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Abstract

We present the first measurements of two-photon speckle patterns. Spatially en-
tangled two-photon states are scattered from a random phase plate (diffuser) and a
random two-photon interference pattern is formed in the far field of the diffuser. The
two-photon speckle pattern has been observed by measuring the coincidence count
rate as a function of the transverse positions of two single-photon detectors. The
‘ordinary’ intensity speckle that would have been observed under coherent illumina-
tion is absent as the incident light is incoherent at the one-photon level. The photon
pairs are produced via the nonlinear optical process of spontaneous parametric down-
conversion in a periodically-poled KTiOPO4 crystal (PPKTP).

To fully understand biphoton speckle we first thoroughly researched the proper-
ties of the diffusers for single photon speckle. We found that the far field intensity
distributions and the average intensity profile were close to theory. Contrary to ex-
pectations we found that all diffusers were slightly anisotropic, having two different
scattering angles. We found that the light shaping diffusers show signs of birefrin-
gence. It depends on the diffuser how strong this birefringence is and how much
variation there is on the birefringence. The orientations of the fast and the slow axis
are constant over the surface of the diffuser.
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1 Introduction

Speckle is a random intensity pattern that is caused by the interference of many random,
but coherent field contributions [?]. Although speckles have been known since Newton,
speckle research flourished in the 70s when the first speckle pictures were made by illu-
minating rough surfaces with laser light [?].

At first these speckles were considered a major drawback to research fields such as
holography, because the images are generally very grainy. Later the applications of speck-
les were discovered. The speckle images often contained very interesting information on
the surface where the light last scattered. Speckle imaging is nowadays used in astronomy
[?][?] and biology [?].

Much has been written on speckle patterns with coherent illumination using laser
light, we will refer to this as classical speckles [?]. In this thesis we will shed another light
on speckles. We will generate speckles that do not manifest themselves in the intensity
but are observed only in the coincidences of photon detections at two spatially separated
detectors. We will show that although the classical speckles are not present we can detect a
speckle pattern of a higher order, a speckle pattern that is present in non local correlations,
biphoton speckle.

Biphoton speckle is generated by illuminating a random phase plate (diffuser) with
light generated with the nonlinear optical process of spontaneous parametric down-conversion
(SPDC). SPDC is a process in quantum optics where a high-energy photon (blue) is con-
verted to two low-energy photons (infrared). Because of energy and momentum conserva-
tion laws the infrared photons contain information about the original blue photon [?]. We
say that the photons are entangled. Before detection there is a fundamental uncertainty
in the position and momentum of the entangled photons. Detection of the momentum
of one of the photons yields information about the momentum of the other photon. The
uncertainty in momentum of the second photon is resolved instantaneously. Because the
photons are spatially separated this would imply seemingly superluminescent communi-
cation between the particles. For a discussion see the original article on the EPR-paradox
[?] or review by Bell [?].

The far field of the random phase plate will be measured by two detectors that can
count single photons. If two photons enter detector 1 and detector 2 simultaneously we
will speak of a coincidence. We will show the presence of biphoton speckle in the coin-
cidence counts, under conditions where single photon speckle in the intensities (or single
photon counts) is absent.

This thesis comprises of two main parts. The first part consists of chapters 2 to 4.
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Here we will outline the theory for the classical intensity speckles and provide speckle
statistics for three types of random phase plates. These speckles are generated using a
coherent source. In this part we will also look into the birefringent behavior of these
diffusers. Through this parts we will build up a thorough knowledge on the behavior of
the diffusors on the single photon level.

