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Chapter 4

Spatially entangled two-photon

state

4.1 What is spatial entanglement?

Spatial entanglement is a correlation of the transverse wave vector for a

pair of photons. A measurement of the emission direction of an individual

photon does not give extra information compared to the classical intensity

measurement. However, when correlations are studied between two photons

belonging to a single pair the measurement of the emission direction of the one

photon determines the direction of the second photon. These photon pairs

are entangled and it is not possible to write the transverse wave vector of one

photon independent of the transverse wave vector of the other photon. The

value of q1 depends on q2, and the amplitude of the two-photon state can not

be written as a product of two one-photon amplitudes: A(q1, q2) 6= f(q1)g(q2).

4.2 How to measure it?

Figure 4.1 shows the setup for detecting the spatial entanglement of two

photons produced by SPDC. The 413 nm pulsed pump beam is focused with

a f = 500 mm lens. The beam waist of the pump beam is calculated, from

the specifications of the beam diameter exiting the laser, to be 126 µm and is

located in the middle of the crystal. Two detectors are placed in the far-field
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Figure 4.1: Experimental setup used to record two-photon correlations of photon

pairs generated in a spontaneous parametric down conversion process at 826nm

in a Type 1 PPKTP crystal. The pump laser generating 2 ps pulses at 413 nm

is focused with a f=500 mm lens in the center of the crystal. The photon pairs

are collected at an angle of 50 mrad with a f=270 mm lens. In the far-field an

aperture selects the spatial modes. After the aperture the light is collected into a

multi mode fiber (diameter 50 µm) with a f = 4.5 mm lens connected to a Perkin

Elmer SPCM-AQ4C single photon detector. In the upper arm, the aperture, lens

and fiber are all placed on a single translation stage. The aperture size in the lower

arm is 0.8 mm and the aperture size in the upper arm is 1 mm.

at opposite sites of the far-field SPDC ring with an half opening angle of

50 mrad. A f = 270 mm lens in each arm is used to create the far-field

image. Two apertures with diameter d = 1 mm selects the spatial modes.

After the aperture the light is collected into a multi mode fiber (diameter

50 µm) with a f = 4.5 mm lens connected to a Perkin Elmer SPDC-AQ4C

(500 s−1 dark, 45% quantum efficiency at 826 nm) single photon detector.

The aperture, lens and fiber are all placed on a single translation stage.

Moving this translation stage, situated in the far-field of the SPDC light will

result in detecting different transverse wave vectors.

Figure 4.2 a-c) shows false-color images of the counts of detector 2, di-

vided by 60, as a function of position in the x and y direction. Figures a, b

and c corresponds to crystal temperatures of 15.8 ◦C, 20.4 ◦C and 25.75 ◦C

respectively. In these images one can see a part of the ring of figure 3.2

that can be seen by the single photon detector. For higher temperatures the

radius of the ring decreases.

Figures 4.2 d-f) show false color plots of the coincidences between detector

1 and 2 for a fixed position of detector 1 and the same crystal temperatures

as in figures a-c. The coincidence peak does not move with temperature like
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Figure 4.2: a-c) the counts at detector 2 divided by 60, for a part of the ring.

The crystal temperatures are 15.8 ◦C, 20.4 ◦C and 25.75 ◦C respectively. d-f the

coincidence counts between detector 1 and 2 for the same temperatures. The light

is filtered with a 5 nm bandpass filter.

the singles. The position is equal to the position of the fixed detector 1 for

all temperatures. This shows that selecting the transverse wave vector at

detector 1 will set the wave vector at detector 2 independent of the diameter

of the ring. The observed coincidences can thus be represented in terms of

the difference in position on detector 1 an 2.

Figure 4.3 shows the measured singles on detector 2 and coincidences

as a function of the position of the detector in the horizontal x-direction.

The blue curve shows the single counts on detector 2 and the green curve

is the coincidence counts between detector 1 and 2. The dashed lines are a

Lorenzian and a Gaussian fit to the single and coincidence data respectively.

The FWHM of these fits are wsingles = 9.68 ± 0.73 mrad for the singles

and wcoincidences = 3.70 ± 0.03 mrad for the coincidence peak. Their ratio is

R = 2.62± 0.20 which is an indication of the number of modes as explained
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Figure 4.3: Single count rate at detector 2 (blue line) and coincidence rate between

detector 1 and 2 (green line) as a function of far-field angle in the x-direction for

a 5 nm bandpass filter. Single rates are divided by a factor 30. The dashed curves

are a Lorenzian and a Gaussian fit to the single and coincidence data, respectively,

resulting in a FWHM of 9.68± 0.73 mrad and 3.70± 0.03 mrad. The inset shows

a CCD image of the SPDC ring in the far-field filtered by a 1 nm bandpass filter.

