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1 - Introduction

Nowadays, materials can be engineered that prghibgagation of light or allow
propagation only in certain directions at certaggtiencies. Such materials, called
photonic crystals, contain a periodic arrangemédialectric materials on a wavelength
scale.

Photonic crystals (see fdbr anintroduction) are best known for their special kmow
optical properties. When made from materials tlaatha large non-linear coefficient
these non-linear photonic crystals can be useddotlinear optical effects. Here the
special linear optical properties enable phase-smragcconditions that make the non-
linear effect (e.g. second harmonic generatiorfjcient”.

To observe these effects experimentally crystadsine be made out of material with a
large non-linear coefficient, such as GaAs. Una@erding the non-linear properties
requires a good understanding of the linear oppoaperties. This can be done by
measurements on these photonic crystals (transmisseflection) combined with theory
and/or simulations that complement these measurtsmen

In this thesis we simulate the reflection of a eli¢lic slab with a periodic array of slits
(1-D) or holes (2-D). We will first discuss the iterdifference time-domain technique in
chapter 2 and test results for well-known structunechapter 3. Chapter 4 contains
results for periodic structures that show sharpmasces in the reflectivity. We describe
the Fano line shape of these resonances and peesenple waveguide model that
allows predicting the presence and frequency ofésenances.



2 - FDTD simulation for electromagnetism

2.1 - The finite-difference time-domain (FDTD) metlod

Maxwell’s equations in differential form relate ttime derivative of the E-field to the
curl of the H-field. This can be used to implemtra basic finite-difference-time-domain
(FDTD) step. At every point in space the new valtithe E-field is dependent on the old
value of the E-field and on the difference of thdiédd on either side of the point in
space. The H-field can be found in a similar manner

Today, many different computer codes exist that@mgnt this FDTD method. All of
them generate a computational grid and evolve thedH fields over time by taking
small time steps. The FDTD technique is a veryuldebl to calculate transmission and
reflection spectra of the photonic crystal struesuthat we study. In addition, FDTD
methods can find resonant modes, frequencies alifatterns.

For our calculations we have made use of Meepfré#eeFDTD code from MIT.

2.2 - MIT Electromagnetic Equation Package (Meep).

Figure 1 shows two setup types for simulation io timensions. Type A shows the
setup for simulating the reflectance of a contiriaave source for a layer on a
substrate. Type B shows a setup for simulatingrétggiency dependent reflectance and
transmittance using a Gaussian pulse source oreavath a periodic slit. The
computational cell contains a source-region thatpces the fields, and flux regions that
keep track of the fields. Bloch Periodic or PetfedMatched Layer boundary conditions
are applied at the edges of the cell.
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figure 1 — Meep 2 dimensional simulation set-up examples




The Meep manual and reference guide gives furthielagce for the setup of a Meep
simulation. To obtain accurate numerical results important to have enough grid-
points in the cell. Typically, 20 points per wavedh is sufficient. The calculation of
resonant phenomena (as presented in chapter 4jagqusimulation to run for a
sufficient amount of optical cycles. We used 400ley for the resonances, while
approximately 40 cycles is enough for non-resopaehomena (as presented in chapter
3).

Source regions and Flux regions

Meep allows to calculate the reflectance (transimigsas a function of frequency in a
single run, by Fourier transforming the responsa $tort pulse. Every function f(t) can

be expressed as f (t) :Zij F (w)€e“ dw, whereF { = j f { ¥'“dt is the Fourier
]T—oo —00

Transform of f (t). We used a continuous waf/&) = e with well-defined frequency
«,. The Fourier Transform is given by the Dirac délaction:F (w) = 270 (w-w,). A

spectrally broad pulse can be created by usingusstan pulsef (t) ~ e /2 with a

Fourier TransformF (w) ~ 2 Short pulses in time (small temporal width
represent a broad spectrum (broad pulse in fregieasd vice versa.

In the defined flux regions, Meep keeps track effiblds and their Fourier transforms.
This is used to compute the flux of electromagnetiergy as a function of frequency.

Meep units

Maxwell's equations are scale invariant. Multiptyithe dimensions of an object by a
constant factor is the same as dividing the frequéxy that factor. Therefore it is
convenient in electromagnetic problems to chaesde-invariant units. In practice, that
means that we use some characteristic scale ahlé@mghe systemg, and use that as our
unit of distance. For numerical convenience Mesp akts constants, suchegsuo, C,

and 4 to 1. As a consequence, the numerical value diitie and distance units is equal
and frequencyw=1/A =1/T . Frequencyw is expressed in units &mrc/a.

