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Abstract

I have studied a nanodevice to find out if it can separate left- and right-handed
circularly polarised light in the far field. The device used was a subwavelength
zigzag grating, illuminated with linearly polarised light. The light transmitted
through the zigzag was measured in the near and the far field regime.
In the near field the light is elliptically polarised. The grating, under 633 nm
light, functions like a quarter-wave retarder; in a zigzag with an internal angle
of 90◦, the ‘zigs’ emit left- and the ‘zags’ emit right-handed circularly polarised
light.
In the far field, left- and right-handed circularly polarised light are separated
along the diagonals of the diffraction pattern, for a 90◦ zigzag illuminated by
633 nm light. Between two such diagonals the light takes on intermediate states
of polarisation.



1 Introduction

Around the middle of the previous century the integrated circuit enabled the
miniaturisation of electronic equipment. Within photonics a similar endeavour
is being made to create integrated optics. Integrated optics will reduce the size
of optical elements so light can be created and manipulated on a single chip; this
should enable optical computation. One of the tools that will be used in this
enterprise will be metallic structures on a nanoscale. An interesting example of
these structures are metallic waveguides, which function as active nanodevices,
that have surprising properties on a subwavelength scale.

In a perfectly conducting planar waveguide there can be no electric field par-
allel to the surface. When an electromagnetic wave, with wavelength λ, passes
through the waveguide, only normal modes that have no parallel electric compo-
nent at the surface can be sustained. The narrowest waveguide at which such a
mode might exist is λ/2 wide. Narrower waveguides will therefore only transmit
light that has an electric field perpendicular to the slit; they work as a linear
polariser.

Interestingly, contrary to the predictions of the simple model, transmission oc-
curs in narrower slits and does not have a definite cutoff width. Additionally the
parallel and the perpendicular components of the wave incur a relative phase
difference during transmission. These discrepancies are due to metals not be-
ing perfect conductors and there are several effects that need to be taken into
account[1]:

• Parallel electric fields can permeate the metal, although how deeply de-
pends on the wavelength; as a result the cutoff width is smaller than λ/2
and the parallel and perpendicular modes propagate at different speeds.

• The wave component perpendicular to the slit excites surface plasmons,
which are waves in the electron sea of the metal surface, and loses energy.

In experiment [1] it was shown that slits, at a certain width narrower than λ/2,
have equal perpendicular and parallel electric field amplitude transmission, and
that for the right width a slit can function as a quarter-wave retarder. It has
been proposed that, alternatively, an array of crosses with asymmetrical arms
may also function as a quarter-wave retarder [2]. Some use of these retarders
could be to shape and delay ultra-short pulses [3].

This experiment is an expansion of experiment [1]. In this experiment I study
the diffraction from a zigzag array of slits (see Figure 1). Each slit should behave
like a distinct quarter-wave plate with its fast axis parallel to the long dimension
of the slit. The research question is: when illuminating the zigzag grating with
linearly polarised light, can the left- and right-handed circular polarisation in
the far field regime of the grating be separated? This could be an interesting
way to create different types of polarisation.
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120 DEGREE
ZIGZAG

90 DEGREE
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Figure 1: Images of the zigzags. The segments are at 90◦ and 120◦ internal angles,
each segment has a length of 10 µm and a width of 200 nm. The picture of the 120◦

zigzag was made by an optical microscope, and the picture of the 90◦ zigzag was made
by a scanning electron microscope.

In the experiment it was demonstrated that a zigzag grating can separate dif-
ferent polarisations along diagonal directions. For the correct wavelength, these
slits can function as a quarter-wave plate. In that case, the light on a diagonal
line in the far field, perpendicular to the long side of the slit, has the same
polarisation as the slit in the far field. In between those diagonals, the far-field
light has intermediate states of polarisation (see Figure 21).
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2 Theory

In this section I will calculate the far field diffraction pattern from the subwave-
length zigzag grating. I will work through the constituent elements of the zigzag
to understand their function. These elements will then be assembled to predict
the zigzag’s far field diffraction pattern. First I will regard the light transmitted
through one slit. Then I shall consider the far field diffraction pattern of the
light from this slit. Lastly, I will give the diffraction pattern of the whole zigzag.

Transmission of a slit.
The transmission of the slit has been treated (see ref. [1]), this is a summary

of that exposition.
To predict the transmission of light through the slit, I model it as follows: the
laser beam is monochromatic, vertically polarized and approximates a plane
wave at the scale of the slits. This beam impinges perpendicularly on the gold
film.
The gold film does not transmit light and has a permittivity ε dependent on
the wavelength. On the gold film there are slits, these are rectangular and have
a far greater length than width. Each slit is modelled as infinitely long so it
simplifies to a planar waveguide in the analysis.
The waveguide’s width is limited so only the fundamental mode doesn’t evanesce.
There are then two modes in the wave guide: a transverse electric (TE) and a
transverse magnetic (TM) mode.
The gold layer has a finite conductivity; this is modelled by a waveguide sur-
face that is not an ideal conductor and so the medium in the waveguide has a

complex propagation constant βi =
neff
i

k0
, where i = TM or i = TE.