The second part, consisting of chapters 5 to 7, is devoted to the biphoton speckle. The
diffuser is illuminated with photon pairs resulting from the SPDC process. Using another
setup we will generate the first measurements of biphoton speckle. In this measurement
the single photon speckle in intensity is no longer visible but there is still speckle in the
coincidences. Biphoton speckle is fundamentally different from single photon speckle
because the interference depends on the transversal coordinates of both detectors. A
single biphoton speckle thus depends on four coordinates. We used different scanning
techniques to visualize the biphoton speckle. The size of the speckles we measured is in
accordance with our theory.
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2 Theory classical speckle

We will start the theory of the classical speckle with a description of the electromagnetic
field. We will make a pump spot on the diffuser plate by focussing a linearly polarized
Gaussian beam. A mode is a stationary solution to the Maxwell equations and can be
characterized by the electric field vector E(r) at position r. In the focus of the beam
there is no curvature and we can describe the beam by a plane wave front. We will assume
that the light is travelling in the z-direction, and therefore the electric field has an x and a
y-component. The electric field is a complex vector where the absolute value corresponds
to the amplitude and the phase is the phase of the field. The transverse profile of the pump
at the diffuser is Gaussian and can be described by the formula [?]

E0(x) = E0 exp

(
−x2

w2
0

)
, (1)

wherew0 is called the width of the beam, E0 is the maximum field strength and x contains
the transverse positions x and y on the diffuser. The intensity is a real and positive number
and is defined as the squared absolute value of the electric field

I ∼ |E|2, (2)

and so the intensity of the pump is easily calculated

I0(x) = I0 exp

(
−2

x2

w2
0

)
, (3)

where I0 = |E0|2 is the peak intensity. Please note the presence of an extra factor 2 in the
exponent. The random phase plate can completely be characterized by a random function
φ(x). The form of this function depends on the position of the pump spot on the diffuser.
The diffuser will not change the amplitude of the field, but can add a random phase. Based
on this function we can give the formula for the field directly after the diffuser plate

Ed(x) = E0(x) exp [iφ(x)] . (4)

Using a Fourier transform we can propagate this near field to the far field [?][?] and find
its dependence on the angle θ. This Fourier transform has form

EFF(θ) =

∫
Ed(x

′) exp

(
−2iπθ · x′

λ0

)
dx′, (5)
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where λ0 is the wavelength of the pump beam. We find that if the pump spot is sufficiently
large compared to the structures on the diffuser plate that the average intensity in the far
field should be Gaussian1

〈IFF(θ)〉D = I0 exp
(
−2θTQ−1θ

)
. (6)

The operation 〈·〉D, takes the expectation value of a certain function over all possible
positions of the pump spot on the diffuser. Here the matrix Q contains the widths of
the diffuser in the x and the y-direction. Generally the scattering of the diffuser will on
average have a elliptical shape. If the x and y are aligned with the long axis of this ellipse
then Q is a diagonal matrix,

Q =

(
θ2

x 0
0 θ2

y

)
. (7)

where θx and θy are the opening angles in the two directions of the diffuser.
Dependencies of second order in the speckles are described by the autocorrelation

function

g(2)(∆θ) ≡ 〈IFF (θ) IFF (θ −∆θ)〉XY

〈IFF(θ)〉2XY

. (8)

For a single speckle pattern it is defined as the product of an intensity and a second
intensity at a displacement, scaled with the average intensity squared. The operator
〈·〉XY =

∫
Picture ·dxdy takes the spatially averaged value of the function within brack-

ets over a single speckle image. If the angular dependence is depicted, for example I(θ),
we integrate over angles θx and θy.

When we average this value over many positions of the diffuser we expect2 to find the
average correlation function. We expect this function to have a double Gaussian profile

〈
g(2)(∆θ)

〉
D
∼

[
exp

(
−∆θTQ−1∆θ

)
+ exp

(
−
(
πw0∆θ

λ0

)2
)]

. (9)

The first term is called the shell function and corresponds to the coherence within the
angular spread of the diffuser. It is parameterized by the matrix Q. The second term, the
spike function, corresponds to the correlation generated by the individual speckles. The
size of the speckles is inversely proportional to the size of the pump spot w0.

