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Chapter 1
Introduction

Every day in modern life we encounter, knowingly or unknowingly, an incredible number
of lasers, used in a variety of devices and applications. Between getting out of bed in the
morning and switching on the first laser in the laboratory, we use, look at or pass within
sneezing distance of tens of lasers, incorporated into CD players and CD-ROM drives, in the
levels and laser ranging equipment used by the builders at construction sites, in the laser speed
guns used by the police at speed traps, and in the checkouts at the supermarket. Every single
one of those lasers consists of the same basic elements: a gain medium for amplification of
light, and a cavity to confine light and provide the feedback necessary for laser action.

This last component, the laser cavity, can be as simple as two flat reflective end facets
of a semiconductor laser, or the intricate construction of mirrors found in high performance,
pulsed lasers. It is the cavity that, through constructive and destructive interference, causes
a laser to emit light in a narrow wavelength band and a confined beam. But it is not only in
lasers that cavities play a large role, they are also indispensable in interferometry. They are
used to analyse optical spectra, to set frequency standards, and to detect changes in length or
optical properties.

This thesis deals with optical cavities, both as part of a laser system and as stand-alone
systems. Its focus is on multi-mode cavities, where more, potentially many more, than one
cavity mode is important. Optical cavities can be classified in many ways, but the most
prevalent is that instableandunstableresonators. This stability refers to the transverse beha-
viour of light in such a cavity. In a stable resonator, light remains transversely confined near
the optical axis of the system, while in an unstable resonator there is no such confinement.
Whether a cavity is stable or unstable is determined by the focusing properties of the elements
that form the cavity. In this thesis, we deal (almost) exclusively with stable resonators.

The work reported in these chapters was performed as a Ph.D. project at the Quantum
Optics Group at Leiden University. The initial goal of this project was to construct acavity
random laser, a random laser based not on a random scattering element, but on a standard
laser cavity. While a cavity random laser has so far proven to be elusive, the genesis of
all chapters in this thesis still lies in this concept. Two of the four experimental chapters,
chapters2 and4, deal with laser systems, and were born directly out of the search for a cavity
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1. Introduction

random laser. As such, the cavities considered in those chapters are not far out of the ordinary.
It is the multi-mode nature, combined with the particular choice of cavity length in relation
to the radii of curvature of the mirrors, that leads to surprising effects that had not previously
been reported. These chapters extend the general understanding of multi-mode cavities and
the implications of the established theoretical framework for resonator theory.

The other two experimental chapters, chapters5 and6, deal with a passive system: a
nonstandard cavity, constructed from standard optical elements, that iswave chaotic. This
wave-chaotic nature expresses itself in the eigenmodes of the cavity, and only becomes ap-
parent when many modes are considered in the analysis. That such a relatively simple system
could show wave chaos had hitherto not been suspected, and we expect that this system will,
because of its simplicity, play an important role in studying many aspects of optical wave
chaos.

In this thesis, several chapters have been written as, or are based on, separate articles
intended for publication, while others were written specifically for this thesis. Nevertheless,
in putting together this thesis I have tried to avoid unnecessary duplication and repetition,
while still allowing chapters to be read individually. Specifically, chapters2, 3 and4 can be
read separately, with only a few back references to important figures or equations. While it is
possible to read chapters5 and6 on their own, they both rely heavily on each other.

In Chapter2 we report an experiment on an off-axis pumped Nd:YVO4-laser that, instead
of emitting in a conventional higher order transverse mode, at particular cavity lengths oper-
ates in a mode that strongly resembles a closed periodic orbit. Such modes, dubbedgeometric
modes, occur in a finite range around frequency-degenerate cavity configurations, and are the
result of phase and frequency locking of a large number of transverse modes.

In Chapter3 we recall the expressions governing the spectral properties of optical cav-
ities, and emphasise and extend the framework to describe both the ray-optical and wave-
optical behaviour of cavities around the special configurations of chapter2. Furthermore,
we speculate, on ray-optical grounds, about the effects that violating the paraxial approxima-
tion has on this behaviour, and discuss a possible application of frequency degenerate optical
cavities in interferometry.

In Chapter4 we report on a number of other experiments performed on essentially the
same laser system as used in chapter2 in our (unsuccessful) search for a cavity random laser.
We present results that demonstrate some of the reasons for this lack of success, and a few
surprising results around the edge of the stability region of our cavity.

In Chapter5 we experimentally show the presence of wave chaos in a novel and relatively
simple optical cavity based on standard optical elements. In this cavity, afolded optical
resonator, wave chaos is possible because of the relatively large degree of nonparaxiality that
is induced by the curved folding mirror. By changing the angle of incidence of light on this
folding mirror, or the opening angle of the intracavity modes, the amount of nonparaxiality,
and thereby the strength of the wave chaos, can be controlled.

In Chapter6 we will validate the method of analysis used in chapter5 to demonstrate the
presence of chaos.

After chapter6 follow a bibliography, popular summaries in Dutch and English, and the
author’s curriculum vitae.
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Chapter 2
Geometric modes in a
single-frequency Nd:YVO4 laser1

We report single-frequency operation of aNd3+:YVO4-laser in geometric modes when its
cavity is strongly frequency degenerate. These geometric modes closely resemble closed
ray paths and are the result of gain-guiding induced phase and frequency locking of
Hermite-Gaussian modes. The finite locking range observed around frequency degen-
erate cavity configurations is in good agreement with theory.

1J. Dingjan, M.P. van Exter, and J.P. Woerdman, “Geometric modes in a single-frequency Nd:YVO4 laser”,
Opt. Commun.188, 345–351 (2001).
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2. Geometric modes in a single-frequency Nd:YVO4 laser

In 1964, Herriott, Kogelnik and Kompfner [1] showed that off-axis rays in a spherical
mirror optical resonator will have vertices on the mirrors that lie, in general, on ellipses. For
specific resonator configurations the pattern of vertices closes on itself, leading to closed loop
ray trajectories inside the resonator. Combining the ray analysis and frequency analysis of
such passive resonators, Ramsay and Degnan [2] have shown that configurations correspond-
ing to closed ray trajectories show a high degree of frequency degeneracy. The reverse state-
ment, that configurations with a high degree of frequency degeneracy allow closed geometric
trajectories, is equally true. More recently, these degeneracies have been studied from the
perspective of periodic orbits and maps [3,4,5], and the influence of frequency degeneracies
on laser threshold and output power has been discussed [6]. The novelty of our work is that
it combines the closed trajectories of the ray optical picture with the frequency degeneracies
of the wave optical picture, resulting in geometric laser modes.

The frequencies of Hermite-Gaussian modes native to a spherical mirror resonator are
given by (see for example Siegman [7])

νq,mn =
c

2L

{
q+(m+n+1)

θ

2π

}
, (2.1)

with θ the Gouy phase angle,q the longitudinal mode index,m andn the transverse mode
indices, andL the length of the resonator. The Gouy phase angle is related to the resonator
configuration according to

cos2
(1

2
θ
)

= g1g2 , (2.2)

whereg1,2 = 1−L/R1,2, with R1,2 the radii of curvature for the two mirrors. Cavity configura-
tions such that the Gouy phase angle is a rational fraction of 2π, i.e.,θ = 2π K/N, will lead to
a ratio of transverse frequency spacing to longitudinal frequency spacing∆νT/∆νL = K/N.
This in turn leads to a high degree of frequency degeneracy, as lowering the longitudinal
mode indexq by K, while simultaneously raising the sum of the transverse mode indices
m+n by N, will leave the frequency unaltered. At the same time, in a ray-optical picture this
cavity allows closed geometric paths in the cavity, as for example the trajectory in Fig.2.3d
on page6. These trajectories close afterN round trips, and will makeK transverse excursions
in the cavity before closure occurs, thereby illustrating the intimate connections between the
wave-optical and the ray-optical picture.

In our experiments we have studied the effects of these frequency degeneracies in an
active laser resonator. The cavity configuration is drawn schematically in Fig.2.1. We use
an optically pumped Nd3+:YVO4-crystal as gain medium. One of the planar facets of the
1 mm thick chip is coated for high reflectivity (reflectivity higher than 99.8%), forming one
of the two mirrors of the resonator. The other facet of the chip has an antireflective coat-
ing for the laser wavelength. The output coupler is formed by a spherical, concave mirror
with a reflectivity of 95% and a radius of curvature of 25 mm. The length of the cavity is
varied between 8 and 21 mm, to select either highly frequency-degenerate or non-frequency-
degenerate configurations. A key point is that the pump spot on the crystal is displaced from
the axis of the system by a distance∆, which is of the order of 1 mm or less. This off-axis
pumping scheme can induce strong gain guiding effects which are easily manipulated, as the
strength of the gain guide does not primarily depend on the size of the pump spot relative
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2. Geometric modes in a single-frequency Nd:YVO4 laser

Nd:YVO4

Pump

∆

L

R

Figure 2.1: Schematic resonator configuration, where L is the length of the resonator,
R is the radius of curvature of the concave mirror and∆ is the displacement from the
axis of the pump spot.

Figure 2.2: Transverse beam profile for K/N≈ 0.256> 1/4.

to the size of the fundamental Gaussian mode waist, but rather depends on the position of
the pump spot relative to the position of the outermost lobes of high-order Hermite-Gaussian
modes. This allows for a broader range of guiding strengths as compared to on-axis pumping.
The pump spot had a typical waist size of 0.11 mm, and the typical threshold pump power
was of the order of 50 to 75 mW.

Without selecting a frequency-degenerate cavity configuration a laser with off-axis pump-
ing will operate in a higher-order Hermite-Gaussian mode, a fact that was observed earlier
by Chenet al. [8]. For such cavity configurations our experiment shows the same result, as
can be seen in Fig.2.2. For resonator configurations for which the Gouy phaseθ = 2π K/N,
however, we find a drastically different behaviour of our laser. As an example, we change the
resonator from an “arbitrary” configuration to a hemiconfocal geometry, for which the cavity
lengthL = R/2, so thatθ = 2π ·1/4, orK/N = 1/4. With this resonator geometry the beha-
viour of the laser changes drastically. Figures2.3a–c are transverse intensity profiles taken at
different axial positions. The laser is clearly operating in a mode that is completely unlike a

5



2. Geometric modes in a single-frequency Nd:YVO4 laser

a)

c) Pump

b)

d)

Figure 2.3: Transverse beam profiles for K/N = 1/4: a) near field on the chip, b) near
field on the concave output coupling mirror, c) far field, d) schematic depiction of the
mode pattern inside the resonator. The black scale bars in a) and b) have a length of
100µm.

Hermite-Gaussian mode. Instead, the laser operates in a pattern that is schematically drawn
in Fig. 2.3d: a W-shaped path that closely resembles a closed ray trajectory corresponding to
the resonator geometry. One of the two vertices on the flat mirror coincides with the location
of the pump spot, while the other vertex is its mirror image with respect to the optical axis of
the system. For such a W-mode, two pairs of parallel beams emerge from the laser, as could
be observed directly.

A striking feature in the transverse beam profiles are the deeply modulated fringes that oc-
cur both in the near fields and in the far field. In the near field on the flat mirror (Fig.2.3a) we
see that both spots show modulation, while in the near field on the curved mirror (Fig.2.3b)
only the central of the three spots has fringes. Comparing the intensity profiles with Fig.2.3d,
we see that these fringes occur at vertices where the ray path hits the mirror at non-normal in-
cidence. We can think of these fringes as being the result of interference between two beams
intersecting at an angle.The fringes in the far field are the result of interference between the
two parallel but slightly offset beams that make up each spot.

The observed W-shaped path is in fact not the only closed ray path that fits inside a reson-
ator for whichK/N = 1/4. In the paraxial approximation, where we can find the propagation
of rays inside the cavity using the ABCD-matrix formalism [7], we find thatany ray inside
the cavity will reproduce, and hence form a closed trajectory, afterN round trips. This is the
direct result from the fact that the ABCD-matrix for such a resonator satisfies(

A B
C D

)N

= 11, (2.3)

where11 is the identity matrix. Figure2.4shows typical examples of the closed ray paths that
are possible in a cavity for whichK/N = 1/4. Figure2.4b is a generic trajectory, whereas
the trajectories in Figs.2.4a and c are limiting cases: a W-shaped trajectory and an M-shaped
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2. Geometric modes in a single-frequency Nd:YVO4 laser

a)

c)

b)

Figure 2.4: Typical closed ray trajectories for K/N = 1/4: a) W-shaped path,
b) generic path, c) M-shaped path.

trajectory. In these limiting cases the trajectory hits one of the mirrors at normal incidence,
so that the ray path reverses direction and starts retracing itself. A direct result of this is that
the number of vertices on both mirrors is reduced. This reduction in the number of vertices
explains the fact that we only observe the W-shaped path of Fig.2.4a in our experiments, and
none of the other possible trajectories. The W-shaped path has, of all possible ray paths, the
lowest number of vertices on the flat mirror, i.e., two. One of these two vertices coincides with
the location of the pump spot, while the other vertex lies on the planar mirror at a position
that is not pumped. Trajectories different from the W-path will have more vertices on the
flat mirror, and hence more vertices that donot coincide with the pumped region. Therefore,
the overlap between modes that correspond to these trajectories and the pump region will be
lower, leading to a higher threshold.

Because of the off-axis pumping of our system, axial symmetry is broken. The natural
basis for this type of resonator with broken axial symmetry is the set of Hermite-Gaussian
modes. The peculiar geometric beam patterns we observe are then formed by a phase-locked
linear combination of the Hermite-Gaussian modes. Analysis of the optical spectrum with a
Fabry-Ṕerot interferometer (see Fig.2.5) shows that, for pump powers up toP= 1.1Pth, where
Pth is the threshold pump power, the laser emits at a single frequency, while still operating in
a geometric mode. This implies that the transverse modes that combine to form the geometric
mode all have the same frequency. As directly follows from the discussion above, Hermite-

7



2. Geometric modes in a single-frequency Nd:YVO4 laser

Figure 2.5: Fabry-Ṕerot spectrum taken inside the locking range for which K/N = 1/4.

Figure 2.6: Total laser output power versus normalised cavity length L/R, at fixed
pump power.

Gaussian modes of different total transverse orderm+n, but with the same frequency, must
necessarily be of different longitudinal order.

From Eq. (2.2) we see that the Gouy phase angleθ depends on the ratioL/R, rather than
on the cavity lengthL. In Fig. 2.6 we have plotted the total power output of the laser at
constant pump power against the scaled resonator lengthL/R. Several low-order frequency
ratiosK/N clearly show up as drastic increases in the output power of the laser. Furthermore,
this power increase persists in a finite interval around these frequency-degenerate points.
These intervals have a typical half width of the order of∆L = 0.1 mm.

If we lower the pump power to ensure single-mode lasing, we find that the shape of the
mode is essentially unchanged over the entire length of each such interval, as illustrated by

8



2. Geometric modes in a single-frequency Nd:YVO4 laser

Figure 2.7: Cross-sections through transverse beam profiles, taken in the near field on
the flat mirror, for various resonator lengths around the point for which K/N = 1/4.

the central four traces in Fig.2.7. This shows that the transverse Hermite-Gaussian modes
participating in the phase locking are frequency degenerate throughout these intervals. Since,
for a cold cavity, this frequency degeneracy only occurs at specific cavity lengths, instead of
over intervals centred at such lengths, we conclude that the modes lock their frequencies over
the extent of such intervals.

Physically speaking, this frequency locking is the result of the competition between two
mechanisms. These are the Maximum Emission Principle [9], which expresses that the laser
strives to maximise its output power by pulling the resonance frequencies of the empty cavity
together, and the modal dispersion, which is related to the Gouy phase angle of the resonator
configuration and which can push the resonance frequencies apart. The physical process
facilitating the Maximum Emission Principle is the strong gain guiding, caused by the off-
axis pumping of the laser; pulling the frequencies of Hermite-Gaussian modes together to
the same value allows phase locking of these modes to produce a time-constant mode profile
that has a better overlap with the location of the pump spot than the Hermite-Gaussian modes
individually would have.

A formal description runs as follows. We write the intracavity light field|s〉 on a Hermite-
Gaussian basis|ui〉 as|s〉= ∑i ai |ui〉. The evolution of this light field through one round trip
is given by the effective round trip evolution operatorM:

|s〉after = M|s〉before. (2.4)

9



2. Geometric modes in a single-frequency Nd:YVO4 laser

Figure 2.8: Total laser output power around K/N = 1/4, for four different pump
powers, in arbitrary units, Ppump= 0.60, 0.80, 1.10, 1.50, respectively.

In the absence of gain guiding, the set of Hermite-Gaussian modes will be the set of eigen-
modes of this evolution operator, and hence this operator will be diagonal, with the complex
elementsMii containing the modal gain, the Gouy phase and the transverse order of the mode.
The combination of the Gouy phase and the transverse mode order will determine the optical
frequency of the mode. In general this will lead to different frequencies for the various modes,
except for very specific Gouy phases.

The introduction of gain guiding introduces off-axis elementsMi j in our effective round
trip evolution operator, coupling modesi and j. Therefore, our initial set of Hermite-Gaussian
modes will no longer be the set of eigenmodes for this operator. Instead, we find a new set
of eigenmodes|vi〉, a basis in which the evolution operator diagonalises. The elements of our
diagonalised evolution operator̃Mii will be the eigenvalues for the modes|vi〉, determining
both modal gain and modal eigenfrequencies. These modal gains and eigenfrequencies will
differ from those for the Hermite-Gaussian modes that were the eigenmodes in the absence
of gain guiding. This allows values for the Gouy phase that again lead to degeneracies in the
eigenfrequencies, whereas previously, for the cold cavity, there were none. The driving force
for this is the maximalisation of the round trip amplification factor

γ =
|〈s|M|s〉|
〈s|s〉

=

∣∣∑i, j a
∗
i a j〈ui |M|u j〉

∣∣
∑i |ai |2

. (2.5)

A more detailed look at the total laser output power around the point for whichK/N =
1/4 is shown in Fig.2.8. These data allow us to deduce the laser threshold for lasing in a
single Hermite-Gaussian mode, just outside the locking interval,Pth,HG. We find Pth,HG ≈
1.5Pth,geo, wherePth,geo is the laser threshold for geometric lasing at the centre of the locking
interval. Furthermore, we see that there is no significant dependence of the width of the
locking interval on the pump powerP, when the pump parameterP/Pth,geo is varied from
1.2 to 3, or, equivalently, when the pump parameterP/Pth,HG is varied from 0.8 to 2. The
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2. Geometric modes in a single-frequency Nd:YVO4 laser

transition from Hermite-Gaussian to geometric mode lasing is abrupt on both sides of the
locking interval, even though the total output power shows a smooth transition for higher
cavity lengths. The half width of the locking interval is∆L ≈ 0.12 mm. Note that the power
output in the locking interval is asymmetric with respect to the centre of the locking range.
Note also that we observe a weak minimum in the output power just outside the locking
range, for cavities longer than hemiconfocal. These intriguing observations remain as yet
unexplained.

If we increase the pump power too far above threshold, the laser operates in more than
one mode, i.e., more than one frequency. It is important to realise that, for cavity configura-
tions for which we have frequency locking, the frequency degeneracy allows geometric beam
patterns not only at a single frequency, but rather at a whole range of frequencies, spaced
at a distance of∆νT. Experimentally, as we increase the pump power we observe continued
operation in closed ray paths, with a gradual disappearance of the fringes in the spots, as the
position of the fringes for the individual geometric modes varies.

The pump parameterP/Pth at which multi-mode lasing sets in is found to beP/Pth ≈ 1.1;
it is the same for emission in Hermite-Gaussian modes or geometric modes, as observed for
cavity lengths just outside and inside the frequency locking interval, respectively. This is
not surprising, as for the two cases, both the frequency difference with the next mode that
starts lasing and the spatial hole burning effects are comparable. Naively, one might expect
that for lasing in Hermite-Gaussian modes, the next mode to start lasing would be the nearly
frequency degenerate one. However, this is not the case, because the difference in total
transverse mode index between the lasing mode and this mode is generally quite large; as a
result, the overlap with the pump spot is much worse.

We will now quantitatively estimate the strength of the frequency locking. From Eq. (2.1)
we find that the frequency difference between Hermite-Gaussian modes for which the longit-
udinal mode index difference∆l = q2−q1 = −K and the transverse mode index difference
∆t = (n2 +m2)− (n1 +m1) = N equals

∆νK/N = νq−K;(m+n)+N−νq,mn =
c

2L

{
−K +N

arccos
√

g1g2

π

}
. (2.6)

Substitutingg1 andg2 for a plano-concave cavity and taking the derivative d∆νK/N/dL we
find that in our experiment, around the resonator configuration for whichK/N = 1/4, that is,
for L = 1/2R= 12.5 mm, the previously degenerate modes, upon changing the length of the
resonator, move apart at a rate of

d∆ν1/4

dL
≈ 6.1×102 GHz/m. (2.7)

Equation (2.7) implies that, in the absence of a mechanism that tries to maintain the frequency
degeneracy, at the edge of the locking interval, which we found to have a half width of
∆L = 0.12 mm, two nearest-neighbour, previously degenerate, modes would be∆ν = 73 MHz
apart. This is a measure for the strength of the dispersive effect of the Gouy phase angle,
striving to lift the frequency degeneracy, which we shall denote withνdisp.

At the edge of the locking interval this driving force will be balanced by the difference in
gain between laser operation in a Hermite-Gaussian mode and in a geometric mode. This gain
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2. Geometric modes in a single-frequency Nd:YVO4 laser

difference can be found from the difference in laser thresholds for the two types of operation.
If, for a cavity configuration just outside the locking range, we are at the threshold of laser
operation, we would, in the absence of the dispersive effect of the Gouy phase angle, be a
factor of 1.5 above threshold for emission in a geometric mode (see Fig.2.8). This means
that the gain rate for such a geometric mode is a factor of 1.5 higher than the gain rate for a
Hermite-Gaussian mode, which must be equal to the cavity loss rate. Neglecting losses other
than mirror outcoupling losses we estimate a minimum value for the cavity decay rate of

Γc =− c
2L

lnR1R2 = 0.64 ns−1 , (2.8)

where we have used that the reflectivitiesR1 = 99.8% andR2 = 95%, and thatL = 12.5 mm.
From this we find that the excess gain rate for laser operation in a geometric mode relative to
operation in a Hermite-Gaussian mode equalsγex = 0.5Γc = 0.32 ns−1. This excess gain rate
is a measure for the strength of the driving force trying to preserve the frequency degeneracy.
It does indeed roughly equal the strength of the dispersive effect, which we calculated as
νdisp = 73 MHz, i.e.,ωdisp = 2π νdisp = 0.46 ns−1.

Ramsay and Degnan [2] suggest that the width of the locking region is determined by
the degree of nonparaxiality in the problem. However, their derivation is specific to cavity
configurations that are at the edge of the traditional resonator stability diagram (g1g2 = 1).
Therefore, their expressions do not hold here.

We stress the fundamental difference between locking of modes of the type we observed
and the so-called temporal or spatial mode locking in lasers. The latter two cases, dealing
with phase locking of modes with different frequencies, can lead to, for example, pulsed laser
operation [7], or a periodically scanning output beam [10]. However, in our experiments we
observe both frequency and phase locking of the modes, i.e., we deal with asinglefrequency,
leading to CW output in geometric mode profiles.

In conclusion, we have demonstrated that at certain, frequency-degenerate, cavity config-
urations, an off-axis pumped laser will phase and frequency lock transverse modes to max-
imise the overlap between the pump spot and the lasing mode. This maximises the output
power, and leads to beam profiles that closely resemble closed ray paths that fit said cavity
configuration. Furthermore, this phase and frequency locking persists over a finite interval
around such degenerate points. Also, these experiments serve to illustrate the striking duality
between wave and ray optics, combining frequency degeneracy with closed ray trajectories.
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Chapter 3
Optical resonators and the Gouy
phase

In this chapter we investigate some basic properties of optical resonators from a wave-
optical and from a ray-optical point of view. Since it plays a pivotal role in determining
both the spectral properties of optical resonators and the behaviour of rays inside such
resonators, we shall use the Gouy phase as a unifying concept. We will recall the basic
expressions for paraxial two-mirror resonators, and consider the special case where the
Gouy phaseθ assumes a rational value,θ = 2π K/N. In this case a paraxial two-mirror
resonator has, at the same time, a highly degenerate eigenfrequency spectrum and sup-
ports closed periodic orbits that repeat after N round trips. Outside the paraxial limit,
these periodic orbits are still useful: they allow us to make general statements about the
behaviour of the Gouy phase for nonparaxial eigenmodes.

We shall also extend the expressions for the paraxial two-mirror resonator so that they
can be used to analyse paraxial resonators with astigmatic eigenmodes. In particular,
we shall look at a folded three-mirror resonator, both from the viewpoint of the eigen-
frequency spectrum and the possibility of periodic orbits, and we shall briefly speculate
about nonparaxial three-mirror resonators.

Finally, we suggest a possible application of a degenerate two-mirror resonator as a high-
resolution length-sensing interferometer. We discuss its principle of operation and point
out some limitations.
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3. Optical resonators and the Gouy phase

3.1 Introduction

At the start of the last decade of the 19th century, Gouy [11, 12] showed that a beam of
light that passes through a focus acquires an additional phase factorπ. He demonstrated this
using a variation on the Fresnel double-mirror experiment, where one of the two mirrors was
replaced by a concave mirror, see Fig.3.1. In this setup, the light transmitted through a small
pinhole is reflected by both mirrors. Because the mirrors are placed at a slight angle to each
other, the two reflected beams will overlap and interfere, leading to a bull’s eye pattern of
concentric rings. Gouy observed that the centre of this bull’s eye pattern changed from bright
to dark when going through the focus of the beam stemming from the concave mirror. He
attributed this to a jump in the phase difference between the two beams ofπ, caused by the
focused beam acquiring additional phase upon traversing the focus.

Further study showed that the magnitude of this so-calledGouy phasedepends on the
transverse structure of the focused beam. For well-behaved, smooth beams without additional
structure, this additional phase equalsπ; for beams with more transverse structure it is larger.
In the case of astigmatic beams, each of the two principal foci accounts for half of the Gouy
phase. For example, a beam that is focused in one plane only, e.g., with a cylinder lens, will
only acquire an extra phase ofπ/2. This phase anomaly, or Gouy effect, is not limited to
electromagnetic waves in the optical regime, but it also applies to, for example, microwaves
and acoustical waves.

Figure 3.1: Schematic setup for the Gouy experiment. Light from a lamp source is
transmitted through a pinhole S, and subsequently reflected by mirrors M1 and M2.
Because the two mirrors are placed at a slight angle, the reflected beams will overlap
in the shaded area. If, in that overlap region, one places a card in the two beams, one
will see a bull’s eye pattern, where the brightness of the centre depends on whether the
card is in front of or behind the focus of the second beam.
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3.1 Introduction

Careful analysis has shown that this change in phase does not occur suddenly, but instead
occurs gradually in a region around the focus. If one propagates an optical beam from one
reference plane to the other, both being in the focal region, it will acquire a smaller additional
phase than when the reference planes are situated in the front and back far field. This smaller
phase, which can now be any fraction of the full Gouy phase, can be interpreted as the phase
difference between a focused beam and a plane wave that is accumulated when proceeding
from the one to the other reference plane. Customarily, this fraction is also calledtheGouy
phase, where the distinction with the full Gouy phase (referring to propagation from far field
to far field) follows from context.

This (partial or full) Gouy phase has immediate relevance for the spectral properties of
opticalresonators, since it must be added to the propagation phase in the definition of round
trip resonance. Its role in determining spectral properties is perhaps best known in the con-
text of two-mirror resonators in the paraxial approximation (being the approximation that all
angles are small, so that sinα = α).

Since at first glance the Gouy phase appears to be a purelywave-optical property, it is
surprising to find that it also plays a prominent role in determining theray properties of
resonators. This is a direct consequence of the fact that Gaussian beam propagation rules are
the same as the rules that govern paraxial ray optics.

In this chapter we draw together equations and concepts concerning wave optics and ray
optics in resonators of various types, using the Gouy phase as a unifying concept. Most of
these results are not new, but are phrased in ways that are useful for the rest of this thesis.
The combination of topics emphasises aspects of optics that rarely get much attention in
textbooks or scientific journals. Our discussion naturally leads to speculation on cases that
are not covered by standard theory, most notably nonparaxial resonators.

In the next section we shall recall the familiar expressions for paraxial two-mirror reson-
ators that can be found in any textbook on laser physics and resonator optics [7,13,14], and
highlight the parallels between wave and ray optics in such systems. Then, in section3.3we
shall consider so calleddegenerateparaxial two-mirror resonators, where the Gouy phase is
a rational fraction of 2π, θ = 2π K/N. As we already saw in chapter2, such systems can
show behaviour that is very different from more generic resonator configurations, due to the
occurrence of closed periodic orbits inside the resonator. Next, in section3.4, we will con-
sider what happens to those periodic orbits, and hence to that special behaviour, outside the
paraxial limit, and we will speculate about the Gouy phase for nonparaxial modes.

In section3.5we shall consider the Gouy phase in the context of three-mirror resonators,
where the resonator eigenmodes are astigmatic. We shall also give some attention to the
possibility of closed periodic orbits in this type of resonator, and briefly speculate about
three-mirror resonators outside the paraxial limit.