Figure 2: A cross section of the planar waveguide, with the relevant quantities indi-
cated [1]
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Now the functioning of the wave guide will be regarded (See Figure 2).
From the air, with index n1, there is a plane wave incident on the slit. This
is coupled into the waveguide, with index n2, which in this model we assume
equal to neff . Inside the waveguide there is reflection and transmission at the
interfaces. A part transmits into the glass, which has index n3. The associated
complex amplitude reflection and transmission coefficients r12, r23, t12 and t23

are shown in the figure.
Using the refractive indices of the media, the Fresnel conditions give the propor-
tions of the refracted and reflected light and give the phase shift of the latter.
The internal reflections in the wave guide make it a resonator, specifically
a Fabry-Pérot etalon. The formula for the complex amplitude transmission
through the an etalon of thickness d is

t123 = t12t23
eiβd

1− r12r23ei2βd
(1)

The TM mode in the resonator couples to the plasmons on the surface of the
gold layer. This causes surface plasmon polaritons to be launched on the surface
around the slit, which decrease the intensity transmitted for the TM mode. The
constants that represent the amount of coupling at the interfaces are c1 and c3.
Using the complex amplitude transmission and the intensity of the plasmons, the
intensity transmission coefficients and phase difference between the two modes
can be calculated (see ref. [1]).

TTE =
n3

n1
|tTE

123|2

TTM =
n3

n1
|tTM

123 |2 − 2|c1|2 − 2|c3|2

∆φ = arg tTM
123 − arg tTE

123 mod(2π)

(2)

This describes the light transmitted from the waveguide dependent on its width.
The phase relation has been tested and is found to agree with experiment (figure
4b, ref. [1]) My experiment has been designed such that, barring manufacturing
or material discrepancies, each slit should behave as a quarter-wave plate. In
this analogy the fast axis of the quarter-wave plate is parallel to the slit. In the
following I will assume that these properties are consistent for all slits.
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Figure 3: An image of the relevant quantities in diffraction from a single slit

The diffraction of the slit
In the following I will determine the electric field of the far-field diffraction of

light from a slit. First I will investigate the far-field diffraction of the light from
one slit (see Figure 3). I will assume that each slit is a rectangle and radiates
polarised light uniformly from each point of the aperture, so initially I will omit
the polarisation. I will then rotate the diffraction patterns of a slit, because in
a zigzag the slit is oriented at an angle θ with respect to the horizontal. Finally,
I will give an expression for the polarisation of the light that emerges from the
slits.

The Huygens-Fresnel principle states that each point on a wave-front induces
a spherical wave. The summation of these secondary waves determines later
wave fronts. When spherical waves expand a great distance, or pass through a
convergent lens, they approach being plane waves. A projection of these plane
waves results in an irradiance that only depends on their phase differences,
which result from different optical paths. Where this approximation holds, one
speaks of Fraunhofer diffraction.
In the Fraunhofer approximation the complex representation of the wave is

Ψ(x, y, ξ, υ, t) =
E0

R
ei(kR−ωt)e−ik

(xξ+yυ)
R
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Integrating this over the area of the slit gives the electric field of the Fraun-
hofer diffraction pattern

Ψslit(x, y, t) =
E0

R
ei(kR−ωt)DxDy sinc

(
πDxx

λR

)
sinc

(
πDyy

λR

)
On the zigzag the slits are oriented at an angle θ to the horizontal axis x′. This
correction is made by applying a rotation to the coordinates (see Figure 3).
This rotation is described by the following matrix multiplication:(

x
y

)
=

(
sin θ − cos θ
cos θ sin θ

) (
x′

y′

)
.

In the notation I will indicate this rotation of the coordinates in the complex
amplitude of the slit by R̂(θ). I will then write complex amplitude of the ‘zag’
slit as

Ψ� = R̂(θ)Ψslit

and the complex amplitude of the ‘zig’ slit as

Ψ� = R̂(−θ)Ψslit

Each slit is illuminated by vertically polarised light and functions as a
quarter-wave plate, where the long side of the slit is the fast axis. One can
introduce a uniform polarization of light by multiplying by a complex vector [4].
The polarised light emitted by a slit, at an angle θ, then has the following com-
plex polarisation vector:

ê(θ) =
1√
2

(sin(2θ), cos(2θ) + i)

The diffraction of the zigzag
Finally these elements can be combined to find the Fraunhofer diffraction

pattern of the polarized light from the zigzag lattice. It will be assumed that,
apart from rotations and translations, the slits are identical. Furthermore there
is no interaction between the slits, even where they overlap (i.e. the angles).
Mathematically the Fraunhofer diffraction pattern is the Fourier transform of
the aperture function. The convolution theorem states that the Fourier trans-
form of an array of identical apertures equals the Fourier transform of one
aperture times the Fourier transform of the centres of the apertures, which are
indicated by δ-functions. The zigzag pattern is the sum of two convolutions (see
Figure 4).
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Figure 4: A view of two convolutions. The convolution of a ‘zig’ and a train of δ-
functions creates the row of zigs in the zigzag. The convolution of a ’zag’ and a train of
δ-functions creates the row of zags in the zigzag. The summation of these convolutions
gives the zigzag pattern.