For example an experiment with a lattice constd®06 nm, for light with a vacuum
wavelength of 400 nm, uses Meep units: a A £,0.5, andw= 2. A run for 100 wave
periods has to run for 50 time units.

Boundary conditions

Since our computational cell is finite (and the giated world usually is not) we have to
make use of boundary conditions for the computatiorll. Meep supports several:
- Bloch Periodic- is a generalization of ordinary periodic bounekr

u(F + E) = e”ZEu(”r) for a Bloch wave-vector k;



- Perfectly Matched Layer (PMLIis defined inside our computational cell, and
absorbs all fields in a specified direction, withoeflection. In a discretised
system it has some finite reflections that mak@sterfect. For this reason one
has to give the PML layer some thickness, in whichabsorption gradually
“turns on”.

We set a PML with thickness 2 on both ends of @mgutational cell in the x direction
(the direction of the wave propagation) and a BlBehiodicity on the z (and in 3D: y)
direction, which makes our scattering object paao@ur computational cell contains
just one unit cell of a periodic structure.

Output

At each time, théield patterncan be generated. For example, figure 2 showgthe

field of a y-polarized plane wave, that propagatedacuum and is partly transmitted
from a material with index n=4.5. A sequence offsfield patterns allows one to
construct a movie.
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Reflectance (transmittance) spectia obtained by dividing the reflected (transmnditte
flux by the incident flux.

A note on working with angles
All simulations in this thesis are done for nornmalidence.

In principle, producing incident beams under anl@mgpossibleby adding an amplitude
phase to the line source, along the axis of theceolrield patterns produced with a
continuous wave line sourcev= 0.5 turned on at t=0) and with a Gaussian pulse source
(aroundw =0.5) both demonstrate that we indeed produced a pl@ve under an

angle. However, the reflectance spectrum for a beaia single incident plane (tested

with a Gaussian pulse source, with= 0.05 and frequency width/o = 0.2) does not
match with theory. This might be because the d@dimiof the phase is incompatible with
the use of periodic boundary conditions, or it rbaythat the definition of flux (Poynting
vector) should be modified in this case.



2.3 - Reflectance and Transmittance spectra with 8n/FDTD method

One main purpose of FDTD simulation is to ploteetance or transmittance spectra as
function of frequency.

Reflectance is defined as the Intensity of theertid beam divided by the Intensity of
the incident beam. Intensity per unit area is afias the (time) average of the energy

flow given by the Poynting vectd® = £,¢ Ex H:
| =(8)) = &€ ( B Hysin® (kO ) :%5002 E, HO:—;EOCE; (1.1)

Meep first accumulates the Fourier transforms ahé H for every point in the flux-
plane via summation over the (discrete) time stiépgeen calculates the power over these
Fourier transformed fields (in Meep units):

| (@) =R AL E, (x) x H, (X ] (1.2)

To get the reflectance / transmission spectrumintiemsity | (w) is divided by the

incident power at each frequency. Therefore, eanhblation is run twice: once with only
the incident wave for normalization, and once \tlith scattering structure.

This principle works for transmittance but is moreolved for reflection spectra, since
measuring the intensity in the backwards directionild give us the sum of the reflected
and the incident power. Therefore we need to sobting Fourier transformed incident

fieldsE® (x) and H'?) () from the total fields before calculating intensity:
(@) = Re[ﬁ[j[ﬁw(x) ~EO (] %[ F (- HO(}] % (1.3)

These calculations are part of the standard funality of Meep and are controlled via
the script of the simulation (see appendices fangXe scripts).



3 - Simulation Test

In this chapter we compare the output of Meep tedlsimple cases for which analytical
expressions exist for the reflectance and tranamié. We compare our result to the
Fresnel coefficients for normal incidence on a lgngterface as function of the
refractive index (A); reflectance as function dduency for normal incidence on a
dielectric slab (parallel plate, B); and reflectaras function of frequency for a dielectric
slab on a substrate (C).

A - Fresnel coefficient for a single interface

The reflectance R (reflected power) at normal ianizk is given by:
|, (1-nY
=t=r=-— 1.4
l (1+nj (1.4)
where n is the refractive index and r is the Fresfiection coefficient for the E-field.