The red circles indicate the approximate position of detector 1 and 2.

in the next section.

4.3 Number of modes

A Schmidt decomposition is a way to calculate the number of distinct eigen-

modes available for an (entangled) quantum state. Law and Eberly [6] cal-

culated the Schmidt number K for the spatial entanglement of SPDC photon

pairs. They write the 2-photon field as

Afocused(qs, qi) ∝ e−|qs+qi|2/σ2

sinc(
L

4kp
|qs − qi|2). (4.1)
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Law and Eberly showed that with Gaussian-Hermite or Gaussian-Laguerre

mode expansion the Schmidt number can be conveniently written as

K =
1

4

(
bσ +

1

bσ

)2

, (4.2)

where b2 = L
4kp

is the width of the phase-match function and σ = 2
wpump

is

the inverse width of the pump beam. Following [13] the number of modes in

the horizontal x direction results in

Kx =
1

2

(
bσ⊥ +

1

bσ⊥

)
(4.3)

where b and σ are now the effective inverse width and width of the sinc

and pump beam respectively. This Schmidt number is an indication of the

number of spatial modes.

In an experiment this number K is equal to the ratio of the measured

width of the singles over the width of the coincidence peak. This can be seen

by writing the width of the singles and coincidences peak in terms of σ and b.

For the singles peak this gives σsingles = 1
2

√
1
b2

+ σ2 and for the coincidences

peak σcoincidences = σ√
b2σ2+1

. The number of modes now becomes

Kx =
σsingles

σcoincidences
. (4.4)

Equation 4.4 holds only if there are no filters and the pump is continuous

wave. If we approximate the aperture (a spatial filter) with a Gaussian we

get the FWHM as waperture = d
f

= 3.7 mrad. This minimum detection width

limits our detection of the coincidence peak and the ratio of the width of the

coincidences and the singles should be interpreted as a lower limit for the

number of modes Kx ≥ R = 2.62 ± 0.20. In reference [13], the effect of a

spatial filter is described as an effective b given by beff =
√
b2 + a2/2.

Calculating the single and coincidence width for a non-pulsed, non-collinear,

focused pump, with a factor 0.88λs
2π

to transform the sigmas mentioned

above into FWHM widths, results in wsingles = 7.0 mrad and wcoincidences =

1.8 mrad. This results in Kx = 3.8 spatial modes in the x-direction. The

width of the coincidences seems a factor 2 under estimated and the width of

the singles will be broader by the spectral width.
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Chapter 5

Four-photon spatial

entanglement

5.1 Introduction to four-photon state

We will now investigate the second-order process in SPDC that produces

4-photons. This second-order process can either produce 4 photons that are

in a four-photon entangled state, or it can produce a double pair state.

Here the first process corresponds to stimulated emission of a second pho-

ton pair by the first spontaneous pair, while the second process corresponds

to the spontaneous emission of two independent pairs. For a single spatial

and temporal mode both processes have equal probability. Depending on

the number of modes collected by the detector the relative amplitude of the

stimulated process will be reduced. Thus, to observe the stimulated process,

the number of spatial-temporal modes collected should be small.

It is essential to use a pulsed laser so that the photons are generated

in a well defined time bin. The use of a CW pump generates a very large

number of temporal modes, i.e., the inverse of the bandwidth of the SPDC,

and reduces the visibility to nearly zero. Even in the case of a pulsed pump,

the SPDC light should be filtered by a narrow bandpass filter to increase

the coherence time of the SPDC light, in order to decreases the number of

temporal modes.
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5.2 Measurement

The setup to measure the correlations due to a four-photon state with two

detectors is shown in figure 5.1. An extra beam splitter is added in the upper

arm compared to the setup to measure 2-photon spatial entanglement (figure

4.1). This extra beam splitter gives the possibility to detect 2 photons in one

arm. Because all photon pairs will send one photon to the lower arm and

the second photon to the upper arm, coincidences between D2 and D3 probe

4 photon events. It is then sufficient to show that 2 photons in one arm are

entangled for having a 4-photon entangled state.