Finally, in section3.6we shall discuss the possibilities of using a degenerate resonator to
create a high-resolution optical interferometer.
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3. Optical resonators and the Gouy phase

3.2 Paraxial two-mirror resonators

3.2.1 Wave-optical perspective

The simplest possible optical resonator is a stable paraxial two-mirror resonator. Its eigen-
modes are the familiar Hermite-Gaussian or Laguerre-Gaussian modes. For a fundamental
Gaussianbeam, calculating the Gouy phase is straightforward. If we choosez = 0 at the
location of the focus of the beam, and calculate the phase difference relative to this focus we
find that

φ(z) = arctan

(
z
zR

)
, (3.1)

wherezR is the Rayleigh range of the beam (see chapter 17 of ref. [7]). The Gouy phase upon
going from a plane atz0 to a plane atz1 is then given by

φ0,1 = φ(z1)−φ(z0) = arctan

(
z1

zR

)
−arctan

(
z0

zR

)
. (3.2)

The round trip Gouy phaseθ for the fundamental Gaussian mode of a resonator can be
found by choosing an arbitrary reference planezr inside the resonator, and calculating the
total Gouy phase going from this reference plane to the plane of one of the two end mirrors,
located atz2, then to the other end mirror atz1 (taking into account the fact that we are now
travelling in the opposite direction), and back again tozr,

θ =
[
φ(z2)−φ(zr)

]
+

[
−φ(z1)+φ(z2)

]
+

[
φ(zr)−φ(z1)

]
= 2

[
φ(z2)−φ(z1)

]
, (3.3)

where we have assumed thatz1 < zr < z2. We see that this result is independent of the choice
of reference plane.

One useful way to parametrise the geometry of a two-mirror resonator is through the so
called “g parameters”g1,2 ≡ 1−L/R1,2, whereL is the length of the resonator andR1 and
R2 are the radii of curvature of the two mirrors. We then find, from elementary geometrical-
optical considerations (see, for example, chapter 15 of ref. [7]), that the case 0≤ g1g2 ≤ 1
corresponds to a so calledstableresonator. In a wave-optical context, a resonator is called
stable when its eigenmodes have finite transverse dimensions on the mirrors. The 1/e2 in-
tensity radii of the spots on the mirrorsw1 andw2, as well as the 1/e2-radius of the focus of
the beamw0 (the “waist”), can be calculated using (see chapter 14 of ref. [13])

w2
1 =

λL
π

√
g2

g1(1−g1g2)
, (3.4)

w2
2 =

λL
π

√
g1

g2(1−g1g2)
, (3.5)

and

w2
0 =

λL
π

√
g1g2(1−g1g2)

(g1 +g2−2g1g2)2 . (3.6)
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3.2 Paraxial two-mirror resonators

Figure 3.2: Stability diagram or g1-g2-diagram for two-mirror optical resonators,
where g1,2 ≡ 1−L/R1,2. The shaded region0≤ g1g2 ≤ 1 contains all stable resonator
configurations, where, in the paraxial limit, light remains confined inside a resonator.
Indicated are the plano-plano, confocal and concentric resonator configurations.

Figure 3.3: Schematic indication of the wave fronts of the eigenmodes of a two-mirror
resonator. At the two mirrors, the wave fronts must match the curvature of the mirrors.

In Fig. 3.2we plot the stability diagram for two-mirror resonators, where we have indicated
three familiar configurations.

To find the eigenmodes of a resonator parametrised byg1 andg2, we require the curvature
of the wave fronts at the mirrors to match the shape of those mirrors, as in Fig.3.3. Then, the
Rayleigh rangezR and the locations of the mirrorsz1 andz2 are uniquely determined by the
resonator lengthL = z2−z1 and the radii of curvature of the mirrorsR1 andR2. For the Gouy
phase, only the ratiosz1/zR andz2/zR are relevant. Expressed in terms ofg1 andg2, these
ratios are

z1,2

zR
=

g2,1(1−g1,2)√
g1g2(1−g1g2)

. (3.7)
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3. Optical resonators and the Gouy phase

Substituting Eq. (3.7) into Eq. (3.3) we find, after some algebra, that for the round trip
Gouy phase

θ = 2arccos
(
±√g1g2

)
, (3.8)

where the+ sign applies tog1,g2 > 0 and the− sign tog1,g2 < 0. As we can see from
Fig. 3.2, all resonators whereg1 andg2 have different sign are unstable, and hence outside
the scope of our discussion (see ref. [7], chapter 19).

Higher order Hermite-Gaussian or Laguerre-Gaussian modes acquire integer multiples of
the fundamental round trip Gouy phase. For a Hermite-Gaussian mode with transverse mode
indicesm andn, or for a Laguerre-Gaussian mode with transverse mode indicesp andl , the
round trip Gouy phase is given by

θmn = (m+n+1)θ and θpl = (2p+ l +1)θ , (3.9)

respectively. We may now relabelθ asθ00; however, we will not do so but continue to use
θ for the round trip Gouy phase of a fundamental Gaussian mode. The eigenfrequencies of a
two-mirror paraxial resonator are then given by

νq,mn =
c

2L

(
q+

θmn

2π

)
=

c
2L

{
q+(m+n+1)

θ

2π

}
(3.10)

or the equivalent expression for Laguerre-Gaussian modes. The resulting spectrum consists,
for every longitudinal mode indexq, of combs of equidistant frequencies, where the distance
between frequencies is the transverse mode spacing∆νT = c/2L · θ/2π. These combs are
offset by the longitudinal mode spacing∆νL = c/2L, as illustrated in Fig.3.4. In this figure,
all transverse modes are indicated by bars of the same height. The sum of all combs is, in
the absence of any mode selection mechanisms, an infinitely dense pattern of spikes. If one
imposes an artificial limit on the maximum transverse order of modes, the resulting spectrum
is very dense, but does not consist of equidistant resonances. In the presence of more realistic
mode selection mechanisms, such as differences in gain or loss between the various transverse
modes, eigenfrequency spectra will show amplitude structure (cf. Fig. 19.16 of ref. [7]).

We see that modes that have equal longitudinal mode indicesq and equal sums of the
transverse mode indicesm+n have the same frequency. Therefore, every eigenfrequency in
the comb corresponding to a single value forq is a (m+n+1)-fold degenerate “family” of
transverse modes. We label these families by their total transverse mode numberm+n.

Because every frequency comb is offset by∆νL , a frequency interval with lengthc/2L is
the basic periodic block the eigenfrequency spectrum is built of. For historical reasons it is
called thefree spectral range. Because, in the range of largeq, the spectrum is periodic, it is
sufficient to consider a single free spectral range to get all spectral information.

3.2.2 Ray-optical perspective

To describe the ray behaviour of a paraxial two-mirror resonator, we consider a single plane
containing the optical axis, and locally describe each ray by a vectorr = (x,x′). This vector
contains the distance of the ray to the axisx and its slopex′ in a given reference plane perpen-
dicular to the axis, as indicated in Fig.3.5. Next, we calculate the round tripABCD-matrix,
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3.2 Paraxial two-mirror resonators

Figure 3.4: Schematic representation of the structure of the eigenfrequency spectrum of
a paraxial two-mirror resonator. Indicated are, for several values of q, the equidistant
frequency combs, with a spacing between the peaks of∆νT. The combs are offset by
the longitudinal mode spacing∆νL. Also indicated is the full spectrum resulting from
summing over all possible values for q.

Figure 3.5: Description of a light ray inside an optical resonator in terms of its distance
to the optical axis and its slope, both taken in a given reference plane.

where we choose mirrorM1 as reference plane. Propagation from mirror to mirror, over a
distanceL, is given by

ML =
(

1 L
0 1

)
, (3.11)

while the focusing effect of mirrorsM1 andM2 is described by

M1,2 =

 1 0
−2
R1,2

1

 . (3.12)

The full round tripABCD-matrix then equals

M rt = M1ML M2ML =

 −1+2g2 2Lg2

2
2g1g2−g1−g2

L
4g1g2−2g2−1

 , (3.13)
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3. Optical resonators and the Gouy phase

where in the second step we have immediately rewritten everything in terms ofg1 andg2.
The eigenvalues for this round trip matrix are

λ1,2 = 2g1g2−1±2
√

g2
1g2

2−g1g2

= 2g1g2−1±2i
√

g1g2−g2
1g2

2 ,
(3.14)

where, in the last step, we have used that the resonator is stable, so that 0≤ g1g2 ≤ 1. In ray
optics, a resonator is called stable when a paraxial ray that is injected into the resonator does
not escape, but instead remains confined close to the axis of the resonator. Combining these
expressions for the eigenvalues with Eq. (3.8) and standard trigonometric relations, we find

λ1,2 = exp(±iθ) , (3.15)

with corresponding complex eigenvectorsr1,2. These complex eigenvectors do not them-
selves represent physical rays inside the resonator, but are introduced to ease the calculation,
starting from an initial rayr0, of the ray aftern round trips in the resonator, described by the
vectorrn. Any initial vectorr0 (wherer0 is, of course, real because it represents a physical
ray inside the resonator) can be written as a linear combination of eigenvectors,

r0 = c1r1 +c2r2 , (3.16)

with c1 andc2 suitable complex constants. Then, aftern round trips inside the resonator we
find

rn = Mn
rt r0 = Mn

rt (c1r1 +c2r2)
= c1×λ

n
1 r1 +c2×λ

n
2 r2

= c1×einθ r1 +c2×e−inθ r2

= r0cosnθ +s0sinnθ

(3.17)

where we have introduced the vector

s0 ≡ i(c1r1−c2r2) . (3.18)

This last vector is a kind of “input slope vector”, and, becausec1 and c2 are determined
through Eq. (3.16), s0 is real.

From Eqs. (3.10) and (3.17) we see that the Gouy phaseθ plays a crucial role both in
determining the spectral properties (in the case of a wave-optical treatment) and relating the
positions and slopes of rays before and after a round trip through the resonator (in a ray-
optical treatment). Since the ray behaviour of optical resonators rarely plays a prominent role
in laser physics, this last aspect of the Gouy phase is often overlooked. However, as we will
see in the next section, there are special resonator configurations where the dual nature of the
Gouy phase leads to very surprising results.

3.3 Degenerateparaxial two-mirror resonators

The discussion in the previous section is valid for all possible values of the Gouy phase 0≤
θ ≤ 2π. However, when the Gouy phase is a rational number times 2π, that isθ = 2π K/N
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3.3 Degenerate paraxial two-mirror resonators

Figure 3.6: Schematic representation of the structure of the eigenfrequency spectrum
of a typicaldegenerateparaxial two-mirror resonator, withθ = 2π ·2/3. Indicated are,
for three values of q, the equidistant frequency combs, with a spacing between the peaks
of ∆νT = 2/3∆νL. The combs are offset by the longitudinal mode spacing∆νL. Also
indicated is the full eigenfrequency spectrum, obtained from summing over all possible
q. This full spectrum consists of equidistant resonances, spaced at1/3∆νL.

whereK andN do not share common factors, these equations have unexpected consequences.
Then, Eq. (3.10) can be rewritten to

νq,mn =
c

2L

{
q+(m+n+1)

K
N

}
=

c
2LN

{
Nq+K(m+n+1)

}
. (3.19)

From this we see that raising the sum of the transverse mode indicesm+ n by N, while at
the same time lowering the longitudinal mode indexq by K, will leave the resonance fre-
quency unaltered, irrespective of the choice ofq, m or n. Therefore, apart from the mode
degeneracy within “families” of transverse modes mentioned in section3.2.1, the resonator
now also shows a degeneracy between different transverse mode families, separated byK
in longitudinal mode index andN in total transverse mode index. The entire eigenfrequency
spectrum collapses into these strongly degenerate clumps, spaced at∆ν = 1/N∆νL = c/2LN,
see Fig.3.6. Thus, a single free spectral range will containN of these degenerate clumps of
modes, a fact that was first observed as early as 1964 [1]. We call such a resonator “frac-
tionally degenerate”, or “degenerate” for short. A well known example of this kind of reson-
ator is the confocal resonator withK/N = 1/2, a resonator configuration that is often used
as optical spectrum analyser. In section3.6 we shall consider the possibility of using this
well-controlled distance between resonances to construct, for highN, a high-resolution inter-
ferometer.

The eigenfrequency spectrum of a degenerate resonator is quite different from that of a
general resonator whereθ = 2π p, with p an irrational number. Then, no combination of
loweringq and raisingm+n will lead to the same frequency, so that every transverse mode
family, for every longitudinal mode indexq, has its own unique frequency. As a result, a free
spectral range will, in principle, be completely filled. In practice, however, there is a limit to
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3. Optical resonators and the Gouy phase

how farm andn can be raised while remaining inside the paraxial approximation.
The eigenvalues of the round trip matrix of a resonator for whichθ = 2π K/N follow

from Eq. (3.15),

λ1,2 = exp

(
±i 2π

K
N

)
, (3.20)

so that the eigenvalues forn round trips equal

λ
n
1,2 = exp

(
±in2π

K
N

)
. (3.21)

Then, from Eq. (3.17) we see that

rN = r0cosθN+s0sinθN

= r0cosN2π
K
N

+s0sinN2π
K
N

= r0

(3.22)

irrespective of the choice of initial rayr0. Equivalently, for a system whereθ = 2π K/N, the
ABCD-matrix forN round trips is the identity matrix

MN
rt = 11. (3.23)

Therefore, in such a resonatoranyparaxial ray will follow a trajectory that will close after
N round trips. This is in contrast with a resonator with an “irrational” Gouy phase, where
no ray (apart from the trivial ray along the optical axis) will ever follow a perfectly closed
trajectory. Examples of periodic orbits for a resonator whereK/N = 1/4 can be seen in
Fig. 2.4on page7. In Fig.3.7we plot periodic orbits in a plano-concave resonator for which
θ = 2π K/N, with K/N = 1/3, 1/4 and 2/5, respectively. The choice for a plano-concave
resonator was made to ease drawing of the orbits, and does not limit the generality of what
follows.

We see that for degenerate resonators, we can distinguish two basic classes of periodic
orbits. The first class consists of generic orbits, where the ray never strikes a mirror at normal
incidence, such as in Figs.3.7b and e. The second class consists ofreciprocatingorbits,
where the orbit strikes a mirror at normal incidence, reverses direction and re-traces itself, as
in Figs.3.7a, c, d, and f. Obviously, the number of vertices where the orbit strikes the mirror
at normal incidence is either 0 or 2. For resonators with evenN, these vertices will always
lie on the same mirror, allowing us to further subdivide the class of reciprocating orbits into
those that have normal-incidence vertices on either mirrorM1 or M2. For resonators with odd
N, these vertices cannot lie on the same mirror, so that such a subdivision is not possible. We
stress again that, in the paraxial case,everyinitial ray will form a closed orbit, as illustrated in
Fig. 3.8. As such, there are infinitely many different periodic orbits for any of the mentioned
five types.

As mentioned above, and clearly visible in Fig.3.7, a periodic orbit for a resonator with
θ = 2π K/N will make N round trips in the resonator, before closing on itself. In addition to
that,K determines the number oftransverse“round trips” an orbit will make before closing,as
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3.3 Degenerate paraxial two-mirror resonators

Figure 3.7: Typical closed periodic orbits in degenerate resonators. (a) K/N = 1/3,
reciprocating path (“Z-shaped”), (b) K/N = 1/3, generic path, (c) K/N = 2/5, re-
ciprocating path, (d) K/N = 1/4, reciprocating path (“W-shaped”), (e) K/N = 1/4,
generic path, (f) K/N = 1/4, reciprocating path (“M-shaped”).

Figure 3.8: Paraxial confocal resonator, for which K/N = 1/2. Several closed periodic
orbits, with different initial conditions, are displayed. All these orbits have equal round
trip length.

can be seen, for example, in Fig.3.7c, whereK/N = 2/5. That this must be so follows from
the eigenvalues of the round trip matrix forn round trips,λ n

1,2 = exp(±in2π K/N): if we
represent these eigenvalues on the complex unit circle, we will makeK full revolutions before
coming toλ N

1,2 = exp(±i 2π K) = 1.
As a result, a resonator with a “rational” Gouy phase will, at the same time, show a

highly degenerate eigenfrequency spectrum (wave perspective) and support closed periodic
orbits (ray perspective). As demonstrated in chapter2, a strong mode selection mechanism in
a laser can make both effects highly visible. There, we operate a laser with a plano-concave
resonator at a length so thatθ = 2π · 1/4. Pumping the laser off-axis selects a subset of
modes, all belonging to the same familym+n. This linear combination of Hermite-Gaussian
modes then results in the W-shaped geometric mode of Fig.2.3. If we tune the laser to select
a different transverse mode family, saym+n+1, we get the same overall W-shape.
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3. Optical resonators and the Gouy phase

3.4 Degeneratenonparaxial two-mirror resonators

3.4.1 Presence of periodic orbits

As we saw in the previous section, within the paraxial approximation every resonance will be
part of a degenerate group of modes. This presupposes that one can increase the transverse
mode indicesmandn infinitely without violating the paraxial approximation. That this cannot
be the case follows from the fact that the far field opening angleα of a higher order Hermite-
Gaussian beam scales with

√
m (where the transverse mode indexm refers to the plane of

the largest opening angle). For large enoughm, this opening angle will be so large that we
violate the paraxial approximation.

Similarly, in a ray-optical description of a resonator withθ = 2π K/N, within the paraxial
approximationevery initial ray will repeat itself and follow a closed orbit afterN orbits.
However, this assumes the validity of theABCD-matrix formalism; when the angles between
rays and the optical axis become too large, this no longer holds. An alternative way of
phrasing this is that, instead of being constants, the coefficients in a nonparaxial “ABCD-
matrix” depend on the position and slope of the ray under consideration. Even in drawing the
periodic orbits of, for example, Fig.3.7, some artistic freedom was needed to get perfectly
closed trajectories.

In this section we will consider what happens to the closed periodic orbits of degenerate
resonators when we make those resonators nonparaxial, and from there try to draw conclu-
sions concerning the behaviour of the Gouy phase for nonparaxial eigenmodes. We will show
that, in nonparaxial resonators, the Gouy phase no longer is a global property, describing the
behaviour of all eigenmodes and all rays. Instead, it becomes alocal property: every ray
has its own Gouy phase, just like every eigenmode has its “own” Gouy phase, which can no
longer be written asθmn = (m+n+1)θ .

One may wonder whether periodic orbits exist at all outside the paraxial limit. Referring
to the classification introduced in the previous section, it is easy to show that it is always
possible to modify the length of a resonator so that it will still support a reciprocating periodic
orbit. To start, choose one of the two vertices at normal incidence to one of the two mirrors,
and traceN/2 round trips through the resonator, as in Fig.3.9. Then, when we vary the length
of the resonator, the position and angle of incidence of the last vertex will vary continuously.
The angle with the optical axis can be both positive and negative, and as a result, it must be
equal to zero for a particular resonator length. This, then, is the resonator length for which a
reciprocating periodic orbit, with periodN and a particular choice of location of one of the
vertices, is possible.

It is not a priori clear whethergeneric(instead of reciprocating) periodic orbits are pos-
sible outside the paraxial limit, since then not only angles but also positions must be made
to match. Numerical results that will be presented in Fig.3.12 suggest that, at least for
K/N = 1/3, such nonparaxial generic periodic orbits do indeed exist.

From the preceding discussion we see that, in order to support a nonparaxial reciprocating
periodic orbit, the length of a resonator must be adjusted relative to the length of a degenerate
paraxial resonator. The change in length will generally depend on the exact shape and size
of the periodic orbit. As such, periodic orbits can become isolated, or “localised”, in the
sense that for every resonator lengthL, there is only one (or possibly two, due to symmetry)
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3.4 Degenerate nonparaxial two-mirror resonators

Figure 3.9: Resonator configurations that are (a) too short, (b) precisely correct, and
(c) too long to support a nonparaxial K/N = 1/4 periodic orbit. The arrow indicates
the vertex that is kept fixed.

specificperiodic orbit with periodN. This is in sharp contrast with paraxial periodic orbits,
where every possible paraxial periodicK/N-orbit is supported at the same resonator length
LK,N,parax.

The first orbit we shall consider is the W-shaped orbit of a plano-concave resonator as
shown in Fig.3.7d. In such a resonator, the topmost and bottommost segments of the orbit
are radial to the concave mirror, while the middle two segments must meet at the apex, the
intersection of the concave mirror and the optical axis. Reflection in the flat mirror shows
that the middle two segments always intersect at the mirror image of the centre of curvature
of the concave mirror. Therefore, for such a W-shaped path, the mirror image of the centre
of the concave mirror and the apex of the concave mirror must coincide, irrespective of the
opening angle of the periodic orbit. As a result, to support both paraxial and nonparaxial
W-shaped orbits, the distance between flat and concave mirror must beR/2 (this is called
a hemiconfocal resonator). In the light of the previous paragraphs this is a very surprising
result: no matter how large the angles with the optical axis are, a resonator with a lengthR/2
will support a periodic orbit with period 4. We will see below that this is indeed a very special
case.

The second orbit we shall consider is the M-shaped orbit of Fig.3.7f. Here, no segments
of the orbit are radial to the concave mirror. Instead, the top and bottom segments are perpen-
dicular to the flat mirror, and the middle two segments meet at the flat mirror. As a parameter
for the nonparaxiality of the M-shaped orbit we shall choose the angle between the middle
segments and the optical axis,α (see Fig.3.10a). Straightforward trigonometry then shows
that such an M-shaped periodic orbit is supported by a plano-concave resonator with a length

L1/4,M = R

{
1− 1

2

(
cos

α

2

)−1
}

. (3.24)

For α → 0 we retrieve the result for paraxial orbits,L1/4,M → R/2. In Fig. 3.10a we have
drawn two such M-shaped orbits, for different anglesα.

The last orbit we shall consider is the Z-shaped reciprocating orbit of Fig.3.7a, forK/N =
1/3. This orbit has one segment, the bottommost, radial to the concave mirror, while the
topmost segment is perpendicular to the flat mirror. As parameter we choose the angleα

between the bottommost, radial, segment and the optical axis (see Fig.3.10b). After slightly
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3. Optical resonators and the Gouy phase

Figure 3.10: Resonator configurations that support nonparaxial reciprocating orbits,
for two different anglesα each. (a) M-shaped periodic orbit for K/N = 1/4, (b) Z-
shaped periodic orbit for K/N = 1/3. Black drawing: smallα, grey drawing: largeα.
We see that for increasingα the resonator length becomes smaller.

more complicated trigonometry than before we find that such orbits are possible in a plano-
concave resonator with a length

L1/3,rec = R

{
1− 1

4

(
cos

α

2

)−1
}

, (3.25)

an expression that only differs from Eq. (3.24) in the factor 1/4 instead of 1/2 before the
angle-dependent term. The similarity between these expressions suggests that, for a plano-
concave resonator, the lengthL at which that resonator supports a particular nonparaxial
reciprocating orbit, with at least one perpendicular hit on the flat mirror, is given by

LK/N,rec = R

{
1−

(
1−

LK/N,parax

R

)(
cos

α

2

)−1
}

, (3.26)

whereLK/N,parax is the resonator length at which theparaxial K/N-orbit is closed. For a
plano-concave resonator,g1 = 1 andg2 = 1−L/R, so that, from rewriting Eq. (3.8), we find

g1g2 = 1− L
R

=
(

cos
θ

2

)2
⇒ LK/N,parax= R

(
sinπ

K
N

)2
. (3.27)

We will now explore the validity of our Ansatz Eq. (3.26). Generally, in the case ofN
even, it is not immediately clear whereα should be chosen. A trial on a periodic orbit for
K/N = 1/6 shows thatnoneof the likely angles in the periodic orbit will result in the correct
resonator length. In fact, it is rather trivial to show that for aK/N = 1/6 orbit that has its
turning points on the flat mirror, the correct length is given by 1/2 ·L1/4,M . Then, the vertex
that, forK/N = 1/4, was at the intersection of the flat mirror and the axis will be reflected
to the apex of the concave mirror, as sketched in Fig.3.11. The vertices that strike the flat
mirror at normal incidence are unaffected by the change in length. Because such an 1/6-orbit
can be derived from an M-shaped 1/4-orbit, we shall refer to it as afolded-Morbit.

For N odd, the results from our Ansatz are equally disappointing. Choosingα as the
angle between the segment that is radial to the concave mirror and the optical axis, Eq. (3.26)
gives incorrect results forK/N = 1/5 andK/N = 1/7, as we have verified numerically.
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3.4 Degenerate nonparaxial two-mirror resonators

Figure 3.11: (a) Nonparaxial M-shaped orbit for K/N = 1/4, (b) Nonparaxial orbit for
K/N = 1/6. We see that the cavity length at which such an1/6-orbit is supported ishalf
the cavity length at which an M-shaped1/4-orbit with the same slopes is supported.

Figure 3.12: Resonator lengths at which nonparaxial K/N = 1/3-periodic orbits
are possible for (Z-shaped) reciprocating orbits (black) and symmetric generic orbits
(grey). Indicated are the choices of angleα to parametrise the different orbits.

Because the equations rapidly become intractable as soon as an orbit has an appreciable
number of segments and vertices, it has not been possible to find expressions for the length
of resonators that support reciprocating periodic orbits forN > 4 (with the exception of one
variant forN = 6), or generic periodic orbits for anyN. Numerically solving the propagation
equations for genericK/N = 1/3 periodic orbits that are symmetric with respect to the optical
axis suggest that these orbits are possible at suitable resonator lengths. In Fig.3.12we plot
the resonator length at which such symmetric generic periodic orbits withK/N = 1/3 are
possible, as well as the appropriate resonator length for reciprocatingK/N = 1/3-orbits, as
a function of angleα. Further study is needed to extend this to nonsymmetric generic orbits
and differentK/N.

All of the above considerations regarding the behaviour of nonparaxial periodic orbits
suggest that determining the Gouy phase for nonparaxial eigenmodes is a far from trivial
undertaking. We saw that, in general, to support nonparaxial periodicK/N-orbits, the length
of a resonator must bereducedcompared to the length at which it supports paraxialK/N-
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3. Optical resonators and the Gouy phase

Figure 3.13: Schematic representation of the behaviour of the Gouy phase as a function
of the degree of nonparaxiality. The curves indicate resonator lengths at which certain
periodic orbits are possible, and hence serve as lines of constant Gouy phase for those
specific periodic orbits.

orbits, as schematically indicated in Fig.3.13. Since the Gouy phase increases with increasing
length, another way of phrasing this effect is that the effective Gouy phaseincreaseswith
increasing nonparaxiality; then, if we want to keep the Gouy phase constant when increasing
the degree of nonparaxiality, we must reduce the length of the resonator.

The required change in length depends on the exact shape of a nonparaxial periodic orbit.
We saw that the dependence ofL onα is quite different for theK/N = 1/4 M- and W-shaped
orbits, and also for the reciprocating and symmetric genericK/N = 1/3-orbit. Therefore, it
is likely that the Gouy phase that will be acquired by a nonparaxial eigenmode of an optical
resonator will strongly depend on the profile of that eigenmode. Nevertheless, from the above
we can conclude that nonparaxial eigenmodes will have a Gouy phase that ishigher than
θmn = (m+n+1)θ , the result for paraxial eigenmodes. As a result, the simple structure of
the degenerate eigenfrequency spectrum as described by Eq. (3.19), as well as the structure
of the nondegenerate eigenfrequency spectrum described by Eq. (3.10), will be lost when we
go beyond the paraxial approximation.

3.4.2 Stability of periodic orbits

To assess the stability of the nonparaxial periodic orbits discussed above, we must calculate
the correspondingmonodromy matricesMm (see, for example, section 7.2.5 of ref. [15]). In
general the monodromy matrix describes the linearised evolution of a trajectory that deviates
slightly from a given trajectory; such deviations can be either in ray angle or in ray position.
As such, the monodromy matrix takes on the role of “round trip”ABCD-matrix for deviations,
relative to a given orbit. For periodic orbits, we consider the evolution of small deviations
after acompletecircuit of such a periodic orbit, so that the concept “round trip” now refers
to such a complete circuit, rather than to acavity round trip. For paraxial trajectories and
orbits, the monodromy matrix is identical to theABCD-matrix; for nonparaxial trajectories
and orbits it requires precise knowledge of the slope and length of every segment of the
trajectory or orbit under consideration.
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3.4 Degenerate nonparaxial two-mirror resonators

Figure 3.14: (a) Trace of the monodromy matrixTrMm for the M-shaped orbit for
K/N = 1/4 of Fig. 3.7f (solid black curve), the folded-M orbit for K/N = 1/6 of
Fig. 3.11b (solid grey curve), the W-shaped orbit for K/N = 1/4 of Fig. 3.7d (dashed
black curve), and the Z-shaped orbit for K/N = 1/3 of Fig. 3.7a (dashed grey curve).
(b) DifferenceTrMm− 2 for the M-shaped orbit for K/N = 1/4 (solid black curve)
and the Z-shaped orbit for K/N = 1/3 (dashed grey curve), plotted on a logarithmic
scale. Note that these are the same two orbits as plotted in (a), with corresponding line
types. The angleα is the slope of the nonhorizontal segment of the orbit, as indicated
in Figs.3.10a and b.

The stability of a periodic orbit can then be deduced from the trace of the monodromy
matrix for that orbit, TrMm:

|TrMm| ≤ 2 for stable orbits, (3.28a)

|TrMm| > 2 for unstable orbits. (3.28b)

For paraxial periodic orbits of periodN the monodromy matrix is equivalent to theABCD-
matrix for a complete circuit ofN round trips through the cavity. From Eq. (3.23) we then
find that

Mm = MN
rt = 11, (3.29)

so that TrMm = 2, independent of any of the parameters of the orbit. Thus, paraxial periodic
orbits are always stable, albeit marginally stable.

In the nonparaxial case we must calculate the trace of the monodromy matrix of every
periodic orbit separately. In Fig.3.14a we plot TrMm for four nonparaxial periodic orbits,
namely the Z-shaped reciprocating orbit forK/N = 1/3 of Fig.3.7a (dashed grey curve), the
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3. Optical resonators and the Gouy phase

W-shaped reciprocating orbit of Fig.3.7d (dashed black curve), the folded-M reciprocating
orbit for K/N = 1/6 of Fig. 3.11b (solid grey curve) and the M-shaped reciprocating orbit
of Fig. 3.7f (solid black curve). The angleα is the slope of the nonhorizontal segments of
the orbit (cf. the choice ofα in Figs.3.10a and b). We see that for finite anglesα, i.e., for
nonparaxial orbits, TrMm > 2 for both the Z-shaped 1/3 and the M-shaped 1/4-orbits. We
conclude that these nonparaxial orbits areunstable. In Fig.3.14b we plot TrMm−2 for these
two orbits, to better show the deviation from 2 for smallα.