The Fourier transform of the slit has been treated. The zigzag consists of N
(=10) zigs and N zags, and is placed symmetrically around the y′-axis. The row
of zags is represented by a train of δ-functions in the convolution. The Fourier
transform this train of δ-functions is

T� = sinc(Nφ)ei
φ
2 where φ =

kx′Dy cos(θ)

R

Similarly, the Fourier transform of the train of δ-functions representing the row
of zigs is

T� = sinc(Nφ)e−i
φ
2

A simple assembly of the parts, now gives the complex amplitude of the
zigzag is

−→
Ψ zigzag =

(
T�ê(θ)R̂(θ) + T�ê(−θ)R̂(−θ)

)
Ψslit

=
(
T�ê(θ)Ψ� + T�ê(−θ)Ψ�

) (3)
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It is useful to characterize the diffraction in terms of observable traits, so I
calculate the Stokes parameters. These are defined as follows:

• S0 is the total intensity; it is the sum of the horizontal and vertical linearly
polarised component of the intensity.

S0 = |
−→
Ψ zigzag · x̂|2 + |

−→
Ψ zigzag · ŷ|2

= sinc2(Nφ)(Ψ2
� + Ψ2

� + 2 cos(φ) cos2(2θ)Ψ�Ψ�)
(4)

• S1 is the difference between the horizontal and vertical linearly polarised
component of the intensity.

S1 = |
−→
Ψ zigzag · x̂|2 − |

−→
Ψ zigzag · ŷ|2

= − sinc2(Nφ)
(
(Ψ2

� + Ψ2
�) cos2(2θ) + 2 cos(φ)Ψ�Ψ�

) (5)

• S2 is the difference between the diagonal and anti-diagonal linearly po-
larised component of the intensity;

S2 = |
−→
Ψ zigzag ·

x̂+ ŷ√
2
|2 − |

−→
Ψ zigzag ·

x̂− ŷ√
2
|2

= sinc2(Nφ) sin(2θ)
(
(Ψ2

� −Ψ2
�) cos(2θ) + 2 sin(φ)Ψ�Ψ�

) (6)

• S3 is the difference between the right and left circularly polarised compo-
nent of the intensity.

S3 = |
−→
Ψ zigzag ·

x̂− iŷ√
2
|2 − |

−→
Ψ zigzag ·

x̂+ iŷ√
2
|2

= sinc2(Nφ) sin(2θ)
(
Ψ2

� −Ψ2
� − 2 sin(φ) cos(2θ)Ψ�Ψ�

) (7)

A convenient representation of the relative intensities is the set of normalised
Stokes parameters: s1 = S1/S0, s2 = S2/S0, s3 = S3/S0. These I will use to
model the outcome of the measurements.
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Simulation
I have used MATLAB to plot the intensity and the normalised Stokes param-

eters of the diffraction pattern that resulted from the calculation. These are
plotted in Figures 6 and 7. The normalised Stokes parameters are shown in a
blue and orange colour scale that represents a range between -1 and +1. In this
colour scale the orange has a positive value, whereas the blue has a negative one.
The signs indicate the nature of the polarisation components (see Figure 5).

• If s1 is positive then the polarisation has a horizontal component, if neg-
ative, then it is vertical.

• If s2 is positive then the polarisation has a diagonal (45◦ counterclockwise)
component, if negative, then it is anti-diagonal (45◦ clockwise).

• If s3 is positive then the polarisation has a right-handed component, if
negative, then it is left-handed.

The relative colour saturations between the Stokes parameters indicates their
contribution to the total polarisation.

To make the structure of the far-field diffraction pattern more clearly visible, I
have also plotted the logarithm of S0 for both zigzag gratings in Figure 8.