The simulation setup is explained in chapter 2@epicted in figure 1, type A, with
refractive index of the layer equal to that of substrate). Figure 3 shows the
Reflectance simulated by Meep (symbols) for diffeenealues of the refractive index, at a
fixed frequency ofw = 0.15Meep units. The result (drawn line in figure 3)eag well

with Eq. 1.4.

Reflectance

Reflectance

S I S N N N O 11—

Figure 3 — Reflectance as function of refractive index.
The Meep simulation (symbols o) agree with Eq. 1.4 (line)

B - Reflectance of a dielectric slab, as functioof frequency

Figure 4 shows a ray optics picture of multipldaetions inside a dielectric slab. The
reflectance (transmittance) of a dielectric slab lsa calculated by considering all
possible multiple reflections (transmissions). Ta&ulation sums all contributions and



takes into account the amplitude and phase of theldEof all the reflected (transmitted)

beams. For a slab in ainf{= n, =1), the reflectance is given by:
. Zri(l— 02032' ) (15)
[, 1+r"-2°cos?d
This is a periodic function with periodicit® = 2kn d cos),,, dependent on refractive
index n and thicknesgl of the layer.k is the wave number of the incident ray. The
amplitude of this periodic function is dependentloe Fresnel coefficient for a beam
travelling from air to the layer (which for normatidence reads =1-n,/1+n,) and

hence on the index of the layer.

The transmittance is given by:
T= I_t = (1_r 2)2
|, 1+r*-2%cos?d

(1.6)

figure 4 — Multi beamn interference for a dielectric slab

To simulate this situation, we used setup type fgure 1, without the periodic grating
in the slab. We used a Gaussian input pulse witbcaiency widthl/o = 2around a
frequencyw =1 (Meep units).

Figure 5 shows the simulated Reflectance and Trdtasroe as function of frequency.
The Meep result (symbols) agrees well with Eg.an8 1.6 (lines).
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figure 5 — Reflectance and Transmission as function of frequency.
The Meep result (symbols) agrees well with the theoretical prediction (lines)
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C - Reflectance of a slab on a substrate as furant of frequency

Consider a thin slab of thickness d with indgxoetween a substrate with index and
air with indexn, =1. For normal incidence, the Reflectance is:
2 .
o E(n-n) coso+(nn- ) sifo W)
n; (n, + ns)2c0525+( nn+ rf)2 sirf g

This is a periodic function with period =knd (see figure 44 =0). To obtain the
reflectance as function of frequency, the simutagetup is analogous to type B in figure
1 (with an extra object to represent the substidtte n, =1.62 on which the film is

fixed). Again, we used a Gaussian input pulseeddency widthl/o = 2around a
frequencyw =1 (Meep units).

In figure 6, the Meep result is compared to Eqg. foi7a slab on a substrate with index
n, =1.62. Results are shown for a slab of thickness d=8rfhrefractive index

n, =1.8in the left panel of figure 6, and =1.5 in the right panel of figure 6.
Figure 6 demonstrates that also in this case, FBililations follow theory. For
n, =1.8> n,, the reflectance is higher than the reflectance lodre substrate, represented

by the horizontal dotted lifg@—n,/1+ ns)2 , While for n, =1.5< n, the reflectance is
lower.
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figure 6 — Reflectance as function of frequency for two layer indices
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4 - Periodic structures
4.1 - Introduction

In this chapter we will employ the FDTD method thats tested in chapter 3 to study the
reflectance of a periodic structure. The basiccstme consists of a dielectric slab with

refractive indexn, that is perforated by a periodic array of air saatrs. We distinguish
between structures that have air on both sidestindtures that have a substrate with
index n,on one side. We elaborate on structures with ag@ieity in one direction only

and compare the situation for a slab in air (Abntat of a slab on a substrate (B). We also
explore the structure with periodicity in two ditens (C).

We will first discuss the findings of the numerisahulations in section 4.2. In section
4.3 a simple waveguide model is introduced to tdtiie resonant frequencies. In
section 4.4 we will analyze the shape of the resoesin more detail.

4.2 - FDTD analysis of the guided resonances.

The simulation setup is shown in figure 7. A largection of the structure is shown on
the left, while the unit cell defined in Meep isosin on the right. The top of the figure
shows a one-dimensional structure, while the bosbows a 2-D structure.