Figure 5.1: Experimental setup used to record spatial correlations between two

photons in one arm. The setup is equal to the two-photon setup figure 4.1 except

that an extra beam splitter is added in the far-field of the upper arm and a copy

of the translation stage with aperture, lens and fiber is placed at the second exit of

the beam splitter.

To measure the coincidences between two different pump pulses, an elec-

tronic delay is added after one of the detectors. This electronic delay delays

the signal that is send from the photon counter to the coincidence counter.

The range of this electronic delay is 64 ns and the minimal step size is 250 ps.

For the two detectors, D2 and D3, at the same far-field position figure 5.2

gives the coincidences as a function of delay time. The middle peak is due

coincidences of pairs in the same laser pulse, while the side peaks are due to

coincidences of pairs in different laser pulses.

In figure 5.3 the singles and fourfold coincidences are shown for a scan

of detector 2 in the y plane at x = 50 mrad. The fourfold coincidences are

taken between detector 2 and 3 where detector 3 is placed at a far-field angle
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Figure 5.2: Coincidences of the SPDC light between detector 2 and 3 filtered with

a 5 nm bandpass filter and a 1 mm aperture. On the y axis, we have the delay

of arrival time of the detection pulse at the coincidence counter. The difference

between the peak at zero delay and the others are the fourfold coincidences.

of 50 mrad in the x plane and at -3.7 mrad, 0 mrad and 3.7 mrad in the

y-plane for the blue, red and green line respectively. The black line are the

singles scaled down by a factor ten thousand.

A scan in the x-direction is shown in figure 5.4. Here detector 3 is placed

at 46.3 mrad, 50 mrad and 53.7 mrad in the x plane for the blue, red and

green line respectively. And detector 2 is scanned in the x plane. The

singles and the middle coincidence peak are fitted by a Gaussian with FWHM

9.62 ± 0.64 mrad and 3.47 ± 0.30 mrad respectively. This values are in

good agreement with the values of the 2 photon case, and the ratio is R =

2.77± 0.30.
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Figure 5.3: The coincidences of detector 2 and 3 for position of detector 2. The

position of detector 3 is -3.7 mrad for the blue line, 0 mrad for the red line and

3.7 mrad for the green line. In the x plane both detectors are placed at 50 mrad.

The black line are the single counts at detector 2 scaled by a factor of 10 000. The

light is filtered by a 5 nm bandpass filter

5.3 Conclusions for observing 4-photon spa-

tial entanglement

A way to calculate the ratio between the 4 photon and the 2x2 photon states

is to measure the coincidences within one pulse and between two subsequent

pulses. Measuring within the same pulse gives the probability for creating

4 photons P4, while measuring between two pulses corresponds to the prob-

ability of creating two independent pairs devoted by P 2
2 .

P4 =
P 2

2

2
(1 + χ). (5.1)

Here the factor 1/2 comes from the Poissonian statistics. For a single spatial

mode the parameter χ is given by [12]

χ =
r

(1 + r2)1/2
≈ r =

tphc
τ

=
1

Nfrequency

. (5.2)
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Figure 5.4: The coincidences of detector 2 and 3 for position of detector 2. The

position of detector 3 in the x plane is 46.3 mrad for the blue line, 50 mrad for

the red line and 53.7 mrad for the green line. The black line are the single counts

at detector 2 scaled by a factor of 10 000. The light is filtered by a 5 nm bandpass

filter. The singles and middle coincidence peak are fitted with a Gaussian. The

widths of the Gaussian are 9.62± 0.64 mrad and 3.47± 0.30 mrad for the singles

and coincidences respectively. There ratio is Kx = 2.77± 0.30.

Here tphc is the coherence length of the photons and τ the pulse length of the

pump laser. The last step holds for r << 1. τ

tphc
is the number of frequency

modes collected. An intuitive explanation for the value of χ is that a photon

pair can be generated in N modes, while, generating two pairs in the same

mode gives an enhancement of a factor 2 due the stimulated emission.

In our setup not only frequency modes but also spatial modes are gener-

ated. For each spatial mode, τ

tphc
frequency modes are also collected. For every

two photons generated at the same mode, there are also N−1 photons gener-

ated in other modes. If there are multiple frequency modes as well as multiple

spatial modes, the total number of modes is given by N = NspatialNfrequency.