+S3 -S3

-S1

-S1

+S1 +S1

-S2 +S2

+S2 -S2

Figure 5: The distribution of the components of the normalised Stokes parameters. s1
represents the difference between the horizontal and vertical intensity components. s2
represents the difference between the diagonal and anti-diagonal intensity components.
s3 represents the difference between the right handed and left handed circular intensity
components.
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Figure 6: Theoretical far field diffraction of the 90◦ zigzag. If s1 is positive then
the polarisation has a horizontal component; if negative, then it is vertical. If s2 is
positive then the polarisation has a diagonal component; if negative, then it is anti-
diagonal. If s3 is positive then the polarisation has a right-handed component; if
negative, then it is left-handed. The relative saturations indicate their contribution to
the total polarisation.
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Figure 7: Theoretical far field diffraction of the 120◦ zigzag. If s1 is positive then
the polarisation has a horizontal component; if negative, then it is vertical. If s2 is
positive then the polarisation has a diagonal component; if negative, then it is anti-
diagonal. If s3 is positive then the polarisation has a right-handed component; if
negative, then it is left-handed. The relative saturations indicate their contribution to
the total polarisation.
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Figure 8: Logarithmic plots of the intensities of the diffraction patterns of the 90◦

and 120◦ zigzags, which show the structures of the diffraction patterns more clearly.
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The general features of the simulation can be understood as follows:
The far-field diffraction from a single slit, of widthD, is proportional to sinc(πDxλR ).
The angular spread of the single slit diffraction is therefore inversely proportional
to the width of the slit. There will thus be very little spread of the electric field
parallel to the slit, but a wide spread perpendicular to the slit. These direc-
tions are independent, so the complex amplitude of the entire rectangular slit
is proportional to the product of the perpendicular and parallel amplitude (see
Figure 9). In the figures the relation between the shape of the slit and the
shape of the diffraction pattern is clear. Naturally the diffraction has the same
polarisation as the slit. The slit functions as a quarter-wave plate, and so the
polarisation and shape of the diffraction pattern are dependent on the orienta-
tion of the slit.
The complex amplitude of the diffraction pattern of a zigzag is the summation
of the amplitudes of the individual zigs and zags. Because the slits have a pe-
riodic spacing, each of their complex amplitudes incurs a multiple of a phase
difference. There is positive interference on the camera only in positions where
the phases of the all the individual slits are equal. This means that the diffrac-
tion pattern from a zigzag has a periodic positive interference, which manifests
as bright vertical fringes.

FAR FIELDNEAR FIELD

SLIT DIFFRACTION
PATTERN

Figure 9: An image of the simple diffraction from one slit.
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Between the diagonals, which are already sufficiently explained, there is a
more complex structure. I will regard the plot of the normalised Stokes param-
eters of the 90◦ grating, in the upper and lower quadrant. A similar analysis,
however, applies to the side quadrants.
In the s1 and s2 plot, there is a pattern of rhombi which is demarcated by
white lines. These lines indicate there is only circularly polarised light there, as
seen in s3. This occurs when the right circularly polarised complex amplitude
is zero, where the left circularly polarised complex amplitude is not; and vice
versa. Therefore these rhombi occur in the overlay of the higher orders of the
sinc-functions. I will use these rhombi as building blocks to explain the larger
structures.
The colour saturation of the rhombi in s1 and s2 is dependent on the superpo-
sition of the different circular polarisations. The overlapping opposite circular
polarisation creates the amount of linear polarisation, the excessive circular po-
larisation determines the value of s3. This implies that the circularity of the
polarisation depends on the difference in order of the overlapping zig and zag
complex amplitude; the polarisation is therefore linear between two diagonals
of the diffraction pattern.
The circular polarisation is created from vertical polarisation by a quarter-wave
plate, so the vertical components are still in phase. When they superimpose
where all incident light is in phase, indicated by the bright fringes in S0, a ver-
tical linear polarisation is regained. This can be seen as a vertical white line in
the centre of a rhombus in s2, and a blue colour in that position in s1.
Moving horizontally, away from the central white s2 line, the phase of one circu-
lar polarisation increases while the phase of the other decreases. This leads to a
rotation of the linear polarisation (see Figure 10). This is clearly characterised
by the following facts:
The diagonal polarisation changes sign around the central white line.
At distances, intermediate between the white s2 line and the corners of the
rhombus, there are white lines in s1; here the polarisations are diagonal and
antidiagonal.
From these blocks the figures of s1 and s2 can be constructed (see Figure 11).

In the analysis of the 120◦ grating, the structure is roughly the same. In this
case however, the symmetry is degenerated. The diagonals of the diffraction
pattern are at a different angle and the zigzag transmits elliptically polarised
light. This means that there is a direct contribution to s1 and s2 by the light
from the slit, which deforms the distribution of the polarisations in the rhombi.
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Figure 10: image of how the circular polarisations add up to create linear polarisations
along the horizontal direction of the patterns.

s s
1 2

Figure 11: Image of how the rhombi from the different quadrants combine to create
the diagonals and the centre of the s1 and s2 patterns. The corners of the figures are
the rhombi, the sides of the figure are the diagonals of the diffraction pattern and the
centre of the figure is the centre of the diffraction pattern.
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3 Experimental

Figure 12: Schematic of the experimental setup. The polarised light from the laser,
controlled by a linear polariser and narrowed by a set of lenses, illuminates the gold
side of the sample. The light from the far-field of the sample is projected onto the
camera by the objective and a lens in a 2f-construction. It passes through a computer-
controlled quarter-wave plate and linear polariser, which separate out the components
of the polarisation.