From the black dashed curve in Fig.3.14a we see that for the W-shaped 1/4-orbit,
TrMm = 2, independent of the angleα. The grey dashed curve shows that for the folded-M
1/6-orbit, |TrMm|< 2 (Note that forα larger than 4π/10≈ 1.26 radians, such an 1/6-orbit
is no longer possible). Therefore, these orbits are stable both within and outside the paraxial
approximation, unlike the other two orbits under consideration. As we see from the results
for these four orbits, we cannot make general statements about the stability of nonparaxial
periodic orbits.

An interesting comment is as follows. For nonparaxial periodic orbits, the resonator
length at which a particular periodic orbit is possible depends on both the ratioK/N and
the exact geometry of that periodic orbit; therefore, it is possible that a resonator of a certain
length supports periodic orbits ofdifferentperiodN at the same time. For paraxial resonators,
a particular resonator length either supports only periodic orbits with the sameK/N, or no
periodic orbits at all.

3.5 Folded three-mirror resonators

A more complicated optical resonator than the two-mirror resonators considered so far is a
folded three-mirror resonator. Our interest in this type of resonator stems from the fact that, as
we will see in chapter5, nonparaxialthree-mirror resonators show wave-chaotic behaviour.
Here, we will lay the groundwork for the understanding ofparaxial three-mirror resonators.

In Fig. 3.15a we draw a simple folded three-mirror resonator. It is essential that the
folding mirror MF is a curved mirror. If not, the resonator can be trivially transformed back
into a two-mirror resonator, as in Fig.3.15b. Because of the non-normal incidence on the
folding mirror, the effective radius of curvature of that mirror, and hence the focal power,
will be different for different planes containing the axis. Here, it is sufficient to consider the
behaviour in two perpendicular planes, both containing the optical axis, the so called principal
planes.

The first of these is the plane defined by the two segments of the optical axis. This is
customarily called thetangentialplane, and the effective radius of curvature of the folding
mirror in this plane is [7]

RT = R·cosα . (3.30)

When the folding angle 2α increases,RT will decrease and hence the focusing effect of the
folding mirror in the tangential plane will increase.

The second plane is the plane perpendicular to the tangential plane and containing the
optical axis. Because the optical axis is folded, this plane is, in real space, folded as well.
Customarily, it is called thesagittal plane. The effective radius of curvature of the folding
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3.5 Folded three-mirror resonators

Figure 3.15: (a) Schematic drawing of a three-mirror folded resonator. MF is the
curved folding mirror, M1 and M2 are the resonator end mirrors. The resonator is
folded through2α, so that the angle of incidence of the axis on the folding mirror MF is
α. (b) A three-mirror folded resonator with a flat folding mirror, which can be trivially
transformed back into a two-mirror resonator.

mirror in this plane is [7]
RS = R/cosα , (3.31)

so that, for increasing folding angle 2α, RS will increase and hence the focal power will
decrease.

As a result, the total focal power in a single round trip through the resonator depends
on whether one considers the tangential or the sagittal plane. A direct consequence of this
is that the eigenmodes of a paraxial three-mirror resonator are astigmatic Hermite-Gaussian
modes, with generally an elliptical cross-section. Also, instead of a single Gouy phaseθ to
describe the structure of, for example, the eigenfrequency spectrum (cf. Equation (3.10)), we
now havetwoGouy phases, one each for the tangential and the sagittal planes.

The eigenfrequencies of the astigmatic Hermite-Gaussian eigenmodes of a folded three-
mirror resonator are given by [7,16]

νq,mn =
c

2L

{
q+

(
m+ 1

2

) θT

2π
+

(
n+ 1

2

) θS

2π

}
, (3.32)

whereθT andθS are the Gouy phases for the tangential and the sagittal plane, respectively.
These Gouy phases depend on the folding angle 2α of the resonator; the easiest way of
determiningθT andθS is to compose the round trip matricesM rt,T andM rt,S, using the ap-
propriate effective radii of curvature of Eqs. (3.30) and (3.31) for the folding mirror. The
eigenvalues of these round trip matrices will then be exp(±iθT) and exp(±iθS). In Fig. 3.16
we plotθT andθS versus half folding angleα, for a resonator with three mirrors with a radius
of curvatureR = 1 m. One arm of the resonator has a lengthL1 = 10 cm, while the other
arm has a lengthL2 = 20 cm. These dimensions are taken from chapter5, where we will
demonstrate, for large enoughα, the presence of wave chaos in such a resonator.

We can re-order the terms in Eq. (3.32) to get the more practical form
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δ
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}
,

(3.33)
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Figure 3.16: Tangential and sagittal Gouy phasesθT and θS versus half folding
angle α, for a folded three-mirror resonator consisting of three mirrors with radius
of curvature R= 1 m. The length of one arm of the resonator L1 = 10 cm, while the
length of the other arm L2 = 20 cm.

where we have introduced the average Gouy phaseθ̂ = (θT + θS)/2 and the Gouy phase
differenceδ = θT − θS. Using this equation we see that the eigenfrequency spectrum of a
paraxial folded three-mirror optical resonator has a more interesting structure than that of
a two-mirror resonator. For every longitudinal mode indexq there is a “super-family”, an
equidistant series of mode families with constant total transverse mode indexm+ n. The
centres of each family are spaced at∆νF = θ̂/2π ·c/2L, similar to the transverse mode spa-
cing ∆νT for a two-mirror resonator. However, for a three-mirror resonator the frequency
degeneracywithin a family of modes is lifted, so that every family consists ofm+ n+ 1
distinct peaks. From Eq. (3.33) we see, after noting that for a family of modesm+ n is a
constant so that the differencem−n can only change in steps of 2, that the distance between
the different members of a single family is equal to∆νM = δ/2π · c/2L. Finally, to get the
complete eigenfrequency spectrum we must combine all super-families of modes, each with
their specificq, where neighbouring super-families are offset by∆νL = c/2L, the longitudinal
mode spacing.

Similar to the two-mirror resonators described in section3.3, it is possible to construct a
folded three-mirror resonator that has one or both of the Gouy phasesθT andθS equal to a
rational fraction of 2π. However, to get degenerate eigenfrequency spectra,bothGouy phases
must have this form, as what matters is the average and difference Gouy phasesθ̂ andδ . This
double degeneracy only occurs in a very small part of parameter space.

On the other hand, itis possible to have periodic orbits in a resonator with only one
Gouy phase (θT or θS) of the form 2π K/N, provided the analysis is limited to the plane
(tangential or sagittal) for which the Gouy phase has this rational form. When both Gouy
phasesθT,S= 2π K/N, possibly with differentK/N for the two planes, we again get a plethora
of periodic orbits, now with a period that is the least common multiple ofNT andNS.

When we operate a folded three-mirror optical resonator in the nonparaxial regime, we
can expect, for the tangential and sagittal planes, effects that are similar to those described in
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section3.4for nonparaxial two-mirror resonators, both degenerate and nondegenerate. How-
ever, because we now deal with two separate Gouy phases, each with their own dependence
on the degree of nonparaxiality, analysing this is beyond the scope of this chapter. It is likely
that, because of nonparaxiality, it is no longer allowed to consider the tangential and sagittal
planes independently, but that instead they become coupled. Also, as we will see in chapter5,
it appears that the effect of nonparaxiality is enhanced by the folding of the resonator.

3.6 Degenerate resonator as high-resolution interferometer

As we saw in section3.3, a degenerate two-mirror optical resonator has an eigenfrequency
spectrum consisting of evenly spaced resonances, with an inter-resonance distance of∆ν =
1/N ·c/2L. The best known example of such a degenerate resonator is aconfocalFabry-Ṕerot
resonator, withN = 2, as already mentioned on page21. Here, we will consider resonators
with much largerN.

We may consider using such a degenerate resonator as a high-resolution interferometer
for sensing changes in length, as changing the length of the resonator will shift its resonance
frequencies. If we inject monochromatic light at a fixed frequencyν0 into a resonator, and
monitor the amount of transmitted light as the length of the resonator changes, we will see
maximum transmission when a resonator eigenfrequency coincides with the frequency of the
injected light. To first approximation, the eigenfrequencies of a resonator change linearly
with the length of the resonator, and changing the length of the resonator byλ/2, whereλ

is the wavelength of the injected light, will shift all frequencies by∆νL = c/2L, a single free
spectral range.

In a traditional standing wave interferometer, the injected light is mode-matched to a
single eigenmode of the resonator, the fundamental Gaussian mode. Then, changing the
length of the resonator over a rangeλ/2 will bring you from one resonance to the next.
There are two notable exceptions to this: the planar Fabry-Pérot interferometer, which only
requires plane wave incidence, and the confocal interferometer, where no mode matching is
required. However, these two types of interferometer are, in essence, degenerate resonators,
with K/N = 0 andK/N = 1/2, respectively.

For a degenerate resonator where the distance between resonances is 1/N ·c/2L, that is,
a factor of 1/N smaller than for nondegenerate mode-matched interferometers, the change
in length of the resonator required to get from one resonance to the next isalso a factor
1/N smaller,δL = 1/N ·λ/2, and the value ofN can be controlled, and calibrated, to high
accuracy. Then, it is possible to detect changes in the length of such a resonator with an
accuracy of at least 1/N ·λ/2, over a large range of length changes∆L.

In reality, conventional, nondegenerate resonators also offer a resolution that is higher
than the fundamental mode spacingλ/2. Because the intensity reflectivity of the mirrors
R1,2 < 1, every resonance has a finite widthδν (FWHM). The ratio of the free spectral range
to this line width is called the finesseF , and is, forR1,2 close to 1, given by

F ≡ c
2L

1
δν

=
2π

1−R
, (3.34)

with R = R1R2. Through this finite line width, combined with knowledge about the exact
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shape of the resonance line, one can detect length changes that can, potentially, be much
smaller thanλ/2. However, a crucial difference with a degenerate resonator is that thetotal
range of resonator lengths∆L in which it is possible to detect small length changes is of
the order of the width of an individual resonance. As soon as one is outside the wing of a
modal resonance, one cannot determine the length of the resonator or changes therein. If, by
reducing the line width of individual resonances, one wishes to improve the resolution of an
interferometer, one reduces at the same time the useful range over which one can determine
those minute length changes. One possible way to overcome this problem is to change the
frequency of the injection laser. However, in that case it is no longer possible to lock the laser
frequency to an atomic transition in order to achieve a very precise reference frequency, thus
leading to loss of accuracy in the length measurement.

In contrast, a degenerate resonator allows one to apply the above procedure to allN res-
onances within a single free spectral range. One can detect large length changes, simply by
counting the number of resonances that are brought into alignment with the injection laser
frequency. Subsequently, small length changes can be determined by detecting the flank of
individual resonances. Large length changes that are not equal to an integer times the spacing
of individual resonances 1/N ·λ/2, can be trivially broken up in a part thatis equal to an in-
teger times the fundamental line spacing, and a small length change. As bothN and the laser
wavelengthλ can be precisely calibrated, any length change can be accurately determined. In
effect, a degenerate resonator, in combination with an injection laser that is frequency-locked
to an atomic transition, creates a well-calibrated “comb” of resonances.

An added advantage of a degenerate resonator is its insensitivity to mode matching. Since,
for a degenerate resonator,all modes are condensed into degenerate groups, it is in fact essen-
tial to have nonperfect mode matching, as mode matching to a single resonance will destroy
the increased mode density in the transmission spectrum. This effect is well known for con-
focal resonators, where neighbouring degenerate super-families consist of modes that are
either even or odd with respect to the optical axis. Centreing a symmetric and even beam
on such a resonator will cause the overlap with the odd super-families to be zero, so that the
resulting transmission spectrum will have the basicc/2L periodicity, instead ofc/4L.

There are several limitations to using a degenerate optical resonator as a high-resolution
interferometer. The first is that a resonator is only perfectly degenerate at asingleresonator
lengthLK/N. Changing this length, even by tiny fractions ofλ/2, will destroy this perfect
degeneracy. In practice, this lack of degeneracy will only become significant when it is
larger than the line width of individual resonances. As every degenerate group of resonances
consists of modes with the same(m+n) modN, the distance between the extreme modes in
a slightly nondegenerate group will be proportional to(m+n)max− (m+n)min = kN, where
k is the number of resonances within a group. Therefore, it may be beneficial to limit the total
number of resonances within a group.

A second limitation is that it is not possible to increaseN at will. To get a nicely developed
degenerate spectrum, with inter-resonance spacing 1/N ·c/2L, one wishes to excite more than
N families of modes, each with constant(m+n). However, as we saw in section3.4, it is not
possible to increase(m+ n) indefinitely without violating the paraxial approximation. Out-
side the paraxial approximation, eigenmodes will have a round trip Gouy phase that islarger
thanθmn = (m+ n+ 1)θ , so that, for a resonator withθ = 2π K/N, the perfect degeneracy
that exists for paraxial modes is absent for nonparaxial modes.
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In practice, this limitation is not very strict. The opening angle of a fundamental Gaussian
mode is given by

α0 =
λ

πw0
, (3.35)

whereλ is the wavelength of the light andw0 is the “waist”, the 1/e-radius of the optical field
in the focus of the beam. The waist is related to the resonator geometry through Eq. (3.6). If
we assume reasonable values for the various parameters (λ = 532 nm,R= 1 m andL≈ 1 cm),
we find thatα0 ≈ 1.5×10−3. A requirement for paraxiality that is sometimes used (see, for
example, p. 630 of ref. [7]) is α < 30◦ = π/6. As the opening angle of a Hermite-Gaussian
beam scales with the square root of the transverse mode index, the highest-order transverse
mode allowed within the paraxial approximation would have an index of the order 1.2×105.

A final limitation on a high-resolution interferometer, one that is shared between both
conventional and degenerate resonator types, is the line width of individual resonances. At
a certain point it is not feasible to reduce resonator losses further to reduce the line width
of a resonator. Therefore, a resolution that is many orders of magnitude smaller than this
minimum line width cannot be reached. However, using present day technology, a finesseF
as high as 105 or 106 is possible [17], allowing, in principle, an inter-resonance spacing as
small asλ/106 = 0.5 pm.

3.7 Conclusions

We have seen in this chapter that consideration of both wave and ray properties of optical
resonators in combination can help improve the understanding of both. There exist close ties
between the structure of the eigenfrequency spectrum of a resonator, and the behaviour of
rays in that resonator. As a result, a convenient way of calculating, for example, the Gouy
phase of a particular resonator geometry, is via the round tripABCD-matrix of ray optics.
Furthermore, when the Gouy phase of a resonatorθ = 2π K/N, that resonator has at the
same time a highly degenerate eigenfrequency spectrum, and supports periodic orbits.

At least some of these periodic orbits survive outside the paraxial limit, but, where in
the paraxial limits all periodic orbits for a givenK/N occur at the same resonator length
LK/N,parax, nonparaxial periodicK/N-orbits are only possible at resonator lengths that de-
pend strongly on the exact shape of the orbit. From the behaviour of these periodic orbits
outside the paraxial limit, we may conclude that the round trip Gouy phase for nonparaxial
eigenmodes will be larger than the paraxial Gouy phase. To get exact values, a full calculation
of nonparaxial eigenmodes has to be performed.

A folded three-mirror optical resonator has properties that resemble those of a two-mirror
resonator. A crucial difference is that eigenmodes are astigmatic, so that now two Gouy
phasesθT andθS are needed to fully describe both the structure of the eigenfrequency spec-
trum and general ray behaviour inside such a resonator. Degenerate eigenfrequency spectra
and periodic orbits are still possible, but now with the stricter requirement that bothθT and
θS are rational fractions of 2π.

Finally, we saw that a degenerate two-mirror resonator may be used as a high-resolution
interferometer for length-sensing purposes, where the benefit over a more conventional stand-
ing wave interferometer lies in the extended working range.
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Chapter 4
Attempts towards a cavity random
laser

This chapter contains a selection of experiments done on two-mirror (plano-concave)
Nd:YVO4-lasers, similar to the setup used in chapter2. These experiments were per-
formed in our search for acavity random laser, i.e., a random laser not based upon
scattering by a disordered medium, but on the manifold of oscillating and (potentially)
interacting modes of a highly multi-mode laser based upon a conventional cavity. The
motivation for this search is that such a cavity random laser would allow a much larger
degree of control over experimental parameters, as well as continuous instead of pulsed
operation. This should greatly ease the comparison between theory and experiment.

We will show that, unfortunately, our experiments did not reach the regime where random
laser action could be expected. However, these efforts are not wasted: they draw attention
to several key issues of multi-mode lasers. In this they may serve as a basis for future
research.
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4.1 Introduction

Ever since its invention in 1958 [18], the laser has captured the imagination of the general
public as a source of monochromatic, confined beams of light, potentially with great bright-
ness. This image is, of course, a simplification, ignoring as it does fundamental limitations
such as quantum noise and diffraction, but nevertheless conventional lasers are fine examples
of precision. As such, they are used in many high-accuracy measurement and control sys-
tems.

The directionality and monochromaticity of a laser’s output is, to a very large extent,
determined by the mirrors providing the feedback of light necessary for laser action. These
mirrors form an optical resonator; it is this resonator that determines both the spatial and
spectral properties of the resonator modes, leading to narrow-bandwidth directional emission.

However, as early as the 1960s, people started considering lasers that did away with
conventional resonators, and instead relied on nonstandard ways of providing feedback of
light, such as scattering of light in random media [19,20]. Subsequently, the interest in these
so calledrandom laserswaned. However, the 1990s saw renewed interest in this type of laser
systems, both from a theoretical [21,22,23,24] and an experimental perspective [25,26,27,
28,29,30,31,32].

All experimentally realised random lasers so far consist of two important elements: a gain
medium to provide amplification of light, and scattering particles to give feedback. These two
elements may be separate, such as in a colloidal suspension of sub-wavelength TiO2-particles
in a laser dye solution [25, 26, 27], or combined in one, such as in finely ground ZnO- or
GaN-powders [28,29,30]. From a theoretical point of view, a random laser is a laser based
on chaotic modes [24]. These chaotic modes can be due to (microscopic) random scatterers,
as in the above-mentioned implementations, or due to the (macroscopic) boundary conditions
as in, for example, a stadium-shaped resonator [33].

Another possible classification of random lasers, largely orthogonal to the above-used
distinction (microscopic versus macroscopic disorder), is based on the degree ofopennessof
the random laser. Such a classification is well established [24,34,35], and is relevant because
the degree of openness of a random laser leads to marked differences in behaviour. For “open”
random lasers, the width of the resonances will be much larger than the average level spacing,
so that many modes overlap. It is predicted that such random lasers have large PetermannK-
factors [36]. On the other hand, in “closed” random lasers all resonances are well separated,
with a width much smaller than the average spacing. These systems are expected to show
effects of level repulsion [15,37].

An important motivation for the revival of interest in these types of laser is that the proper-
ties of random lasers can be quite different from those of conventional laser systems. Theor-
etical calculations show that random lasers exhibit strikingly different spectral and temporal
behaviour, such as, for example, increased laser line widths and laser intensity noise [36].
Experiments on scattering random lasers show that emission spectra can depend strongly on
the emission direction, and that the output of such random lasers is not in a directed beam,
but rather in all directions.

Interest in random lasers is not limited to the field of laser physics, but stretches from fun-
damental quantum physics to practical applications. From a fundamental point of view, ran-
dom lasers may provide experimental access to quantum effects in combination with multiple
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scattering, quantum chaos, enhanced backscattering and Anderson localisation. Practical in-
terest is driven by the fact that random lasers based on scattering media are, by definition,
far more tolerant of imperfections in the feedback mechanism than conventional lasers, and
can potentially be much cheaper than regular lasers. This has already led to, for example,
the “paint-on laser” [31], that, according to its inventors, may be used for such varied applic-
ations as anti-counterfeit security systems, high visibility marking, emergency lighting and
display technology.

As mentioned above, all current experimental realisations of random lasers contain a
random, scattering medium. It is ironic that this “randomness”, while making the dependence
of a laser on its surroundings far less critical and thereby making possible many practical
applications, hampers a close comparison between theoretical predictions and experimental
results. Control of the exact configuration of scatterers in random lasers based on ZnO- or
GaN-powders or dye-TiO2-suspensions is very limited, so that it is not always possible to
make theory and experiment meet. Furthermore, dye-TiO2-suspensions have to be constantly
agitated to prevent sedimentation of the TiO2 scatterers [32], so that reproduction of the
configuration of scatterers is not possible. Another complication is that most theoretical
treatments of random lasers deal with steady-state properties; in contrast, all experiments on
scattering random lasers are pulsed to minimise the effect of heating and other complications.

For these reasons, it is desirable to have a random laser system that allows greater control
over relevant experimental parameters, and that can be operated continuously. These require-
ments all but exclude random lasers based on scattering media. Furthermore, if this random
laser can be built using off-the-shelf optical components this will greatly ease construction
and exploration of diverse random laser systems.

At this point, it is useful to point out that the name “random laser” was, perhaps, an
unfortunate choice, as it implies that some form of random element isessentialto obtain a
random laser. Rather, a random element is but one possible way of realising the truly essential
element in a random laser, an ensemble of chaotic modes. Whether these modes are due to
scattering particles or due to the shape of the boundary of the cavity is immaterial. It thus
seems perfectly possible to create a random laser with no random element whatsoever.

For the reasons mentioned above, we undertook to construct acavity random laser, a
random laser based on a multi-mode optical resonator. This type of random laser was already
considered in the 1960s, but the poor quality of the then-available gain media and other
components led to inconclusive results. The central idea is to construct an optical resonator
that will support many transverse modes that are not frequency-degenerate. These modes
must experience comparable losses to prevent any loss-based mode selection mechanisms
that would reduce the number of active laser modes, and they must somehow interact [20].

This mode interaction can take on many forms, depending on the type of random laser.
For example, in an “open” random laser, losses due to outcoupling lead to spectral and spatial
overlap of individual modes, and thus to mode mixing; in a “closed” random laser (i.e.,
negligible outcoupling), one employs the nonintegrability of the wave equation, including
boundary conditions, to create a repulsive interaction of the modes (“level repulsion”). In
essence, both these forms of interaction are due to the geometry of the system. In addition to
these interactions, which apply equally to passive and active systems, in random lasers one
may also have nonlinear mode-mode interaction mediated by the gain medium.

As explained in chapter3, passive two-mirror resonators of certain geometries have
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Figure 4.1: Schematic resonator configuration, where L is the length of the resonator,
d the thickness of the Nd:YVO4-crystal, and R is the radius of curvature of the concave
mirror. This setup is largely identical to that used in chapter2 for the experiments on
geometric modes.

highly degenerate eigenfrequency spectra. If one then slightly changes, for example, the
length of the resonator away from this degenerate configuration, the frequency degener-
acy will be lifted. The frequency difference between neighbouring modes can be tuned
by controlling the change in length away from a degenerate configuration. Hence, these
near-frequency-degenerate resonator configurations were our prime choice for constructing a
cavity random laser.

As a gain medium we chose Nd3+:YVO4, because it allows a high optical gain in a short
crystal length, and because techniques, equipment and experience in working with Nd:YVO4
were already present in our group. As Nd:YVO4-crystals can be coated with highly reflect-
ive multilayer dielectric mirrors, we opted for a plano-concave resonator design, where one
mirror is formed by the back facet of the Nd:YVO4-crystal, and the other mirror is a separate
concave mirror, see Fig.4.1.

It is not a priori clear in which of the two classes mentioned above (“open” or “closed”)
these lasers will fall. For instance, the cavity shown in Fig.4.1is generically open, but effect-
ively closed for “low-loss” laser modes. Therefore it is not clear what form the (potential)
interactions between modes will take (e.g., due to the geometry of the system or due to the
gain). A further complication is that even high-quality mirror coatings are not completely
uniform. These nonuniformities scatter light, and can therefore contribute to the interaction
of modes.

As a consequence we employ an empirical approach and look for behaviour that is out of
the ordinary, i.e., different from that of normal, nonrandom lasers. We primarily measured
three basic properties: spectrum, laser output power and spatial profile. We analysed the
optical spectrum using a Fabry-Pérot interferometer, and we also observed beat spectra using
a fast optical detector and an FFT analyser. Laser output power was measured by either
recording the output power as a function of pump power at fixed resonator geometry, or by
recording the output power as a function of resonator length at fixed pump power. Spatial
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measurements consisted of near and far-field transverse beam profiles recorded using a CCD
camera. As many of these measurements could be performed virtually simultaneously, it
allowed powerful integrated diagnostics that can give deeper insight in the system.

In the next section we will describe our experimental setup in more detail. Then, in sec-
tions 4.3–4.5 we will report some surprising experimental results of spectral, output power
and spatial measurements. Finally, we will wrap this chapter up with a concluding discus-
sion. Even though, as we will see, a cavity random laser eluded us, in our experiments we
encountered many unexpected phenomena. These effects, while not explored further in the
context of this thesis, suggest rich physics and warrant further study. This, then, is the prime
motivation for this chapter, to document and conserve the observation of these multi-mode
laser phenomena and our associated thoughts.

4.2 Experimental setup

The setup used in these experiments is as sketched in Fig.4.1. A plane-parallel Nd:YVO4-
chip, with a thicknessd of either 0.21 mm or 1.0 mm, serves as a gain medium. This crystal is
pumped optically by a titanium sapphire laser (Ppump,max≈ 380 mW) tuned to the absorption
maximum of Nd:YVO4 (pump wavelengthλpump = 809 nm). The outward facing side of
the crystal serves as a planar mirror; it has a multilayer dielectric coating with a reflectivity
higher than 99.8% at the laser wavelength ofλ = 1064 nm, while being antireflective at the
pump wavelength. The inward facing side of the crystal has an antireflective coating at the
laser wavelength.

The second resonator mirror serves as outcoupling mirror; it is a concave spherical mirror,
either with a reflectivity of 95% and a radius of curvatureR= 25 mm, or with a reflectivity of
98% and a radius of curvatureR= 2.1 mm. This last mirror has only been used in combina-
tion with the 0.21 mm thick crystal. The outcoupling mirror is mounted on a movable stage
for coarse control of the resonator length, and on a piezo crystal for fine length control.

In contrast with the experiments in chapter2, pumping is mostly done on-axis to reduce
the amount of pump-related mode selection. The 1/e2 intensity radius of the pump spot in the
crystal is in the range 50–350µm. This size of the pump spot must be compared to the waist
w0 of the fundamental mode of the resonator; this waist is located at the planar mirror. The
value ofw0 depends on the radius of curvature of the concave mirror, as well as on the cavity
length. From Eq. (3.4) we see that, for a plano-concave cavity, the maximum mode waist as a
function of cavity length occurs for hemiconfocal cavity configurations, whereL = R/2. For
the 25 mm radius-of-curvature outcoupling mirror we then findw0 ∼ 65 µm, while for the
2.1 mm radius-of-curvature outcoupling mirrorw0 ∼ 19 µm. For cavity configurations other
than hemiconfocal, the mode waist is smaller than these maximum values. For example, for a
resonator withL = 0.9 R, the mode waistw0 is∼ 50µm and∼ 14.6 µm for the two mirrors,
respectively. According to Eq. (3.4), the mode waist tends to zero for a hemiconcentric
resonator withL = R; note, however, that Eq. (3.4) is aparaxialresult, while a hemiconcentric
resonator violates the paraxial approximation. In practice, therefore,w0 will remain finite.
In our experiments the size of the pump spot is always comparable to or larger than the size
of the mode waistw0. This reduces (but does not eliminate) mode selection effects based on
differences in spatial overlap between the pump spot and different transverse laser modes.
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Figure 4.2: Schematic picture of the various ways in which the laser output could be
analysed.V indicates a volt meter attached to a semiconductor photodiode via a load
resistor,FFT indicates an FFT analyser attached to a fibre-coupled fast photodiode,FP
indicates a scanning plane-parallel Fabry-Pérot interferometer, andCCD indicates a
CCD camera.

Figure 4.2 gives a schematic picture of the diagnostics. Behind the laser, a dichroic
mirror filters out any remaining pump light, after which the laser output can be directed
onto either a semiconductor photodiode to measure the laser output power, onto a scanning
plane-parallel Fabry-Ṕerot interferometer to determine the optical spectrum, onto a fast fibre-
coupled photodiode to inspect beat spectra using an FFT analyser, or imaged onto a CCD
camera.

Because the Nd:YVO4-crystal has a refractive indexne≈ 2.17, the optical length of the
laser cavity will be different from the physical separation between the two mirrors. To relate
frequency differences between modes to the length of the laser cavity we introduce theoptical
resonator length

Lopt = L+(ne−1)d , (4.1)

whered is the thickness of the Nd:YVO4-crystal. The longitudinal mode spacing or free
spectral range of our resonator is then given by

∆νL =
c

2Lopt
. (4.2)

To get a sense of scale, for a hemiconcentric cavity configuration we find that∆νL ≈ 5.6 GHz
when using aR= 25 mm-mirror and a 1 mm thick crystal, and∆νL ≈ 61 GHz when using a
R= 2.1 mm-mirror and a 0.21 mm thick Nd:YVO4-crystal.

From section3.2.1we see that theratio between transverse mode spacing and longitud-
inal mode spacing is directly related to the Gouy phaseθ ,

2π
∆νT

∆νL
= θ = 2arccos

(
±√g1g2

)
, (4.3)

with g1 andg2 the cavityg-parameters (also see chapter3), taking into account the presence
of the crystal. In this equation, the+ sign applies tog1,g2 > 0 and the− sign tog1,g2 < 0.
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Figure 4.3: Schematic indication of the relation between the nominal resonator length
L and the corrected resonator lengthL̃ which takes into account refraction at the air-
crystal interface.