The simulation with one-dimensional periodicity §Ad B) was done with a slab
waveguide of thickness 0.5a and the width of the@atterer of 0.1a. Aiming to produce
a similar spectrum for both one and two-dimensi@tiaictures, the fill fraction of air is
kept at 10% in both situations. The correspondiagéter of air holes in the two
dimensional structure (C) is 0.36a/@ =0.18).
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& flux rggion

n 0.3 <>

=1 =0.1
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Gss. source

fluzx rdgion «»
o{

figure 7 — Meep Simulation Set Up for a slab with a 1 dimensional periodic scatterer
without (A) and with (B) a substrate and for a slab with (C) a 2 dimensional periodic scatterer
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Results of the FDTD analysis
(A) 1-D perforated slab in air.

Figure 8 shows the reflectance for TE polarizelitligh the frequency range between O
and 0.9 (left panel). Two resonances can be setreifrequency range from 0.3 and 0.6
(right panel) atw=0.37and w=0.52. These resonant features are superposed on a
“background” spectrum of a homogeneous slab. Theesamulation is shown in Fig. 9
for TM polarized light that displays a broader mesace peak arounad =0.47
(frequencyw in Meep units).

As a reference, the dashed line in figure 8 ankd@vghe reflectance of a homogeneous
slab following eq. 1.7, with effective thickneds= 0.485and effective index of 3.5, for
which values the dashed line fitted best with theutated “background”.

For higher frequencies more resonances are pra&fentill focus on the two resonances
that are lowest in frequency.
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(B) 1-D perforated slab on a substrate.

Figure 10 shows the reflectance as function ofdesgy for TE polarized light for a slab
with n, =3.5 on a substrate with, = 2.0. Similar resonance features on a background
are observed. The background is consistent withethectance of a slab on a substrate
(dashed line), with well-chosen effective thickndsand effective index of the layer.
Figure 11 shows the reflectance for a substrate wit= 2.5 keeping all other parameters

the same. Interestingly the second TE resonandegiea= 0.5has vanished, while
other resonant peaks in a broader frequency rargain.

rfkctance

solid line = FDTD simulation of perforated layer (A), TE polarization
dashed line = theary far not perfarated layer with nef=3.5 and d=0.4585
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dashed line = theory for not perforated layer with nef=3.45 and d=0.5

figure 11 — Resonance for perforated slab (B) on substrate with . = 2.5
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(C) 2-D perforated slab waveguide in air.

Figure 12 shows the simulated reflectance for latlat is perforated by a 2-D square
array of holes. The diameter of the holes is 0(86tn a the lattice vector). The result
can be compared to the 1-D simulation of figur&8sonances appear at roughly the
same frequency, but are now split into a doubl&@eatructure. In addition, the number
of modes is larger, which corresponds to resonatiegoriginate from scattering by the
different lattice planes ((1,0 and 1,1) in thiseagor instance an extra pair of

resonances appears far~ 0.6, i.e. at approximately = 0.4/2.
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4.3 - A simple waveguide model

4.3.1 - Introduction

To understand the spectra shown in section 4.2pptical modes in a slab are relevant:

a. propagating modes
An incident plane wave that exists outside theedigic slab can be reflected and

transmitted by the slab. This leads to the ostmiigbackground in the reflectance
spectra.

b. waveguide modes
A wave can be confined to the slab by total interefection. These wave-
guiding modes exist only if the refractive indextloé slab is higher than the
refractive index of the surrounding medium. A mbds a unique propagation
constant and well-defined field amplitude at eacimpin space and time.

If the slab is homogeneous, the two effects aretlstseparated. However, if the
waveguide contains a periodic array of scatteeepgppagating mode can couple to a
waveguide mode under appropriate conditions. Thplong is achieved in this case via
scattering of the propagating mode on the periadiay.

This coupling is illustrated in the simulation réswdepicted in figure 13 that shows the
E, field propagation over time. The position of thésgus shown on the horizontal

direction (x), while time progresses in the vettitiaection. The results are shown for
homogeneous slab (Ahd aperiodic perforation in the slafB). Both figures show
multiple reflections of a short pulse on the twteifaces of the slab. In the case of a
periodic perforation (B), a waveguide mode is ectithat continues to propagate in the
slab.

A. homogeneous slab B. Slab with 1 dim. periodic perforation
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figure 13 — £ field propagation through a (A) homogeneous and (B) periodic perforated slab
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Therefore we will first study the resonant modethefwaveguide in section 4.3.2, the
effects of the periodicity of the scatterer in sat#.3.3, and the effects of fixing the slab
to the substrate in section 4.3.4.

4.3.2 — Waveguide dispersion

We now consider a homogeneous dielectric slabstingports propagating waves in the
z-direction. These modes propagate with a propagabnstank,. We will focus on the

dispersion relation of the waveguide, i.e. theataon of k, with w.