Material
This section describes the materials used in the experiment. In the experiment

I studied the diffraction from a zigzag slit that was designed to act as a quarter-
wave plate. The setup was designed to measure the polarisation of the light in
the near and far field, making use of a so-called Stokes analyser. I illuminated
the zigzag with 830 nm and 633 nm light. To image the zigzag clearly, some
adjustments were made to the setup of the 830 nm measurements. First I shall
describe the general setup and later I shall detail the specifics of this setup at
830 and 633 nm.

General setup: See figure 12.
The first part of the experimental setup is a laser beam. It is coupled into a
single mode fibre. Via a microscope objective with NA (numerical aperture)
0.12 it couples out a Gaussian beam.
The polarisation of the laser beam is then controlled by a linear polariser (Po-
larcor, with a range from 740 to 860 nm. At 633 nm the approximate ratio
between the transmission quotient perpendicular and parallel to the pass axis
is still only 2.5:100. ).
Subsequently the ray reflects off two infrared mirrors which reflect wavelengths
between 600 and 1000 nm. The light then propagates through a convergent
lens and a divergent lens. These lenses form an inverted Galilean telescope that
compresses the beam, so the FWHM beam size is 235 microns.
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Then the beam hits the sample. The sample consists of a 200 nm thick layer
of gold that is attached to a 0.5 millimetre thick borosilicate glass substrate
by a 10 nm titanium adhesion layer. It is assumed that the titanium adhesion
layer is too thin to affect the coupling of the light from the slit and the surface
plasmons.
In the gold film zigzags have been etched by ion beam milling, using a focused
Ga+ beam. This was done at the National Centre for High Resolution Electron
Microscopy in Delft, using a FEI dual ion beam and scanning electron micro-
scope.
On the film there are 4 zigzags where the segments are at 90 degree angles and
4 where they are at 120 degree angles. A single zigzag consists of 20 straight
cuts, which have a length of 10 microns, and a width of 200 nm (See Figure 1).

The sample is mounted on an xz-translator, which can shift it in small steps.
On the xz-translator the sample is mounted so it has an additional 4 degrees of
freedom, although these can only roughly reposition the sample.
The light that is transmitted through the sample is collected by a 20× micro-
scope objective, with 0.4 NA. For the purpose of alignment this objective is
attached to an xyz-translator. Using a lens in a 2f-construction the Fraunhofer
diffraction pattern is projected, through a Stokes analyser, on an Apogee Alta
U1 camera. The Stokes analyser is a quarter-wave plate followed by a linear
polariser, which can both rotate under computer control.

By removing the 2f-lens from the setup, and adjusting the focus of the objective,
this setup can also image the near field of the slit.

830 nm: The laser used in this setup is an 830 nm laser beam (Thor-
labs LPS-830-FC), which is coupled directly into a single mode fibre. There
is a quarter-wave plate in the Stokes analyser for a wavelength of 830 nm. In
this setup an ND filter was attached to the camera to reduce the transmitted
intensity.

633 nm: The laser in this setup is a 633 nm helium neon laser (JDS
Uniphase 1101P). This laser is coupled into a single mode fibre using two mirrors,
which are highly reflective at wavelengths between 400 and 700 nm. Due to
chromatic aberration of the lens there is a shift in the focus of the Galilean
telescope. To correct for the shift at this wavelength, an extra lens is added.
There is a quarter-wave plate placed in the Stokes analyser that functions at a
wavelength of 633 nm.
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Method
The experiment is set up to find the spatially dependent local polarisation in

the diffraction pattern. The polarisation of light is characterized by the Stokes
parameters (see the definition in the Theory section). In order to determine
these parameters, I employed the Stokes analyser. The Stokes analyser and
the camera are connected to a computer. This computer runs two coupled
programs. One program controls the rotation of the quarter wave plate and the
linear polariser, the other program then tells the camera to take pictures. The
Stokes analyser is oriented to transmit certain components of the intensity (see
Figure 13), and pictures are taken. This set of pictures is then imported into
a final program, which calculates the Stokes parameters from the intensities of
the pictures.

