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In this thesis we investigate the optical modes of micropillar cavities. With our
experimental setup it is possible to investigate their spatial structure. A simple
model provides accurate predictions on the wavelength and the spatial structure
of the modes.



Introduction

2.1 Microcavities

In modern physics a great deal of research is performed on optical microcavities,
which confine light to small volumes by resonant recirculation[l]. One of the
ultimate applications would be to build a quantum computer using local (two-
level) quantum systems in the cavities as qubits (unit of quantum information).
Examples of these quantum systems are quantum dots or trapped atoms. Due
to small dimensions, microcavities have well defined discrete (optical) modes.
The coupling between these cavity modes and the local quantum system should
form the basis for calculation methods of quantum computers.

2.2 Micropillar cavities

Quantum dot

Figure 2.1: Example of a quantum dot in a micropillar cavity.

One type of local quantum systems in optical microcavities are quantum
dot in micropillar cavities (see Fig. 2.2). The ’pillars’ are etched in crystalline
structures. They consist of an active A-cavity region embedded between two
distributed Bragg reflector(DBR). A distributed bragg reflector consists of \/4-



layers of alternating refractive index, typically AlGaAs/GaAs. This way the
DBR has a maximal reflection of light with wavelength A. The A-cavity region
consists typically of GaAs and some additional layers.

2.2.1 Our cavities

The sample that will be studied in this thesis contains micropillar cavities with
a quantum dot layer. The special features of these cavities are that they are
etched by only removing some trenches (see Fig. 2.2.1) and that there is an
oxide aperture grown between the two Bragg mirrors.

Figure 2.2: Microscope image of the sample. The micropillar are fabricated by
etching away trenches from the wafer.

2.3 Aim of this thesis

The aim of this thesis is to find a good description of the optical modes within
our cavities. If we have a good description, we may be able to tune these modes
in order to get a good coupling with the quantum dots.



Theoretical model

3.1 Simple model for the refractive index distri-
bution

Let us see whether we can think of a theoretical model which provides us with
predictions for the cavity modes. In the following we tightly follow the treat-
ment of optical fibers in ?QUANTUM ELECTRONICS” by Amnon Yariv (third
edition, pages 640 and 641).

For finding optical modes within our cavities we have to solve the wave
equation in material

V2E(r) + kin?(r)E(r) = 0, (3.1)

with E the electric field, kg = w/c the wave number in vacuum, and n(r) the
refractive index distribution. Note that this is the wave equation for an isotropic
material. We assume that within the cavity the refractive index equals

2 2 2 ( z? yz\ .
n(r)"=n(z,y)=ns {1 -5 -5 |- (3.2)
\ Tz  Ty/

Here z and y are taken perpendicular to the the z-axis through the center of
the cavity. Note that we assume that the refractive index is constant in the
vertical direction and quadratically decreasing in the z- and y- direction. This
is one of the most simple ways to take into account that the oxide aperture
will induce a refractive index which is smoothly (not perfectly symmetrically)
decreasing when going away from the center. As we shall see this results in a
nicely solvable problem. Substituting Eq. 3.2 into Eq. 3.1 yields

VZE k2 1—m—2—£ E(r) =0 3.3
(r) + o (r) =0, (3.3)
T y

with & = kgng. We will first consider some scalar some scalar component E of
E. We suggestively assume that

I

E(r) = 9(z,y)sin <Ez> , (3.4)



and write ¥(z,y) = f(z)g(y). The choice for the z-part of Eq. 3.4 expresses
the fact that we expect confinement in the z-direction, i.e. the wave function
vanishes at the two Bragg mirrors, or rather within them. The places where
E(z) vanishes are separated by an effective height h. Note that the origin is
taken at the bottom of the cavity. Furthermore [ = 1,2,... and indicates the
mode number of the z-component. If we write
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/@l = ﬁa (35)
the wave equation Eq. 3.3 becomes
10%f 10% 9 z2 92
——= 4+ - — Pl1-=-ZL ) =0, 3.6
fotyae e (15 k) 0
which is the sum of respectively the z- and y-dependent equations
1d*f k2z?
) k22 = C 3.7
f dx2 + Bl 7’% ( )
1 d29 ka‘Z
—— — -C 3.8
i (39
with C' some constant. We first consider Eq. 3.8. By introducing
e\ 172
E=ayy and oy = <—> , (3.9)
Ty
Eq. 3.7 becomes
d*g c 2
— — — =0. 3.10
@ <0{§ 3 >g (3.10)

This is an equation we can solve, because it is the same as the Schrédinger
equation for a harmonic oscillator [2]. We get for C'/a

C

OK_Z =2m+1, (3.11)
where m = 0,1, 2, .... The corresponding eigenfunctions are
2
gm(&) = Hm(€)e™*/? (3.12)

with H,, (&) the Hermite polynomial of order m (see appendix A).
Now defining

e\ 1/2
C(=o0gy and o = <r—> , (3.13)
Eq. 3.7 becomes
d’f kK2—-pF—-C
g (EACoe) -0 (3.14)



which gives

k?—p2—-C

+ =2n+1, (3.15)
with corresponding eigenfunctions

Fa(€) = Ha(C)e™¢ /2. (3.16)