For a plano-concave resonator we find that [7]

g1 = 1 and g2 = 1− L̃
R

, (4.4)

whereL̃ is the geometric length of the resonator corrected for refraction effects in the crystal,

L̃ = L− (1−1/ne)d . (4.5)

In Fig. 4.3we indicate, for a hemiconfocal resonator, the significance of this corrected length
L̃. Because of refraction at the air-crystal interface, the apparent depth in the crystal at which
the flat mirror lies equalsd/ne instead ofd. In essence,̃L is the length of theemptyresonator
that is equivalent to our laser cavity.

By combining Eqs. (4.1) and (4.5) and eliminatingL, we can relate the corrected geomet-
ric resonator length to the optical resonator length through

L̃ = Lopt− (ne−1/ne)d . (4.6)

Resonator configurations may now be compared by their reduced length

` =
L̃
R

, (4.7)

where` = 1/2 and` = 1 correspond to a hemiconfocal and hemiconcentric cavity, respect-
ively. Summarising, using Eqs. (4.2), (4.3) and (4.4) with Eq. (3.10) we find that the eigen-
frequencies for our cavity are given by

νq,mn = ∆νL

{
q+(m+n+1)

θ

2π

}
=

c
2Lopt

{
q+(m+n+1)

arccos
√

1− L̃/R
π

}
.

(4.8)
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4.3 Spectral measurements

As mentioned in the introduction, one possibility to construct a cavity random laser is to build
a resonator that supports many transverse modes that are not frequency-degenerate, but are
nevertheless spaced sufficiently close that they overlap spectrally. In order to search for such
resonator configurations, we measure both the optical spectrum of our laser, using a Fabry-
Pérot interferometer, and its beat spectrum, using a fast optical detector in conjunction with
an FFT analyser.

4.3.1 Optical spectra

The length of the plane-parallel scanning Fabry-Pérot interferometer that we use for spectral
diagnostics can be varied between 2.68 mm and 22.7 mm; over this range we found a finesse
of F ∼ 125. From these interferometer lengths we deduce that the free spectral range of
our interferometer can be varied between 6.60 GHz and 56.0 GHz, with a corresponding line
width of 53 MHz and 0.45 GHz, respectively. Line widths below∼ 50 MHz were difficult
to realise since we found that the finesse rapidly degrades for interferometer lengths beyond
∼ 25 mm.

At low pump power, just above laser threshold, it is possible to obtain single frequency
output at all resonator configurations except extremely close to hemiconcentric, and nothing
remarkable is observed. If we change the length of the laser cavity on a sub-wavelength
scale, using the piezo transducer, the frequency of this single lasing mode will change. As
the spectral position of the gain profile is fixed, this will change the modal gain, until a
second mode has the same gain as the original lasing mode. Then, we observe a changeover
between these two modes, where the first mode stops lasing and the second mode becomes
the new lasing mode. In general, we found that this changeover will be between modes of the
same transverse order, but differing by 1 in the longitudinal mode index. In Fig.4.4a we see
the Fabry-Ṕerot (FP) spectrum of a single mode, while Fig.4.4b shows such a changeover
between two modes upon tuning the cavity length.

At higher pump powers, more and more transverse modes come above threshold, so that
the FP spectrum shows more and more peaks. As explained in section3.2.1, the distance
between neighbouring transverse modes is directly related to the resonator geometry. Because
FP spectra are periodic with a period equal to the free spectral range of the interferometer, all
peaks are folded back into a single free spectral range, quickly making the interpretation of
such spectra extremely complicated. At generic cavity lengths, these spectra show no further
special features.

The situation is different around degenerate resonator configurations, where the ratio of
transverse mode spacing and longitudinal mode spacing is rational,

∆νT

∆νL
=

K
N

(4.9)

as described in section3.3. In Figs.4.5a–e we show five FP spectra of a laser with anR=
2.1 mm radius-of-curvature outcoupling mirror, taken around the resonator configuration` =
3/4. For this configuration we calculate that∆νL = 77.6 GHz.
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Figure 4.4: Typical Fabry-Ṕerot spectra for a laser operated just above threshold. The
location of the zero of the horizontal axis is arbitrary. Please note that we display more
than a single free spectral range, highlighting the periodic nature inherent to Fabry-
Pérot spectra. Therefore, the same frequency is, in this case, displayed twice. (a) For
arbitrary microscopic resonator length only a single mode lases. (b) At specific micro-
scopic resonator lengths two modes have the same modal gain, leading to a changeover
between lasing modes. Indicated is the unfolded spectral distance between the two
modes,∆ν ≈ 6.32 GHz. As both these modes are TEM00 modes, differing by 1 in lon-
gitudinal mode index, this spectral distance corresponds to the free spectral range∆νL
of the laser. From this we can deduce that the optical cavity length Lopt ∼ 23.7 mm.
As these experiments were done with a crystal of1.0 mm thickness and a mirror with
a radius of curvature R= 25 mm, the geometric cavity length is̃L = 22 mm, and the
reduced cavity length̀= 0.88.

In Figs. 4.5a, b, d and e we observe a generally broad structure in the FP spectrum,
with a typical width between 15 and 25 GHz (compared to a free spectral range∆νL = 86–
70 GHz for figures a–e). Superimposed on this broad structure are narrower lines. If we
tune the length of the laser cavity by changing the voltage on the piezo, these narrower lines
shift, indicating that they correspond directly to resonator modes. In contrast, the broad
structure itself is immobile upon changing the length of the resonator on a sub-wavelength
scale, suggesting that the spectral position of this broad structure is linked to the position of
the maximum of the gain profile of the Nd:YVO4-crystal. This is confirmed by changing the
temperature of the Nd:YVO4-crystal, causing a shift of the position of maximum gain. We
then observe that the broad structure changes frequency, while the superimposed narrower
lines remain fixed.

The FP spectrum displayed in Fig.4.5c is quite different. The broad “bulge” that is
present for different lengths collapses into a much narrower structure, with a width of around
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Figure 4.5: Fabry-Ṕerot spectra for a resonator with a mirror with a radius of curvature
R = 2.1 mm, and a reduced cavity length of (a)` = 0.66, (b) ` = 0.71, (c) ` = 0.75,
(d) ` = 0.80, and (e)̀ = 0.85. See Eq. (4.7) for the definition of̀ .

6 GHz. The position, and hence the frequency, of this structure changes when the length of
the cavity is changed on a sub-wavelength scale, until at certain resonator lengths we observe
a changeover between this structure and one of the smaller satellite peaks. This process
is similar to the changeover between single modes that occurs at nondegenerate resonator
lengths, as described above.

The collapse of the broad bulge into a much narrower spectral feature is not surprising
once one realises that the present cavity configuration,` = 0.75, leads to a ratio of trans-
verse and longitudinal mode spacings∆νT/∆νL = 1/3. Therefore, the entire eigenfrequency
spectrum of the resonator is reduced to a “comb” of highly degenerate frequencies, as schem-
atically depicted in Fig.3.6. The distance between the large central structure and the smaller
satellite peaks in Fig.4.5c is equal to 26 GHz, which is indeed a third of the longitudinal
mode spacing of the laser.

4.3.2 Beat spectra

Because of the modest finesse of our Fabry-Pérot resonator, it is not possible to resolve the
finer structure in the broad spectra reported above. To gain more insight we measured the
laser output in the time domain, and Fourier-transformed this signal back to the frequency
domain. We directed the laser output onto a fibre-coupled fast photoreceiver, with a specified
bandwidth of 6 GHz. The resulting signal was analysed using a FFT spectrum analyser.

In Fig. 4.6a we plot an FP spectrum for a laser at the edge of stability,` = 0.999. We
see again a broad structure, with some narrower oscillations superimposed. The width of
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Figure 4.6: (a) Fabry-Ṕerot spectrum of the output of a laser operated close to the
edge of stability,̀ = 0.999. (b) Beat spectrum of the same output. Please note that
the vertical scale is logarithmic. (c) Expanded section of the beat spectrum of (b). The
concave cavity mirror had a radius of curvature R= 25 mm, while the crystal had a
thickness of d= 0.21 mm. From this we calculate that∆νL ≈ 5.9 GHz.

the broad structure is of the order of 11 GHz, while the longitudinal mode spacing∆νL ≈
5.9 GHz. In Fig.4.6b we plot the corresponding beat spectrum. A notable feature is the
increased beat strength around multiples of about 2.9 GHz. This corresponds to the period of
the oscillations superimposed on the broad structure in subfigure a. As we are very close to
a hemiconcentric cavity configuration, where∆νT/∆νL = 1/2, we expect a transverse mode
spacing of∆νL/2≈ 3.0 GHz, in good agreement with the experimentally found value. In
Fig. 4.6c we expand a 100 MHz-wide section of the full beat spectrum in Fig. b. We estimate
that there are about 50–100 distinct beat frequencies in this interval, although most of these
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are very weak. Based on this, we estimate that there are about 104 beat frequencies in the
beat spectrum between 0 and 10 GHz, i.e., in an interval comparable to the width of the broad
structure (11 GHz).

To derive the number of lasing modes from the number of beat frequencies, we must
make an assumption about the spectral distances between those lasing modes. One extreme
assumption is that all lasing modes are equidistant, as is predicted by Eq. (3.10) for transverse
modes belonging to the same longitudinal mode indexq. In that case, a great number of
mode-mode distances will be degenerate. A number of 104 distinct beat frequencies would
then imply the presence of about 104 (transverse) lasing modes. However, as the distance
between neighbouring transverse modes is∼ 3 GHz, the assumption that all transverse modes
belong to the same longitudinal mode indexq is very unrealistic (given the width of the broad
structure and the transverse mode spacing, every longitudinal mode indexq contributes, at
most 11/3≈ 4 transverse modes). The other extreme assumption, also not very realistic, is
that all mode-mode distances are effectively different. Then, the upper bound on the total
number of lasing modes is reduced to about 102. So, our (very rough) guess is that∼ 103

modes are involved.
For comparison, apassivecavity consisting of two mirrors with the same reflectivity as

our concave and our flat mirror (95% and 99.8%, respectively) would have a finesse of about
100. Therefore, it would not be possible to distinguish between more than about 100 modes
per free spectral range, or about 11/5.9×100≈ 200 modes in a frequency interval of 11 GHz.
In theactivesystem the line width is not a limiting factor, as all beat frequencies in Fig.4.6c
are well-resolved.

Spectral beat diagnostics also allows us to observe relatively low-frequency beats (up to
100 MHz) around frequency-degenerate laser cavity configurations. In Fig.4.7 we plot the
spectral position of three different beat peaks as a function of the length of the cavity around
` = 3/4, where∆νT/∆νL = 1/3 (please note that the correspondence between the number
of beat peaks and the degree of degeneracy is pure coincidence). In these experiments we
used a cavity end mirror with a radius of curvature of 25 mm. We see that, at certain cavity
lengths, the beat frequencies go to zero, indicating a frequency degeneracy between lasing
modes. The nature of these frequency degeneracies is discussed in the following.

From chapter3 we know that for a frequency-degenerate cavity, where∆νT/∆νL = K/N,
lowering the longitudinal mode indexq by K while at the same time raising the total trans-
verse mode indext by N will leave the frequency unchanged (wheret = m+ n). Hence, as
hereK/N = 1/3, the beat peaks plotted in Fig.4.7must correspond to the frequency differ-
ence between modes{q, t} and{q−k, t +3k},

∆νk = νq, t −νq−k, t+3k (4.10)

with k an integer.
To calculate the rate at which the position of the beat peak changes as the resonator length

is changed, we take the derivative of Eq. (4.10) with respect to the resonator lengthL, using
Eqs. (3.8) and (3.10). If we then substitute the values of our cavity configuration, we find that
for k = 1 the slope expected in Fig.4.7equals 3.16×102 MHz/mm, in good agreement with
the value found experimentally, 3.14×102 MHz/mm.

It is surprising that the three beats as displayed in Fig.4.7do not reach zero frequency at
the same laser cavity length. This effect cannot be explained within the context of the theor-
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Figure 4.7: Spectral position of three different beat peaks plotted versus the change
in resonator length. We have chosen∆L = 0 at the resonator length for which we
estimate that̀ = 3/4. For reference, the width of the graph corresponds to a change
in ` of 0.032. The solid and dashed grey curves are straight line fits, with a slope of
3.14×102 MHz/mm. The dotted grey curve, with the same slope, is drawn as a guide
to the eye.

etical framework of chapter3, as that would predict a unique degenerate cavity configuration
whereK/N = 1/3. A possible explanation for the differing degenerate resonator lengths may
be dispersive effects due to gain guiding caused by the nonuniform transverse pump profile
in the Nd:YVO4-chip. As the gain profile is localised, it has a dispersive effect on modes that
depends on the transverse profile of the latter. Neglecting dependencies on the longitudinal
mode indexq, we can, forK/N = 1/3, distinguish three groups of modes: one group will
consist of all modes with total transverse mode indext = 3k, the second group will contain
all modest = 3k+1, while the third group contains all modes witht = 3k+2. As a result,
the transverse profile of (linear combinations of) these modes differs. In combination with
the above-mentioned dispersive effects of gain guiding this may lead to the observed shifts in
degenerate resonator configurations.

In these experiments we had hoped to observe, as evidence that we were on the way to
creating a random laser, avoided mode crossings around degenerate cavity configurations.
These avoided crossings would demonstrate the presence of mode mixing, and would show
up as beat frequencies that, as a function of cavity length, donot go down to zero, but only
to a finite frequency, before increasing again. Such avoided crossings are, in general, the
precursors of fully developed level repulsion as occurs in wave-chaotic systems [15]. As we
see no trace of avoided mode crossings, we must conclude that, in this experiment, mode
mixing can be neglected.
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Figure 4.8: Laser output power versus pump power for various cavity configurations.
(a)–(c) Laser cavity with a concave mirror with R= 25 mmand (a)` = 0.88, single
mode, (b)̀ = 0.98, single mode (circles) and dual mode (squares), (c)` = 0.99 and
1.7× larger pump spot, multi-mode. The estimated pump spot radii are∼ 53 µm and
∼ 90µm, respectively. (d) and (e) Laser cavity with a concave mirror with R= 2.1 mm
and (d)` = 0.99, multi mode, linear axes, (e) same as (d), but logarithmic axes. The
grey curves in (a) and (b) are linear fits to the single mode regime. The grey curves in
(d) and (e) are fits of Eq. (4.11), as explained in the text. The numbers above the top
axis in (a)–(c) indicate the dimensionless pump parameter M= Ppump/Ppump,th.

4.4 Output power measurements

4.4.1 Input-output curves

We have measured, for a given cavity geometry, the output power of our laser as a function of
input power (or pump power). From this so called LI-curve we can then obtain information
on, among other things, the position and sharpness of the laser threshold.

In Fig. 4.8we plot LI-curves for four different cavity configurations. Figures4.8a–c were
taken for a cavity with aR= 25 mm end mirror, while Figs.4.8d and e correspond to a cavity
with aR= 2.1 mm end mirror.

Figure4.8a is a typical example of an LI-curve for a generic cavity configuration (` =
0.88), with a relatively small pump spot (estimated pump spot radiusr ∼ 53 µm). Above
laser threshold, at a pump power of∼ 50 mW, the laser output power rises linearly with the
pump power. This is the expected behaviour for single mode lasers (in fact, this is the same
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cavity configuration that led to the FP spectrum of Fig.4.4).
For a cavity that is closer to hemiconcentric, we observe LI-curves such as depicted in

Fig. 4.8b (̀ = 0.98). Above threshold, the laser output power at first rises linearly with
the pump power. Then, a second kink occurs, after which the output power again increases
linearly. Inspection of the optical spectrum with a Fabry-Pérot interferometer shows that
above threshold, but below the second kink, the laser operates in a single mode. Above the
second kink, the laser operates in two modes.

The reason for the occurrence of this second kink in Fig.4.8b, but not Fig.4.8a, lies
in the laser mode size for the two cases. From Eq. (3.4) we see that the size of the laser
mode in the Nd:YVO4-chip is smaller for̀ = 0.98 than for` = 0.88. This means that, for
equal pump spot size, the gain difference between the fundamental laser mode and higher
order transverse modes is reduced, so that, in Fig.4.8b, we do bring the first higher order
transverse mode above threshold. This leads to an increase in output power compared to the
single-mode regime.

For a cavity that is even closer to hemiconcentric (` = 0.99), and for a pump spot that has
a 1.7× larger radius (r ∼ 90 µm), we get LI-curves such as in Fig.4.8c. Here, we observe a
somewhat smoothened laser threshold: the thresholds of the higher order modes are so close
together that, in this measurement, they can no longer be discerned individually, giving rise
to a smooth superlinear dependence of output power on pump power.

Finally we consider a resonator with (almost) the same geometry (` = 0.99), but now with
an outcoupling mirror with a radius of curvature ofR= 2.1 mm. Then, the pump spot size is
much larger than the fundamental mode size (r ∼ 0.27 mm, while for a cavity with̀ = 0.99
and a mirror with a radius of curvature ofR= 2.1 mm the waist of the fundamental laser mode
w0∼ 8 µm). For this laser we obtain an LI-curve as in Fig.4.8d and e (where Fig. e is plotted
on logarithmic axes). This curve looks like that of a single-mode laser; Fig.4.8e resembles
in fact the single-mode “S”-curve shape as can be found in any laser physics textbook (see,
for example, Fig. 13.10 of Siegman [7]). From the optical spectrum, however, we see that the
laser operates in many modes (not shown). This suggests that a large number of modes have
their threshold close together.

For a single-mode laser such an “S”-curve is described by the equation

n =
p
2

{
(M−1)+

√
(M−1)2 +4M/p

}
, (4.11)

wheren is the cavity photon number andM = Ppump/Ppump,th is the dimensionless pump
parameter. The parameterp is the number of (cavity) modes in which spontaneous emission
can take place. The value ofp determines the “sharpness” of the threshold: the width of
the threshold region is∼ p−1/2. Note thatp is inversely related to the so-called spontaneous
emission factorβ [38],

p−1 = β =
∆Ωcav

8π

(
4

1−R

)
∆νcav

∆νcav+∆νgain
(4.12)

where∆Ωcav = λ 2/πw2
0 is the solid angle subtended by the (fundamental) cavity mode,R =

R1R2 is the product of the reflectivitiesR1 andR2 of the cavity mirrors,∆νcav = ∆νL/F
is the cold-cavity line width and∆νgain is the gain bandwidth. For this cavity configuration
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we find∆Ωcav = 5.36×10−3 sr, while from the mirror reflectivities we calculateR = 0.978.
Using the free spectral range and the cavity finesse we find∆νcav = 61.5/283= 0.217 GHz,
while for Nd:YVO4 ∆νgain= 257 GHz. Substituting these numbers in Eq. (4.12) we calculate

p = β−1 ∼ 3.0×104.
It may seem strange that we discuss Eqs. (4.11) and (4.12) in the context of Figs.4.8d

and e: the equations relate to asingle laser mode, while the results in Figs.4.8d and e are
for a multi-mode laser. However, even though these expressions do not apply to the present
case, they may still serve to guide our thoughts. The grey curves in Figs.4.8d and e are
fits of Eq. (4.11) to the experimental data, where we have used the value ofp = 3.0×104

calculated above. In these fits the only fitting parameters are the threshold pump power
Ppump,th (relating absolute pump power to the dimensionless pump parameterM) and the
relation between the output power (given in arbitrary units) and the cavity photon number. We
see that, while above threshold the correspondence is quite reasonable, below threshold the
fit is, unsurprisingly, very poor. In particular, the sharpness of the threshold in the experiment
is far less than predicted for a single-mode laser.

Summarising, from the input-output curves in Figs.4.8a–c we must conclude that, using
a mirror with a radius of curvature ofR= 25 mm, it was not possible to have a large number
of lasing modes with approximately equal threshold. Only for when using a mirror with a
radius of curvature ofR= 2.1 mm, as in Figs.4.8d and e, could this condition be reached
experimentally.

4.4.2 Output power at fixed pump

Another way in which the output power of a laser may be measured is to keep the pump power
fixed, and to vary the loss or gain of the different cavity modes. The gain directly depends
on the spatial overlap between the pump spot and the cavity modes. It can be changed by, for
example, displacing the pump spot away from the optical axis, or by altering the length of
the cavity, thereby changing the size of the laser modes at the Nd:YVO4-crystal. The losses
can also be changed by altering the length of the cavity, through the ratio of mode spot size
on the mirrors and the transverse extent of those mirrors. These changes in gain or loss will
show up as variations in the output power of the laser.

In Figs.2.6and2.8we already saw examples of the influence of spatial overlap between
pump and laser modes. There we plotted the total laser output power versus the length of
the cavity, for fixed pump power. As the pump spot was located away from the optical axis,
the laser output increased dramatically at degenerate cavity configurations, where a linear
combination of cavity modes had a much higher spatial overlap with the pump spot than the
individual cavity modes. Similar effects, but much weaker, can be seen with on-axis pumping,
when the size of the pump spot differs from the size of the fundamental laser mode. There,
too, linear combinations of modes can be much closer to the size and shape of the pump
spot than the cavity modes individually. Such linear combinations are only possible between
modes of the same frequency, and hence they will only occur at frequency-degenerate cavity
configurations.

The influence of pumping off-axis is illustrated by Fig.4.9. We measured the total output
power at constant pump power and cavity length, versus the transverse displacement of the
pump spot on the Nd:YVO4-crystal. We clearly see two distinct shoulders on either side,
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Figure 4.9: Measured laser output power at constant pump power for a cavity with
` = 0.90, versus the transverse displacement of the pump spot. Clearly visible are
the two shoulders on either side of on-axis pumping. The grey curves are fits of the
calculated overlap between a Gaussian pump spot, and a Hermite-Gaussian TEM00
and TEM01 cavity mode, respectively.

caused by the changing overlap with the fundamental and first and second higher transverse
modes. Also indicated are fits to the peak and to the first shoulders, respectively. The fit
to the peak of the measured curve was done using the calculated overlap of two Gaussian
modes, one for the laser mode and one for the pump profile. The fit to the first shoulders was
done using the calculated overlap of a fundamental Gaussian mode (the pump profile) and a
Hermite-Gauss TEM01 mode (the first higher transverse laser mode). The fundamental cavity
mode waist sizew0 was taken equal in the two fits.

Interesting effects are also visible when we measure, with an on-axis pump, the laser
output power at constant pump power versus cavity length, right at the very edge of stability of
the cavity, as plotted in Fig.4.10. These curves were obtained using aR= 25 mm end mirror.
On the horizontal axes we plot, as a percentage, the change in reduced cavity length` relative
to the estimated hemiconcentric configuration (see the appendix in section4.7). In Fig.4.10a
we see that the output power of the laser decreases rapidly when, upon increasing the cavity
length, we get to within 0.1% of hemiconcentric. Upon further increase, surprisingly, the
output power appears to level off, and decreases more slowly. Clearly visible are two local
minima in the output power (indicated by arrowsA andB). These points coincide with sudden
changes in the shape of the mode inside the laser cavity; in the next section we will show near-
field images of the mode on the outcoupling mirror around these local minima (albeit for a
different outcoupling mirror).

In Fig. 4.10b we plot a similar measurement, but now with an intracavity pinhole placed
right next to the Nd:YVO4-crystal; this pinhole was chosen such that it only allows, for a
cavity shorter than hemiconcentric, the fundamental Gaussian mode to lase. We see that for
∆` < 0, the laser output is reduced considerably compared to the case where no intracavity
pinhole is present (Fig.4.10a). However, to our surprise we found that for∆` > 0.2%, the
total laser output isenhanced, and laser action is possible up to much larger cavity lengths.
Both measurements were found to be reproducible.
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Figure 4.10: (a) Measured laser output power at constant pump power versus cavity
length, for a cavity with an R= 25 mmradius of curvature end mirror and a crystal with
a thickness of d= 0.21 mm. ∆` = 0 corresponds to the best estimate for hemiconcentric.
The arrows indicate two local minima in the total output power. Indicated at the top of
the graph is the absolute change in cavity length compared to hemiconcentric. (b) The
same, but now with an intracavity pinhole that, below hemiconcentric, only allows the
fundamental Gaussian mode to lase. The vertical scale for the two plots is different.
The uncertainty in the position of∆L = 0 is about3 µm, as explained in the appendix
in section4.7.

We thus observe that both without and with intracavity pinhole, the laser operates even
beyond the edge of resonator stability. Of course, lasing in unstable resonators is well known,
but the transition between a stable and an unstable resonator has never been studied carefully.
We observe here that in fact the transition isnot very abrupt. Our results suggest that the
geometrically abrupt transition between a stable and an unstable resonator is smoothed by
diffraction. As, at the edge of stability, the size of the laser mode on the outcoupling mir-
ror can become comparable to the transverse mirror size (see Eq. (3.5)), diffraction from the
mirror boundary is expected to play a role; this interpretation is supported by experiments on
microwave resonators [39]. Inserting the intracavity pinhole apparently enhances the diffrac-
tion effects even further.
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4.5 Spatial measurements

As we already saw in chapter2, the transverse output profile of our laser can strongly depend
on the length of the laser cavity. There we saw that, for an off-axis pumped laser, the output
is either in the form of a higher order transverse mode, or in the form of a so-called geometric
mode when the cavity is highly frequency degenerate. When pumping the laser purely on-
axis, these effects are less pronounced. Nevertheless, we found that when the size of the
pump spot differs from the size of the fundamental laser mode, the mode profile in both the
near and far field shows subtle changes when the length of the laser is scanned through such
a degenerate configuration.

More pronounced is the behaviour of the output profile at the edge of the stability re-
gion of the cavity. In Fig.4.11we plot transverse emission profiles, taken on the concave
cavity mirror, for different cavity lengths. If the cavity is well below our best estimate of
hemiconfocal, we see that the near field on the mirror is a complex 2D pattern (Fig.4.11a).
If we increase the cavity length slightly, the near field on the mirror suddenly collapses into
a single stripe, as in Fig.4.11b. At the same time, the total laser output power has a local
minimum, similar to the local minimum indicated as “A” in Fig. 4.10a. Then, going towards
a hemiconcentric cavity, this stripe evolves smoothly into the two spots of Fig.4.11c. This
pattern on the concave mirror suggests emission in a “V”-shaped mode, with the cusp of the
“V” on the flat mirror coinciding with the pump spot. What we see in Fig.4.11c are the two
vertices of the “V”.

If the length of the resonator is increased even more, a spot appears in the middle of the
image, between the two spots of the “V”. Inspection of this central spot shows that it has a
different polarisation than the “normal” laser output, i.e., horizontal instead of vertical. Also,
the wavelength of this output light is slightly longer than “normal”,λ ∼ 1066 nm instead of
1064 nm (where “normal” refers to stable cavity configurations). In Fig.4.11d this central
spot has become very prominent, and the “V”-mode has almost disappeared. This changeover
from “V”-shaped lasing to a single central spot occurs at the same cavity length where the
total output power has a local minimum, similar to the local minimum indicated as “B” in
Fig. 4.10a.

If we compare the range of absolute cavity lengths∆L at which these effects occur for
Figs. 4.10a and4.11, we notice that it is almost the same, even though there is a factor
of 12 difference in radius of curvature of the end mirrors (R = 25 mm andR = 2.1 mm,
respectively), i.e., a factor of 12 difference in absolute cavity lengthL. As the only dimension
that is unchanged between these two experiments is the thickness of the Nd:YVO4-crystal,
this suggests that the absolute length scale at which these effects occur is set by this crystal
thickness. Here we may think of gain-guiding or thermal lensing in the Nd:YVO4-crystal, or
aberrations caused by the non-normal incidence of light on the plan-parallel crystal.

At the moment, we do not have an explanation for the occurrence of the “V”-shaped mode
of Fig.4.11c. One possibility is that the above-mentioned effects (gain-guiding, thermal lens-
ing and aberrations in the crystal) cause the “V”-shaped mode to be (more) stable, while con-
ventional axial modes are (more) unstable. Another possibility is that diffractive effects play
a role in stabilising this mode. Highly suggestive in this context are the “V”-shaped modes
found both numerically and experimentally in plano-concave microwave resonators [39];
these modes rely crucially on diffractive effects at the edge of the concave mirror.
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Figure 4.11: Transverse near field beam profiles, taken at the concave cavity mirror.
The concave mirror had a radius of curvature of R= 2.1 mm. (a) ∆` = −0.7% (∆L =
−15 µm), (b) ∆` =−0.2% (∆L =−5 µm), (c) ∆` = 0%, (d) ∆` = 0.2% (∆L = 5 µm),
(e) ∆` = 0.5% (∆L = 10 µm). Greyscales have been adjusted to increase contrast. The
arrows indicate the location of minima in the total output power, similar to those in
Fig. 4.10a.

Equally unexplained is the central spot of Figs.4.11d and e, where emission is both at a
different wavelength and with a different polarisation compared to normal lasing. For stable
cavities, this “nonstandard” laser operation is prevented by the difference in gain between
the two situations. For slightly unstable cavities, this gain difference can apparently be com-
pensated for by increased losses for lasing at the standard wavelength and polarisation, al-
though it is mysterious what the exact mechanism is. This nonstandard lasing is even more
surprising if one realises that normal Nd:YVO4-based laser output is polarised along theex-
traordinarycrystal axis. Asne > no, the geometric cavity length for light polarised along the
ordinary axis is larger (see Eq. (4.5)), so that the cavity should be more unstable, contrary to
our observations.
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4.6 Concluding discussion

Despite all our attempts, of which the above is only a choice selection, a cavity random laser
has eluded us. The requirements as outlined by Ambartsumyanet al. [20], to have a large
number of modes oscillating which are nondegenerate, have equal losses, and overlap, could
never be fulfilled in the same experiment.