QUARTER-WAVE
PLATE

FAST AXIS

LINEAR
POLARIZER

PASS AXIS

HORIZONTAL
LINEARLY
POLARIZED

VERTICAL
LINEARLY
POLARIZED

DIAGONAL
LINEARLY
POLARIZED

ANTI-DIAGONAL
LINEARLY
POLARIZED

RIGHT
CIRCULARLY
POLARIZED

LEFT
CIRCULARLY
POLARIZED

INTENSITY
COMPONENT

Figure 13: Orientation of the Stokes analyser for determining each intensity compo-
nent needed to calculate the Stokes parameters, seen along the direction of the light.
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4 Results

There are different results for the two different setups. These results give the
polarisation from the zigzags and the polarisation and intensity of the diffraction
pattern. I will make use of two ways of representing the polarisation. Firstly
through the normalised Stokes parameters, which allows for comparison to the
theoretical description, and secondly through polarisation ellipses. These po-
larisation ellipses are the envelope of the point of the electric field vector over
an entire period. The direction of rotation of these ellipses is indicated by the
colour. Here orange signifies right-handed rotation, blue signifies left-handed
rotation and gray signifies a linear polarisation.
To create these representations I have used MATLAB.
The information is processed by reducing the noise in the images and then car-
rying out the division to obtain the normalised Stokes parameters.
Then I choose a lattice of points, where these ellipses will be plotted, and find
their Stokes parameters. The parameters of the polarisation ellipses can be cal-
culated from the Stokes parameters. MATLAB doesn’t have a function to plot
the ellipses on the lattice, so I made use of the program plot ellipse [5].
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Figure 14: The polarisation of the near field of the 120◦ zigzag grating, illuminated
by 830 nm light. If s1 is positive then the polarisation has a horizontal component;
if negative, then it is vertical. If s2 is positive then the polarisation has a diagonal
component; if negative, then it is anti-diagonal. If s3 is positive then the polarisation
has a right-handed component; if negative, then it is left-handed. The relative satura-
tions indicate their contribution to the total polarisation. The color of the polarisation
ellipses indicates their handedness and is defined the same as that of s3.
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Figure 15: The polarisation of the far-field of the diffraction pattern of the 120◦ zigzag,
illuminated by 830 nm light. If s1 is positive then the polarisation has a horizontal
component; if negative, then it is vertical. If s2 is positive then the polarisation has
a diagonal component; if negative, then it is anti-diagonal. If s3 is positive then the
polarisation has a right-handed component; if negative, then it is left-handed. The
relative saturations indicate their contribution to the total polarisation. The color of
the polarisation ellipses indicates their handedness and is defined the same as that of
s3.
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Figure 16: The polarisation of the near field of the 90◦ zigzag grating, illuminated
by 830 nm light. If s1 is positive then the polarisation has a horizontal component;
if negative, then it is vertical. If s2 is positive then the polarisation has a diagonal
component; if negative, then it is anti-diagonal. If s3 is positive then the polarisation
has a right-handed component; if negative, then it is left-handed. The relative satura-
tions indicate their contribution to the total polarisation. The color of the polarisation
ellipses indicates their handedness and is defined the same as that of s3.
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Figure 17: The polarisation of the far-field diffraction pattern of the 90◦ zigzag,
illuminated by 830 nm light. If s1 is positive then the polarisation has a horizontal
component; if negative, then it is vertical. If s2 is positive then the polarisation has
a diagonal component; if negative, then it is anti-diagonal. If s3 is positive then the
polarisation has a right-handed component; if negative, then it is left-handed. The
relative saturations indicate their contribution to the total polarisation. The color of
the polarisation ellipses indicates their handedness and is defined the same as that of
s3. 23
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Figure 18: The polarisation of the near field of the 120◦ zigzag grating, illuminated
by 633 nm light. If s1 is positive then the polarisation has a horizontal component;
if negative, then it is vertical. If s2 is positive then the polarisation has a diagonal
component; if negative, then it is anti-diagonal. If s3 is positive then the polarisation
has a right-handed component; if negative, then it is left-handed. The relative satura-
tions indicate their contribution to the total polarisation. The color of the polarisation
ellipses indicates their handedness and is defined the same as that of s3.
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Figure 19: The polarisation of the far-field diffraction pattern of the 120◦ zigzag,
illuminated by 633 nm light. If s1 is positive then the polarisation has a horizontal
component; if negative, then it is vertical. If s2 is positive then the polarisation has
a diagonal component; if negative, then it is anti-diagonal. If s3 is positive then the
polarisation has a right-handed component; if negative, then it is left-handed. The
relative saturations indicate their contribution to the total polarisation. The color of
the polarisation ellipses indicates their handedness and is defined the same as that of
s3. 25
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Figure 20: The polarisation of the near field of the 90◦ zigzag grating, illuminated
by 633 nm light. If s1 is positive then the polarisation has a horizontal component;
if negative, then it is vertical. If s2 is positive then the polarisation has a diagonal
component; if negative, then it is anti-diagonal. If s3 is positive then the polarisation
has a right-handed component; if negative, then it is left-handed. The relative satura-
tions indicate their contribution to the total polarisation. The color of the polarisation
ellipses indicates their handedness and is defined the same as that of s3.
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Figure 21: The polarisation of the far-field diffraction pattern of the 90◦ zigzag,
illuminated by 633 nm light. If s1 is positive then the polarisation has a horizontal
component; if negative, then it is vertical. If s2 is positive then the polarisation has
a diagonal component; if negative, then it is anti-diagonal. If s3 is positive then the
polarisation has a right-handed component; if negative, then it is left-handed. The
relative saturations indicate their contribution to the total polarisation. The color of
the polarisation ellipses indicates their handedness and is defined the same as that of
s3.
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5 Discussion