1A detailed derivation can be found in Section B. Although the notation is somewhat different for clarity
reasons.

2A derivation can be found in Appendix Section B
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We will now define the number of channels for random media analogous to the defi-
nition of the optical etendue

Nc ≡

∫
Î0(x

′)dx′ ∫ 〈ÎFF(θ
′)
〉

D
dθ′

λ2
0

. (10)

The hat operator ·̂ scales the intensity with the maximum intensity. In the far field the
intensity is scaled with the maximum average intensity. For a diffuser plate the number
of channels depends on the width of the shell over the width of the spike

Nc =
π2w2

0θxθy

λ2
0

. (11)

The far field intensities result from many uncorrelated field contributions with random
phases. We expect3 the intensities in the far field to have an exponential distribution with
the average intensity from Equation (6). The distribution function for the intensity I at
position θ is given by

PI(I,θ) =
1

〈I(θ)〉D
exp

(
−I

〈I(θ)〉D

)
. (12)

The distribution depends explicitly on the angle θ. To be able to compute statistics based
on one speckle pattern we define a scaled intensity with a distribution that has no θ de-
pendence. We scale the intensities with the average intensity

Ī(θ) =
I(θ)

〈I(θ)〉D
, (13)

to obtain the scaled intensity. The distribution for the scaled intensity is

PĪ(Ī) = exp(−Ī). (14)

For the exponential distribution of Equation (14) the expectation of the squared intensity
is twice that of the intensity squared.〈

Ī2
〉

XY
= 2

〈
Ī
〉2

XY
(15)

The contrast of a speckle pattern is defined as

C ≡

√〈
Ī2
〉

XY
−
〈
Ī
〉2

XY〈
Ī
〉

XY

(16)

and has a value of 1 for an exponential distribution of Ī . Speckle with a contrast of C = 1
is called a fully developed speckle.

3A derivation is in Section A.
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3 Setup classical speckle

A schematic picture of the experimental setup is given in Figure 1. We use a Coherent
Verdi Laser to pump a + titanium-sapphire, laser. This Coherent 899 Ring laser, emits a
beam in the infrared range (the wavelength λ0 = 826 nm). This beam is led through a
Faraday isolator and a half wave plate followed by a polarizer, to modify the intensity of
the beam. Using lens A this beam is then focussed into a single mode fiber (with a mode
field diameter of MFD = 5.6 µm) to obtain a transverse Gaussian profile. The importance
of using single mode fibers is stressed, since in multi mode fibers the speckles that will
show up can be an artifact of the fiber rather than the diffuser plate. The light exiting the
fiber is focussed onto a diffuser plate using an objective lens B (f = 10 mm). The pump
beam is normally incident on the rough surface of the diffuser and exits the diffuser at the
opposite planar surface. The distance between the lens used for focussing and the plate is
about 1 m. This results in a focus of width of w0 = 230 µm. The beam has a Gaussian
beam profile, the intensity as function the transverse direction is given by Equation (1).

The beam is redirected twice using mirrors. Between the lens and the diffuser is a
polarizer that transmits in the vertical polarization. The verticality of the polarization
is checked in a system of two polarizers, where a polarizer in vertical and horizontal
direction are blocking all light. Turning one of the polarizers 180 ◦ also yields a blockade
of all light only if the polarizers are exactly horizontally and vertically aligned.

Directly behind the diffuser is another polarizer to control for the polarizations exit-
ing the diffuser. The transmission of this second polarizer is about 95% at the relevant
wavelength. If this polarizer also has the vertical polarization direction we shall refer to
the setup as parallel polarized. If the polarization is horizontal the setup is cross polarized.
If the polarizer is removed we shall refer to the situation as mixed.