For resonators with (nearly) frequency degenerate cavity configurations, careful control
of the cavity length did allow us, in principle, to create an overlapping, nondegenerate mode
manifold. However, with the pump laser available to us, except for cavities close to hemicon-
centric, it was not possible to make the pump spot sufficiently large so that many modes had
roughly the same laser threshold. Close to hemiconcentric, we managed to get around∼ 103

modes to lase. However, as we can resolve individual beat peaks in Fig.4.6c, there the con-
dition of mode overlap was not fulfilled. Bringing the cavity even closer to hemiconcentric,
to reduce the mode-mode distance, increased the laser threshold prohibitively.

Furthermore, for lasers with a pump profile as uniform as our pump laser (Ppump,max≈
380 mW) allowed, we have not observed avoided mode crossings as evidence of mode mix-
ing. A possible way to induce mode mixing is to enhance the influence of the gain medium,
either by increasing the pump power, thereby making use of the nonlinearity of the gain me-
dium, or by disturbing the uniformity of the pump, making use of the overlap between pump
profile and laser modes. As we could not increase the pump power sufficiently (because of
the limited power of our pump laser), we opted for the second approach, by pumping the
laser off-axis. However, as demonstrated in chapter2, instead of avoided crossings, around
degenerate cavity configurations we observed mode pulling and frequency locking effects
(“geometric modes”). These effects are very interesting in their own right, but quite the op-
posite of what we had hoped for.

Even though a cavity random laser stayed out of reach, our experiments turned up sur-
prising results at the edge of resonator stability. As we saw in section4.4.2, the transition
between a stable and an unstable resonator is far less abrupt than expected from geomet-
ric considerations. Another surprising observation is that this transition is not monotonous:
the output power shows local minima, coinciding with sudden changes in the shape of the
lasing mode, as shown in section4.5. Experimental evidence suggests that, in blurring this
transition between stable and unstable cavities, gain guiding, thermal lensing, aberrations
and diffraction play a role, although a full explanation is lacking. It would be useful to study
this transition from a stable to an unstable cavity in apassivesystem (i.e., omitting the gain
medium), since in that case diffraction is the only conceivable blurring mechanism.

In conclusion, creating a cavity random laser based on a two-mirror cavity design is not
as simple as we had hoped at the outset. A more fruitful line of investigation may be a cavity
random laser based on a three-mirror folded cavity. As we will show in the next chapter, such
a cavity can be built using standard optical components, and showswave chaos. This may,
then, pave the way towards a cavity random laser, a random laser without randomness.
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4.7 Appendix: Calibrating the length of the resonator

The length of the resonator is controlled by shifting the position of the concave mirror using
a micrometer screw. The question of calibrating the length of the resonator is then that of
finding the relation between the setting of this micrometer screwLset, and the geometric
cavity lengthL̃. If we expressLset andL̃ in the same units, we find

L̃ = Loffset+Lset, (4.13)

with Loffset, the offset between geometric cavity length and micrometer setting, our calibration
parameter. Alternatively, we may specifically be looking for the micrometer setting at which
the cavity is hemiconcentric,Lset,conc. We then find that

L̃ = R−Lset,conc+Lset, (4.14)

with R the radius of curvature of the mirror.
To findLoffset or Lset,conc, we first make ana priori estimate forLoffset by directly measur-

ing, for a givenLset, the nominal resonator lengthL, and calculating̃L using Eq. (4.1). Then,
we recordLset for a large number of frequency-degenerate cavity configurations. These con-
figurations can be observed in the total laser output power, as in Fig.2.6, or as changes in the
transverse emission profile (compare, for example, Figs.2.2and2.3). Based on thea priori
estimate forLoffset we can assign Gouy phases 2π K/N to these configurations. In this process
the experimental observation that the qualitative “strength” of the effect in either total output
power or transverse emission profile is larger for smallerK may be helpful; for example, the
degeneracyK/N = 1/3 is more prominent than the degeneracyK/N = 7/20. In Fig.4.12we
plot the micrometer screw settingLset against the Gouy phaseθ/2π for 34 degenerate cavity
configurations.

Combining Eq. (4.13) with Eqs. (4.3) and (4.4), we find that

Lset= L̃−Loffset = R

(
1−

(
cos

θ

2

)2
)
−Loffset = R

(
sin

θ

2

)2
−Loffset. (4.15)

Figure 4.12: Micrometer setting Lset versus (assigned) Gouy phase2π K/N for 34
degenerate cavity configurations. The grey curve is a fit using Eq. (4.15) or Eq. (4.16).
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Alternatively, combining Eq. (4.14) with Eqs. (4.3) and (4.4), we find that

Lset= L̃−R+Lset,conc= Lset,conc−R
(

cos
θ

2

)2
. (4.16)

These two equations are, of course, equivalent, as can be verified using Eqs. (4.13) and (4.14).
We may now fit either equation to the data in Fig.4.12, using as fitting parametersR and

eitherLoffset or Lset,conc(we fit the mirror radius of curvatureR to verify the specifications
of the mirror). From the grey curve in Fig.4.12we see that the fit is very good. We find
that R = 25.30(3) mm, Loffset = 16.33(2) mm andLset,conc= 8.970(3) mm. As such, the
uncertainty in the position of∆L = 0 in Fig.4.10is about 3µm.
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Chapter 5
Observation and manipulation of
wave chaos in a folded optical
resonator1

We present an experimental study of the multi-mode spectrum of a folded, three-mirror
optical resonator. In comparison with a two-mirror resonator the use of a concave folding
mirror enhances the effective nonparaxiality, which, combined with the lowered symmetry
of the system, may lead towave chaos. Based on the dependence of the Gouy phase on
the folding angle, we estimate theoretically that wave chaotic behaviour may occur for
folding angles2α > 4◦. As transmission spectra for this system are largely filled, it is
not possible to extract nearest-neighbour or other spectral statistics. Instead, we look at
the wave packet survival probability, averaged twice, over both input conditions and real-
isations of the system. This survival probability exhibits, for chaotic spectra, a so called
correlation hole, contrary to regular spectra. Our experimental results show that non-
paraxial perturbations, as introduced by the concave folding mirror, cause wave chaotic
behaviour for folding angles2α = 20◦ and larger. The strength of these perturbations,
and thereby the amount of chaos, can be increased through increasing the folding angle,
or through increasing the effective opening angle of the system.

1J. Dingjan, E. Altewischer, M.P. van Exter, and J.P. Woerdman, “Experimental observation of wave chaos in a
conventional optical resonator”, Phys. Rev. Lett.88, 064101 (2002); J. Dingjan, M.P. van Exter, and J.P. Woerdman,
“Manipulating optical wave chaos in an open cavity”, in preparation.
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5.1 Introduction

Classical chaos is the phenomenon where the dynamics of a deterministic system, while lim-
ited to a finite part of phase space, is critically sensitive to initial conditions. The combination
of these two features leads to intensive mixing in phase space. Well-known examples of such
systems are the weather system and the behaviour of billiard balls inside a stadium-shaped
billiard. Wave chaos is usually defined as the wave-mechanical behaviour of systems that
are classically chaotic. Note that this is a somewhat loose description; currently there is no
explicit criterion for chaos in a wave theory.

One may deal with classical waves, as occur in acoustic, hydrodynamic and microwave
systems, or with quantum waves, as occur in atoms, molecules, nuclei, quantum dots and
other quantal systems [37, 15]. For two-dimensional systems, wave chaos is equivalent to
quantum chaos, since the Helmholtz equation can be mapped onto the Schrödinger equa-
tion [15]; for three-dimensional systems this is not the case. In this chapter we will focus on
a novel experimental demonstration ofopticalwave chaos.

In a broad context, optical wave chaos has appeared in experiments on chaotic microres-
onators [40, 33, 41], localisation of light [42, 43, 44] and random laser action [45, 46, 47].
However, the microscopic nature of the material systems used in these experiments (microres-
onators [40, 33, 41], suspensions [42, 45] or powders [43, 46]), and the associated difficulty
in fabrication and reproducibility, has not allowed the same spectacular progress as, for ex-
ample, microwave experiments [15,48,49]. There, the use of closed, stadium-type resonators
allows excellent control over the relevant experimental parameters. Extending this degree of
control into the optical domain would be a tremendous boost for optical wave chaos exper-
iments. It would allow study of quantum-mechanical effects (such as spontaneous emission
and lasing) that are absent for microwaves. Also, contrary to the microwave domain, spatially
chaotic patterns can easily be imaged in the optical domain. From a general perspective, the
optical domain is preferable since it allows one to explore much further into the asymptotic
domain where wave and ray chaos meet [50], since the ratio of system size and wavelength
can be made very much larger than in the microwave domain1. Finally, such an optical imple-
mentation may open up new opportunities for research into enhanced backscattering (weak
localisation), and even Anderson localisation of light, phenomena that require chaotic scat-
tering [44,51].

In this chapter we report the observation of wave chaos in the optical regime in a sur-
prisingly simple system, namely a folded optical resonator operating in the multi-transverse-
mode regime (see Fig.5.1) [52]. This resonator, formed by standard optical components, is
a truly macroscopic system, and it allows excellent control as well as easy fabrication. Apart
from enabling the above-mentioned experiments that require optical wave chaos, this system
is of great interest in its own right, since it allows what seems to be the first demonstration of
wave chaos in an extremely open resonator.

1For comparison: a folded three mirrormicrowaveresonator that would support the same number of transverse
modes as our optical resonator would need to have the same Fresnel numberNF = a2/(λL), with 2a the mirror dia-
meter,L the resonator length andλ the wavelength. If we keep the ratioa/L constant, we see that, for a comparable
microwave resonator, both the mirror diameter and resonator length have to be scaled up by a factorλmicro/λopt,

which is typically around 104. Therefore, our∼ 30 cm long resonator with convenient 25 mm diameter mirrors
would become as big as a university campus.
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Figure 5.1: Experimental setup. HeNe: helium-neon laser beam, D: diffusor, M1,M2:
resonator end mirrors, MF: folding mirror, and PM: photomultiplier. The figure shows
the aberrated resonator, which has a concave folding mirror MF. The use of a flat fold-
ing mirror leads to a nonaberrated resonator. Indicated is the modal opening angleφ .

Furthermore, we study how the wave chaos in such a folded optical resonator depends
on the geometry of the setup (see Fig.5.1). To achieve the nonseparability of the wave
equation (including boundary conditions) that is required for chaos, the resonator operates
in the nonparaxial regime, where the nonparaxial perturbations are strongly enhanced by the
curved folding mirror MF. This enhancement is a direct consequence of the non-normal
incidence of light on the curved folding mirror, as will be explained in section5.2.1. Varying
either the folding angle of our resonator, 2α, or the opening angle of the highest-order excited
transverse modes,φ , allows us to manipulate the nonparaxial perturbations of the system. As
it is the nonparaxiality that causes nonseparability, we expect (and confirm experimentally)
that these variations strongly affect the chaotic properties of our system.

Conceptually, our system is related to billiard type chaotic resonators (such as the sta-
dium billiard), in the sense that the chaotic behaviour of the system depends on the shape
of the boundary of the resonator [15]. The key difference, of course, is that the majority of
such billiard systems are closed, whereas our resonator is very open. Open resonators have
received attention in the context of wave chaos, but only in very small systems that could not
be easily manipulated [40,33,41].

Because of the intimate relation between ray (or classical) chaos and wave chaos, analys-
ing the ray behaviour of wave-chaotic systems can offer a lot of insight in the properties of
such systems. Therefore, throughout this chapter we will draw on both ray mechanics and
wave mechanics when we discuss our folded optical resonator, which, by its nature, is of
course purely wave-mechanical.

For “traditional” billiard systems, the combination of suitably chosen shaped boundary
conditions and symmetries makes it possible, through analytical or numerical approaches, to
get information on the ray behaviour, or classically chaotic dynamics [53,54]. For classically
chaotic systems, plots of trajectories in phase space, or Poincaré-sections, can give a lot of
insight in the dynamics. In general, one finds that these systems have amixedphase space,
containing both fully regular and fully chaotic regions.

Obtaining Poincaŕe-sections for a folded, very open resonator is not trivial. As a first
complication, the resonator must, due to lack of cylindrical symmetry, be treated as a fully
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5. Observation and manipulation of wave chaos in a folded optical resonator

three-dimensional system. Furthermore, we must distinguish between rays that stay confined
inside the resonator, and rays that will, at a certain point, miss one of the mirrors and escape.
Because of these complications, the phase space of our folded resonator has not yet been
mapped, although work on this has started [55]. Therefore, the theoretical discussion in this
chapter will be mainly restricted to thediagnosticsof the wave chaotic behaviour of our
system.

In section5.2.1we will discuss the role of nonparaxial perturbations in achieving wave
chaos in a folded optical resonator. We shall use the notion of lens (or mirror) aberrations to
estimate when chaos might occur. Then, in section5.2.2we will describe the experimental
setup, and identify the key parameters. Since the resonator finesse,F , is considerably smal-
ler than the number of excited modes,N, the spectral resonances in the resonator transmis-
sion spectrum will overlap, so that standard spectral statistical approaches that, for chaotic
systems, show effects such as level repulsion and spectral rigidity, will fail. Therefore, in
section5.2.3 we describe an alternative method, devised by Wilkie and Brumer [56] (see
also [57,58,59,60]) for diagnostics of chaotic molecular spectra with overlapping lines. This
is followed by a report of the experimental results when varying the folding angle 2α (sec-
tion 5.3.1) and the maximum modal opening angleφ (section5.3.2). Finally, we will finish
with a concluding discussion in section5.4.

5.2 Folded optical resonator

5.2.1 Nonseparability

In the paraxial approximation, the scalar wave equation, or Helmholtz equation,

∇2
ψ +k2

ψ = 0 , (5.1)

reduces to the simpler paraxial wave equation,

∇2
t U −2ik

∂U
∂z

= 0 , (5.2)

where∇t refers to the transverse coordinatesx andy only. This reduced equation, in com-
bination with a quadratic approximation of spherical optical elements (e.g., lenses and mir-
rors), leads to a fully separable problem. This applies, for instance, to a regular two mirror
resonator, and the resulting eigenmodes are the well known Hermite-Gaussian or Laguerre-
Gaussian functions, with eigenfrequencies

νq,mn = νq +νm+νn (5.3)

depending on the longitudinal and transverse mode indicesq, m andn.
However, for chaos to be possible, the wave equation (including the boundary conditions)

describing the system must become sufficiently nonseparable, which implies a strong enough
violation of the paraxial approximation. Then, the longitudinal and transverse mode indices
labelling the Hermite- or Laguerre-Gaussian modes, native to a paraxial optical resonator,
lose their meaning. This will occur first for the highest order transverse modes supported by
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the resonator. This is analogous to the occurrence of quantum chaos due to the disappearance
of normal eigenmodes in highly vibrationally excited molecules [61], where the vibrational
quantum numbers may be compared with the transverse mode indices.

In a two mirror cavity with spherical mirrors, the strength of nonparaxial perturbations
will remain limited, unless the opening angle of the system becomes inconveniently large,
typically φ > 60◦, whereφ is the full opening angle (see p. 630 of ref. [7]). Instead, we
study a three mirror folded linear cavity, formed by two high-reflectivity end mirrors, which
can be either flat or curved, and a high-reflectivitycurvedfolding mirror (see Fig.5.1). In
this resonator, the perturbations due to nonparaxiality are strongly enhanced by the non-
normal incidence of light on the curved folding mirror MF; furthermore, the folding breaks
the cylindrical symmetry of the system. As we will see, relatively small values of the opening
angleφ are then sufficient to produce wave chaos.

To illustrate the beneficial role of the concave folding mirror, it is instructive to consider
the nonparaxial perturbations as introduced by a curved mirror in the context of the theory of
lens aberrations. This will serve as a guide on how to change the resonator geometry in order
to affect the wave chaos in our system. We may consider the axis of the folded three mirror
resonator as a (known) base ray, and study rays that make a small angle with this base ray, the
parabasal approximation [62]. Even for zero opening angleφ , the non-normal incidence on
the curved folding mirror introduces an appreciable astigmatism for nonzero folding angles
2α (see section 5.3 of ref. [63]). For finite opening angleφ , and in lowest order, the five Seidel
aberrations (astigmatism, coma, spherical aberration, distortion, and curvature of field) will
become important, their effect boosted relative to a paraxial system because of the folding
angleα [63]. To understand this boosting effect, we can look at, for example, the general
expression for the contribution of astigmatism to the total wave aberration,

Φ =−Cy2
0ρ

2cos2 θ , (5.4)

wherey0 is the off-axis distance in the object plane,ρ andθ are polar coordinates in the plane
of the optical element andC is a system-dependent constant. For a conventional paraxial
optical system, bothy0 andρ are generally small parameters, so that, loosely speaking, the
strength of the astigmatism scales as thefourthpower of a small parameter. However, using a
curved mirror under non-normal incidence can also be interpreted as givingy0 a large offset,
with small variations around it, so that the aberration now scales as thethird power of a small
parameter, dramatically enhancing its strength1. Similar considerations hold for the other
Seidel aberrations. Therefore, we expect the strongest nonparaxiality, and hence the strongest
chaos, for large folding angles 2α. Also, for a givenα, the effective nonparaxiality will
increase when increasing the opening angleφ (this corresponds to increasingρ in Eq. (5.4)).

It is also useful to discuss the effective nonparaxiality of a resonator from the perspective
of the Gouy phase. The Gouy phaseθ is a well known concept for a paraxial resonator (see
p. 682 of ref. [7]); it is defined as the excess phase of the fundamental Hermite-Gaussian mode
relative to a reference plane wave after one round trip. For a paraxial two-mirror resonator, it
only depends on the ratios of the mirror radiiR1 andR2, and the resonator lengthL, via the

1The quadratic term (∝ ρ2) plays the role of an additional cylindrical lens, and gives rise to Coddington’s
equations for the effective radius of curvature of the folding mirror [62]: RT = Rcosα for the tangential plane and
RS = R/cosα for the sagittal plane.
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5. Observation and manipulation of wave chaos in a folded optical resonator

resonator parametersg1,2 = 1−L/R1,2,

cosθ = 2g1g2−1 . (5.5)

Higher order modes acquire a (round trip) phase difference that is an integer multiple of the
fundamental Gouy phase,

θmn = (m+n+1)θ . (5.6)

The frequency of a Hermite-Gaussian mode with longitudinal mode indexq and transverse
mode indicesm,n is then given by

νq,mn =
c

2L

(
q+

θmn

2π

)
=

c
2L

[
q+(m+n+1)

θ

2π

]
, (5.7)

which has the separable structure as emphasised in Eq. (5.3).
The Gouy phase thus determines the spectral distance between neighbouring transverse

modes sharing the same longitudinal mode indexq. At the same time, as the eigenvalues of
the round tripABCD-matrix of the resonator are e±iθ (see p. 600 and 836 of ref. [7]), the
Gouy phase describes the paraxial ray behaviour in the system, illustrating the dual nature of
wave and ray optics in resonators (see chapters2 and3).

In a parabasal folded resonator consisting of three mirrors, there is not one but two Gouy
phases,θT and θS, one each for the tangential and sagittal planes of the resonator; these
phases depend on the folding angle 2α. They can be calculated in a straightforward manner,
combining, for each of the two planes, Coddington’s equation for the effective radius of
curvature of the folding mirror [62] with the standardABCD-matrix method [7]. The resulting
spectrum is given by

νq,mn =
c

2L

(
q+

(
m+ 1

2

) θT

2π
+

(
n+ 1

2

) θS

2π

)
, (5.8)

where a straightforward rearrangement of terms shows that it consists of “families” of trans-
verse modes with equaln+ m. The distance between neighbouring families, for givenq, is
given by the average Gouy phase(θT +θS)/2, whereas the spacing of modes within a family
is given by the difference Gouy phaseθT−θS. Even though the thus described spectrum is
more complicated than that of a paraxial resonatorwithoutastigmatism, the fact that, instead
of just one Gouy phase, we now need two Gouy phases to describe the paraxial spectrum is
in itself not sufficient to generate chaos; the problem is again separable (cf. Eq. (5.3)).

We can, however, use the folding angle dependence of these two Gouy phases to get a
rough estimate at what parameters wave chaos could become relevant. Due to the folding
angle dependency of both Gouy phases, light travelling at an angle to the axis of the folded
resonator will experience a different Gouy phase than light travelling parallel to the axis.
Since the Gouy phase is intimately related to the eigenfrequencies of a system, this Gouy
phase difference immediately translates to a spectral shift of the resonances involved. Based
on this notion we can now estimate the maximum variation in Gouy phase, and hence the
maximum spectral shift, by multiplying the derivative of the Gouy phase with respect to the
folding angle by the opening angleφ ,

∆θT,S =
dθT,S

dα
φ . (5.9)
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Figure 5.2: Gouy phase variations
∣∣θ̇T

∣∣ · φ/2π and
∣∣θ̇S

∣∣ · φ/2π (whereθ̇ = dθ/dα)
versus resonator folding angleα, for the resonator geometry used in our experiments
(see section5.2.2). These quantities represent the spectral shift as a fraction of the
free spectral range. The curves correspond to the tangential and the sagittal plane,
respectively. The horizontal line corresponds to the mean level spacing in the case of
N = 104 excited transverse modes.

To translate this to a frequency shift, we use that a free spectral range

νFSR≡ t−1
round= c/2L (5.10)

(wheretround is the cavity round trip time), which corresponds to a round trip Gouy phase of
2π. Therefore, the spectral shift as a fraction of the free spectral range is given by

∆νshift

νFSR
=

∆θT,S

2π
=

dθT,S

dα

φ

2π
. (5.11)

For small spectral shifts∆νshift, the spectrum will be only weakly perturbed, and one can
still recognise the unperturbed, “parabasal” spectrum, in the sense that one can still label the
perturbed resonances with their original mode indices. However, if∆νshift is comparable to
or larger than the average inter-mode spacing∆ν , the deviation from the “regular” spectrum
will be too large to handle perturbatively, and hence, chaos will be a possibility.

In Fig. 5.2 we plot, for the resonator used in our experiments (see section5.2.2),
∣∣θ̇T

∣∣ ·
φ/2π and

∣∣θ̇S

∣∣ · φ/2π (whereθ̇ = dθ/dα) as a function of folding angleα (for an experi-
mental opening angleφ ∼ 1.25◦). Also indicated is the average level spacing as a fraction of
the free spectral range, for the caseN = 104 modes (this is a representative case, see below).
We see that already forα as low as 2◦, the effects of nonparaxiality have the potential of
causing wave chaos.

5.2.2 Setup

Our resonator consists of three high-reflectivity concave mirrors with a diameter of 25 mm
and a radius of curvature of 1 m (see Fig.5.1). They have been manufactured by Research
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5. Observation and manipulation of wave chaos in a folded optical resonator

Electro Optics on superpolished fused-silica substrates with highly reflective dielectric mul-
tilayer coatings forλ = 633 nm, optimised at either 0◦ or 45◦ angle of incidence. The 0◦

mirrors have a specified reflectivity of 99.99%, whereas the 45◦ mirrors have a specified re-
flectivity for s-polarised light of 99.995%. For p-polarised light the reflectivity is unspecified,
but substantially lower.

The lengthL1 of one arm of the resonator was varied between∼ 14 and∼ 25 cm, while
the lengthL2 of the other arm, between mirrors MF and M2, was kept fixed at∼ 10 cm.
These values correspond to the paraxially stable regime of the folded resonator (as can be
verified using the standardABCD-matrix formalism [7] in combination with Coddington’s
equations [62]). A total lengthL ∼ 24–35 cm leads to a free spectral rangeνFSR≡ t−1

round=
c/2L∼ 0.63–0.43 GHz, wheretround is the cavity round trip time.

The half folding angleα can be varied from 10◦–45◦, the lower limit being set by the
requirement that the end mirrors (and their mounts) do not obscure each other. The upper limit
results from the available mirror coatings: for angles of incidence other than the design angle,
the reflectivity of the coatings will be less. For 0◦ ≤α ≤ 45◦ the reflectivity of either the 0◦ or
the 45◦ coating is high enough that experiments can be done at sufficient finesseF , defined
asF = νFSR/δν , whereδν is the width of an individual mode; typically,F ∼ 2×103 or
better. Forα > 45◦, the reflectivity of the 45◦ coating rapidly degrades, so that experiments
cannot be done for angles significantly larger than 45◦. To obtain results forα = 0◦ we use a
two mirror resonator that is equivalent to a three mirror resonator withα ↓ 0◦.

To assess the nature of the wave dynamics in our system, we measure transmission spec-
tra of the cavity by injecting light from a frequency-stabilised single-frequency HeNe laser
(λ = 633 nm) and measuring the transmitted intensity while scanning mirror M1 over a few
wavelengths. Because of the polarisation-dependent reflectivity of the folding mirror, the po-
larisation of the injected light is chosen to be normal to the folding plane to maximise the
resonator finesse. In addition, this prevents the occurrence of peak splitting due to birefrin-
gence of the reflective coatings which we observed for “arbitrary” input polarisations, and
found to be of the order of 2×10−3νFSR.

In our experiments the value of the finesseF of the resonator plays a crucial role. If we
paraxially inject a narrow laser beam directly into the cavity, i.e., without the diffusor, we
excite only a few, low-order, transverse modes. From these modes we obtain, depending on
the value ofα, F = 2×103–5×103 (this corresponds toQ≡ ν/δν = 1.5×109–5.5×109).
The spread in these values is the result of the change in effective reflectivity of the folding
mirror at different incident angles.

Before entering the cavity, the HeNe beam is first expanded by a telescope to a diameter
of 2w≈ 3.4 mm and then passes through a weak diffusor, with a scattering half cone angle
of 0.5◦, which is placed∼ 20–25 cm in front of the first mirror; the resulting speckled input
field allows an appreciable spatial overlap with a large number of modes of the resonator.
From the typical radiusa of the light spot on the mirrors,a∼ 0.5–1 cm, we may estimate
the number of transverse modes that are excited upon scanning the length of the resonator1,
N∼ a4/λ 2L2 ∼ 104–105.

The light that is transmitted through the cavity is collected with a lens and focused onto a
photomultiplier. Figure5.3 is a typical transmission spectrum for a resonator withα = 45◦.

1Equation (37) in chapter 19 of ref. [7] is the result for a single transverse dimension. As we consider both
transverse dimensions, our expression is the square of this.
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5.2 Folded optical resonator

Figure 5.3: Transmission spectrum, normalised to the transmission averaged over one
free spectral range, for a resonator withα = 45◦. The baseline of this spectrum is I= 0,
i.e., the zero-offset is due to overlap of spectral resonances.

We shall now outline the procedure to extract information from these experimental spectra.

5.2.3 How we analyse the spectra

From the estimate of the number of excited modes and the measured finesse, we see that
N∼ 104–105 > F = 2×103–5×103. As a result, transmission spectra will be largely “filled”
due to the overlap of peaks, so that it is impossible to resolve all individual resonances,
or even a considerable fraction thereof (see Fig.5.3). Therefore, all attempts at extracting
level spacing distributions from these transmission spectra, the most commonly used analysis
technique for potentially wave-chaotic systems [15], are doomed to fail, and we must look
at other methods to determine whether or not wave chaos is present in our system, e.g., in a
spectrum as shown in Fig.5.3.

A technique that is eminently suited to analyse filled spectra such as ours is the one
devised by Wilkie and Brumer [56]. The technique is an extention of earlier attempts at
analysing highly complex molecular spectra [57,58], and is centred around the wave packet
survival probability P(t). This quantity describes the survival probability after a timet of an
initial wave packetψ(0), and can, for a lossless system, either be found from the normalised
wave functionψ(t), or determined from the Fourier transform of the normalised spectrum
S(ω) corresponding to that initial wave packet,

P(t)≡ |〈ψ(0)|ψ(t)〉|2 =
∣∣∣∣∫ S(ω)e−iωtdω

∣∣∣∣2 , P(0) = 1. (5.12)

We observe thatP(t) is, in effect, the Fourier transform of the spectral autocorrelation func-
tion. Note that for a lossless system the spectrum consists ofδ -spikes.

This wave packet survival probabilityP(t) is averaged twice, over different realisations
of the system and over initial conditions, to obtain〈〈P(t)〉〉. Starting from work by Pechu-
kas [64,65], Wilkie and Brumer [56] show that for the lossless system〈〈P(t)〉〉 has the special
property that, in the case of a chaotic system,〈〈P(t)〉〉mustfall below its long time asymptote
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〈〈P(∞)〉〉 for some timest, whereas in the case of a regular system,〈〈P(t)〉〉 canneverfall
below〈〈P(∞)〉〉:

∀t : 〈〈P(t)〉〉 ≥ 〈〈P(∞)〉〉 for regular dynamics, (5.13a)

∃t : 〈〈P(t)〉〉< 〈〈P(∞)〉〉 for chaotic dynamics. (5.13b)

As a result, this method unambiguously identifies the dynamics as being regular or chaotic.
Furthermore, the asymptotic behaviour of〈〈P(t)〉〉 is directly related to the number of spectral
lines (or modal resonances)N in the interval under consideration,

〈〈P(∞)〉〉=
2

N+1
. (5.14)

The region where〈〈P(t)〉〉< 〈〈P(∞)〉〉, in general found for smallt [59,66,60], is called
the correlation hole. This correlation hole also occurs when the classical dynamics of a
system are not fully chaotic, but are in an intermediate or mixed regime [59, 60]. The size
and shape of the correlation hole are related to the spectral statistics. The depth of the hole
measures the long-range correlation between levels (“spectral rigidity”), whereas the area of
the correlation hole is related to the degree of level repulsion [60].

BecauseP(t), being the Fourier transform of the spectral autocorrelation function, can
be obtained directly from experimental spectra, and does not require peak finding or similar
preprocessing, methods employingP(t) are very robust. In the case of complicated spec-
tra, with many overlapping peaks, these methods are superior to direct frequency-domain
methods, such as those examining level repulsion or spectral rigidity [57, 58]. Using the
doubly-averaged spectralautocorrelationfunction to distinguish between regular and chaotic
dynamics is, in principle, equivalent to the Wilkie-Brumer method. However, for badly re-
solved spectra thesurvival probability〈〈P(t)〉〉 again outperforms the alternative [57,58].