Putting together Egs. 3.16 and 3.12 for ¥(z,y) we get

o (V2 o (v -

i)

z y
where
V2 2rpy
=— 3.18
wz,y a:z:,y k‘ ( )

corresponds to the ”spot size”. We call these functions Hermite Gaussians. Fig.
3.1 shows some examples of ¥,

3.1.1 Spectrum of the modes

So far we solved wave equation Eq. 3.1 for a scalar part of E, assuming confine-
ment in the z-direction assuming and quadratically decreasing refractive index
(Eqg. 3.2). From this we obtained the eigenfunctions E(r) = ¥j,m)(z, y)sin(G2),
with ¥, (2,y) as in equation 3.17 and (3 as in Eq. 3.5.

We will now have a look at the eigenvalues of the eigenfunctions and thereby
the spectrum of the cavity. We need to solve k£ and thus A for a certain combi-
nation of n and m. From Egs. 3.15 and 3.11 we obtain

1.2 n2 2 /a . 4\ 2 /o 4\ /o 10\
Re=pp —ayam+ 1) =az(sn+ 1) (9.19)

or
k* —2vk — 3} =0 (3.20)

with 2y = {(27;—“) + M} Solutions for Eq. 3.20 are

k=4 4/v2+ B} (3.21)

Note that v ~ f whereas 3 ~ + (Eq. 3.5). From the cavity dimensions:
h =~ 1um, and width ~ 20um, we may expect that v < (. If we make this
assumption, and keep in mind that &k > 0, Eq. 3.21 becomes

2
k='y+/31<1+§g— ...):ﬁl< +E+lg—+ > (3.22)

so that

g
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Figure 3.1: Examples of Hermite Gaussians — 9p,m)(2,¥y) =
2 2
— L_;,.y

H, (\1/;—21””) H,, (%)e (wg E), the z- and y- dependent part of the

solutions to the wave equation Eq. 3.3 ( E(r) = t(z,y)sin (1£z)). Here

wy = wy = 1/1/2



Substituting back 2y and realizing that the wavelength in vacuum Ao = noA,
we end up with

Y (% o » { (2n+1) N (2m+1) }) (3.24)

I w2 Tz Ty
for the wavelength that we would detect. The label [nml], 0 indicates the mode
numbers of the x—, y—, and z—component and the 0 indicates that this is the
wavelength in vacuum. In the following we will skip the [ and 0 in the labeling,
keeping in mind that the wavelengths are in vacuum and, as we will see, for a
certain value of [. Written more conveniently equation 3.24 becomes

—~
(™)
[\
Ut

N2

Alnm] = Alog] — an — bm

with

o = () (3.26)

Trel?
2n0h2
= -2
b ( 7y l? > (3.27)
2noh b
/\[oo] = TL'() - (a:l— \ (3.28)
L J L \ Z /

3.2 Anisotropy

At this point we realize that we have assumed the refractive index to be isotropic,
i.e. not dependent of the polarization of the light. We can make our model a
little bit more general if we replace k3n?(r) by the tensor

€z O
6—< 0 eyy> (3.29)

with
.’132 2
aa () = em (1= 55— — 5— (3:30)
Tex ryX
$2 y2
zY yY

X and Y indicate different polarization. Note that we only consider polarizations
in the z- and y-direction. If ryx, ryx, roy and ryy all differ a little bit, then
in analogy of the earlier derivation, this would induce a spectrum like

Alnm]X = Ajpojx — axn —bxm (3.32)
Alnm]y = o]y — @y n — bym. 3.33)

We will use later these expressions for fitting experimental data (see section
5.1.2).
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Experimental setup

4.1 sample
a b
R1 40 40 40 4B 4B 40 4> /\
QU QU Q0 QU QU Q0 QU
R2 Q0 QD 40 Qb 4L 46 Qb
QO QO QO QO QO A6 A
R3 Q0 4D 40 4D 4 4L 4d
QU Q0 Q0 Q0 Q0 QO
R4 Q0 QD Qb QL QB 4B 4
QO Q0 Q0 QO QU QU QO
R5 S0 Q5 90 QB 9B 4B Qb
TNV VWV VV VV VvV VV Vv
R6 Q8 40 Q0 Qb Qb ap ab
Q0 QU QU QU QU IV QU
C7 C6 C5 C4 C3 C2 C1
c d

SP emission cone
Cavity region

Top Trenches _ I
DBR : < n
w% o
/ aperture
[ < <— QD layer

Figure 4.1: The sample is mounted on a sample holder (a). It consists of 6 x 7
cavities, labeled with row- and column- numbers (b). Four trenches are etched
to make each cavity(c). Each cavity has a design equivalent to (d) (see section
4.1.1).