3.1 Imaging system for the near field (CCD1)

Behind the diffuser are two imaging systems. The first system produces a magnified image
of the near field using a telescope. The first lens has a focal distance of f1 = 100 mm
and the second lens has a focal distance of f2 = 300 mm. Using the autocollimation
procedure (Appendix D) the second lens is aligned so that the CCD camera is in the focus
of the second lens, the distance between this lens and the camera is f2 = 300 mm. The
distance between the first lens and the second lens is approximately f1 + f2 = 400 mm,
however the exact alignment of this lens depends on the other CCD camera position (the
detailed procedure is given in the next section). The diffuser is placed perfectly in the
focal point of the first lens. To achieve this we first replace the diffuser with an object
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Figure 1: Schematic picture of the experimental setup for the classical speckle experi-
ment. A beam from the laser is guided through a Faraday isolator before being focussed
into a single mode fiber. From the single mode fiber the beam again is focussed onto a
diffuser plate. The distance between the diffuser plate and the lens is approximately 1m.
Light is led through a polarizer so the beam has a vertical polarization. Behind the dif-
fuser two imaging systems are used to make near field and far field images of the plate.
These systems are separated using a flipping mirror. Using a telescope system with two
lenses (focal distance f1 and f2) a near field of the diffuser is made. And using the same
lens with focal distance f1 a far field image is made in a f-f system. Both imaging systems
contain a second polarizer directly after the diffuser.
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Opening angle Manufacturer Owner Orientation angle
Diffuser 1 0.5◦ Physical Optics Corporation Martin 333◦

Diffuser 2 0.5◦ Physical Optics Corporation Eric 154◦

Diffuser 3 1◦ Physical Optics Corporation Eric 15◦

Table 1: Details of the diffuser plates used in the classical speckle measurements. The
stated opening angle is provided by the manufacturer. The orientation angle (A) gives
information about the orientation of the diffuser in the rotator mount. Details about its
definition can be found in Figure 2

(USAF plate, Appendix D) and adjust the position of the diffuser/USAF plate to give a
perfect image of the USAF plate in the near field.

The near field telescope system results in a magnification of f2/f1 = 3. The width
of the image of the pump beam therefore is approximately 600 µm The size of the CCD
camera (Apogee Alta) is 512× 768 pixels of 9 µm × 9 µm.

3.2 Imaging system for the far field (CCD2)

The far field image is made using an f1 − f1 imaging system. Using a mirror the beam
is deflected after the first lens into the second CCD camera. The lens is aligned using the
autocollimation method so that the camera is exactly in the focus of the lens. In the near
field alignment care is taken so that the diffuser is in the focus of the lens. With diffusers
of 0.5 ◦ we expect the pictures on the CCD camera to have a width of 100 mm

(
0.5 ◦

180 ◦/π

)
=

1.7 mm. The size of the CCD camera (Apogee Alta) is 512× 768 pixels of 9 µm× 9 µm.

3.3 Diffusers

In this experiment we used three different diffuser plates. They are labelled diffuser 1
through 3. Their properties are listed in Table 1. The diffusers are placed in rotator
mounts. A clarification of the positioning of the diffuser in these mounts is given in
Figure 2.
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Figure 2: Orientation of the light shaping diffuser in the rotator mount. The angle A is the
angle of the beginning of the letter L of the inscription LIGHT SHAPING DIFFUSER in
the mount. For all diffusers the text is printed on the ring at the side of the rough surface
of the plate. The angles A for the three diffusers are listed in Table 1.
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4 Results classical speckle

4.1 Far field speckle statistics

For diffusers 1, 2 and 3 we measured 100 intensity profiles in the far field for each diffuser.
Each picture has a different diffuser position. The two polarizers in the setup have parallel
polarizations. In each picture the pump spot is on a different position on the diffuser.
Summaries of the relevant far field speckle statistics can be found in Figure 3, Figure
4 and Figure 5. Each picture has the same composition of subfigures. The upper left
subfigure shows a single speckle. On the upper right is the scaled intensity distribution
of 100 speckles. The middle row shows a false color plot of the average intensity with
a horizontal and vertical profile. The lower row shows a false color plot of the average
autocorrelation with a horizontal and a vertical profile. The next sections will go deeper
into the individual statistics. At the end of this chapter Table 2 presents all the relevant
statistics per diffuser.