As will be explained in more detail in chapter6, in our experiments averaging over initial
wave function conditions is achieved by recording transmission spectra for a number of dif-
ferent transverse positions (typically 10) of the diffusor placed before the resonator. Varying
the position of the diffusor will change the exact configuration of the speckled input field
impinging on the resonator, and will thereby give rise to different couplings to the individual
intracavity modes. If we cross-correlate results for different transverse positions of the dif-
fusor, we find that in our experiments shifting the diffusor by 1 mm leads to completely
uncorrelated transmission spectra (see section6.3.3).

To implement different realisations of the system, we change the length of the resonator
in stepsδL much larger thanλ (typically δL = 1 mm), and average over the resulting spec-
tra. These length changes lead to differently structured eigenfrequency spectra, as will be
demonstrated in section6.3.2. However, since the character and strength of the aberrations
caused by the concave folding mirror do not change, these spectra can be seen as different
realisations of thesamesystem.

We found that some realisations, i.e., some choices ofL1, L2 andα, show quasiperiodic
transmission spectra, giving rise to strong Fourier components inP(t). In the paraxial limit,
such quasiperiodic transmission spectra occur for resonators that support closed periodic or-
bits (chapters2 and3 of this thesis, refs. [1,67]). Apparently, some of these closed periodic
orbits survive upon going to a nonparaxial resonator. As the corresponding strong spikes in
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the Fourier transform are very sharp, only a single data point wide, and isolated, they do not
affect the general trend of the〈〈P(t)〉〉-curves. For reasons of clarity of the graphs of〈〈P(t)〉〉
we have therefore chosen to perform a postselection on our data. Similar procedures have
been used by other authors [48,68,69].

This postselection procedure is as follows. Typically, we record transmission spectra for
50 distinct lengths of the resonator. For each resonator length we use 10 different transverse
positions for the incoupling diffusor, resulting in a total of 500 transmission spectra. After
normalising we apply Eq. (5.12) to these spectraSexp(ω) to obtain 500 curvesPexp(t). Sub-
sequently, we averagePexp(t) over diffusor positions, resulting in 50〈Pexp(t)〉-curves, one for
every resonator length. Of these, we reject the 10 curves with the strongest principal Four-
ier components. The remaining 40 are averaged to〈〈Pexp(t)〉〉. This selection removes the
sharp, isolated peaks apparently resulting from periodic orbits, as explained above, without
affecting the overall shape of〈〈P(t)〉〉. A detailed discussion of the correlation properties of
the spectra as a function of diffusor position and resonator length, as well as the “remnant”
periodic orbits will be reported in chapter6.

5.2.4 How we deal with losses

In our experiments, dissipation is impossible to avoid; it is dominantly due to the finite re-
flectivity of the mirrors (< 100%). As a result, experimental spectra will not consist of ideal
δ -spikes, but instead all resonances have a finite width, and〈〈Pexp(t)〉〉 contains a decaying
term. To be able to apply the conditions in Eq. (5.13), we must transform〈〈Pexp(t)〉〉 to the
“decay-free”〈〈P(t)〉〉. Wilkie and Brumer have shown that one can transform the wave packet
survival probability for a lossy system, directly obtained from the experimental spectrum us-
ing Eq. (5.12), to theP(t) of the underlying lossless system [56], provided each individual
transmission spectrum can be viewed as a convolution of an ideal spectrum consisting of
δ -spikes (or “sticks”), and a known basic line shape`(ω). In the Fourier domain, this convo-
lution then reduces to a simple multiplication of the Fourier transform of the delta spectrum,
P(t), and that of the fundamental line shape,L (t). The decay-free〈〈P(t)〉〉 is then related to
the experimentally obtained〈〈Pexp(t)〉〉 through

〈〈P(t)〉〉=
〈〈Pexp(t)〉〉
|L (t)|2

. (5.15)

For optical resonators, the shape of the resonances is a Lorentzian,

`(ω) =
2
π

1
∆ω

{
1+4

(
ω

∆ω

)2
}−1

, (5.16)

where∆ω is the full line width at half maximum. The Fourier transform of this fundamental
line shape is given by

L (t) = exp

(
−∆ω

2
|t|

)
= exp

(
− π

F

∣∣∣ t
tround

∣∣∣) , (5.17)

where we have used that the finesseF = νFSR/δν = 2π/∆ω tround. Indeed, the Fourier
transform of experimentally obtained low-order resonances corresponds closely to a decaying
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Figure 5.4: Fourier transform of low-order resonances, divided by a fitted exponential.
In fact, 20 individual resonances were recorded, Fourier transformed, and averaged. A
single exponential was fitted to these data, and subsequently divided out, to highlight
the deviations from exponential decay. We see that deviations stay well below5%.

exponential as given by Eq. (5.17), as can be seen in Fig.5.4. As a result, we can obtain the
desired “decay-free”〈〈P(t)〉〉 from the experimentally determined〈〈Pexp(t)〉〉 through

〈〈P(t)〉〉= 〈〈Pexp(t)〉〉/exp

(
−2π

F

∣∣∣ t
tround

∣∣∣), (5.18)

whereF can either be measured independently (by exciting only one, or at most a few,
nonoverlapping paraxial resonances and directly measuring the line width), or be estimated
from 〈〈Pexp(t)〉〉. This last method requires that the asymptotic behaviour of〈〈Pexp(t)〉〉 can
be recognised reliably; in our experiments this is always the case. In section6.3.4we take a
closer look at both the line shape of our resonator and〈〈Pexp(t)〉〉. There we will see that the
asymptote of〈〈Pexp(t)〉〉 is indeed very prominent.

5.3 Results

Having thus explained the experimental setup and the analysis procedure, we will now present
the experimental results. We have studied the dependence of the wave packet survival prob-
ability on the degree of the nonparaxiality as induced by the concave folding mirror. The
degree of nonparaxiality may be manipulated through the folding angle of the resonator 2α

and opening angleφ .

5.3.1 Folding angle2α

Adjustment of the folding angle 2α is experimentally straightforward. In Fig.5.5 we plot
〈〈P(t)〉〉, measured for five different folding angles. All curves are for identical opening
angleφ ∼ 1.25◦. The smallest folding angle, 2α = 0◦, corresponds to a paraxial two-mirror
resonator, and we see that in this case〈〈P(t)〉〉 never falls below its long time asymptote.
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Figure 5.5: Doubly averaged wave packet survival probability〈〈P(t)〉〉 for five dif-
ferent cavity folding angles2α. The curves have been normalised to their respective
asymptotes, and shifted vertically for clarity. Bars next to the right side axis indicate
the location of the asymptotes for the curves.

This confirms that, in a “normal” resonator, no chaos is present and the dynamics are purely
regular.

For 2α = 90◦, corresponding to a resonator that has been folded through a right angle, we
see that〈〈P(t)〉〉 is almost featureless, only showing a “correlation hole” belowt/tround= 150.
We conclude that for such a resonator the dynamics are chaotic, as reported earlier [52].

For intermediate folding angles we see a gradual transition from the 2α = 0◦ to the 2α =
90◦ result. There does not seem to be a sharp dividing line between regular and chaotic
resonators, but instead a smooth transition regime. Even for 2α = 20◦ a small correlation
hole can be observed, which seems to indicate that even for such small folding angles chaos
plays a role. If we compare the curves for 2α = 60◦ and 2α = 90◦ we see that the size and
depth of the correlation hole do not change significantly; however, the “spikes” (that managed
to sneak through the postselection procedure) that are present forα = 30◦ for t/tround< 200
diminish in height and number.

5.3.2 Opening angleφ

A second way of manipulating the strength of the nonparaxial aberrations in our resonator is
by varying the opening angleφ . The value ofφ depends on the size of the illuminated regions
on the mirrors as well as the geometry of the resonator; it directly determines which modes
will be excited in our resonator. A low value ofφ means that only modes that do not extend
too far from the optical axis are excited, whereas a higher value means that also modes with
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5. Observation and manipulation of wave chaos in a folded optical resonator

Figure 5.6: Resonator incoupling methods to manipulate the amount of nonparaxiality
through varyingφ . (a) Injection around the optical axis only, (b) Injection away from
the axis, (c) Injection both on-axis and away from the axis.

appreciable amplitude far from the axis will contribute; for the latter modes, the nonparaxial
aberrations due to the curved folding mirror will be stronger. If we select, through the way
we couple light into the resonator, a subset of modes that does not extend far from the axis,
we expect to see more regular behaviour. On the other hand, selecting a subset of modes that
extends much further from the axis is expected to lead to more chaotic behaviour.

We select subsets of modes by modifying the light field injected into the resonator. First
we use a diaphragm, with a diameter of∼ 1.4 mm, to block the outer ring of the full field after
the diffusor, and we primarily excite a small region around the optical axis, as in Fig.5.6a.
Next, weblock this region and only allow the outer ring to pass, see Fig.5.6b; in that way,
we only excite modes that extend far from the axis. Finally, we do not block any part of the
input beam, allowing the entire∼ 1 cm diameter light spot to impinge on the input mirror
(Fig. 5.6c); this results in a mix of the previous two cases, and we expect to see an intermedi-
ate result.

In Fig. 5.7we plot the results of these three types of incoupling, for two different folding
angles 2α of the resonator. We see that, as expected, only coupling light into the resonator in
a limited region around the optical axis leads to a less pronounced correlation hole, indicating
less chaos, whereas injecting light far away from the axis leads to a stronger correlation hole,
indicating more chaos. For 2α = 90◦, the dynamics stay chaotic for all three cases; for
2α = 40◦, when coupling light into the resonator close to the axis only, the chaotic signature
almost disappears.

74



5.4 Concluding discussion

Figure 5.7: 〈〈P(t)〉〉-curves for three different types of incoupling for a resonator with:
(a) α = 20◦, (b) α = 45◦. Insets show a detail of the same curves, smoothed with
a 21-point moving average filter, to expose the general trend around the location of
the correlation hole. For all graphs, the topmost curve (black) is for on-axis injec-
tion (cf. Fig. 5.6a), the bottom curve (dark grey) is for injection away from the axis
(cf. Fig. 5.6b), and the middle curve (light grey) is for injection both on and away from
the axis (cf. Fig.5.6c).

5.4 Concluding discussion

In conclusion, in this chapter we have demonstrated the presence of wave chaos in an ef-
fectively nonparaxial, folded three-mirror resonator consisting of standard, high-reflectivity
mirrors. The experimental results in section5.3 show that the degree of nonparaxiality, as
caused by the concave folding mirror, crucially determines the nature of the wave dynamics
in the system. As can be seen from the behaviour of the correlation hole in〈〈P(t)〉〉, increas-
ing the folding angle 2α from 0◦ to 90◦ shows a smooth transition from a nonchaotic to a
chaotic system; it takes the shape of a restructuring of the lowt/tround-parts of the curves,
corresponding to relatively larger spectral distances.

To gain more insight into the dynamics of folded optical resonators it will be necessary to
increase the resonator finesseF , so that the regimeF > N can be reached. Then, it will be
possible to resolve the resonances of our cavity, allowing us to simultaneously obtain nearest
neighbour spacing distributions and perform the above-mentioned analysis procedure based
on 〈〈P(t)〉〉. This will allow a direct comparison between the two methods of identifying
chaos, and is expected to shed more light on the behaviour of〈〈P(t)〉〉 in intermediate re-
gimes. Also, it may give more insight as to the physical interpretation of the correlation hole
in 〈〈P(t)〉〉, and the relation with direct spectral statistics.

Due to the lack of predictive theory for our system, we now discuss some speculative
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issues. For example, the sharp spikes that appear for specific resonator configurations, and
the quasiperiodic transmission spectra they correspond to, call to mind similar effects in
nonchaotic open resonators. For such systems, highly periodic spectra are known to occur
for resonators that support closed periodic orbits [1]. This suggests that ourchaoticopen
resonator may also support periodic orbits, and might point to the presence ofscars[70].

A natural question is whether the value of the resonator finesseF only determines the
most suitable diagnostic technique, or whether it plays a deciding role in generating chaos.
A somewhat reverse question is whether the presence of chaos will degrade the resonator
finesse; if a chaotic system would show an increased leakage rate compared to a regular
system, its finesse will be lower. As of now, answers cannot be given because of the lack of
a predictive theory of our system.

Obviously, a very interesting experiment is to study thespatialrather thanspectralprop-
erties of transmission of our resonator. We may expect that the statistics of speckles in the
transmitted light field depend on the nature of the dynamics inside the resonator and could
be non-Gaussian, that is, quite different from the transmission statistics of a conventional
paraxial multi-mode resonator.

In conclusion, our experiments have shown that a folded optical resonator is an exciting
and promising wave chaotic system. On the theory side, a lot of work still has to be done
to better understand this system. Experimentally, the convenience of control, combined with
all the techniques and tools available in the optical regime, form a powerful combination that
will enable extensive quantitative studies on the emergence and properties of chaos in very
open systems.

76



Chapter 6
Diagnostics of wave chaos in a
folded optical resonator1

We discuss in detail how a Fourier transform method proposed by Wilkie and Brumer
(Phys. Rev. Lett. 67, 1185 (1991)) can be used to analyse wave chaos in a folded optical
resonator. Because the line width of the resonances of this system is usually larger than
the average distance between lines, many lines overlap, leading to spectra that are com-
plex and largely filled. As a result, conventional analysis techniques, based on spectral
statistics, cannot be used. First, we show that, for such a chaotic resonator, transmis-
sion spectra obtained through scanning the length of the resonator accurately reflect the
resonance frequencies forfixed length. Next, we show that the two types of averaging,
needed in the method of Wilkie and Brumer, can be achieved by acquiring spectra for dif-
ferent resonator lengths and for different incoupling diffusor conditions, respectively. As
a last issue, we show the validity of two assumptions that greatly simplify the application
of the Wilkie-Brumer method.

1J. Dingjan, E. Altewischer, M.P. van Exter, and J.P. Woerdman, “Diagnostics of wave chaos in a folded optical
resonator”, in preparation.
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6.1 Introduction

In the previous chapter we demonstrated the presence of wave chaos in the optical regime in
a novel system, a folded optical resonator [52]. In our experiments, we obtained transmission
spectra for which the number of participating transverse modes exceeds the resonator finesse.
As a result, spectra of this system are complex and largely filled, and it is not possible to
extract the location of every resonance, or even a large fraction of all resonances. Therefore,
customary techniques for analysing spectra from potentially chaotic systems, such as study-
ing nearest neighbour distributions, spectral rigidity and other spectral statistics [15], cannot
be performed.

Instead, to determine whether the wave dynamics of this system are regular or chaotic we
use a method specifically developed to deal with such complex, filled spectra in the context
of quantum chaos in highly excited molecules [56, 58]. Although this method has several
roots [64,65,57] we will refer to it as the Wilkie-Brumer method [56]. It is centred around the
wave packet survival probability P(t), which can, through a Fourier transform, be obtained
directly from experimental spectra, without the need for peak detection or reduction to a
spectrum ofδ -spikes. The beauty of this method is that it gives a clear-cut distinction between
chaotic and nonchaotic systems. Not much work has been done on the application of the
Wilkie-Brumer method in practical systems, and this is the gap that we will try to (partially)
fill with this chapter.

Our system, a folded conventional optical resonator, is essentially macroscopic and very
open. It consists of three conventional high-reflectivity mirrors (see Fig.6.1) that allow a
great freedom in selecting and changing the geometry of the resonator, as well as insertion of
additional elements into the resonator. It easily allows one to reach the asymptotic limit, i.e.,
the system size much larger than the wavelength. To show that this system is indeed chaotic,
we measured transmission spectra by injecting light into the resonator and measuring the
transmission as a function of the resonator length (see chapter5). As mentioned above, the
fact that the number of modes is larger than the finesse means that these spectra are largely
filled due to mode overlap.

In section6.2we shall introduce the experimental setup in more detail, and describe how
the diagnostic method, as described by Wilkie and Brumer [56], can be applied to our system.
In section6.3we start by showing that transmission spectra can be obtained through scanning
the resonator length. Furthermore, we determine the optimal way to achieve the averaging
needed for the Wilkie-Brumer method, and show that two assumptions that greatly simplify
the experimental application of that method are indeed valid. We also show that scanning
the length of the resonator at a rate (somewhat) higher than the cavity decay rate does not
adversely affect the results, and confirm the validity of postselection of spectra to minimise
spikes that obscure the overall results. Finally, in section6.4 we shall discuss these results,
and identify possible future avenues towards a better understanding of the Wilkie-Brumer
method.
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6.2 Experiment

Figure 6.1: Experimental setup. HeNe: helium-neon laser beam, D: diffusor, M1,M2:
resonator end mirrors, MF: folding mirror, and PM: photomultiplier. The figure shows
the resonator with a concave folding mirror MF; this introduces aberrations. The use
of a flat folding mirror leads to a nonaberrated resonator.

6.2 Experiment

6.2.1 Setup

In Fig. 6.1we sketch the experimental setup. At its heart is a folded optical resonator, formed
by three high-reflectivity mirrors. The two mirrors M1 and M2 (with a reflectivity R ∼
0.9999) serve as cavity end mirrors, while the third mirror MF (with reflectivityR ∼ 0.99995)
folds the cavity through a total angle of 2α. If this folding mirror iscurved, it will, because
of the non-normal incidence of light, introduce significant nonparaxial effects. Forα ≥
20◦ these aberrations (relative to the paraxial case) are sufficient to generate wave-chaotic
behaviour, as demonstrated in chapter5. The two end mirrors can be either flat or curved,
provided the overall resonator is stable in the sense that paraxial rays remain confined close
to the optical axis of the system. The length of the resonator can be changed on a sub-
wavelength scale, using a piezo element, as well as on a larger scale. The entire resonator is
enclosed in a simple box to exclude airflows. No acoustic shielding is used.

To obtain transmission spectra of this system we inject light from a HeNe laser (λ =
633 nm), while scanning the resonator length. In front of the cavity, the HeNe beam is
expanded by a telescope, to a diameter of typically 3.4 mm, and sent through a weak diffusor
(typical FWHM scattering angle∼ 0.5◦); the resulting speckled input field excites about
N∼ 104–105 transverse modes of the cavity1 (also see section5.2.2). Translating the diffusor
transversely to the beam causes the speckle pattern to change drastically, thereby radically
altering the excitation of the transverse mode manifold.

The finesse of the resonator was found to be2 F ≡ νFSR/δν = 2×103–5×103, where
the free spectral rangeνFSR≡ t−1

round= c/2L (wheretround is the cavity round trip time), and

1This number of transverse modes may be estimated from the typical radiusa of the light spot on the mirrors,
a∼ 0.5–1 cm, the length of the resonatorL ∼ 25–35 cm, and the wavelength of the injected lightλ throughN ∼
a4/λ 2L2 ∼ 104–105.

2This spread in the finesse is the result of the change in reflectivity of the folding mirror upon varying the folding
angle of the resonator. In our experiments we used folding mirrors with coatings optimised for use at 0◦ and 45◦,
respectively. At angles of incidence other than the design angle, their reflectivity is lower.
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6. Diagnostics of wave chaos in a folded optical resonator

δν is the width of individual resonances. We see thatN > F , or that the width of individual
modes is larger than the average mode spacing. As a result, transmission spectra for this
system are largely filled, with many modes overlapping.

6.2.2 Method of analysis: general

With such largely filled transmission spectra, it is only possible to accurately detect the posi-
tion of relatively few isolated resonances; the large majority cannot be analysed individually.
Therefore, techniques that rely on analysis of isolated resonances, such as direct spectral stat-
istics in the form of nearest neighbour distributions and related quantities, cannot be used to
determine the nature of the dynamics in the system.

Instead, we turn to an analysis technique that was developed around 1985 [65,57,58] and
got its final form a few years later [56]. It was specifically developed to deal with complex,
dense spectra, such as occur in atomic and molecular systems. Its key ingredient is thewave
packet survival probability P(t), a measure for the temporal evolution of an arbitrary initial
wave packet or state. For a lossless system, where all resonances are infinitely narrow and the
spectrum consists ofδ -spikes,P(t) is directly related to both the normalised wave function
ψ(t) and to the Fourier transform of the normalised spectrumS(ω) corresponding to the
initial wave packetψ(0), through

P(t)≡ |〈ψ(0)|ψ(t)〉|2 =
∣∣∣∣∫ S(ω)e−iωtdω

∣∣∣∣2 , P(0) = 1. (6.1)

In essence,P(t) is equivalent to the Fourier transform of the spectral autocorrelation function

A (∆ω) =
∫

S(ω)S(ω +∆ω)dω . (6.2)

As a next step,P(t) is averaged twice, over both initial wave functions and different real-
isations of the system, yielding〈〈P(t)〉〉. On mathematical grounds Wilkie and Brumer [56]
have shown that this quantity has very different behaviour for regular or chaotic systems. For
a chaotic system,〈〈P(t)〉〉 mustfall below its long time asymptotic value〈〈P(∞)〉〉 for some
timest, while, for a regular system,〈〈P(t)〉〉 cannotfall below 〈〈P(∞)〉〉:

∀t : 〈〈P(t)〉〉 ≥ 〈〈P(∞)〉〉 for regular dynamics, (6.3a)

∃t : 〈〈P(t)〉〉< 〈〈P(∞)〉〉 for chaotic dynamics. (6.3b)

Therefore, the behaviour of〈〈P(t)〉〉 allows us to unambiguously distinguish between regular
and chaotic dynamics. The asymptotic behaviour of〈〈P(t)〉〉 is directly related to the number
of resonancesN in the interval under consideration,

〈〈P(∞)〉〉=
2

N+1
. (6.4)

The region where, for chaotic dynamics,〈〈P(t)〉〉 falls below its asymptotic value〈〈P(∞)〉〉
is commonly identified as thecorrelation hole. It is present not only for systems with fully
developed chaos, but also for systems that have mixed chaotic and regular dynamics [59], and
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is generally located at small timest. Numerical studies indicate that the depth of the correla-
tion hole is directly related to long-range spectral correlations (spectral rigidity), whereas its
area depends on short-range correlations [59,60]. Wilkie and Brumer [56] have shown that
there is a direct relation between, on the one hand,〈〈P(t)〉〉, and hence the size and shape of
the correlation hole, and, on the other hand, the cosine transforms of alln-th nearest neigh-
bour spacing distributionsPn(s). However, a direct physical interpretation of this correlation
hole is as yet unavailable.

When applying this method to actual experiments, matters are complicated somewhat by
the fact that in practice one rarely deals with lossless systems and idealδ -spectra. Instead,
one has to account for the finite line width of experimentally obtained spectra. Wilkie and
Brumer [56] have shown that, with some reasonable assumptions, one can transform the wave
packet survival probability for a lossy systemPexp(t), as obtained directly from applying
Eq. (6.1) to an experimental spectrum,

Pexp(t) =
∣∣∣∣∫ Sexp(ω)e−iωtdω

∣∣∣∣2 , (6.5)

to theP(t) of the underlying lossless system.
The argument is as follows: one assumes that each individual transmission spectrum can

be viewed as the convolution of an ideal spectrum consisting ofδ -shaped peaks, and a basic
and known line shapè(ω). In the Fourier domain, this convolution reduces to a simple
multiplication of the Fourier transform of theδ -spectrum,P(t), and that of the fundamental
line shape,L (t). Provided that̀ (ω) is the same for all realisations, the decay-free〈〈P(t)〉〉
is then related to the experimentally obtained〈〈Pexp(t)〉〉 through

〈〈P(t)〉〉=
〈〈Pexp(t)〉〉
|L (t)|2

. (6.6)

This assumption on the structure of eigenspectra is valid for systems with a global loss mech-
anism that affects all eigenmodes equally.

Because this assumption allows one to obtainP(t) directly from experimental spectra,
without the need for peak finding or similar preprocessing techniques, methods relying on
P(t) are very robust. For badly resolved and complicated spectra, with many overlapping
peaks, it has been found that these methods outperform direct frequency-domain methods,
such as those centred around spectral rigidity or level repulsion [57,58]. As P(t) is the Four-
ier transform of the spectral autocorrelation function, one could, in principle, also use the
doubly-averaged autocorrelation function to distinguish between regular and chaotic dynam-
ics. However, for badly resolved spectra〈〈P(t)〉〉 is again superior to the alternative [57,58].

6.2.3 Method of analysis: our case

We address now the two types of averaging introduced by Wilkie and Brumer in the context of
our experimental setup. The first averaging refers to different realisations of the same system.
In our system, this can be achieved most easily by changing the length of the resonator in steps
δL much larger than the wavelengthλ . These length changes lead to differently structured
eigenfrequency spectra, but, since the angle of incidence of light on the folding mirror MF is
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unchanged, these spectra correspond to different realisations of essentially thesamesystem.
In section6.3.2we will show that the use of on the order of 50 different resonator lengths
leads to sufficient averaging.

The second averaging is done over initial wave functions. In our case, this role is played
by the speckled injection field and the way it excites transverse modes of the cavity; there-
fore, averaging over initial conditions can be performed by changing the incident field and
obtaining transmission spectra for different situations. The easiest way to implement this is
to vary the transverse position of the diffusor. This will change the exact configuration of
speckles in the input field impinging on the resonator, and will therefore give rise to different
couplings to the individual intracavity modes. In section6.3.3we show that, in our setup, the
use of 10 different transverse positions of the diffusor gives enough averaging.

As dissipation, dominantly due to the finite reflectivity of our mirrors, is impossible to
avoid, all resonances have a finite width. To enable the diagnostic use of Eq. (6.3) we have to
transform the experimentally obtained〈〈Pexp(t)〉〉 to the lossless〈〈P(t)〉〉 using Eq. (6.5). We
assume that the resonances of our folded, chaotic resonator retain the Lorentzian line shape
generally found for Fabry-Ṕerot interferometers,

`(ω) =
2
π

1
δω

{
1+4

(
ω

δω

)2
}−1

, (6.7)

whereδω is the full line width at half maximum. The Fourier transform of this fundamental
line shape is given by

L (t) = exp

(
−δω

2
|t|

)
= exp

(
− π

F

∣∣∣ t
tround

∣∣∣) , (6.8)

where we have used that the finesseF = νFSR/δν = 2π/δω tround. Combining this with
Eq. (6.5), we obtain the desired “decay-free”〈〈P(t)〉〉 from the experimentally determined
〈〈Pexp(t)〉〉 through

〈〈P(t)〉〉= 〈〈Pexp(t)〉〉/exp

(
−2π

F

∣∣∣ t
tround

∣∣∣), (6.9)

whereF can either be measured independently (by exciting only one, or at most a few,
paraxial resonances and directly measuring the line width), or be estimated from〈〈Pexp(t)〉〉.
This last method is only feasible if the asymptotic behaviour of〈〈Pexp(t)〉〉 can be recognised
reliably (which is usually the case). Experimental results on the actual line shape, as well as
a comparison between the two methods, will be reported in section6.3.4.

6.3 Experimental validation

In this section we experimentally validate a number of techniques and procedures that we use
to implement the Wilkie-Brumer method.
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Figure 6.2: Average of the maximum value of the cross-correlation for pairs of trans-
mission spectra obtained for different cavity lengths, versus the difference in cavity
length (2α = 90◦).

6.3.1 Transmission spectra

For optical resonators, the most obvious, and intuitively cleanest, approach to obtain eigen-
frequency spectra is to keep the lengthL of a resonator fixed, and scan the wavelengthλ of
the injection laser, while measuring the transmission through the resonator (“λ -scan”). How-
ever, since all eigenfrequencies depend onL, it is also possible to get information on these
resonances by keepingλ fixed, and instead scanL over a limited range (“L-scan”). This will
change the eigenfrequencies of the cavity, bringing them, one by one, into resonance with the
laser frequency.

For paraxial, nonchaotic resonators theL-scan “spectrum” is, in general, identical to the
proper eigenfrequency spectrum, as long as the scan range (of orderλ/2) is much smaller
than the resonator length1. TheL-scan spectrum of a resonator is then quasiperiodic, with a
period ofλ/2, equivalent to a periodicity of∆ν = νFSR in the frequency domain. It is not,
however,a priori clear whether the same is true for a nonparaxial, chaotic resonator.

To investigate this issue, we check whetherL-scan spectra are indeed quasiperiodic.
To this end, we cross-correlateL-scan transmission spectra obtained for different resonator
lengths. If spectra, obtained for two cavity lengths that differ byp ·λ/2 (wherep is a small
integer), have (near) perfect correlation, we may conclude that the dependence of the eigen-
frequency spectrum onL is small enough that the results forλ - andL-scan are the same.

We calculate the maximum valueχ of the normalised cross-correlation of pairs of spectra
(with the DC value of the spectra removed), obtained for an ensemble of resonator lengths.
The two spectra may correspond to the same resonator length, or may be obtained for different
resonator lengths. These valuesχ are plotted against the difference in cavity length∆L in
Fig. 6.2 (where 2α = 90◦). Because of fluctuations in spectra due to external perturbations,
even for identical resonator lengths the maximum cross-correlation is smaller than 1; if no
external perturbations were present,χ for ∆L = 0 would be identical to 1. These external

1Exceptions to this are, for example, resonators at the edge of stability (close to concentric), or degenerate
resonators with many excited modes.
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perturbations have (at least) two sources; the first of these is acoustic noise, mainly coupling
into the longitudinal dimension of the cavity and causing a stretching and compressing of
the spectra. The second is additive noise from the photomultiplier tube, adding an amplitude
ripple to the signal.

We see that the maximum cross-correlation decays smoothly from its peak value for∆L =
0. From this smooth curve we can, for∆L = 2λ ≈ 1.27µm, estimate thatχ∆L/χ0≈ 0.97 (or,
for ∆L = λ/2, χ∆L/χ0 ≈ 0.99), which shows that these spectra are indeed (almost) identical,
at least in statistical sense. Therefore, measuring transmission spectra by varying thelength
of the resonator, which need only be done overλ/2 (i.e., less than 2λ ) to get a complete
spectrum, yields spectra that are identical to those obtained through varying thewavelength
of the injected light.