To calculate the waveguide dispersiome seek solutions of Maxwell’s equations. TE
modes have their electric field perpendicular et x-z plane (plane of incidence); the
TM modes have their magnetic field perpendiculahtx-z plane.

=
-

- A
L o — Y |

PER—

Consider a slab as depicted in figure 14 with eative indexn, and thickness d,
sandwiched between dielectric media of lower re¢ivadndex: n, andn, <n. Since the

structure is homogeneous along the z-axis, propapablutions to Maxwell's equations,
for guided TE modes, are of the form:

E,(x ¥,z 9= E(Jexpliwt-5 2], (1.8)

whereg is the propagation constant in z-directighi £ k, ). With this and eliminating H,
the Maxwell equations can be written as:

d’ w Y 2 | -
|:§+(—an -p }Em(x)—o (1.9)

The mode functiorE, (X)is given as:



17

0<x
exp(ax)
E.(¥) = [cos( hx)—% sir( hﬂ ~d< k0 (1.10)
[cos(hx)—% sin( hx)} exp p &+ d) x<-d

The parameters h, p and g are defined as:

. (sz L 1/2
c )

q= ﬁz—(MH : (1.11)

c

2]

To find a solution, the tangential components etglc fieldE, and magnetic field

H, =(i/awu)(0E,/0x) must be continuous at the boundaries. We thethgebllowing
mode condition, which can be numerically solvefind 3(w)

hsin(hd)- gcos(hd )= {cos(hd}% sin(hd}) (1.12)
Similarly, for TM modes:

hsin(hd)—-"qcos(hd )= _{ cos(hd}% sin(hd})

2

p="p (1.13)
ng

_:i

G=1d

The solid lines in figure 15 show the waveguidedisionk, (w) = B(w) for TE (left)

and TM polarization (right). Since waveguide moHase total internal reflection as a
necessary condition, these modes can only exist if:

w w w
“n= = 1.14
nocnsc<kz<rlc (1.14)
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For a slab withn, =3.5 in air (n, =1) the modes exist between the lires- ck and
w=1/3.5ck (straight lines in figure 15).
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An important concept is the cut-off frequency of th-th mode. A mode cannot exist for
frequencies below the cut-off frequency. The ciith@quencies are given by:

d 1 n2-ng )]
(—j = mn+tan‘1(%j =CQ,
A 2m n —n n-=nj |

L (1.15)
(9] =] et E 2R ] =ca,
A 2T n-n M\ M-

At the cutoff value:nw £=k,, so bothw andk, are defined by Eq. 1.15.

4.3.3 - Dispersion of a waveguide with a periastizicture

For a periodic structure, a mode with wave vectoak be written in the Bloch form, i.e.

a plane wave modulated by a function that shaegéhiodicity of the latticel{ being a
lattice vector):

H,(r) =€ 0, (r) =" g (T+ D (1.16)

An important feature of these Bloch states is tliif¢rent values of k do not necessary
lead to different modes. Specifically, we can definreciprocal lattice vectds , with
G L = 27rm. For these vectors, a mode with wave veétoand a mode with wave
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vectork + G are the same mode. Therefore, we can restrichtbemtion to k-values in
the £' Brillouin zone, defined as the zone in reciprsmace for Whiclﬂ <G/ 2. Figure

16 shows in orange the Brillioun zone for 1-D pditoslab left and a 2-D square lattice
of holes in a dielectric slab.

el

S S

e 7

3, G,

o 1@ P
Reciprocal Space =y
AR RRERTE RRAAR RApTA R - S
~TA

TR O

If we assume that the presence of the air scastelies not alter the dispersion, we can
“fold” the calculated dispersion of the waveguidetie £ Brillouin zone. The dashed

line in figure 15 shows the “folded” dispersion vaik, (w) .

The resonances for normal incidenée £ 0) as simulated by Meep correspond with

intersections of the folded bandstructure with éheaxis. Based on the folded dispersion
relation depicted in figure 15, in the frequencyge of 0.3< w< 0.€ two TE resonance
modes atw=0.34 and w=0.48 (in units of 27zt /a) and one TM resonant mode at
w=0.40in units of 27rc/ a) can be expected.