4.1.1 Average intensity

The average intensity over 100 intensity pictures for each diffuser is plotted in the middle
rows of Figures 3, 4 and 5. These plots contain information about the opening angle of
the diffusers. From Equation (6) we expect a Gaussian profile for the average intensity.

Diffuser 1 has an average intensity profile with a Gaussian shape. We fitted a Gaussian
curve through the profile to obtain the fit parameters. The distribution is anisotropic with
widths θx = 9.5 mrad and θy = 7.5 mrad, equivalent to 0.54◦ and 0.43◦. We note that this
is of the same order as the specified 0.5◦ but that there are quite large variations.

The average intensity in the far field of diffuser 2 does not have a Gaussian distribu-
tion. The tails of the distribution are too strong. We can fit a Gaussian curve through the
middle of the distribution with a width of θx = 7.1 mrad by θy = 8.1 mrad corresponding
with 0.41◦ by 0.46◦. Using the full-width-half-maximum we obtain equal values.

The discrepancy between diffusers 1 and 2 is very surprising because the specifica-
tions of these diffusers are equal. The differences in average intensity are not explainable
from randomness, the surfaces of the diffusers are really different.

The profiles of the average intensity of diffuser 3 is too rough to use it for a Gaussian
fit. Due to the roughness also the full-width-half-maximum is inapplicable to give an
accurate estimate of the width. We can make a Gaussian fit of the autocorrelation of the
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Figure 3: Characteristics obtained from 100 far field pictures of the diffuser 1. The upper left
false color plot gives the scaled intensity distribution of a typical speckle. The upper right gives
a histogram of occurrences of the scaled intensities for 100 speckle pictures. See Section 4.1.1
for details. The histogram is based on points for which the average intensity is at least half the
maximum average intensity. The middle false color plot depicts the average intensity scaled to
have maximum intensity 1. The right hand pictures are horizontal (blue) and vertical (red) profiles
at the center of the distribution. The lower row gives the autocorrelation with a horizontal (blue)
and vertical (red) profile.
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Figure 4: Characteristics obtained from 100 far field pictures of the diffuser 2. The upper left
false color plot gives the scaled intensity distribution of a typical speckle. The upper right gives
a histogram of occurrences of the scaled intensities for 100 speckle pictures. See Section 4.1.1
for details. The histogram is based on points for which the average intensity is at least half the
maximum average intensity. The middle false color plot depicts the average intensity scaled to
have maximum intensity 1. The right hand pictures are horizontal (blue) and vertical (red) profiles
at the center of the distribution. The lower row gives the autocorrelation with a horizontal (blue)
and vertical (red) profile.
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Figure 5: Characteristics obtained from 100 far field pictures of the diffuser 3. The upper left
false color plot gives the scaled intensity distribution of a typical speckle. The upper right gives
a histogram of occurrences of the scaled intensities for 100 speckle pictures. See Section 4.1.1
for details. The histogram is based on points for which the average intensity is at least half the
maximum average intensity. The middle false color plot depicts the average intensity scaled to
have maximum intensity 1. The right hand pictures are horizontal (blue) and vertical (red) profiles
at the center of the distribution. The lower row gives the autocorrelation with a horizontal (blue)
and vertical (red) profile.
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average.4 This function has a Gaussian profile and from it we can compute the opening
angle of the diffuser. θx = 18.5 mrad and θy = 21.3 mrad, corresponding to 1.06◦ and
1.22◦

4.1.2 Autocorrelation

The autocorrelation function with a horizontal and a vertical profile is given in the lower
row of Figures 3, 4 and 5. From Equation (9) we expect the autocorrelation to have
a double gaussian profile. The size of the shell is related to the opening angle of the
diffuser, the size of the spike depends on the size of the laser spot.