6.3.2 Averaging over realisations

Averaging over different realisations can be achieved by recording transmission spectra for
different resonator lengthsL. To determine the minimum length difference∆L above which
spectra become “dissimilar”, we use the same technique as used in the previous subsection
to confirm short-range quasiperiodicity. This tells us how large we should choose our length
stepsδL for our averaging over realisations, to maximise the efficiency of our measurements.

From Fig.6.2 we immediately see thatχ does not decay to 0, but instead levels off at
a finite floor, determined by the residual spurious cross-correlations between nominally un-
related spectra. This floor is reached for∆L > 700µm. Therefore, choosing a step length
δL > 700µm will be most efficient at extracting information on the dynamics from the sys-
tem.

Choosing smaller steps will, because of the finite correlation between spectra, lead to
unnecessary duplications: step lengthsδL < 700µm will lead to averaging over an effectively
lower number ofdifferent realisations, as demonstrated in Fig.6.3. There we plot〈〈P(t)〉〉
for two different step lengths,δL = 20 µm andδL = 1 mm. We see that the curve for the
shorter step length contains additional structure, especially for lowert/tround. This structure
is specific for that particular (average) cavity length; experimentally we found that choosing a
different cavity length leads to a different structure. This structure is the result of insufficient
averaging, and does not contribute any information on the global nature of the dynamics. In
contrast, the curve forδL = 1 mm, spanning a total resonator length interval of 5 cm, has no
other features than the correlation hole for smallt/tround.

These results are not critically sensitive to the total number of realisations; this is illus-
trated by Fig.6.4, where we plot two〈〈P(t)〉〉-curves stemming from the same dataset. One
curve was calculated from the full dataset (40 distinct resonator lengths), the other by discard-
ing every second resonator length (20 distinct resonator lengths), yielding an effective step
lengthδL = 2 mm, while still spanning the same total length interval of 4 cm. We can see
that the difference between the two curves is negligible. Therefore, we conclude that meas-
uring over a total resonator length change∆L≥ 4 cm, containing about 60 different effective
realisations, leads to sufficient averaging.
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Figure 6.3: 〈〈P(t)〉〉 versus t/troundtrip for two different resonator step lengths,δL =
20 µm and1 mm. The total number of measurements for the two curves is 50 and 40,
respectively (2α = 90◦).

Figure 6.4: 〈〈P(t)〉〉 versus t/troundtrip for a full set of 40 resonator lengths (black
curve), and when every second resonator length is discarded, leading to 20 resonator
lengths (grey curve). Also indicated is the level of the asymptote (2α = 90◦).
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Figure 6.5: 〈〈P(t)〉〉 versus t/troundtrip for 10 diffusor positions (black curve), and for
5 diffusor positions (grey curve);2α = 90◦ for both. The difference between these two
curves is very slight. Also indicated is the level of the asymptote.

6.3.3 Averaging over initial conditions

The second type of averaging needed in the analysis procedure is over initial conditions. As
mentioned above, this can be achieved by translating the diffusor transversely to the injection
beam. Cross-correlating pairs of spectra for different diffusor positions shows that translating
the diffusor by 1 mm causes changes in the speckled field impinging on mirror M1 of the
resonator that are large enough to result in completely uncorrelated transmission spectra. In
practice, we find that 10 different diffusor positions give sufficient averaging, in that halving
the number of diffusor positions, while keeping all other parameters unchanged, does not
affect the general shape of the resulting〈〈P(t)〉〉-curve, see Fig.6.5. The only observable
difference is in the width of the noise band; this is a direct consequence of changing the total
number of measurements.

6.3.4 Line shape

With regard to the basic line shape of the resonances, in the experiment we must satisfy two
contradictory requirements. On the one hand, the length of the resonator should ideally be
scanned at a rate small enough so that the time to scan through a single resonance is larger
than the cavity lifetime. If the scan rate is too high, resonances will lose their Lorentzian
shape and generally broaden [71], severely complicating the analysis as discussed below. On
the other hand, to minimise the effects of acoustic noise it is beneficial to scan at the highest
possible rate. Scanning at a lower rate will degrade the quality of the spectra, again leading
to difficulties in the analysis.

To assess the basic line shape we remove the diffusor and couple a thin pencil beam
into the resonator, thereby exciting only a few, low order modes. Spectrally, these modes
are spaced sufficiently far apart that we can study them individually. In Fig.6.6a we plot
the shape of a typical low order mode, together with the best Lorentzian fit. We see that
the deviation from the ideal Lorentzian line shape is considerable, a direct consequence of
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6.3 Experimental validation

Figure 6.6: (a) Detailed view of a single, low-order resonance of a chaotic resonator
(2α = 90◦), together with the best Lorentzian fit. (b) Fourier transform of a single low-
order resonance, averaged over 20 measurements, divided by a fitted exponential. (c)
Typical 〈〈Pexp(t)〉〉-curve, where the asymptote, multiplied by a decaying exponential,
is clearly visible.
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the cavity-length scan rate being too high. The length of the cavity was changed at a rate
of λ/83.8× 10−3 = 7.55× 10−6 m/s, so that the FWHM-time it takes to scan through a
(deformed) resonance isτ ∼ 1.25×10−5 s. The cavity decay time is estimated to be of the
order ofτc ∼ 3×10−6 s; exact determination of the cavity decay time is not straightforward,
and would involve curve-fitting the exact line shape to expressions from ref. [71]. Lowering
the scan rate is not possible, as then the influence of acoustic noise becomes unacceptably
large. As such, the chosen scan rate represents, for our current setup, a best-case tradeoff
between minimising the effects of non-Lorentzian line shapes and the effect of acoustic noise.

More important than the actual line shape is the square of the modulus of the Fourier
transform of that line shape, since that is the curve we want to divide out (see Eq. (6.6)).
In the Fourier domain, the deviations between the average of transforms of many individual
low-order lines and an exponential function remain below 3% over the entire relevant range,
as can be seen in Fig.6.6b, where we plot the ratio of the averaged Fourier transform and
an exponential fit. From this exponential fit we can get an accurate estimate of the effective
finesse of the low-order modes in our resonator.

Therefore, it is reasonable to treat the Fourier transform of the basic line shape as an ex-
ponential function. This exponential factor shows up prominently in experimentally obtained
curves for〈〈Pexp(t)〉〉, see Fig.6.6c, confirming our assumption that each individual trans-
mission spectrum may be viewed as the convolution of an idealδ -spectrum and a Lorentzian.
This prominent exponential factor allows us to accurately estimate the (average) finesseF of
the modes that are excited inside our resonator. In general, it is lower than the finesse for the
low-order modes (for example, where the low-order finesse is∼ 5000, the average finesse of
all excited modesF ∼ 3800), indicating that the higher order modes experience additional
loss. For reasons of mode matching it is not possible to measure the finesse of higher order
modes independently, so that we can only measure isolated resonances for low order modes,
of which there are relatively few.

6.3.5 Postselection of spectra

Part of the procedure to go from experimental transmission spectra to〈〈P(t)〉〉 is a postselec-
tion of realisations, as mentioned at the end of section5.2.3. This serves to suppress sharp,
isolated spikes on〈〈P(t)〉〉 that can detract attention from the global nature of〈〈P(t)〉〉. That
is not to say those spikes are without meaning or interest, but the information they carry is
not needed to determine the type of dynamics in a system. Similar postselection procedures
are customary in other experiments on wave chaos [48,68,69].

These sharp, isolated spikes occur in first instance onP(t); they stem from strong, highly
periodic components in transmission spectra that, for as yet unknown reasons, show up for
particular realisations of a folded resonator. These spikes lead, after performing the double
averaging, to peaks on〈〈P(t)〉〉 that reach a height that exceeds the level of the asymptote by
up to a factor of 10.

Fortunately, realisations with such strong Fourier components are, in general, relatively
rare and isolated, and it is possible to suppress these realisations without affecting the global
shape of our curves. We averagePexp(t)-curves over incoupling conditions to obtain〈Pexp(t)〉-
curves (and hence〈P(t)〉), one for every realisation. In these curves, we can determine the
strength of the principal Fourier component, and we plot these strengths against the index
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Figure 6.7: (a) Strength of the principal Fourier component, as determined from〈P(t)〉,
for 50 realisations of a resonator with2α = 90◦. Indicated in grey are the 10 realisa-
tions that are not taken into account for the second averaging step. The dashed grey
curve is a guide to the eye. (b)〈〈P(t)〉〉 corresponding to the same data set. Grey
curve: Full data set of 50 realisations (500 spectra). Black curve: Partial data set of
40 realisations (400 spectra).

number for each realisation. By way of example, in Fig.6.7a we plot the results for a res-
onator with 2α = 90◦. Based on these data we reject, of a full set of 50, the 10 realisations
with the strongest principal Fourier components, and average the remaining 40 to obtain, ulti-
mately,〈〈P(t)〉〉. In Fig.6.7b we plot two curves〈〈P(t)〉〉, one for a full set of 50 realisations,
the other for the subset of 40 realisations selected in this way. Clearly, the sharp spikes on
〈〈P(t)〉〉 have disappeared almost completely,withoutaffecting the overall shape of〈〈P(t)〉〉.

As the global shape of〈〈P(t)〉〉, and more importantly that of the correlation hole, is not
affected by the postselection, this procedure does not influence our conclusions regarding the
nature and general trend of the dynamics in our system.
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6.4 Concluding discussion

Here we first summarise our results. Transmission spectra, obtained by scanning the length of
the resonator and recording transmitted intensity, give direct information on the (fixed length)
eigenfrequency spectrum of such systems, and can be used to analyse these systems. Two
types of averaging, over different realisations and over initial conditions, can be achieved by
changing the length of the resonator and by changing the transverse position of the incoupling
diffusor, respectively. The shape of individual resonances is distinctly non-Lorentzian; this is
a direct result of a cavity length scan rate that is higher than allowed by the cavity lifetime.
Nevertheless, losses in the system can be accounted for by dividing out an exponential factor
in 〈〈Pexp(t)〉〉, where the coefficient can be estimated accurately from〈〈Pexp(t)〉〉. And finally,
we are allowed to perform a postselection on our data to reject spurious spikes, without
adversely affecting the predictive nature of the method or introducing anomalies.

Both in section6.3.2and in section6.3.4, complications due to acoustic noise are men-
tioned. Acoustic vibrations cause scan-to-scan fluctuations, so that spectra obtained for
identical length and incoupling conditions are never perfectly the same; their signature is ne-
cessarily statistical rather than deterministic. Furthermore, these acoustic vibrations impose
a lower bound on the rate at which the length of the resonator must be varied; as a result,
the cavity scan is faster than allowed by the cavity decay time, leading to non-Lorentzian
line shapes. Both these issues would benefit from better acoustic shielding; currently, we are
working on a soundproof enclosure for the setup. This should decrease the effect of noise,
and allow a lower scan rate so that a higher finesse can be reached; however, effective shield-
ing of acoustic noise is not easily achieved [72]. The current mirrors should, in principle,
allow a finesseF = 2×104 or better. That we only reach an effective finesse of 5000 is a
limitation imposed by the too-high scan rate.

Because it does not affect the overall shape of the curves, the postselection method we
employ does not influence predictions regarding the regular or chaotic nature of the dynamics
in our system. Nevertheless, the sharp spikes that are rejected in this way represent interesting
physics in their own right and warrant further study. Currently, an explanation regarding their
origin is lacking, although evidence suggests they are associated with unstable periodic orbits
or scars [70]. Future work will specifically target this.

The Wilkie-Brumer method is eminently suited for diagnostics of experiments on wave
chaos in folded chaotic resonators. It is robust, and can be used in the presence of many
overlapping modes. Direct comparison of this method with other techniques, such as nearest
neighbour spacing statistics, will be very interesting, and will shed new light on the interpret-
ation of the location, size and shape of the correlation hole. In the near future, we plan to
increase our finesse so thatF > N, to enable this comparison.

As a final remark, even though it is not possible to resolve all resonances in our trans-
mission spectra, and direct spectral statistics cannot be used, this overlap is not fatal. The
Wilkie-Brumer method can partially compensate for this overlap byaveragingover initial
conditions and realisations of the system, and allows one to determine whether a system is
chaotic or not. It cannot, however, give information on individual spacing distributionsPn(s).
This then, is the ultimate price one has to pay for system losses.
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Samenvatting:

Multimode optische trilholtes en
golfchaos

Dit proefschrift gaat, zoals u natuurlijk al uit bovenstaande titel heeft afgeleid, over optische
trilholtes waarin meerdere eigentrillingen zijn aangeslagen, en over golfchaos. Maar wat
betekent dat nu eigenlijk,optische trilholte, eigentrillingengolfchaos?

Net als ieder vakgebied heeft ook de natuurkunde zo haar eigen woordenschat en woord-
gebruik. Naast woorden die buiten de natuurkunde niet voorkomen, en die een niet-natuur-
kundige hoogstwaarschijnlijk niet zal kennen, zijn er ook veel woorden die lijken op, of zijn
samengesteld uit, woorden die we ook in de wereld van alledag tegenkomen. Echter, binnen
de natuurkunde is de betekenis van die woorden nauwer omschreven, soms subtiel anders, en
in sommige gevallen haast tegengesteld.

Aangezien ik mijn proefschrift, en dus het werk dat ik de afgelopen jaren heb verricht, toe-
gankelijk wil maken voor een zo breed mogelijk publiek, heb ik ervoor gekozen eenpopulair-
wetenschappelijkesamenvatting te schrijven, waarin ik niet streef naar natuurkundige exact-
heid, maar naar leesbaarheid en begrijpelijkheid. Daartoe zal ik eerst enige begrippen intro-
duceren en uitleggen.

Enige begrippen

Licht Licht is een elektromagnetisch golfverschijnsel, een trillend elektromagnetisch veld
dat zich voortplant. U kunt dit vergelijken met een watergolf die zich voortplant aan
een wateroppervlak. Net als zo’n watergolf heeft ook licht golfpieken en golfdalen.
Elektromagnetische golven, of straling, wordt ingedeeld aan de hand van degolflengte,
de afstand tussen twee opeenvolgende golfpieken. Voor licht ligt de golflengte grofweg
tussen 1 mm (ver-infrarood) en 10 nm (ver-ultraviolet). Zichtbaar licht heeft een golf-
lengte tussen 730 nm (rood) en 400 nm (violet), waarbijéén nanometer overeenkomt
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metéén miljoenste van een millimeter (ter vergelijking, menselijk hoofdhaar heeft een
dikte tussen 40µm en 130µm, of tussen de 40 en 130 duizendste van een millimeter).
Bij golflengtes langer dan 1 mm vinden we eerst microgolven (bekend uit de magne-
tron), en daarna radiogolven. Straling met een golflengte korter dan 10 nm duiden we
aan met r̈ontgenstraling of gammastraling. De golflengte is, via de lichtsnelheid, direct
gerelateerd aan defrequentievan de straling, waarbij licht met een grotere golflengte
een lagere frequentie heeft.

Stralenoptica In de stralenoptica verwaarlozen we, voor het gemak, het golfkarakter van
licht, en beschrijven de voortplanting van licht aan de hand van oneindig dunnelicht-
stralen. Deze stralen planten zich in uniforme media langs rechte lijnen voort. Aan
spiegelende oppervlakken worden deze stralen gereflecteerd, terwijl ze bij de overgang
tussen twee verschillende media, bijvoorbeeld lucht en glas,brekingvertonen. De stra-
len vertonen zowel bij reflectie als bij breking een scherpe knik. In veel situaties is
de verwaarlozing van het golfkarakter van licht toelaatbaar, met name (maar zeker niet
altijd) als de golflengte van het licht heel klein is ten opzichte van alle afmetingen van
een systeem (aan bovengenoemde getallen kunt u zien dat, grofweg, de golflengte van
zichtbaar licht́eén of twee honderdste van de dikte van een mensenhaar is).

Golfoptica In de golfoptica wordt wel expliciet rekening gehouden met het golfkarakter van
licht. Hierdoor zijn effecten die buiten het bereik van de stralenoptica vallen, wel goed
te beschrijven. Een van die effecten is buiging ofdiffractie. Deze diffractie kunnen we
zien als de neiging van licht, of welk ander golfverschijnsel, om uit te waaieren. Een
voorbeeld hiervan is de lichtbundel afkomstig uit een laserpen: vlak bij de pen is deze
bundel grofweg 1 mm in diameter, terwijl ze op 10 m afstand al is gegroeid naar bijna
1 cm.

Een ander belangrijk effect in de golfoptica isinterferentie, waarbij twee golven door
elkaar lopen. Als de golfpieken en -dalen van de eerste golf samenvallen met de golf-
pieken en -dalen van de tweede golf, zullen deze elkaar versterken (constructieve in-
terferentie). Als daarentegen de pieken van de eerste golf samenvallen met de dalen
van de tweede golf, en vice versa, dan zullen de golven elkaar uitdoven (destructieve
interferentie). Dit effect is gemakkelijk zichtbaar te maken met watergolven: als men
in een vlakke vijver twee stenen gooit, een eindje uit elkaar, ziet men twee cirkelvor-
mige, zich uitbreidende golfpatronen. In het overlapgebied van de twee golfpatronen
ziet men dan lijnen waar het water, als gevolg van constructieve interferentie, woest
op en neer beweegt, en lijnen waar het water, als gevolg van destructieve interferentie,
nauwelijks golft.

Paraxiale benadering Binnen de paraxiale benadering nemen we aan dat de hoek tussen de
as van een optisch systeem en de voortplantingsrichting van een lichtstraal of -golf,
klein zijn. In dat geval mag men de sinus of tangens van een hoek vervangen door
de hoek zelf (gerekend in radialen), sinα ≈ tanα ≈ α. Dit zorgt voor een aanzien-
lijke vereenvoudiging van de wiskundige beschrijving van optische problemen. Veel
vraagstukken die binnen de paraxiale benadering simpel op te lossen zijn, leiden tot
aanzienlijke problemenbuitendie benadering.
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Laser De laser dankt zijn naam aan het acroniem voorlight amplification by stimulated
emission of radiation, lichtversterking door gestimuleerde emissie van straling. Terwijl
een gloeilamp licht uitzendt in alle richtingen en over een breed kleurbereik, is het licht
van een laser geconcentreerd in een nauwe bundel, en heel “zuiver” van kleur. Deze
kleur kan varïeren van (onzichtbaar) ver-infrarood, via het nabij-infrarood van de lasers
in cd-spelers, het bekende rood van helium-neonlasers, laserpennen en kassa’s en het
groen van lasershows, tot het (onzichtbare) ultraviolet en ver-ultraviolet zoals gebruikt
wordt in chipfabricage.

Iedere laser bestaat uit twee basiselementen: een medium dat zorgt voor de verster-
king van licht, en een manier om een deel van het licht dat uit het lichtversterkend
medium komt terug te voeren (terugkoppeling). Dit teruggekoppelde licht stimuleert
het medium om identiek licht uit te zenden. In conventionele lasers wordt deze terug-
koppeling van licht verzorgd door spiegels die een deel van het licht doorlaten, en een
deel terugkaatsten. Deze spiegels sluiten het licht op in een zogenaamdetrilholte.

Trilholte Een trilholte of resonator bestaat uit spiegels die zo zijn opgesteld dat zij licht
kunnen opsluiten in een gesloten pad. Het simpelste voorbeeld is twee spiegels die
recht tegenover elkaar staan: het licht dat gereflecteerd wordt door de eerste spiegel
valt op de tweede spiegel, die het weer terugkaatst naar de eerste, enzovoort. Een
trilholte hoeft dus niet volledig gesloten te zijn, om licht op te kunnen sluiten, maar dit
mag natuurlijk wel. De in dit onderzoek gebruikte trilholtes zijn allemaal erg open, en
bestaan uit niet meer dan twee of drie spiegels, in grootte variërend tussen minder dan
een eurocent en een 2-euromunt.

In een trilholte is het van belang dat de golfpieken en -dalen naéén rondgang samen-
vallen met de pieken en dalen van de oorspronkelijke golf, zodat constructieve interfe-
rentie optreedt. Als dit náeén rondgang gebeurt, is dit natuurlijk ook zo na twee, drie,
tien of honderd rondgangen. In dit geval spreken we vanresonantie. Vallen de golf-
pieken naéén rondgang niet samen met de pieken van de oorspronkelijke golf, maar
met dedalen, dan zullen deze pieken en dalen elkaar uitdoven als gevolg van destruc-
tieve interferentie. Door dit proces kan alleen licht van heel welbepaalde golflengtes
opgesloten worden in een trilholte. We noemen deze golflengtesresonante golflengtes,
en de bijbehorende frequentiesresonantiefrequenties. Veranderen we de lengte van
de trilholte, door bijvoorbeeld de spiegels verder uit elkaar te zetten, dan zullen deze
“passende” golflengtes en frequenties meeveranderen.

Eigentrilling Een eigentrilling van een trilholte of resonator is een elektromagnetisch golf-
patroon dat zich náeén rondgang door de trilholte exact herhaalt. Dit veronderstelt niet
alleen een “passende” golflengte, zoals hierboven beschreven, maar ook een “passend”
patroon dwars op de voortplantingsrichting van het licht. In een trilholte gemaakt van
holle spiegels, die het licht bundelen, zijn meerdere dwarspatronen mogelijk waarbij
de natuurlijke neiging tot uitwaaieren (diffractie) precies wordt gecompenseerd door
de netto samenbundelende werking van de spiegels. Voorbeelden van zulke dwars-
doorsnedes van eigentrillingen zijn gegeven in Figuur1. Het simpelste dwarspatroon,
linksboven, is een cirkel die vloeiend afloopt naar de rand. Andere patronen hebben
horizontale of verticale lijnen zonder licht, de witte lijnen in de figuur. De afmetingen
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Figuur 1: Enkele dwarspatronen van eigentrillingen van een trilholte.

van deze figuren zijn in het algemeen veel groter dan de golflengte van het licht.

Mode Een andere naam voor deze eigentrillingen iseigenmodeof simpelwegmode. Zoals
weergegeven in Figuur1 zijn er meerdere modes mogelijk in een trilholte, elk met hun
eigen dwarspatroon. Indien in een trilholte ook daadwerkelijk licht aanwezig is in een
van die profielen, noemen we die modeaangeslagen(vergelijk dit met het “aanslaan”
van noten op een piano). In veel lasers is slechtséén mode aangeslagen; de lichtbundel
die uit zo’n laser komt heeft dan dezelfde dwarsdoorsnede als deze mode. We noe-
men zulke systemensingle-mode. Aangezien de modes in principe onafhankelijk zijn,
kunnen ook meerdere modes tegelijkertijd aangeslagen zijn: zo’n systeem noemen we
multimode.

Gouy-fase Al in 1890 vond Gouy dat licht dat samengebundeld, of gefocusseerd, wordt
een verschuiving in de positie van de golfpieken en -dalen laat zien die afhangt van
hoe sterk het licht gebundeld wordt. Deze verschuiving kan worden uitgedrukt in een
faseverschil. De fase van een golf is niets anders dan een manier om aan te geven in
welk deel van de golf we ons bevinden. Vergelijk dit met de fasen van de maan: nieuwe
maan, eerste kwartier (wassende maan), volle maan en laatste kwartier (krimpende
maan). Als de fase van een golf verandert, verschuift dus de positie van de golfpieken
en -dalen (ten opzichte van, bijvoorbeeld, een referentiegolf).

Het faseverschil als gevolg van de bundeling van licht wordt Gouy-fase genoemd. Deze
Gouy-fase ontwikkelt zich geleidelijk in het gebied rond de nauwste bundeling van het
licht, het focus. Hierdoor zal de totale Gouy-fase die licht ondervindt bijéén rondgang
door een trilholte afhangen van de manier waarop licht in die trilholte samengebundeld
wordt, en dus van de afstand tussen, en de kromming van, de spiegels die de trilholte
vormen. Daarnaast is ook het dwarspatroon van een eigentrilling van belang: hoe ge-
compliceerder dat dwarspatroon, hoe groter de Gouy-fase naéén rondgang. Aangezien
de Gouy-fase zorgt voor een verschuiving van de golfpieken en -dalen, en deze pieken
en dalen voor resonantie moeten samenvallen met de pieken en dalen vanéén rond-
gang eerder, bepaalt de Gouy-fase heel direct de resonantiefrequenties van elke mode.
Omdat de Gouy-fase wordt bepaald door de afstand tussen, en de kromming van, de
spiegels van de trilholte, kunnen we deze makkelijk beı̈nvloeden.
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Figuur 2: Stadion-vormig biljart met daarin het traject van een biljartbal.

Chaos In tegenstelling tot in het dagelijks taalgebruik duidt chaos in de natuurkunde niet
op volledige willekeur. Integendeel, de term (klassieke) chaos is voorbehouden aan
systemen die zich ontwikkelen volgens welomschreven regels (deterministisch), zon-
der enige willekeur, maar waarvoor het desondanks niet mogelijk is “de toekomst” te
voorspellen. Dit komt doordat zelfs oneindig kleine veranderingen in de begintoestand
razendsnel groeien, en aanleiding geven tot radicaal ander gedrag. Een veelgebruikt
voorbeeld van een klassiek chaotisch systeem is het weer op aarde. In 1972 illustreerde
Edward Lorenz de extreme gevoeligheid van chaotische systemen met zijn welbekende
vlinder: een vleugelslag van deze vlinder in het regenwoud in Brazilië kan een tornado
boven Texas veroorzaken. DeQuantum Weather Butterflydie de kaft van mijn proef-
schrift siert is een verdere evolutie van de vlinder van Lorenz.

Een heel simpel voorbeeld van een klassiek chaotisch systeem is een biljart dat niet
rechthoekig is, maar is voorzien van ronde uiteinden, een zogenoemdstadion-biljart,
zoals geschetst in Figuur2. In zo’n biljart hangt het traject van een biljartbal extreem
gevoelig af van de exacte positie van de bal, of de richting waarin ze gespeeld wordt;
een kleine verandering in plaats of richting leidt tot een volledig andere weg.

Golfchaos Als we in een klassiek chaotisch systeem de (licht-)stralen of deeltjes (de biljart-
ballen) vervangen doorgolven, krijgen we eengolfchaotischsysteem. Doordat we nu
werken met golven, gaat de bovenstaande beschrijving van de razendsnelle groei van
oneindig kleine veranderingen niet meer op. De gevolgen van golfchaos zijn vooral
te merken in de statistische verdeling van de resonantiefrequenties van het systeem.
Voor een golfchaotisch systeem is de kans dat twee resonantiefrequenties heel dicht bij
elkaar liggen, verwaarloosbaar klein. Voor een niet-golfchaotisch systeem is deze kans
juist relatief groot.
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Samenvatting van het proefschrift

Zoals al genoemd in de inleiding van dit hoofdstuk, gaat dit proefschrift over optische tril-
holtes waarin meerdere eigentrillingen zijn aangeslagen, en over golfchaos. De motivatie van
dit onderzoek komt van de kant van derandom laser: een laser die niet is gebaseerd op een
simpele trilholte, met eenvoudig te berekenen eigentrillingen, maar juist op eenchaotisch
systeem. Dit systeem kan een suspensie van heel kleine deeltjes zijn, waaraan licht verstrooid
wordt (vergelijk dit met de verstrooiing van licht aan stof in de lucht), of een trilholte die door
zijn vorm golfchaotisch is, zoals het stadionbiljart van Figuur2.

Random lasers hebben eigenschappen die aanzienlijk afwijken van die van conventionele
lasers. De fundamentele fysica interesseert zich met name in de veranderde ruiseigenschap-
pen en dynamica van zulke lasers, en de combinatie van meervoudige verstrooiing van licht
en kwantummechanica. Voor de toegepaste fysica ligt het belang van random lasers in de re-
latieve ongevoeligheid van deze lasers voor imperfecties, en de daaruit voortvloeiende poten-
tieel lage prijs. Het onderzoek aan random lasers heeft bijvoorbeeld al geleid tot “laserverf”
die, volgens de uitvinders, gebruikt kan worden voor zulke diverse toepassingen als anti-
vervalsingssystemen, extreem zichtbare markeringen, noodverlichting en beeldschermen.

Alle tot nu toe daadwerkelijk gerealiseerde random lasers zijn gebaseerd op lichtver-
strooiende deeltjes, in de vorm van een fijn poeder of een suspensie. Dit bemoeilijkt de
bëınvloeding van de verdeling van de deeltjes, en maakt exacte herhaling van experimenten
veelal onmogelijk. Ook leidt dit ertoe dat deze lasers niet constant “aan” kunnen zijn, maar
slechts korte tijd achter elkaar kunnen werken. Omdat een groot deel van de theorie voor ran-
dom lasers is ontwikkeld voor continu werkende systemen, is een nauwkeurige vergelijking
van theorie en experimentele resultaten nog niet goed mogelijk. Om deze redenen wilden wij
een werkende random laser bouwen gebaseerd op eentrilholte, in plaats van lichtverstrooi-
ende deeltjes. Dit heeft als grote voordelen dat de vorm van zo’n trilholte veel beter te sturen
valt dan de verdeling van een poeder, en dat zo’n random laser continu kan werken.

Helaas is het in onze experimenten niet gelukt ook daadwerkelijk een random laser te
bouwen. In eerste instantie hebben we gewerkt aan een kleine, zelfgebouwde laser. Van
dit systeem kunnen we de geometrie nauwkeurig aanpassen. Omdat deze laser van energie
wordt voorzien door een andere laser (de pomplaser), kunnen we ook de plaats en grootte
van het gebied waar licht versterkt wordt beı̈nvloeden, door de bundel van de pomplaser op
een andere plek te laten vallen. Dit onderzoek staat beschreven in hoofdstukken2, 3 en 4.
In een later stadium heeft ons onderzoek zich geconcentreerd op “lege” trilholtes, zonder
lichtversterkend medium. In deze systemen, die vooral beschreven worden in hoofdstukken5
en6, hebben we de aanwezigheid van golfchaos aangetoond.