We study the C4 sample (See Fig. 4.1). It is mounted on a chip carrier.
The sample contains 6 x 7 cavities. We will refer to them by indicating the row
and the column number (for example R3C5). For a more detailed explanation
of the design, see the section below.
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4.1.1 Cavity design

SP emission cone
Top Trenches Cavity region
DBR &
~3.5 micron f

Oxide
aperture ~300nm

<— QD layer ~270nm

Bottom
DBR 7"
~4.8 micron

o

~ 20 micron

Figure 4.2: The cavity has two DBRs (distributed Bragg mirror): the bottom
DBR has 32 layers, and the top DBR has 23 layers. In between these DBRs there
is an oxide aperture and an active region with a quantum dot layer. The trenches
are formed by optical lithography and reactive-ion etching and penetrate up to
ten bottom mirror layers[5]. The diameter of the cavity is about 30 um.

The sample design is shown in Fig. 4.2. The following information is from a
file giving specifications on this sample (see [4]), and the knowledge of Dapeng
Ding.

The cavities have been etched in a crystalline structure which consists of two
DBRs with a quantum dot layer and an oxide aperture in between them. The
bottom DBR has 32 layers, whereas the top DBR has 23, in order to guide the
emission to the top. They are both made of alternating GaAs and Al0.9Ga0.1As.
The total thickness of the bottom and the top DBR are respectively 4.8 um and
3.5 um.

The active region consists of GaAs and contains a self-assembled quantum
dot layer of InGaAs grown by molecular beam epitaxy. The oxide aperture area
consists of layers of Alg75Gag.o5As, AlAs, Algg3GaAs and Alg75GaAs. The
active region is about 270 nm and the oxide aperture is 300 nm.

The trenches are formed by optical lithography and reactive-ion etching and
penetrate up to ten bottom mirror layers[5]. This defines the oxidation front:
after etching the trenches, oxide is added to form the oxide aperture. After oxi-
dation the AlAs layer is partially transformed into AlxQOy, creating an aperture
about 2 um in diameter. The diameter of the cavity is about 30 um.
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4.2 Cryostat

window

sample__ G

Figure 4.3: The sample is mounted on a sample holder, which is mounted on
attocubes. The attocubes allow us to move the sample in the z- y- z-. A
microscope objective is mounted in a Pl-stage, which we can control with a
computer and which enables us to move the objective in the x- and y- direction.

As we can see in Fig. 4.3, the sample is mounted on a sample holder in a
cryostat. This holder is mounted on attocubes. Attocubes are able move in the
x- y- 2z- direction with a precision better then 0.1 um. We use them to move
the sample to a cavity of interest.

To focus the excitation laser on the sample and the collect the emission from
the sample, we use two different optical elements (each for other experiments):

e Microscope objective: 80x magnification, N.A. 0.9, focal length 2.5 mm,
working distance 0.3 mm

e Aspheric lens: N.A. 0.6, focal length 4.02 mm

Note: Because we mainly use the microscope objective, I will use the word
‘objective’ in this thesis to explain experiments. Only if we use the aspheric
lens I will make an explicitly note this. The objective is mounted in a Pl-stage,
which enables us to move the objective with a precision of 0.1 nm (according
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to the company), which is good enough, for we need a resolution of 0.1 um. We
are able to control the Pl-stage with a computer to spatially scan the cavity.

It should be mentioned here that we perform all our measurements at vacuum
(4.6 x 1075 mbar).

4.3 Optical path

Spectrometer

,/' Lwlth CCD array J
| Free-space or
fiber incoupling
Polarizer
-_— Cryostat
~785 nm
BS .
sample
/ C 1) mositon
Dichroic
mirror
imaging
()]

Figure 4.4: Optical path. During the experiments we vary the polarizer, the
path to spectrometer and the laser source.

The optical path is shown in Fig. 4.4. We excite the cavities with laser light
of wavelength 785 nm, which is well above (the energy of the photons) the band
gap of GaAs. On the way to the sample the laser beam goes through a beam
splitter, a dichroic mirror (R 920 nm T 780 nm) and through the objective.
The ligth, reflected from the sample, goes back through the dichroic mirror and
is partly reflected to go to a CCD-camera. With this camera we can see the
surface of the sample when the sample is moved out of the focus. Because of
excitation by the laser, electron hole pairs are created. The recombinations act
as an internal light source of different wavelengths. Thus also the cavity modes
with wavelengths 955 nm come out of the sample. They are reflected by the
dichroic mirror. On their way to the spectrometer they may pass a polarizer
and couple into free space, a multi-mode fiber or a single mode fiber.