The difference in height between the center peak and the side peaks in

figure 5.2 is 3.8%. This indicates that there are around 26 spatial-temporal
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modes collected. A bandpass filter with a FWHM of 5 nm gives a coherence

time of the photons of tphc = 0.44λ2

c∆λ
= 0.20 ps. For the laser pulse duration

of 2 ps the number of temporal modes is Nfrequency = 10, leaving 2.6 spatial

modes collected simultaneously. This number of spatial modes is not the

number of spatial modes generated as measured in figure 5.4, but the number

of spatial modes that pass though the aperture of the detector simultaneously.

The graphs in figure 5.3 and 5.4 show small negative numbers. We cur-

rently believe this is due to contributions from higher order terms involving

6 photons. In appendix A the calculation of the 3rd order term of the SPDC

process is presented. In the conclusion of this calculation the number of coin-

cidences expected to detect in one pulse or between two pulses is presented.

This difference between this two numbers gives a small negative value. This

negative number depends on the total number of modes generated.

5.4 Follow-up experiments to improve the vis-

ibility

The experiments of the previous sections show only 3.8% of the 4-photons

generated to be four-photon states. It should be possible to increase this

number by decreasing the number of modes collected simultaneously by the

detector.

In figure 5.5 the visibility of the 4 photon state as function of aperture

size is shown for a 5 nm bandpass filter (red squares) and a 1 nm bandpass

filter (blue circles). In contrast to the previous measurements the lens that

focuses the pump beam on the crystal has a focal length of 300 mm in

this measurement. The visibility here is defined as 2P4

P 2
2

and is measured by

positioning detector 2 and 3 at the same position and divide the coincidences

in one pulse by the coincidences between two pulses.

The results of figure 5.5 show a clear improvement in visibility between

the two bandpass filters. This improvement is due to the reduction of fre-

quency modes collected. Also the reduction of the spatial modes collected,

by reducing the size of the aperture, shows a clear improvement. The num-

bers in the graph are not comparable with older results due to the fact that
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Figure 5.5: Visibility of the 4-photon state as function of the aperture size, for a

SPDC light filtered by a 5 nm bandpass filter (red squares) and filtered by a 1 nm

bandpass filter (blue circles) at 826 nm center frequency and a focus lens for the

pump of 300 mm. The visibility here is defined as 2P4

P 2
2

. For aperture sizes under

the 1.5 mm the visibility goes linear up. For bigger aperture sizes the aperture

collects all modes and the visibility stays constant.

the lens to focus the light in the crystal is changed. The stronger focus re-

duces the number of spatial modes generated and changes the typical size

of a spatial modes in the far-field and thus changes the number of spatial

modes collected by the aperture.

To complete the investigation of the visibility of the 4-photon states, as

shown in figure 5.5, smaller apertures and lenses with smaller focal length for

focusing the pump beam are needed. We expected that for smaller apertures

the visibility saturates because the aperture then only selects one spatial

mode. For smaller focal length of the lens in the pump beam, a higher

visibility is expected at aperture sizes that collect all modes. This is due the

fact that when all spatial modes are collected, the number of spatial modes

collected is smaller due to small number of total spatial modes generated.
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5.5 Discussion

In the first three sections of this chapter we have seen the results of 4 photon

experiments. The ratio 4-photon states to 2x2 photon states in this results

is very low. In section 5.4 the first experiments of improving this ratio show

that the visibility can be increased from ¡4% to ¿30%. This project will

continue in the lab to further optimize the visibility and number of 4-photon

states generated. This can be done by minimizing the number of collected

modes in the spatial and frequency domain, by using smaller apertures and

narrow bandpass filters. The large increase in visibility is mostly due to the

5-fold decrease in the bandwidth of the bandpass filter.

An other effect that needs further investigation is the negative counts as

shown in figure 5.3 and 5.4. As already stated in section 5.3 this effect prob-

ably depends on the number of total modes generated. When the visibility

is optimized by collecting less modes this effect will get less prominent.
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Appendix A

Calculation of the coincidence

rates

The Hamiltonian and the state created by SPDC are given by:

H =
N∑
i=1

κ̃A†~qi + h.c.