Hoofdstuk 2: Geometrische modes in een “single frequency” Nd:YVO4-
laser

In dit hoofdstuk beschrijven we het gedrag van een zelfgebouwde laser, waarin een Nd:YVO4-
kristal (spreek uit: neodymium-yttriumvanadaat) zorgt voor de versterking van licht. Het sys-
teem is zo opgebouwd dat licht alleennaastde optische as van het systeem wordt versterkt,
zoals geschetst in Figuur2.1op pagina5. In het algemeen zal dit ervoor zorgen dat de laser
licht uitzendt met een dwarsprofiel als in Figuur2.2, waarbij de meest linkse donkere vlek
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samenvalt met het gebied waar licht versterkt wordt. U kunt dit figuur vergelijken met de
bovenste rij in Figuur1 op pagina98.

Als we de afstand tussen de holle en de vlakke spiegel veranderen, zien we voor een
welbepaalde afstand dat de laser in een compleet ander patroon licht uitzendt, namelijk zoals
weergegeven in Figuur2.3a–d. Subfiguur a toont het dwarsprofiel van de eigentrilling op de
vlakke spiegel, subfiguur b het dwarsprofiel op de holle spiegel. In subfiguur d is de vorm
van deze eigentrilling geschetst. We zien dat deze W-vormige mode veel beter overlapt met
het lichtversterkende gebied, aangegeven met de pijl in Figuur2.3d. We hebben deze mode
eengeometrische modegenoemd.

Deze W-vormige mode is het resultaat van samenwerking tussen een groot aantal ei-
gentrillingen, elk met dwarsdoorsnedes vergelijkbaar met Figuur2.2 of de bovenste rij in
Figuur 1. Dit samenwerkingsverband is mogelijk omdat, bij deze speciale lengte van de
trilholte, al deze eigentrillingen dezelfde golflengte hebben. Gezien vanuit de stralenoptica
vormt precies bij deze lengte het W-vormige traject een gesloten pad. Na vier keer heen-en-
weerkaatsen tussen de spiegels zijn we weer terug bij het beginpunt.

Ook bij andere afstanden tussen de holle en vlakke spiegel kan het vòòrkomen dat veel
eigentrillingen dezelfde golflengte hebben. Ook dan zal de laser licht uitzenden in een geo-
metrische mode, maar dan van een andere vorm.

Hoofdstuk 3: Optische resonatoren en de Gouy-fase

In dit hoofdstuk geven we een uitgebreidere uitleg bij de waarnemingen van hoofdstuk2. We
geven de theorie voor de eigenfrequenties van paraxiale trilholtes, en we speculeren over de
gevolgen van niet-paraxialiteit.

Essentieel in de bepaling van de eigenfrequenties is deGouy-fase. Deze Gouy-fase wordt
bepaald door de afstand tussen en de vorm van de spiegels die de trilholte vormen, zeg maar
de geometrie van de trilholte. Voor paraxiale trilholtes bestaande uit twee spiegels bepaalt
deze Gouy-fase het frequentieverschil tussen de eigentrillingen met dwarsdoorsnedes als
weergegeven in Figuur1. Ook is de Gouy-fase van belang in de stralenoptica: ze bepaalt
het gedrag van lichtstralen in een trilholte.

Als in de paraxiale benadering de Gouy-fase, als gevolg van de geometrie van de trilholte,
gelijk is aan 2π maal een breukK/N, zullen veel eigentrillingen dezelfde resonantiefrequen-
tie hebben. We noemen zo’n resonatorontaard. Op het zelfde moment zal, in het stralenop-
tische beeld,elkelichtstraal een gesloten pad volgen, waarbij zeN keer de trilholte rond gaat
voordat ze terugkomt bij het begin. In dieN rondgangen gaat zo’n straalK keer omhoog
en omlaag. In Figuur3.7 geven we een aantal voorbeelden van zulke gesloten paden. Als
de Gouy-fase niet gelijk is aan 2π maal een breukK/N, zullen de lichtstralen heen-en-weer
blijven kaatsen zonder ooit zichzelf te herhalen.

Buiten de paraxiale benadering zijn zulke gesloten paden nog steeds mogelijk, maar bij
resonatorlengtes die iets korter zijn dan binnen de paraxiale benadering. Nu zal niet elke
lichtstraal meer een gesloten pad volgen, maar alleen heel specifieke; deze specifieke licht-
stralen hangen sterk af van de exacte lengte van de trilholte.

Tenslotte geven we een uitbreiding van de theorie voor paraxiale resonatoren van twee
naar drie spiegels, en beschouwen we de mogelijkheid om een ontaarde trilholte te gebruiken
om nauwkeurig lengteveranderingen mee te kunnen meten.
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Hoofdstuk 4: Pogingen tot een random laser

Zoals al gezegd in de inleiding van deze samenvatting is het daadwerkelijk bouwen van een
werkende random laser niet gelukt. Wel zijn we een groot aantal opmerkelijke dingen op het
spoor gekomen, zoals de geometrische modes van hoofdstuk2. In dit hoofdstuk laten we
resultaten zien waaruit we afleiden waarom we geen random laser hebben gezien.

Uit metingen aan de frequenties van het licht dat door de laser uitgezonden wordt leiden
we af dat de laser vrijwel nooit in een groot aantal modes tegelijk actief is. Wanneer de laser
wel licht uitzendt in een groot aantal modes, gedragen deze modes zich onafhankelijk, net als
we verwachten in een normale laser.

Als we de laser zo lang maken dat de trilholte het licht nog maar net, of juist net niet, op
kan sluiten, zien we een aantal opmerkelijke effecten, die waarschijnlijk niet kunnen worden
toegeschreven aan een mogelijke random laser. We zien bijvoorbeeld dat de overgang tussen
een trilholte die het licht nog net wel, of net niet meer kan opsluiten, veel minder scherp is
dan verwacht uit simpele berekeningen. Ook zien we dat de laser niet langer licht uitzendt
met een dwarspatroon als in Figuur1, maar met een ander dwarspatroon (zie bijvoorbeeld
Figuur 4.11 op pagina56), en zelfs een andere kleur en trillingsrichting. Dit grensgebied
is nog niet uitgebreid onderzocht, en hier liggen dan ook mogelijkheden voor toekomstig
onderzoek.

Hoofdstuk 5: Observatie en manipulatie van golfchaos in een gevouwen
optische trilholte

Aangezien het niet mogelijk bleek om direct een random laser te bouwen, hebben we onze
aandacht gericht op eengolfchaotische trilholte. Met zo’n trilholte is het namelijk in principe
eenvoudig om een random laser te bouwen, door een lichtversterkend medium toe te voegen.
Er zijn al eerder golfchaotische optische trilholtes gemaakt, maar die zijn alle klein, niet
eenvoudig te manipuleren, en staan niet alle metingen toe die men aan zo’n systeem zou
willen doen. Ons doel was een systeem dat simpel en snel aan te passen is, dat gemaakt
kan worden van standaard optische elementen, en waaraan een groot aantal verschillende
metingen kan worden gedaan.

De door ons gerealiseerde trilholte is geschetst in Figuur5.1 op pagina63. Het is een
gevouwen trilholte bestaande uit drie spiegels, waarbij het essentieel is dat de vouwspiegel
gekromd is (in ons geval hol). Doordat de gekromde vouwspiegel onder een hoek gebruikt
wordt, veroorzaakt deze veel lensfouten (vergelijk dit met een bril waar onder een grote
hoek door gekeken wordt); deze lensfouten zorgen ervoor dat het systeem, ondanks de kleine
hoeken met de optische as, effectief niet-paraxiaal is. Deze niet-paraxialiteit geeft aanleiding
tot golfchaos, en kan direct worden beı̈nvloed door de vouwhoek te variëren: een grotere
vouwhoek leidt tot een sterkere niet-paraxialiteit.

Om de aanwezigheid van golfchaos aan te tonen, meten we de resonantiefrequenties van
de gevouwen trilholte door licht door de trilholte heen te schijnen. Door dit voor een groot
aantal resonatorgeometrieën te doen, verkrijgen we verschillende spectra. Deze spectra wor-
den, na enige wiskundige bewerkingen, gemiddeld, om een uitspraak te kunnen doen over de
aanwezigheid van golfchaos. De op deze manier verkregen kromme zal naar een constante
waarde neigen. Voor niet-golfchaotische systemen zal de krommenooit onder die constante
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waarde komen, terwijl ze voor golfchaotische systemen juist onder die waardemoetkomen,
alvorens naar die constante waarde te gaan.

In Figuur 5.5 plotten we vijf van deze krommen, voor vijf verschillende vouwhoeken
van de resonator. De bovenste kromme, voor 2α = 0◦, laat geen chaos zien. Dit komt
overeen met het verwachte gedrag: een trilholte met 2α = 0◦ komt immers overeen met
een resonator opgebouwd uit twee spiegels. Voor 2α = 90◦, dus als de trilholte een rechte
hoek maakt, zien we dat de kromme inderdaad onder de constante waarde valt. Dit systeem is
dusgolf-chaotisch. Voor tussenliggende vouwhoeken zien we een vloeiende overgang tussen
chaotisch en niet-chaotisch. We zien dat inderdaad de mate van niet-paraxialiteit van het
systeem, als bepaald door, onder andere, de vouwhoek van de trilholte, bepalend is voor de
sterkte van de golfchaos.

Hoofdstuk 6: Diagnostiek van golfchaos in een gevouwen
optische trilholte

De methode die we in hoofdstuk5 gebruiken om de aanwezigheid van golfchaos in een
gevouwen optische trilholte aan te tonen, is van origine ontwikkeld voor de analyse van com-
plexe moleculaire spectra. In deze spectra is het vaak niet goed mogelijk om de afzonderlijke
resonantiefrequenties te bepalen; hierdoor is het ook niet mogelijk om de waarschijnlijkheid
te bepalen dat twee resonantiefrequenties dicht bij elkaar liggen. Om die reden is deze, al-
ternatieve, methode ontwikkeld, die zonder direct deze waarschijnlijkheden te bepalen toch
uitspraken kan doen over het al dan niet chaotisch zijn van zulke spectra.

Voor de succesvolle toepassing van deze methode op ons systeem is een aantal aannames
nodig. In dit hoofdstuk laten we zien dat deze aannames gerechtvaardigd zijn. Ook tonen we
hoe de experimenten zo efficiënt mogelijk gedaan kunnen worden, waarbij een maximale hoe-
veelheid informatie wordt afgeleid uit een minimaal aantal metingen. Tenslotte demonstreren
we dat het mogelijk is om een selectie te maken uit de metingen om geı̈soleerde artefacten
uit de uiteindelijke curve weg te filteren, zonder de waarde van deze analysemethode, het
beantwoorden van de vraag of een systeem golfchaotisch is of niet, aan te tasten.
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Summary:

Multi-mode optical resonators and
wave chaos

This thesis is, as you have of course already noticed from the above title, about resonators in
which multiple eigenmodes are excited, and about wave chaos. But what dooptical reson-
ator, eigenmodeandwave chaosactually mean?

Like every specialist field, physics has its own vocabulary and word usage. Besides words
that do not exist outside of physics, which a non-physicist most probably won’t know, there
are a lot of words that resemble, or are derived from, words that we encounter in everyday
life. However, in physics the meaning of those words is more narrowly defined, sometimes it
is subtly different, and in some cases, almost the opposite.

Since I want to make my thesis, and thus the work that I have done in the past few years,
accessible to as broad a public as possible, I have chosen to write a popular science summary.
With this I do not aim for precise and exact physics, but for readability and comprehensibility.
Therefore, I will first introduce and explain some terms.

Some terms

Light Light is an electromagnetic wave phenomenon, a vibrating electromagnetic field that
propagates. You can compare this with a wave that propagates along a water surface.
Just like a water wave, light also has wave peaks and valleys. Electromagnetic waves,
or radiation, are categorised according towavelength, the distance between two suc-
cessive wave peaks. The wavelength for light lies approximately between 1 mm (far
infrared) and 10 nm (far ultraviolet). Visible light has a wavelength between 730 nm
(red) and 400 nm (violet), where one nanometre is equivalent to one millionth of a mil-
limetre (for comparison, human hair has a thickness of between 40µm and 130µm, or
between 40 and 130 thousandths of a millimetre). At wavelengths longer than 1 mm,

105



Summary: Multi-mode optical resonators and wave chaos

we find first microwaves and then radio waves. Radiation with a wavelength of less
than 10 nm is called x-rays or gamma rays. The wavelength is, via the speed of light,
directly related to thefrequencyof the radiation, where light with a larger wavelength
has a lower frequency.

Ray optics In ray optics we neglect, to make matters easier, the wave nature of light, and
describe the propagation of light using infinitely thinlight rays. In uniform media,
these rays propagate along straight lines. They are reflected by mirrored surfaces, while
at the interface between two different media, for example air and glass, theyrefract.
When reflected or refracted, the rays make a sharp bend. Neglecting the wave nature
of light is permissible in many situations, mainly (but certainly not always) when the
wavelength of the light is very small compared to all dimensions of a system (from the
above-mentioned numbers you can see that, roughly, the wavelength of visible light
equals one or two hundredths of the thickness of a human hair).

Wave optics In wave optics, we do explicitly take the wave nature of light into account. Be-
cause of this, effects that fall beyond the reach of ray optics, can be described properly.
One of those effects is bending ordiffraction. We can see this diffraction as the tend-
ency of light, or any wave phenomenon, to spread out. An example of this is the beam
of light from a laser pointer: the beam is approximately 1 mm in diameter close to the
pointer, while at a distance of 10 m it has already grown to almost 1 cm.

Another important effect in wave optics isinterference, where two waves pass through
each other. When the peaks and valleys of the first wave coincide with the peaks
and valleys of the second wave, the two waves will amplify each other (constructive
interference). If instead, the peaks of the first wave coincide with the valleys of the
second wave, and vice versa, then the waves will extinguish each other (destructive
interference). This effect is easily seen with water waves: if one throws two stones,
some distance apart, into a pond, one sees two circular wave patterns spreading out. In
the area where the two wave patterns overlap, one can then see lines where the water,
as a result of constructive interference, moves wildly up and down. One can also see
lines where the water barely moves, as a result of destructive interference.

Paraxial approximation Within the paraxial approximation, we assume that the angle be-
tween the axis of an optical system and the direction of propagation of a light ray or
wave is small. In that case, one may substitute the sine or tangent of an angle with
the angle itself (in radians), sinα ≈ tanα ≈ α. This results in a great simplification
of the mathematical description of optical problems. Many questions that are simple
to solve within the paraxial approximation, lead to considerable problemsoutsidethat
approximation.

Laser The laser thanks its name to the acronym forlight amplification by stimulated emission
of radiation. While a light bulb emits light in all directions and over a broad colour
range, light from a laser is concentrated in a narrow beam, and has a very “pure” colour.
This colour can vary from (invisible) far infrared, via the near infrared of lasers in CD
players, the familiar red of helium-neon lasers, laser pointers and cash registers and the
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green of laser shows, to the (invisible) ultraviolet and far ultraviolet as is used in chip
manufacturing.

Every laser consists of two basic elements: a medium that amplifies the light, and a
way to bring back part of the light that comes out of the amplifying medium (feedback).
The light that is fed back stimulates the medium to emit identical light. In conventional
lasers, this feedback is taken care of by mirrors that let part of the light through and
reflect a part. These mirrors enclose the light in a so-calledresonator.

Resonator A resonator or cavity consists of mirrors that are placed in such a way that they
can confine light in a closed path. The simplest example is two mirrors that are directly
opposite each other: the light that is reflected by the first mirror falls on the second
mirror, which reflects it back to the first, and so forth. Thus, a cavity need not be
completely closed in order to confine light, but it is, of course, allowed. The resonators
used in this research are all very open and consist of no more than two or three mirrors,
varying in size from less than a eurocent to a two euro coin.

In a resonator, it is important that the wave peaks and valleys after the first round trip
coincide with the peaks and valleys of the original wave, so that constructive interfer-
ence occurs. If this happens afteroneround trip, then it will naturally happen after two,
three, ten or a hundred round trips. In that case, we speak ofresonance. If, after one
round trip, the wave peaks do not coincide with the peaks of the original wave but with
thevalleys, these peaks and valleys will extinguish each other as a result of destructive
interference. Through this process, only light of very well-defined wavelengths can be
confined in a cavity. We call these wavelengthsresonant wavelengths, and the accom-
panying frequenciesresonance frequencies. If we change the length of the cavity, for
example, by placing the mirrors further apart, then these “matching” wave lengths and
frequencies will change with it.

Eigenmode An eigenmode of a resonator or cavity is an electromagnetic wave pattern that
exactly repeats itself after one round trip through the resonator. This presumes not
only a “matching” wave length, as described above, but also a “matching” pattern
perpendicular to the light’s direction of propagation. In a cavity made of concave
(hollow) mirrors that bundle the light, there are a number of transverse patterns possible
where the natural tendency to spread out (diffraction) is precisely compensated by the
net focusing effect of the mirrors. Examples of such transverse profiles of eigenmodes
are shown in Figure1. The simplest transverse pattern, on the top left, is a circle that
tapers off smoothly at the edge. Other patterns have horizontal or vertical lines without
light, the white lines in the figure. The dimensions of these figures are generally much
larger than the wavelength of the light.

These eigenmodes are often simply calledmodes. As shown in Figure1, there are
multiple modes possible in a cavity, each with its own transverse pattern. If light is
actually present in one of the profiles in a cavity, we call that modeexcited. In many
lasers, only one mode is excited; the beam that comes out of such a laser then has the
same transverse profile as this mode. We call such systemssingle mode. Because the
modes are, in principle, independent, multiple modes can be excited at the same time:
we call such a systemmulti-mode.
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Figure 1: Some transverse patterns of eigenmodes in a resonator.

Gouy phase Already in 1890, Gouy found that light that is bundled together, or focused,
demonstrates a shift in the position of the wave peaks and valleys that is dependent on
how strongly the light is focused. This shift can be expressed in aphase difference.
The phase of a wave is nothing other than a way to indicate in which part of the wave
we are. Compare this to the phases of the moon: new moon, first quarter (waxing), full
moon, and last quarter (waning). If the phase of a wave changes, the position of the
wave peaks and valleys shifts (relative to, for example, a reference wave).

The phase difference as a result of the focusing of light is called the Gouy phase. This
Gouy phase develops gradually in the area around the narrowest part of the beam,
the focus. Therefore, the total Gouy phase that light experiences after one round trip
through a cavity depends on the way in which the light is focused in the cavity, and
thus, on the distance between and the curvature of the mirrors that form the cavity.
Furthermore, the transverse pattern of an eigenmode is also of importance: the more
complicated the transverse pattern, the larger the Gouy phase after one round trip. Since
the Gouy phase causes a shift in the wave peaks and valleys, and since these peaks and
valleys must, for resonance, coincide with the peaks and valleys of the previous round
trip, the Gouy phase determines very directly the resonance frequencies of each mode.
Because the Gouy phase is determined by the distance between and the curvature of
the cavity’s mirrors, we can easily influence it.

Chaos In contrast with common language use, in physics, chaos does not imply complete
randomness. On the contrary, the term (classical) chaos is reserved for systems that
develop according to well defined rules (or deterministically), without any randomness,
but for which it is nevertheless impossible to predict “the future”. This is because even
infinitely small changes in the initial state grow very fast and lead to radically different
behaviour. A much used example of a classically chaotic system is the weather on
Earth. In 1972, Edward Lorenz illustrated the extreme sensitivity of chaotic systems
with his well-known butterfly: a flap of this butterfly’s wings in the Brazilian rainforests
can cause a tornado in Texas. TheQuantum Weather Butterflywhich graces the cover
of my thesis is a further evolution of Lorenz’s butterfly.

A very simple example of a classically chaotic system is a billiard table that isn’t rect-
angular, but has rounded ends, a so-calledstadium billiard, as sketched in Figure2. In
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Figure 2: Stadium billiard with therein the trajectory of a billiard ball.

such a billiard, the trajectory of a billiard ball is extremely sensitive to the exact pos-
ition of the ball, or the direction it is shot in; a small change in the place or direction
leads to a completely different trajectory.

Wave chaos If, in a classically chaotic system, we substitutewavesfor the (light) rays or
particles (the billiard balls), we get awave chaoticsystem. Because we are now work-
ing with waves, the above description of the very fast growth of infinitely small changes
no longer applies. The consequences of wave chaos are mostly noticeable in the statist-
ical distribution of the system’s resonance frequencies. For a wave chaotic system, the
probability that two resonance frequencies lie very close together, is negligibly small.
For a non-wave-chaotic system, this probability is relatively large.
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Thesis summary

As already mentioned in the introduction to this chapter, this thesis is about optical resonators
in which multiple eigenmodes are excited, and about wave chaos. The motivation for this
research comes from the direction of therandom laser: a laser that isn’t based on a simple
resonator, with easily calculated eigenmodes, but on achaotic system. This system can be
a suspension of very small particles, in which light is scattered (compare this with the way
light scatters off dust in the air), or a resonator that is wave chaotic because of its shape, like
the stadium billiard in Figure2.

Random lasers have properties that differ significantly from those of conventional lasers.
Fundamental physics is mainly interested in the changed noise properties and dynamics of
such lasers, and the combination of multiple scattering of light and quantum mechanics.
For applied physics, the importance of random lasers lies in the relative insensitivity of these
lasers to imperfections, and the resulting potentially lower price. Research into random lasers
has already led to, for example, “laser paint” which, according to its inventors, can be used for
such diverse applications as anti-counterfeit systems, extremely visible markers, emergency
lighting and display technology.

All of the lasers actually realised up until now are based on light scattering particles, in the
form of a fine powder or suspension. This makes influencing the distribution of the particles
more difficult and often makes exact repeats of experiments impossible. It also leads to lasers
that cannot constantly be “on”, but only work for short periods at a time. Because a large
part of random laser theory has been developed for continuously working systems, a precise
comparison of theoretical and experimental results is not very feasible yet.

For these reasons we wanted to build a working random laser based on acavity, instead
of light scattering particles. This has as big advantages that the shape of such a cavity is
easier to control than the distribution of a powder, and that such a random laser can work
continuously.

Unfortunately, in our experiments, we did not succeed in actually building a random laser.
At first, we worked on a small, self-built laser, of which we could adjust the geometry with
precision. Because this laser’s energy is provided by another laser (the pump laser), we can
also easily influence the position and size of the area where the light is amplified by letting
the pump laser’s beam fall on a different spot. This research is described in chapters2,
3 and 4. In a later stage, our research concentrated on “empty” cavities, without a light
amplifying medium. In these systems, which are mainly described in chapters5 and6, we
have demonstrated the presence of wave chaos.

Chapter 2: Geometric modes in a single-frequency Nd:YVO4 laser

In this chapter, we describe the behaviour of a self-built laser, in which a Nd:YVO4-crystal
(pronounced: neodymium yttrium vanadate) takes care of the amplification of light. The
system is built in such a way that only lightnext tothe optical axis of the system is amplified,
as shown in Figure2.1 on page5. In general, this means that the laser emits light with a
transverse profile as in Figure2.2, where the leftmost dark spot coincides with the area where
light is amplified. You can compare this figure with the topmost row in Figure1 on page108.

110



Thesis summary

If we change the distance between the concave and the flat mirror, we see, for a well-
defined distance, that the laser emits light in a completely different pattern, namely as shown
in Figure2.3a–d. Subfigure a shows the transverse profile of the eigenmode on the flat mirror,
subfigure b shows the transverse profile on the concave mirror. The shape of this eigenmode
is shown in subfigure d. We see that this W-shaped mode overlaps much better with the light
amplifying area, indicated by the arrow in Figure2.3d. We’ve called this mode ageometric
mode.

This W-shaped mode is the result of cooperation between a large number of eigenmodes,
each with transverse profiles comparable with Figure2.2 or the topmost row in Figure1.
This cooperation is possible because, at this special cavity length, all these eigenmodes have
the same frequency. From a ray optics point of view, it is precisely at this length that the
W-shaped trajectory forms a closed path. After bouncing back and forth between the mirrors
four times, we are back at the starting point.

Also at different distances between the concave and flat mirror, many eigenmodes have
the same wavelength. Then, too, the laser will emit light in a geometric mode, but of a
different shape.

Chapter 3: Optical resonators and the Gouy phase

In this chapter, we give a more extensive explanation of the observations in chapter2. We
lay out the theory for eigenfrequencies of paraxial resonators, and we speculate on the con-
sequences of non-paraxiality.

Essential to the determination of the eigenfrequencies is theGouy phase. This Gouy
phase is determined by the distance between and the shape of the mirrors that form the cavity,
or in other words, the geometry of the cavity. For paraxial resonators consisting of two
mirrors, this Gouy phase determines the frequency difference between the eigenmodes with
transverse profiles as shown in Figure1. The Gouy phase is also of importance in ray optics:
it determines the behaviour of light rays in a cavity.

If the Gouy phase in the paraxial approximation is equal to 2π times a rational fraction
K/N (as a result of the geometry of the cavity), many eigenmodes will have the same reson-
ance frequency. We call such a resonatordegenerate. At the same moment, from a ray-optical
perspective,everylight ray will follow a closed path, where it will go round the cavityN times
before it returns to the start. In theseN round trips, such a ray goes up and downK times. We
give a number of examples of such closed paths in Figure3.7. If the Gouy phase is not equal
to 2π times a rational fractionK/N, the light rays will keep bouncing back and forth without
ever repeating themselves.

Such closed paths are still possible outside the paraxial approximation, but at resonator
lengths that are a little shorter than within the paraxial approximation. Now not every light
ray will follow a closed path, but only very specific ones; these specific light rays are strongly
dependent on the exact length of the cavity.

Finally, we expand the theory for paraxial resonators from two to three mirrors, and we
examine the possibility of using a degenerate resonator to accurately measure changes in
length.
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Chapter 4: Attempts towards a cavity random laser

As already mentioned in the introduction to this summary, the actual building of a random
laser was unfortunately unsuccessful. We did, however, encounter a great number of striking
effects, such as the geometric modes of chapter2. In this chapter we show results from which
we deduce why we have not seen a random laser.

From measurements on the frequencies of the light emitted by the laser, we deduce that
the laser is almost never active in a great number of modes at the same time. When the laser
doesemit light in a large number of modes, these modes behave independently, just like we
expect from a normal laser.

If we make the laser so long that the cavity can barely, or barely not, confine the light,
we see a number of striking effects that, in all probability, cannot be attributed to a possible
random laser. We see, for example, that the transition between a cavity that can barely, or
barely not, confine the light, is much less sharp than expected from simple calculations. We
also see that the laser no longer emits light with a transverse pattern as shown in Figure1,
but with a different transverse pattern (see, for example, Figure4.11on page56), and even
a different colour and oscillation direction. This transition area has not been researched in
detail. Here, then, lie possibilities for future research.

Chapter 5: Observation and manipulation of wave chaos in a folded op-
tical resonator

Since it was not possible to build a random laser directly, we turned our attention to awave
chaotic resonator. With such a resonator it is, in principle, simple to build a random laser,
by adding a light amplifying medium. Wave chaotic resonators have been made before, but
they are all small, not easy to manipulate, and don’t allow all the measurements that one
would want to do on such a system. Our goal was a system that is simple and easy to adjust,
that can be made from standard optical elements, and on which a large number of different
measurements can be done.

The resonator that we realised is sketched in Figure5.1on page63. It is a folded resonator
consisting of three mirrors, where it is essential that the folding mirror be curved (in our case,
concave). Because this curved folding mirror is used under an angle, it introduces many
lens aberrations (compare this to glasses you look through under a large angle). These lens
aberrations mean that the system, despite the small angles to the optical axis, is effectively
nonparaxial. This nonparaxiality leads towave chaos, and can be directly influenced by
varying the folding angle. A larger folding angle leads to increased nonparaxiality.

To demonstrate the presence of wave chaos, we measure the resonance frequencies of the
folded resonator by shining light through the resonator. We get a large number of spectra
by doing this for different resonator geometries. After some calculations, these spectra are
averaged in order to be able to make a statement about the presence of wave chaos. The
curve obtained in this manner will tend to a constant value. For non-wave-chaotic systems,
the curve willneverfall below that constant value, while for wave chaotic systems, itmust
fall below that value before tending towards that constant value.

In Figure5.5, we plot five of these curves, for five different folding angles of the resonator.
The top curve, for 2α = 0◦, shows no chaos. This confirms the expected behaviour. After all,
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a resonator with 2α = 0◦ is equivalent to a resonator built up out of two mirrors. For 2α =
90◦, so if the resonator makes a right angle, we see that the curve does fall below the constant
value. This system is thuswave chaotic. For folding angles that lie in between, we see a
smooth transition between chaotic and not chaotic. We see that the degree of nonparaxiality
of the system, as determined by, among others, the resonator’s folding angle, does indeed
determine the amount of wave chaos.

Chapter 6: Diagnostics of wave chaos in a folded optical resonator

The method that we used in chapter5 to demonstrate the presence of wave chaos in a folded
resonator, was originally developed for the analysis of complex molecular spectra. In these
spectra, it is often not possible to determine the individual resonance frequencies. Because
of this, it is also not possible to determine the probability of two frequencies lying close
together. For that reason, this alternative method was developed, from which statements can
be made about such spectra being chaotic or not, without directly having to determine these
probabilities.

For the successful application of this method on our system, a number of assumptions
are necessary. In this chapter, we show that these assumptions are justified. We also show
how the experiments can be done as efficiently as possible, whereby the maximum amount of
information can be gained from a minimal number of measurements. Finally, we demonstrate
that it is possible to make selections from the measurements to filter out isolated artefacts
from the final curve. This can be done without undermining the value of this method of
analysis, to answer the question whether a system is wave chaotic or not.
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