The frequencies found in this section and the M&epiated resonance frequencies do
not entirely match. The main candidate for explagrihe difference is the unknown
effective refractive index of the layer. For thewsguide dispersion in figure 15, we have
assumed an effective index of 3.5 (as if the lay@s homogeneous). It was not possible
to predict the value of the effective index witimpie analytical formulas, that exist for
random arrangements of cylinders.
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4.3.4 - Resonance frequencies for slab on sulestra
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Figure 17 shows the dispersion relation foldecho ' Brillouin zone for a waveguide
on a substrate with a refractive index= 2.0(left) andn, = 2.5 (right). Forn, = 2.0, the
second TE mode crosses the=0 line, but atn, = 2.5, the 2° TE mode “ misses” the
k, =0 line. This is consistent with the results of tH&T® simulation presented in
section 4.2, where the second peak in the spediasmvanished at, = 2.5.

The calculated dispersion relation reveals thasde®nd resonance disappears because it
is beyond cut-off. The peak vanishes for thafor which k°° > G, with k& = 277 /1°

the cut-off point of the mode ar@ = 277/ a the reciprocal lattice vector. This occurs for

a substrate inder, for which CO.(n,) >i, with CQO,. given by Eq. 1.15. According
n.a

S

to this criterion, the resonance of the second Tershould vanish whem, ~ 2.24.

Additional Meep simulations for different substratdices between 2.0 and 2.5 confirm
that the resonance disappears in this range. Td ealue ofn, = 2.24 is difficult to

reproduce because a good analytical estimate adffeetive index of the slab is lacking.
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4.4 - Resonances in more detail

The resonant peaks in the reflectance spectradaymcal asymmetric Fano line shape,
which is known for a wide variety of physical phemena. In particular, for the case of a
dielectric slab with a periodic scatterer, theeethnce is given BY,

no L@ @)+ () Tt @-@)(h)
(=) +(1))*

(1.17)

This formula represents two channels: the real emist =E, / E for reflection and

t = E, / E for transmission represent the direct reflectiod mansmission of the slab. The
resonant channel has a frequengy and a lifetimer . The +/— sign corresponds to the
case where the resonant mode is even (odd).

Reflectance

o . 5 wEs 03w . W37 03§
73 £ - Y 73 PR B - I PPEY
4 L& 7 & LA * 4 &3 Vo« 7 i d

dotted redline = FOTD simulation of perforated layer (A)
green line = resonance theory.

figure 18 — Fano shape of resonance I

Figure 18 shows the result of our FDTD method (symHolsa dielectric slab with

lattice constant a=1, thickness d=0.5a and widthefir scatterer equal to 0.1a. (as
shown in figure 7A). The solid line is a fit of thatd to Eq. 1.17, when we vary effective
index n of the layer, center frequenay and lifetimer . From the fit we find that the

lifetime of the first TE modex(=1800) is longer than that of the second TE mode

(7 =680). The TM mode has a significantly lower lifetime=£ 60). The first TE mode
corresponds to a — sign, while the second TE andMhenode correspond to a + sign in
Eq. 1.17.

s
I O 6 N N M R W R N N A N
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5 - Conclusion

The FDTD method as implemented in the Meep softwarglasively easy to use, and
with the careful definition of source type, boundaonditions, number of grid points and
simulation time, it gives a sound prediction of@efance spectra of the optical systems
considered in this thesis.

The simulated reflectance as function of frequecya slab with a 1-D periodic array of
scatterers contains clear resonances. A Fano laqgesk seen in many physical
phenomena, and can be used to describe our datalla3 his analysis allows one to
identify a direct channel and an indirect (resopahinnel. When this slab is fixed on a
substrate with an increasing refractive index, wenfbtinat at a refractive index between
2.0 and 2.5, one of the resonances vanishes.

For the reflectance of such a perforated slab’ftided” waveguide dispersion gives a
good prediction of the resonant frequencies, aljhose made use of the theoretical
dispersion calculated forrmmogeneous waveguider the frequency range between 0
and 0.6 (in terms o2c), this model predicts two resonances for TE, ard ptedicts at
what refractive index of the substrate the secord panishes. In this model, the
vanishing of the peak is related to the cut-oftha first odd TE waveguide mode.

In order to get an exact prediction of the resoedrequencies, some work is left to find

an appropriate expression for the effective refvadndex of a slab perforated with
holes. Currently, it is not known whether such anreggion exists.
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Appendix A — Meep script file — rast.ctl

; rast.ctl verbeterd op 22 feb. : nu kunnen vierkante herhal ende
structuren in 3D worden toegepast.