Differences between the model and measurement
The model and the measurements look similar, but not quite the same. This

is because there are factors in the measurements that ideally shouldn’t occur:
According to the functional definition of the Stokes parameters (see Theory),
only the intensity is an addition. As such, S0 is the only parameter with an
offset intensity derived from the background noise. This can be accounted for
in the simulation by adding a small constant to S0, which represents this con-
tribution of the noise to the intensity, before determining the normalised Stokes
parameters.

In the s1 diffraction images there is a central blue spot. This spot is the result
of the transmission of the laser light through the metal. This light isn’t visible
when looking at a focused image of the zigzags. When looking at the Fraun-
hofer diffraction image however, this entire background contribution adds up to
a powerful 0th order peak. This peak is visible even when the beam doesn’t
pass through a grating.
The peak can be modelled by the Fourier transform of a ‘top-hat function’,
which represents the background field that falls into the objective. The result
of the Fourier transform is a Bessel function.
The diffraction images have a circular shape, this is the result of a cutoff of the
far field by the NA of the objective behind the sample. This can be modelled
by a mask.
These adjustments have been made in Figures 22 and 23. These are very similar
to the results in Figures 21 and 19. I will therefore use my interpretation from
the Theory section, to comment on my results.
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s1 s2 s3

Figure 22: A simulation of the 90◦ zigzag diffraction pattern, adjusted for an offset
background noise in S0 and an additional vertical transmission, transmitted through
the metal. If s1 is positive then the polarisation has a horizontal component; if nega-
tive, then it is vertical. If s2 is positive then the polarisation has a diagonal component;
if negative, then it is anti-diagonal. If s3 is positive then the polarisation has a right-
handed component; if negative, then it is left-handed. The relative saturations indicate
their contribution to the total polarisation.

s1 s2 s3

Figure 23: A simulation of the 120◦ zigzag diffraction pattern, adjusted for an offset
background noise in S0 and an additional vertical transmission, transmitted through
the metal. If s1 is positive then the polarisation has a horizontal component; if nega-
tive, then it is vertical. If s2 is positive then the polarisation has a diagonal component;
if negative, then it is anti-diagonal. If s3 is positive then the polarisation has a right-
handed component; if negative, then it is left-handed. The relative saturations indicate
their contribution to the total polarisation.
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General discussion:
The diffraction patterns have the greatest intensity along the directions per-

pendicular to the slits, in the vertical fringes that are due to the periodicity of
the zigzag. The polarisation and intensity of the diagonals in the diffraction im-
age correspond to those in the images of the slits which created those diagonals.
This can be seen clearest from the polarisation ellipses images of the diffraction
pattern, which show ellipses similar to those of the slit.

The diffraction patterns also have a complex structure in the quadrants between
these diagonals. The pictures taken of the sample, illuminated under 830 nm
light (see Figures 17 and 15), do not suffer as much from noise. The images of
the polarisation ellipses show how the polarisation of the light in the quadrants
is dependent on the overlap of the orders of the sinc-function: When moving
from one diagonal to another, along a horizontal or vertical line, the polarisation
of the light varies between the polarisations of those diagonals through a linear
polarisation. This is evidenced by a rotation and flattening of the polarisation
ellipses toward the centre of such a path.
An interesting feature of these superpositions of polarisation is the blue ver-
tical fringe, in the centre of the s1 diffraction pattern (see for instance s1 of
Figure 17). This fringe is due to the overlap of the opposite elliptical polarisa-
tions of the diagonals. Similarly, in the s1 image of the slits (see Figure 16),
there is an overlap of the circular polarisations in the angles, which leads to an
additional vertical polarisation.

830 nm: It is clear from the polarisation ellipse image of the slits (Fig-
ure 16), that the slits don’t behave like quarter-wave plates at this wavelength.
Making use of Figure 16 one can find that the slits behave rather like 3λ

8 plates
and emit an elliptical polarisation. This means that along the diagonals of the
diffraction pattern the light is also elliptically polarised and in the quadrants
the polarisation is an intermediate state (see Figure 17).
In the images of the slits there appears to be an oscillation in the intensity along
the length of the slits. Because I observe only four oscillations, and twelve wave-
lengths would fit the length, it is more likely that this is a consequence of the
diffraction from the slit rather than a standing mode.