During the experiments we vary certain optical elements:

e Laser sources:

— Diode laser: 785 nm power in the order of mW

— Titanium-Sapphire Ring laser: 770 nm power same order of magni-
tude

e Polarizers:

14



— No polarizer
— Glan-Taylor on a rotation stage rotated by hand
— Linear film polarizer on motorized rotation stage

— A/2-plate on motorized rotation stage in front of a fixed linear film
polarizer

e incoupling to spectrometer:

— Free space
— Multi-mode fiber
— Single-mode fiber

e To focus the beam on the sample:

— Microscope objective: 80x magnification, N.A. 0.9, focal length 2.5
mm,, working distance 0.3 mm, and
— Aspheric lens: N.A. 0.6, focal length 4.02 mm.

When the experiments are explained I will always make reference to these
elements. Note that only the microscope objective is used, unless explicitly
mentioned.

4.3.1 Spectrometer

We use a spectrometer based on a grating. There are a few things that are
important to note about the spectrometer.

Spectra What comes out of the spectrometer are spectra: every specified
time interval (in many cases 1 s) a CCD-camera is read out per pixel (1024 in
total). Each pixel corresponds to a certain spectral range. We end up with an
array of 1024 elements containing the counts per time interval. With a calibra-
tion lamp we can calibrate the spectrometer, so that we know the wavelengths.
Nevertheless, in this thesis I will sometimes refer to the pixel numbers.

Calibration Note here: we have only once performed a calibration. This
gave us the formula for the wavelength A = 0.016363 x (pizelnumber) + 952.21,
when the spectrometer is positioned at 953 nm. The range of a spectrum is
thus 16,75 nm, which corresponds to 1024 pixels.

Resolution The resolution of the spectrometer is higher then the cavities.
By this we mean that the line width observed when measuring a narrow band-
width light source, such as a laser or a calibration lamp, is smaller than spectral
peaks from the cavity. The formula for wavelengths also gives an idea of how
precisely we can be can determine wavelengths from a given spectrum. One pixel
shows a band width of 0.0164 nm. I assume that the pixels of the spectrometer
are chosen such that they do not go beyond the ’resolution of the grating’. With
fitting a Gaussian to a peak I can reach an accuracy better than half a pixel.
From this I conclude that from a spectrum we know the wavelengths up till two
decimal behind the comma.

Polarization dependence During the measurements it became clear that
the spectrometer is sensitive to the polarization of incoming light (See also
section 5.1.2). This is due to the grating within the spectrometer. It is well
known that grating have a polarization dependent diffraction efficiency.

15



With our setup we can perform measurements on spectra, either polarization
resolved or not, and spatial scans.

5.1 Spectra

In the following we will look at the spectra of some cavities, either polarization
resolved or not. Also we will try to find a way to describe them by trying to fit
models to the data. I use Matlab to depict the data and to make fits (Appendix
B).

5.1.1 Not polarization resolved

Figs. 5.1(a) and 5.1(b) show respectively the spectra from the R1C1- and the
R1C4-cavity, both obtained with the multi-mode fiber path and the diode laser
as pump. Please note here that the noise increases as you go from long to shorter
wavelengths. This is typical for measuring with a multi-mode fiber.

R1C1 multi-mode fiber R1C4 multi-mode fiber
1 88 T T T T T
860
1000
840
950
8200
El 3
s s
5 900 3 800
B 5
15} (2}
@ 780
850
760
800
740
750 L L L 720
954 956 958 960 962 964 966 963 964 965 966 967 968 969 970
Wavelength (nm) Wavelength (nm)
(a) R1C1-cavity (b) R1C4-cavity

Figure 5.1: Spectra of the R1C1 and R1C4 cavities taken without polarizer. We
used the multi-mode fiber to couple in to the spectrometer.
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One can observe that going from long to shorter wavelengths the number of
peaks increases. Most peaks are split into two or rather appear in pairs. At first
glance let us assume that the peaks of such a pair are related. We will now look
at centers of pairs, by which we mean the wavelength right in between the two
wavelengths of two peaks. As we will show, for both cavities the centers satisfy
quite accurately the empirical model

)‘[nm] = )\[00] —an — bm, (5.1)
with n,m = 0,1,2,... and A the wavelength of the peak on the right end of
the spectrum. With this model we can provide the pairs with labels [nm] so
that its wavelength Ap,,, is given by Eq. 5.1. We always always label the peaks
such that a > b and thus Aj10) > Ajo1] > Ajpg). Once we have provided the pairs
with labels, we can perform a least squares fit to optimize the parameters a, b,
and Ajgo) (see Appendix B!).

R1C1 Fit of centers R1C4 Fit of centers

963 964 965

966 967
Wavelength (nm)

(a) RICL (b) R1C4

Figure 5.2: With the empirical model Aj;,,) = Ajoo) — an — bm we provide pairs
of R1C1 and R1C4 with labels [nm]. The red lines show a least square fit which
optimizes a, b, and Ajgo). Note: the height of the red lines is chosen to follow the
noise level. It has no physical meaning. Table 5.1.1 shows the fit parameters.