(define tekst "Start rast.ctl: simulation of Gaussian pul se source")
(display tekst)
(new i ne)

par aneters

(define-param nmyres 10) ; nunber of grids per distance unit
(define-param nmysteps 100) ; nunber of simulation steps
(define-param 2di n? true) ; if false, then 3D

; anote: if working in 2D, ensure that coordinates in z-direction =0

(define-param no-inc? true)
if false, no incident structure (for normalisation)
(define-param TE? true)
; If true polarisation = TE (transverse to plane of incidence), else TM

(define-paramw 2) ; source wave |length
(define-paramfreq (/ 1 W)) ; source frequency
(define-param df freq) ; fr width of gaussian pul se

(define-paramfmn (- freq 0.1))
; fr mnima en maxi na of nmeasured spectrum
(define-paramfnmax (+ freq 0.1))
(define-param nfreq 100)

nunber frequencies at which to compute fl ux

(defi ne-param kfact 0) ; angl e by phase of size: 2pi*kfact*y
(define-paramindl 1.2) ; index of |ayer

(define-paramind2 1) ; index of subtrate (default=air)
(define-paramind3 1) ; index of holes in layer (default=air)
(define-paramr 0) ; dianmeter of hole (default no hole)

(define-param N 1)
nunber of holes in conputational cell (NxN for 3D
(define-paramd 2) ; distance between center of holes
; structure
(define sy (* Nd))
(define sz sy) ; sz only used if 3D
(define sx 10)
(set! dinmensions (if 2din? 2 3)) ; default = 2D, 3D works

(set! geonetry-lattice (make lattice (size sx sy sz)))

(display "lattice:") (display sx) (display sy) (display sz)
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(new i ne)

(define-paramtl 1) ; thickness of layer (with indl)
(define t2 (- (* 0.5 sx) t1)) ; rest of x-space is t2
(display "t2:") (display t2)

(new i ne)

obj ecten, sources and flux planes are defined 3D but work 2D if
di nensions is set to 3

; 2 layer - singlelayer definition possible (if ind2=1)

(set! geonetry
(append
(list
(make bl ock
(center (* t1 0.5) 0 0)
(size tl infinity infinity)
(material (make dielectric
(if no-inc?
(i ndex 1)
(index indl)))))
(make bl ock
(center (+tl1 (* t2 0.5)) 0 0)
(size t2 infinity infinity)
(material (nmake dielectric
(if no-inc?
(i ndex 1)
(index ind2)))))

)
(geomnetric-objects-duplicates (vector3 0 d 0) 0 (- N 1)
(geonetric-object-duplicates (vector3 0 0 d) O (if 2din? O
(- N1))
(make cylinder
(center (* t1 0.5)
(* -0.5 (* (- N1) d))
(i f 2din?
0
(* -0.5(* (- N1) d)) ) )
(radius (* 0.5 r))
(hei ght t1)
(axis (vector3 1 0 0))
(material (make dielectric
(if no-inc?

(i ndex 1)

(index ind3)))) )))
)

)

(display "geonetry ready")
; sources nmet anplitude functie om gol ven onder een hoek te creeren
(define (my-anp-function p)

; (exp (* +1i (/ (* 2 (* pi (* hoekverh (vector3-y p)))) w))) )
(exp (* +1i (* 2 (* pi (* kfact (vector3-y p)))) )) )
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(set! sources (list
(make source
(src (make gaussian-src
(frequency freq)
(fwidth df)))
(if TE?
(component Ez)
(component Hz))
(center -2 0 0)
(size 0 sy sz)
(anp-func ny-anp-function)
)))

(display "sources ready")

(set! pm-layers (list (make pm (thickness 2)(direction X))))

;(init-fields) ; not wel |
docunent ed feature:

; (meep-fields-set-boundary fields H gh Y Magnetic) ; makes of y
direction perfect magnetic conductor

; (meep-fields-set-boundary fields Low Y Magnetic) ; tested but
not used for thesis

(set! k-point (vector3 0 sy sz)) ; bloch periodicity
(set! ensure-periodicity true) ; shoul d ensure
periodicity

(set! resolution nyres) ; ensure that mniml 20

pi xel s per wavel enght
; set flux regions

(define trans ; transmitted fl ux
(add-flux (* 0.5 (+ fmn fmax)) (- frmax fmn) nfreq
(rmake flux-region
(center (+t1 1) 0)
; (size 0 sy sz) ; Size is not necessary, then
flux point
(direction X))))