A†~qi = a†~qia
†
~−qi

(A.1)

|Ψ〉 = exp(−iH t

~
)|0〉 ≈ (1− it

~
H − t2

2~2
H2 +

it3

6~3
H3)|0〉

The different contributions are then:

H|0〉 = κ̃
N∑
i=1

A†~qi |0〉 = κ̃
N∑
i=1

|~qi; ~−qi〉

The linear term creates N pairs, each in a single spatial mode.
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H2|0〉 = κ̃2

N∑
j=1

(A†~qj +A~qj)
N∑
i=1

A†~qi |0〉 = κ̃2(
N∑
j=1

N∑
i=1

A†~qjA
†
~qi
|0〉+N |0〉)

= κ̃2(
N∑
i=1

A†~qiA
†
~qi
|0〉+

N∑
j=1

N∑
i=1,i 6=j

A†~qjA
†
~qi
|0〉+N |0〉)

= κ̃2(
N∑
i=1

2|~qi; ~−qi〉 ⊗ |~qi; ~−qi〉+
N∑
j=1

N∑
i=1,i 6=j

|~qj; ~−qj〉 ⊗ |~qi; ~−qi〉+N |0〉)

The quadratic term creates 2N double pairs in the same mode, andN(N−
1) pairs with the two photons in different spatial modes. This last term

corresponds to the total number of possibilities to distribute two photons over

N bins, given that no two photons should occupy the same mode. There are

N ways to put two photons in the same mode. The extra factor 2 in that term

arises from the creation operators that create two photons in the same mode.

This factor two is exactly the term that gives rise to stimulated emission! It

is easier to create a second photon in the same mode than what one would

expect based on a statistical argument.
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H3|0〉 = κ̃3

N∑
k=1

(A†~qk +A ~qk)(
N∑
j=1

N∑
i=1

A†~qjA
†
~qi
|0〉+N |0〉)

= κ̃3(N
N∑
i=1

A†~qi |0〉+
N∑
k=1

N∑
j=1

N∑
i=1

A†~qkA
†
~qj
A†~qi|0〉+

N∑
k=1

N∑
j=1

N∑
i=1

A ~qkA
†
~qj
A†~qi |0〉)

= κ̃3(N
N∑
i=1

A†~qi |0〉+
N∑
i=1

(A†~qi)
3|0〉+

N∑
j=1

N∑
i=1,i 6=j

A†~qj(A
†
~qi

)2|0〉+

N∑
k=1

N∑
j=1,j 6=k

N∑
i=1,i 6=j 6=k

A†~qkA
†
~qj
A†~qi |0〉+

N∑
i=1

A~qi(A
†
~qi

)2|0〉+

N∑
j=1

N∑
i=1,i 6=j

A~qjA
†
~qj
A†~qi |0〉+

N∑
j=1

N∑
i=1,i 6=j

A~qjA
†
~qi
A†~qj |0〉)

= κ̃3(N
N∑
i=1

A†~qi |0〉+
N∑
i=1

(A†~qi)
3|0〉+

N∑
j=1

N∑
i=1,i 6=j

A†~qj(A
†
~qi

)2|0〉+

N∑
k=1

N∑
j=1,j 6=k

N∑
i=1,i 6=j 6=k

A†~qkA
†
~qj
A†~qi |0〉+ 4

N∑
i=1

A†~qi |0〉+ 2(N − 1)
N∑
i=1

A†~qi |0〉)

= κ̃3((3N + 2)
N∑
i=1

A†~qi|0〉+
N∑
i=1

(A†~qi)
3|0〉+

N∑
j=1

N∑
i=1,i 6=j

A†~qj(A
†
~qi

)2|0〉+

N∑
k=1

N∑
j=1,j 6=k

N∑
i=1,i 6=j 6=k

A†~qkA
†
~qj
A†~qi |0〉)

= κ̃3((3N + 2)
N∑
i=1

|~qi; ~−qi〉+ 6
N∑
i=1

|~qi; ~−qi〉 ⊗ |~qi; ~−qi〉 ⊗ |~qi; ~−qi〉+

2
N∑
j=1

N∑
i=1,i 6=j

|~qj; ~−qj〉 ⊗ |~qi; ~−qi〉 ⊗ |~qi; ~−qi〉+

N∑
k=1

N∑
j=1,j 6=k

N∑
i=1,i 6=j 6=k

|~qk; ~−qk〉 ⊗ |~qj; ~−qj〉 ⊗ |~qi; ~−qi〉)

The H3 term can be interpreted in a similar way. There are N(N −
1)(N − 2) ways to distribute 3 photons over N modes if each of the photons

is in a different mode. There are N(N −1) ways to distribute 3 photons over
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N modes if 2 photons need to be in the same mode, while the third photon

is in a different mode. This term gets an extra factor 2 from the creation

operators that create two photons in the same mode. Similarly, there are N

ways to put 3 photons all in the same mode and the creation operators give

an extra factor (
√

3!)2 = 6 to this term. The (3N + 2)N single photon terms

are due to combinations of a single annihilation operator and a product of

two creation operators.