In Fig. 5.2 the pair of R1C1 and R1C4 are labeled. The red lines show
least squares fits to their centers. Note that the height of the red lines is chosen
just to follow the noise level. Be not tempted to address a physical meaning to
them. Table 5.1.1 shows the fit and goodness parameters of these fits. From
these parameters we could qualitatively say that for R1C1, Eq. 5.1 predicts
most wavelengths of the centers with an accuracy of approximately 6% and the
maximal error lies within 14%. For the R1C4 cavity these numbers are 4%
respectively 7%. Note that so far we have only looked at pairs of peaks. We
will not yet discus about the separate peaks: the modes.

Table 5.1: Fit and Goodness parameters of least square fit to the pairs of the
spectra from R1C1 and R1C4.

Cavit Fit parameters Goodness parameters

Y A[o0] a (nm) b (nm) | RMSD (nm) Emax (nm) RMSD/b Emax/b
R1C1 | 966.4788 3.8386  2.7633 0.1614 0.3689 0.0584 0.1335
R1C4 | 969.7882 2.8127 1.9878 0.0860 0.1543 0.0432 0.0776

17



5.1.2 Polarization resolved
Splitting

So far we have only looked at the spectra of R1C1 and R1C4, taken without
polarizer. We found that the centers of pairs of peaks appear to be described
quite accurately by Eq. 5.1.

We will again look at spectra of the R1C1 and the R1C4 cavity but this time
with a polarizer (Glan-Taylor) placed in the path to the spectrometer. We use
again the diode laser as a pump and multi-mode fiber incoupling (see section
4.3).

R1C1 two different polarizations R1C4 two different polarizations

. 8601
1000
840

i "
50 1 a0l M
u

3800f
900 El o
5 780F it ot
g .

Signal (a.u.)

=)
850 @ 7601

800 740

720

750
7001

700k . . .
954 956 958 960 962 964 966 963 964 965 966 967 968 969 970
Wavelength (nm) Wavelength (nm)

(a) R1C1 (b) R1C4

Figure 5.3: Spectra from the R1C1 and R1C4 cavities, taken with polarizer. The
red an the blue lines show spectra for perpendicular positions of the polarizer.
The dashed black line shows the spectra, taken without polarizer.

(See Fig. 5.3) In both Figs. 5.3(a) and 5.3(b) three line are depicted. In
both figures the blue line shows a spectrum for a certain position of the polar-
izer, whereas the red shows the spectrum for the perpendicular position of the
polarizer. The dashed black line shows again the spectrum that we obtained
without polarizer.

From these results we can conclude that the two peaks within a pair have
different polarization. This suggests further labeling. We already had labels
[nm], defining the mode number. Now we can also provide each peak with an
X- and Y- label, which makes reference to its polarization. In Fig. 5.4 the
dashed black line (the spectrum taken without polarizer)is provided with [nm]-,
X- and Y-labels. Now it appears that also the peaks A, x and A,y satisfy
a rule like Eq. 5.1. This suggests a model for the wavelengths A[,,,;x and
Alnm]y given by

Anm]x = Apojx — axn —bxm (5.2)

/\[nm]Y = /\[oo]y —ayn —bym. 5.3)

We will now try to fit this model to the data (see Appendix B). Fig. 5.4
shows the fits on the data of R1C1 and R1C4. The blue and the red vertical
lines show the fit of the wavelengths to respectively the X- and Y- labeled
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peaks. Again note: their heights is chosen to follow the noise level. They have
no physical meaning. The fit parameters are given in Table 5.1.2.

R1C1 Fit for different polarizations

1050+
13] .
1000‘)(! lo‘v‘] f21] 11 X-polar!zat!on
H X -‘. AV Xty Y-polarization
i }
| o2 i
sso-if il wa |
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LTI Vi
P A P AR (I TN N (7S B L ! 1001
3 R S X g Y X
s Wl R R L Ty i
5 o0 Wy i :'-
> ‘ [N i ' Yool ooy i
@ d e |

954 956 958 960 962 964 966
Wavelength (nm)

(a) R1C1
R1C4 Fit for different polarizations
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i
850r 2o}
[12] i 0 10
XY [ [10]
[ool | i 031 & nid px
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{

700+

963 964 965 966 967 968 969 970
Wavelength (nm)

650

o

(b) R1C4

Figure 5.4: The blue and the red vertical lines show the fit of the wavelengths
to respectively the X- and Y- labeled peaks.

What should be noted from Figs. 5.4(a) and 5.4(b) is that not only the
positions of the peaks are described quite accurately, but also the splitting of
two peaks within a pair. For example the peaks of the [11]-mode of R1C1 are
separated by a small amount. The fit also shows a small splitting. Also for
almost every pair the fit puts the X- and Y- polarization in the right order. If
I had more time I would try to add numbers to the statements above. We can
conclude that the model by Egs. 5.2 and 5.3 gives a good description of the
spectrum. From the theoretical model discussed in section 3.2 we may suggest
that the splitting is due to anisotropy of the material (birefringence), for this
model predicts the same spectrum. This model would predict two polarizations
X and Y.
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Table 5.2: Fit and Goodness parameters of least square fit of the model Egs.
5.2 and 5.3 to the labeled peaks of R1C1 and R1C4.