(define inc
(add-flux (* 0.5 (+ fmin fmax)) (- frmax fmn) nfreq
(make flux-region
(center -1 0)
; (size 0 sy sz) ; size is not necessary, then
flux point
(direction X))))

(display "inc- and trans-fl ux-plane ready")
(new i ne)

run the sinulation, separate reflected fromincident fields

(if (not no-inc?) (load-mnus-flux "inc" inc)) ; only for reflected
flux
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(if TE?
(if no-inc?
(run-until mysteps)
(run-until mysteps
(at - begi nni ng out put - epsi |l on)
; (to-appended "ez" (at-every 0.3 output-efield-z))
; (at-end out put-efield-z)

))
(if no-inc?
(run-until mysteps)
(run-until mysteps
(at - begi nni ng out put - epsi |l on)
(to-appended "hz" (at-every 0.3 output-hfield-z))

(at-end out put-hfield-z)

)))

(if no-inc? (save-flux "inc" inc))
(if no-inc? (save-flux "trans" trans))

(di splay-fluxes inc trans)
(display "Meep has finished rast.ctl")

(new i ne)
;(exit)
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Appendix B — Unix script to call Meep script file -startmeep.sh

#!/ bi n/ bash

echo "first the normalisation run..."

neep 2di n?=true no-inc?=true TE?=true nyres=40 nysteps=1000 i nd1=3.5
ind2=2.3 ind3=1 N=1 d=1 t1=0.5 r=0.1 kfact=0 w =1 df=5 fmin=0 fnax=1.5
nfreq=5000 rast.ctl | tee rastO.out

echo "then the normal run..."

neep 2di n?=true no-inc?=fal se TE?=true nyres=40 nysteps=1000 i nd1=3.5
ind2=2.3 ind3=1 N=1 d=1 t1=0.5 r=0.1 kfact=0 w =1 df=5 fnmin=0 fnax=1.5
nfreq=5000 rast.ctl | tee rast. out

# Some background i nformation:
# As defined on the first line, the script bel ow works wi th bash shell

# Change at 11/04/07

# For running nmeep, PATH and LD LI BRARY_PATH shoul d have been defi ned
as bel ow

# PATH="/ hone/ ndedood/ i nstal | / bi n: $PATH'

# LD_LI BRARY_PATH="/ hone/ ndedood/install/lib: $LD LI BRARY_PATH"

# To run this script correctly with sun grid engine, use options -cwd
and -V with gnod:
# typically: qmod -cwd -V startneep. sh

# This script calls with MEEP input file rast.ctl. Twice - first a
normal i zation run (no objects), then with objects. See neep doc.
# We can define for rast.ctl the input paraneters bel ow.

# 2din? =true or = false if true 2D, else 3D

# no-inc? =true or = fal se if true, then no objects, for
normal i zation (nore precise: all objects get n=1)

# TE? = true or = false pol ari zation = TE (source Ez) of TM
(source Hz)

# nmyres chosen resol ution

# nmysteps nunber of steps the simulation runs
# indl i ndex of top |ayer

# ind2 i ndex of substrate layer; if not
defined, default is n=1

# ind3 i ndex of cylinder structure within top
| ayer (default = air)

# N nunber of holes in cell in 1 dinmension
(so if 3D, N=3 gives 9 holes in cell)

# d lattice constant - di stance between
center of "holes" - nust be larger than r to make sense

# ALSO ENSURE THAT N*d = Natural figure
(1, 2, 3, etc).

# 11 t hi ckness of top layer (and hei ght of
"hole" in top |ayer)

#r di ameter (not radius) of hole in top

layer - r nust be smaller than d to nake sense
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# kfact brings angle in source by adding
kfact*2pi/d phase in y direction (to be tested for 3D)

# w wavel engt h of gaussian source

# df frequency w dth of gaussian source
# fmn bott om border of frequency range
(spectrun

# fmax top border of frequency range
(spectrum

# nfreq nunber of frequencies in spectrum =

nunber of points nmeasured

# note: if 3D, it may be wise not to produce output-files |ike ez...,
since they take ages

# .dat files can be inported into Matlab scripts, for producing spectra
(usually reflected/transmitted flux for frequency)

echo "conversie van fluxl naar .dat files ..."
grep flux1l: rastO.out > rastO.dat

grep fluxl: rast.out > rast.dat

# scipts bel ow produce .prn files, change of scripts is usually
nessecary, if filenames in the scripts change
#(e.g. by changing TE? or nysteps)

echo "conversie naar prn files..."
st epsh5t op. sh
st ezh5t op. sh