Diffuser 3 is the only diffuser for which we measured a neat double Gaussian pro-
file for its autocorrelation function.5 A fit of this profile yields a width of the spike of
θspike = 1.3 mrad and two widths for the shell, θx = 18.5 mrad and θy = 21.3 mrad.
Converting this to degrees we find diffuser 3 has two scattering axes with a width of 1.22◦

and 1.06◦. The values correspond to the width obtained from the average intensity profile.
The orientation of the long scattering axis with respect to the rotator mount is 5◦. The size
of the spike corresponds with a beam width of w0 = λ0

√
2/θπspike = 233 µm. This is the

expected value within the parameter uncertainty.
Also the autocorrelation plots of diffusers 1 and 2 have a spike width of θspike =

1.3 mrad. Although the autocorrelation functions of diffusers 1 and 2 are not double
Gaussian functions, so the concept of width is not applicable to these measurements,
we do find that also these diffusers are anisotropic scatterers. This can be seen in the
figures the autocorrelation function is an ellipsoid and the profiles are non overlapping.
For diffuser 1 the effect is much stronger than for diffuser 2. The axis of anisotropy with
respect to the mount can be measured for diffuser 1 is 88◦. For diffuser 2 the measurement
is less precise. Our best estimate is 15◦.

We think it is likely that the difference between the expected autocorrelation function
and the measured shape is a result of the pump spot size. In our derivation we assumed
that the size of the pump spot was sufficiently large. The condition is that the far field
opening angle (which is inversely proportional to the size of the pump spot) of the pump
was much smaller than the opening angle of the diffuser. We think it is likely that for
diffusers 1 and 2 this condition is not really met.

4Note that this is different from the average autocorrelation.
5In order to calculated the autocorrelation for diffuser 3 we had to add an extra dark area around the

far field. The intensity profile of the speckles does not go to zero fast enough for diffuser 3. We enlarge
the dark region to mitigate the otherwise unphysical correlation generated by the Fast Fourier Transform
algorithm.
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4.1.3 Intensity distributions

To make the intensity distributions we start with the individual speckle pictures and select
all points where the average intensity is at least half the maximum average intensity. Then
we compute the scaled intensity as the intensity in a speckle picture divided by the average
intensity at that particular point over 100 speckle pictures with different diffuser positions
. Along with the distribution from the data we plot the expected distribution from Equation
(13). Please note that although the results are based on many observations the existence
of speckles creates strong correlations between the individual points, thereby reducing the
effective number of measurement points.

For diffuser 1 this yields a distribution based on 7 · 105 observations. The distribution
of the diffuser is close to the expected distribution. However at the tail of the distribution
we find small deviations. Please note that at the tails observations are scarce, we are
not sure if these deviations are the result of the lack of observations or wether this is a
fundamental effect.

For diffuser 2 this yields a diffuser of 8 · 105 observations. For this scatterer there is a
mismatch between the expectation and the actual intensity distribution. We are not certain
were this discrepancy originates, but it will probably have to do with the heavy tails in the
average intensity of diffusor 2.

For diffuser 3 this yields a diffuser of 3 · 106 observations. For this diffuser we note
that the distribution is close to the expectation.

The exponential distribution for the intensities is expected when the far field of the
electric field vector E is the result of many random contributions. According to the central
limit theorem the distribution of E is Gaussian and in appendix A we derived that the
distribution for the intensity I should be exponential.