o~ Fit parameters Goodness parameters

Cavity Apolx,y axy (nm) bxy (nm) | RMSD (nm) Emax (nm) RMSD/b Emax/b
R1C1 X | 966.4561 3.7642 2.8073 0.1616 0.3767 0.0576 0.1342
R1C1Y | 966.5014 3.9130 2.7194 0.1683 0.3611 0.0619 0.1328
R1C4 X | 969.8102 2.7507 2.0463 0.0950 0.1430 0.0464 0.0699
RiC4Y | 969.7662 2.8746 1.9293 $.0838 $.1656 0.0434 .0858

Polarization angles

Up to this point we are able to characterize modes by a mode number [nm] and
an X- or Y- label indicating its polarization. Interesting questions are now: can
we describe the polarization angles of the modes? Do the modes fall apart into
two polarizations? How is this polarization oriented relative to the trenches?
To search an answer to these questions, we do the following experiment: place a
polarizer in the path to the spectrometer. Take a spectrum for different settings
of the polarizer separated by a specified step size. From these data we can make
make a 2D plot: depict a spectrum for each polarization angle. Note that in
the following the ’pixels’ (of the 2D plot) are interpolated.

Fig. 5.5 shows a 2D plot of the results from a measurement on R1C1, using
the Glan-Taylor polarizer and multi-mode fiber in coupling. The polarization
range is 0 to 350 degrees and the step size is 10 degrees.

R1C1 2D polarization plot
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Figure 5.5: R1C1: 2D plot of spectra for different polarization angles. The
polarization step size is 10 degrees.

In Fig. 5.5 we could search for polarization axes, but there is a problem. As
mentioned before, the spectrometer is sensitive to polarization. We can clearly
see that here, because not only the signal, but the background also changes with
polarization. We could try to normalize these data. I will leave this to others
because of a lack of time.

Fortunately, we have performed other experiments on another cavity: R5C6.
We have made spatial scans (see section 5.2) for different polarizations. When
we sum for every pixel number over all positions of a spatial scan, we end up
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with a spectrum. We use these spectra to make the 2D plots. Fig. 5.6 show the
results of two measurements on R5C6, using:

e The microscope objective and the linear film polarizer (Fig. 5.6(a)).

e The aspheric lens and the A/2 plate in combination with the fixed polarizer
(Fig. 5.6(b)).

R5C6 2D polarization plot R5C6 spectrometer sensitive
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Figure 5.6: R5C6: 2D plot of results for spatial scans (see 5.2) for different
polarizations. The spectra are obtained by summing for each pixel number over
all positions of the spatial scan.

From Fig. 5.6 we can learn that the angles of polarization do not simply
fall apart in two polarizations. It goes beyond the scope of this thesis to find a
good description of the polarization of the modes. I can only speculate that the
tensor as in Eq. 3.29 should contain non-zero elements €, and €.

5.2 Spatial scan

5.2.1 Non polarization resolved

Until now we have only looked at spectra, either polarization resolved or not.
Another experiment we can do, is what we call a spatial scan. To be short: we
move the objective with the PI-stage to specified positions and take a spectrum
at each position. Most essential in this experiment is that we use the single-
mode fiber to couple into the spectrometer. The diameter of the single-mode
fiber is about 5 wm. This enables us to image only a very small spot on the
sample to the fiber.

To make a spatial scan, we first bring a cavity in a position, such that a clear
spectrum is visible. We then specify a lattice of positions by giving the lower-
and upper- boundaries and the step sizes in the x-positions and y-positions. A
program controls the Pl-stage, moving the objective to all specified positions,
and takes a spectrum at each position.

In the following we will the following terms:
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e Spatial scan data The set of data obtained from a spatial scan.

e Spatial scan spectrum When we sum for every pixel number over all
positions of a spatial scan, we end up with a spectrum which we will call
spatial scan spectrum.

e Spatial image (at ... nm) The image of the data at a specific pixel
number (which corresponds to a certain wavelength) of the spatial scan
data.

We have performed a spatial scan on R5C6 over an area of 10 um x 10 um
with a step size of 0.1 um. Fig. 5.7 shows spatial scan spectrum of R5C6. The
peaks are provided with labels which refer to the spatial images in Fig. 5.9 at
that specific wavelength.

R5C6 Scans integrated over all objective positions
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Figure 5.7: Spatial scan spectrum of R5C6. The peaks are provided with labels
which refer to the spatial images in Fig. 5.9 at that specific wavelength.

In order to get a feeling of the size of the modes relative to the trenches, a
blue square of (scaled) size 10 um x 10 um is depicted in Fig. 5.8. Also the
purple lines show the z- and y- direction of the PI-stage (which is not perfectly
aligned with the sample).