633 nm: The intensity on the sample was lower at this wavelength. This
is evident in the amount of noise in the images. The strength of the circularly
polarised component is greater and so s1 and s2 suffer more strongly from the
noise.
In Figures 20 and 18 there also seems to be an oscillation in the intensity. Now,
besides an ill-matched number of oscillations, the oscillation has different po-
larisations in Figure 20; this also indicates it is an artifact due to overlapping
diffraction fringes.
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Despite the noise, Figure 21 shows that on the diagonals s1 and s2 are weak.
This results from the nearly circularly polarised light from the slits (see Fig-
ure 20) and, when you move away from the centre, very little mixing of the
opposite circular polarisations along the diagonals. However, for those very rea-
sons, s3 has a strong colour saturation along the diagonals. This means the light
is strongly circularly polarised along the diagonals of the diffraction pattern.
The noise makes it difficult to interpret the polarisation ellipses in the quad-
rants of Figure 21, as done previously for those at 830 nm. Nevertheless, the
normalised Stokes parameters still allow a rough assesment: Centered between
two diagonals s3 becomes weak and s1 becomes strong, this means the po-
larisation has a weaker circular component and a stronger linear component.
Relative to s1 and s3, s2 is somewhat weaker and doesn’t have the same clear
structure. According to the model the s2 should be rather weaker, because the
superposition of the circular polarisation along the fringes of S0 should result in
a horizontal or vertical linear polarisation. This does however assume a perfect
symmetry, which the experiment did not achieve, and there for there is a small
diagonal linearly polarised component.
Interpreting this in terms of the polarisation means that light that is, for in-
stance, right circularly polarised at a diagonal, becomes increasingly linear to-
wards the midpoint of the quadrant. Moving along to the next diagonal it once
again becomes more circular, although it will have a left circular polarisation.
This is approximately the same description of the polarisation I obtained from
the polarisation ellipses for the other wavelength.

Outlook
The measurements could be improved by having a gold film that doesn’t

transmit light, so the 0th order peak doesn’t appear. Another improvement
could be a more intense 633 nm laser beam on the sample, so that the signal to
noise ratio becomes more favourable.

This grating can be used to create several types of polarised light from lin-
early polarised light. By varying the angles of the zigzag, the polarisations
of the diagonals of the diffraction pattern can be controlled, and as such the
polarisation states in between. The sharpness of fringes of the pattern, can
be controlled by the number of slits; their periodicity can be adjusted by the
distance between the slits. Varying the width of the slit, or the wavelength,
influences the polarisation. The polarisation of the light then influences the
shape of the diffraction pattern.
If the zigzags were placed so there was also a vertical periodicity, then the
diffraction pattern would likely be a raster with differently polarised points.
Due to the superposition of different polarisations it might have a slightly dif-
ferent diffraction pattern.
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6 Conclusion

In summary, I have studied the far field diffraction from zigzag gratings in a 200
nm thick gold film. The zigzag gratings had internal angles of either 90 or 120
degrees, and each straight slit had a length of 10 microns, and a width of 200
nm. These zigzags were illuminated by laser light with wavelengths of 633 and
830 nm. Under a wavelength of 633 nm these slits operated as quarter-wave
plates, with their fast axes parallel to the length of the slit.

It was shown that it is possible to separate the several polarisations, but not in
a neat piecewise fashion. The circular polarisation and intensity of the light is
strongest along the diagonals, and corresponds to the light from the slits. Be-
tween these diagonals the polarisation ellipses are intermediates between those
of the two diagonals. The 830 nm measurements show that this transition is
continuous, although the handedness of the circular polarisation alternates; for
633 nm measurements this is not quite clear.

For the 633 nm the simulation gives a decent prediction of this polarisation.
At 830 nm the zigzag grating doesn’t behave like a quarter-wave plate and
rather more like an three-eighths-wave plate.
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Wolfgang Löffler made the computer programs that were used to control the
Stokes analyser and the computation of the Stokes parameters.

References

[1] P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. A. Alkemade,
G. W. ’t Hooft, and E. R. Eliel, A sub wavelength slit as a quarter-wave
retarder, Optics Express 19, 24219 (2011).

[2] A. Roberts and L. Lin, Plasmonic quarter-wave plate, Optics Letters, 37,
11, pp. 1820-1822 (2012)

[3] A. M. Nugrowati, S. F. Pereira and A. S. van de Nes, Birefringence of small
apertures for shaping ultra short pulses, arXiv:1204.3478v1

[4] D . S. Kliger, J. W. Lewis, and C. E. Randall, (1990), Polarized light in
optics and spectroscopy, Academic Press, San Diego

[5] F. Hermens, 2010, Simple ellipse plotting function,
http://www.mathworks.com/matlabcentral/fileexchange/28996

33