To understand the states created after a photon detection in one of the

arms of the SPDC setup a projection a†~q1 |0〉〈0|a~q1|Ψ〉 = |~q1; 〉〈~q1; ||Ψ〉 should

be calculated. In this case the photon is detected in mode 1. An expres-

sion 1√
2
|~q1; 〉 ⊗ |~q2; 〉〈~q1; | ⊗ 〈~q2; | 1√

2
|Ψ〉 then gives the state after a coinci-

dence detection event of a photon in mode 1 and a photon in mode 2 and
√

2√
2
|~q1; 〉⊗ |~q1; 〉〈~q1; | ⊗ 〈~q1; |

√
2√
2
|Ψ〉 gives the state after a coincidence detection

of 2 photons in mode 1.

〈~q1; ||Ψ〉 = −it
~
〈~q1; |H|0〉 − t2

2~2
〈~q1; |H2|0〉+

it3

6~
〈~q1; |H3|0〉

〈~q1; |H|0〉 = κ̃

〈~q1; |H2|0〉 = κ̃2(2|~q1; ~−q1〉+ 2
N∑
i=2

|~qi; ~−qi〉)

〈~q1; |H3|0〉 = κ̃3((3N + 2) + 6|~q1; ~−q1〉 ⊗ |~q1; ~−q1〉+ 2
N∑
i=2

|~qi; ~−qi〉 ⊗ |~q1; ~−q1〉

+2
N∑
i=2

|~qi; ~−qi〉 ⊗ |~qi; ~−qi〉+
N∑
j=2

N∑
i=2,i 6=j

|~qj; ~−qj〉 ⊗ |~qi; ~−qi〉)

Coincidence detection, same spatial mode
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〈~q1; | ⊗ 〈~q1; |H|0〉 = 0

〈~q1; | ⊗ 〈~q1; |H2|0〉 =
√

2 · 2κ̃2

〈~q1; | ⊗ 〈~q1; |H3|0〉 =
√

2 · 6κ̃3|~q1; ~−q1〉+
√

2 · 2κ̃3

N∑
i=2

|~qi; ~−qi〉

= 4
√

2κ̃3|~q1; ~−q1〉+ 2
√

2κ̃3

N∑
i=1

|~qi; ~−qi〉

Coincidence detection, different spatial mode

〈~q1; | ⊗ 〈~q2; |H|0〉 = 0

〈~q1; | ⊗ 〈~q2; |H2|0〉 = 2κ̃2

〈~q1; | ⊗ 〈~q2; |H3|0〉 = 2κ̃3|~q1; ~−q1〉+ 2κ̃3|~q2; ~−q2〉+ κ̃3

N∑
i=3

|~qi; ~−qi〉

= 2κ̃3

N∑
i=1

|~qi; ~−qi〉 − κ̃3

N∑
i=3

|~qi; ~−qi〉

With the above, it is relatively straight forward to analyze the experi-

mental situation where we subtract the coincidences measured between two

different pulses from coincidences measured in the same pulse. The relevant

state for these conditions is:

|Ψ0 ns〉 ⊗ |Ψ12 ns〉 ≈ (1− it

~
H0 ns −

t2

2~2
H2

0 ns)⊗ (1− it

~
H12 ns −

t2

2~2
H2

12 ns)|0〉

≈ 1⊗ 1|0〉 − it

~
H0 ns ⊗ 1|0〉 − it

~
1⊗H12 ns|0〉 −

t2

2~2
1⊗H2

12 ns|0〉 −
t2

2~2
H2

0 ns ⊗ 1|0〉 − t2

~2
H0 ns ⊗H12 ns|0〉+

it3

2~3
H2

0 ns ⊗H12 ns|0〉+
it3

2~3
H0 ns ⊗H2

12 ns|0〉+
t4

4~4
H2

0 ns ⊗H2
12 ns|0〉

The relevant part of the wavefunction for coincidence detection between

different pulses is
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− t
2

~2
H0 ns ⊗H12 ns|0〉+

it3

2~3
H2

0 ns ⊗H12 ns|0〉+
it3

2~3
H0 ns ⊗H2

12 ns|0〉

For the measurement we use small q to indicate a measurement at t = 0

ns and capital Q to indicate a measurement at a delay of 12 ns. The simplest

and most likely process to occur is to create a coincidence between single

pairs in consecutive pulses.