20 micron

Figure 5.8: The scanned area (10um x 10um) depicted schematically in the
cavity structure as well as the x- and y- direction of the PIl-stage.
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Figure 5.9: Results of a spatial scan on the R5C6. Each image shows the spatial
image (10 pm x 10 pm) at the wavelength which is specified in the title. The
labels and wavelengths correspond to the those in figure 5.7.
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At first glance the images of Fig. 5.9 look like the Hermite-Gaussian plots
in Fig. 3.1.

Let us consider the scan image of Fig. 5.9(c). It shows two blobs and looks
like the [01] or the [10] modes in Fig. 3.1. (See Fig. 5.10) We will first have
a look at values of the image along a line, which goes through the centers of
the blobs(See Fig. 5.10(a)). Note that the line is constructed by specifying two
points (i1,2,j1,2). I chose these points just by eye. In Fig. 5.10(b) these values

2\ 2
are depicted by the purple dots. The red line shows a fit of (H 1 (a:)e‘Tz) (of

course provided with fit parameters) through these points.

Slice of A = 966.9385 nm 1D Square Hermite-Gaussian Fit [01]-mode
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Figure 5.10: Data of image from 5.9(c). The values along the red line in Fig.
5.10(a) are depicted in Fig. 5.10(b). The red line shows a fit of the square of
the first order Hermite function to these values.

From this fit we can suspect that the image of Fig. 5.9(c) is well described
by w[%l](x,y) (from Eq. 3.17). Let us find the fit parameters (see Appendix
B.2) and use them to make a plot. The result is shown in Fig. 5.11.

This fit and the comparison of Fig. 5.9 with Fig. 3.1 indicates that the

spatial modes are indeed described by Hermite Gaussians. It is beyond the
scope of this thesis to go into more detail on this.
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Plot with fit parameters
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Figure 5.11: Plot of 2D fit of w[m (z,y) (from Eq. 3.17) on the spatial image of
Fig. 5.9(c).



Conclusion and Outlook

In this thesis we have studied the optical modes of several micropillar cavities.
We saw that with our setup we are able to analyze their spectra as well as the
spatial structure of their modes. A simple model, which assumes quadratically
decreasing refractive index and slight anisotropy, provides us with predictions
on the spectra and the spatial structure of the modes. Results for the spectra
an spatial modes are quite well described by these predictions, whereas the
polarization of the modes is not. It is an intriguing question what sets these
polarizations.

6.1 Outlook

It should as first be noted that this thesis shows only a part of the analysis that
is performed on the cavities. For suggestions of more analysis, see Appendix C.

One of the motivations for finding a good description of the cavity modes is
to make the fundamental mode ([00]) degenerate, which means that the peaks
of the two polarizations lie on top of each other. This is needed for some
quantum information schemes and algorithms. A way to do this (already shown
by Cristian Bonato) is by burning holes next to the trenches.

It would be very challenging and interesting to try to find a better tensor €
to describe the material, and from that derive the optical modes of the cavities.
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Hermite polynomials

The first 5 Hermite polynomials are given by:

Ho(z) = 1 (A1)
Hy(z) = 4a®> -2 (A.3)
Hs(z) = 82°—12z (A.4)
Hy(z) = 162" —48z% + 12 (A.5)
Hs(z) 322° — 1602> + 120z (A.6)
One can define Hermite functions
1 2
= " /?H AT
n\T e n\Z). .

Un(x) NI (z) (A7)

These Hermite functions are normalized solutions to the differential equation

V(@) + (2n+ 1 — 2?)Pu(z) = 0. (A.8)
In Fig. A.1 the first 6 Hermite functions are depicted.

Figure A.1: Hermite functions (see Eq. A.7) 0 (black), 1 (red), 2 (blue), 3
(yellow), 4 (green), and 5 (magenta).

28



B.1 Least square fitting \,,,,) = Ajgg) — an — bm

Assume that we have a set of k labeled peaks and for each peak their wavelength
Alnm],i- Then we have the set of equations

{/\[nm],i = Ajoo) — an; — bmi} . (B.1)
Define
1 ai b1
1 as bQ
A= : (B.2)
1 Qg bk;

T T
Let z = ()\[nm], a, b) and y = (/\[nm],la Alnm], 25+ )‘[nm],k) . Then z* =

E‘nm], a*, b*) is said to be the least square solution of the equation
Az =y, (B.3)
if
ly* —y| = |Az* —y| < |Az —y| whenever =z # z*. (B.4)

It is exactly this z* that we calculate if we try to optimize A, @ and b. Fur-

T
thermore y* = Az* = (’\an]m an]ﬂ’ e an]k> is the vector containing
the wavelengths which fit best to the data (the vector y).

When we try to fit wavelengths to the formula Aj,,,) = Ajpo) — an — bm, we
will call the elements in z* the optimized parameters and the elements of y* the
fit of the wavelengths.

In order to get a feeling for the goodness of a fit, we can calculate now the
following parameters: RMSD, Emax, RMSD/b and Emax/b. The RMSD,
the root mean square deviation (also called rms of the residuals), is defined as
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k

2 2
RMSD = ( = ( i — A;‘nm]vi) ) . (B.5)

" i=1

—

Intuitively one could see the RMSD as the average error. Emax is given by

&nﬂjlandisthernaxhnalenor.\Vécan(ﬁvkkathSD

and Emax by b (b < a) to get RMSD/b and Emaz/b which are measures of
how big the RMSD and Emax are in comparison with a and b.

Emax = max; ‘/\[nm]’i -

B.1.1 Matlab script
Example of Matlab script:

function a=mrfitpar(x1,x2,y,cwl)

%Here the ’fitparx’ is optimized for the equation X*fitparx=y (X is ann x 3
%matrix, and fitparx=[lambda_00 a b]. y contains the measured values

X = [ones(size(x1)) =x1 x2];

fitparpx = X\y;

Ypx = Xxfitparpx;

%From here fit parameters are calculated:

% # in pixel numbers

respx = Ypx-y;

RMDSpx = sqrt(mean(respx.”2));
Emaxpx = max(abs(respx));

% # in nm
fitpar=fitparpxtowl(fitparpx,cwl)
RMDS=dispixtowl (RMDSpx)
Emax=dispixtowl (Emaxpx)

% # dimensionless
dRMDS=RMDSpx/fitparpx(3)
dEmax=Emaxpx/fitparpx(3)
res=respx;

%A cell is created containing many fit parameters in

%  # pixel numbers

a{1,1}=fitparpx;

a{2,1}=’optimized parameters pxn’;
af{1,2}=Ypx;

a{2,2}=’values given by the model pxn’;
a{1,3}=RMDSpx;

a{2,3}="RMSD pxn’;
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a{1l,4}=respx;
a{2,4}="residuals pxn’;
a{1,5}=Emaxpx;
a{2,5}="Emaxpx’;

%  #dimensionless
a{1,6}=dRMDS;
a{2,6}="RMSD/b’;
a{l,7}=dEmax;
a{2,7}=’Emax/b’;

% # nm

a{3,1}=fitpar;
a{4,1}=’optimized parameters’;
a{3,2}="not interesting’;
a{4,2}="values given by the model’;
a{3,3}=RMDS;

a{4,3}="RMSD’;

a{3,4}=res;
a{4,4}="residuals’;
a{3,5}=Emax;

a{4,5}="Emax’;

B.2 2D Fitting

Assume you have a 2D-array A of data and you assume it to described by
fla1, ae,...](i,7) where a1, as, ... are parameters and 4, j indicate the array codrdinates.

What we want is to optimize the parameters. One way is to find the minimum
of

AN
XClavan, ) =Y (Ay — flar,az, (i, ) (B.6)
,J
for the parameters a1, as,... . This can be done using the lsqnonlin function in

Matlab. Here you need to define a function F(aq1, as, ...) = [f1((a1, as,...)), f1((a1, a2, ...)), ...

where for example fi(a1,as,...) = A11 — fla1,a2,...](1,1). With the lsqnonlin
function than tries to find parameters for which the length of F(ai,as, ) is
minimal (for more details, reed the manual of Matlab). The function can return
the optimized parameters as well as parameters about the goodness of the fit.

B.2.1 Matlab script

Here is an example of function is shown.

function a = functofit2(SC,x);

%This script will define the function that should be fitted to some
%2D-array SC.
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[n,m]=size(SC);
k=1;
%a = zeros(n*m, 1);

for i=1:n
for j=1:m
% for simplicity, we use p=(i-x(5)) and q=(j-x(6))
xp= ( (i-x(5)) * cos(x(7)*2*pi/360) + (j-x(6)) * sin(x(7)*2*pi/360) )/x(3) ;
yp= ( (j-x(6)) * cos(x(7)*2*pi/360) - (i-x(5)) * sin(x(7)*2*pi/360) )/x(4) ;
a (k) =C x(1) + x(2)* ( 2*(sqrt(2)*xp) * exp( -xp"2 -yp"2 ) )°2 ) -SC(i,j) ;
k=k+1;
end
end

To make it an function only dependent of x (the fit parameters) use the following
syntax:

@(x)functofit2(M{3,3},x)
\begin{thebibliography}{99}
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Appendix C
PP\.J].].\J].A N/

[
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While doing the experiments mentioned in this thesis I have developed a lot
of scripts in Matlab, which can enables one to analyze quickly data from mea-
surements on the cavities (see Appendix B). Here I will make suggestions on
interesting analysis that yet would be nice to perform. I have already seen nice
features, but I was not able to put this in the thesis:

e Identify modes of R5C6

— Use polarization resolved polarization scan to identify the modes for
the zeroth, first and second order. The third order is more difficult.

— For the modes second order modes try to fit superpositions:
* (Vinm) + Ypom)”
# (Vg™ + Ypum)”
# (W) + P’

— Use the spatial scan of 20090526 and the polarization resolved spatial
scan of 200905287

e Identify the modes of R3C4

— compare ¢ with —

’UJ2
w
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