〈~q1; | ⊗ 〈 ~Q1; |H0ns ⊗H12ns|0〉 =

〈~q1; |H0ns|0〉 ⊗ 〈 ~Q1; |H12ns|0〉 = κ̃2

Similarly, the higher order terms give

〈~q1|H2
0ns|0〉 ⊗ 〈 ~Q1; |H12ns|0〉 =

(2κ̃2|~q1; ~−q1〉+ 2κ̃2

N∑
i=2

|~qi; ~−qi〉)κ̃ =

2κ̃3

N∑
i=1

|~qi; ~−qi〉

and

〈~q1; |H0ns|0〉 ⊗ 〈 ~Q1; |H2
12ns|0〉 =

(2κ̃2| ~Q1; ~−Q1〉+ 2κ̃2

N∑
i=2

| ~Qi; ~−Qi〉)κ̃ =

2κ̃3

N∑
i=1

| ~Qi; ~−Qi〉

The probability to detect one photon pair is

‖〈~q1; ||Ψ0 ns〉‖2 =

∥∥∥∥−iκ̃t~
∥∥∥∥2

=
κ̃2t2

~2
= P2
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The relevant projections up to the second order finally give

〈~q1; | ⊗ 〈~q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉 = −
√

2√
2
· 2 κ̃

2t2

2~2

〈~q1; | ⊗ 〈~q2; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉 = − 1√
2

2
κ̃2t2

2~2

〈~q1; | ⊗ 〈 ~Q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉 = − 1√
2

κ̃2t2

~2

now the probabilities are

‖〈~q1; | ⊗ 〈~q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉‖2 =
κ̃4t4

~4
= 2

P 2
2

2

‖〈~q1; | ⊗ 〈~q2; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉‖2 =
1

2

κ̃4t4

~4
=
P 2

2

2∥∥∥〈~q1; | ⊗ 〈 ~Q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉
∥∥∥2

=
1

2

κ̃4t4

~4
=
P 2

2

2

The relevant projections finally give

〈~q1; | ⊗ 〈~q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉 =
1√
2

(
−
√

2 · 2 κ̃
2t2

2~2
+ 4
√

2
iκ̃3t3

6~3
|~q1; ~−q1〉+

2
√

2
iκ̃3t3

6~3

N∑
i=1

|~qi; ~−qi〉

)

〈~q1; | ⊗ 〈~q2; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉 =
1√
2

(
−2

κ̃2t2

2~2
+ 2

iκ̃3t3

6~3

N∑
i=1

|~qi; ~−qi〉 −
iκ̃3t3

6~3

N∑
i=3

|~qi; ~−qi〉

)

〈~q1; | ⊗ 〈 ~Q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉 =
1√
2

(
− κ̃

2t2

~2
+ 2

iκ̃3t3

2~3

N∑
i=1

|~qi; ~−qi〉+ 2
iκ̃3t3

2~3

N∑
i=1

| ~Qi; ~−Qi〉

)
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now the probabilities are

‖〈~q1; | ⊗ 〈~q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉‖2 =
κ̃4t4

~4
+

4κ̃6t6

9~6
+
Nκ̃6t6

9~6
+

4κ̃6t6

9~6

= 2
P 2

2

2
+

(8 +N)P 3
2

9

‖〈~q1; | ⊗ 〈~q2; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉‖2 =
1

2

κ̃4t4

~4
+
Nκ̃6t6

18~6
+

(N − 2)κ̃6t6

72~6
− (N − 2)κ̃6t6

18~6

=
P 2

2

2
+
NP 3

2

18
− 3(N − 2)P 3

2

4∥∥∥〈~q1; | ⊗ 〈 ~Q1; ||Ψ0 ns〉 ⊗ |Ψ12 ns〉
∥∥∥2

=
1

2

κ̃4t4

~4
+
Nκ̃6t6

2~6
+
Nκ̃6t6

2~6

=
P 2

2

2
+NP 3

2

Because these are amplitudes, the various coefficients need to be squared

in order to get coincidence rates. Substracting the last formular from the one

above it gives a negative value in the P 3
2 term. This term could be one of

the explanations that we get negative values in our experiments. This term

depents on N, the total number of modes generated.
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