4.1.4 Contrast

For each speckle picture we computed the contrast C. The contrast is a measure of the
visibility of the speckle. Inside each speckle picture we isolated an area, much larger than
a single speckle, but small enough not to let the shell function of the speckle come into
play, using the same criterium that we used for the intensity distributions. The area under
consideration is comparable to the area we will use for in our biphoton measurements.
Using this area we computed the contrast C of each speckle using Equation (16). For dif-
fuser 1 we find an average contrast for the speckles of 0.90. The maximum contrast 1.36
and the minimum is 0.66. Diffuser 2 has an average contrast of 0.93 with a maximum of
1.30 and a minimum of 0.60. Diffuser 3 has an average contrast of 0.89 with a maximum
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Figure 6: The transmission of diffuser 1 for two geometries versus the diffuser orientation.
The blue line is the transmission in the parallel polarization, the green line in the crossed
polarization and the red line is the total. The transmission is computed as the power
(summed intensity) scaled with the power in absence of a second polarizer.

of 1.22 and a minimum of 0.66. The contrast distributions are equal for all diffusers. De-
viations are likely to be the result of the limited number of speckles in the contrast region.
We conclude that there are large variations in the visibility of speckle patterns due to the
statistical nature of the speckle.

4.2 Birefringence of diffuser plates

The incoming light on the diffuser is vertically polarized. Directly behind the diffuser we
placed a second polarizer. When this second polarizer also has the vertical polarization
we will speak of parallel polarizations and if the second polarizer has a horizontal polar-
ization we will refer to this as cross polarized. The diffuser is placed in a rotator mount.
We measured the total intensity in the near field for various orientations of the diffuser and
constructed a graph for both parallel and crossed polarizations. The results are presented
in Figure 6. We find that diffuser 1 shows a very strong birefringence, for certain orienta-
tions more than half of the incoming light is transferred to the other polarization channel.
We conclude this because the transmission for the different geometries shows a periodic
behaviour with a period of 90◦. This corresponds to birefringence as both alignment of
the fast axis and the incoming polarization direction and alignment of the slow axis and
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Figure 7: The Poincaré sphere with the various polarization states, |H〉 for horizontal
polarization, |V 〉 for vertical. The effect of the diffuser is indicated by the blue arrow.
The effect of the quarter wave plate is indicated by the red arrows. ψ and α indicate the
angles made by the blue and the red arrows respectively. 1.
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the incoming polarization direction yield a zero contribution to the crossed polarization
channel. Note that the percentage of transmission in the parallel and crossed polariza-
tion are not completely equal if we rotate the diffuser 90◦. This is probably because the
position on the diffuser is not fixed when changing the orientation, and the transfer will
probably depend on the position of the pump spot.

We checked whether the orientation of the slow and fast axis of the diffuser is constant
or also position dependent. We placed the diffuser in a large spot with incoming polarized
light and looked at the cross polarized transmission. Because it was possible to totally
darken the image when changing the orientation of the diffuser we conclude that the
orientation of the fast and the slow axis must be equal all over the diffuser.

We placed a quarter wave plate behind the diffuser, followed by a polarizer. First
we maximized the light in the crossed polarization by rotating the diffuser. We then
minimized to outgoing light by changing the orientation of the quarter wave plate and
the second polarizer. This procedure is indicated on the Poincaré sphere in Figure 7.
The surface of this sphere presents all possible polarization states: on the equator are the
linearly polarized states, and on the poles the perfect circular states. The diffuser moves
the state along the blue line. The quarter wave plate then moves the state along one of
the red lines. The plate rotated over 90 degrees moves it along the other red line. After
passing through the blue and the red line the state is a point on the equator again and the
light can be fully blocked using a polarizer. The difference in orientations of the polarizers
for the two points on the equator is related to the angle ψ.

ψ = 180◦ − (α1 − α2). (17)

From our measurements it follows that ψ = 106◦ for diffuser 1. This angle indicates that
the birefringence in the diffuser is just a little bit more than that of a quarter wave plate.
From the transmission in the minimum we can obtain a measure for the variation in ψ

Tm =
1

2
[1− cos(2∆ψ)] , (18)

where the minimum transmission is 0.02 for diffuser 1. From this we can compute that the
variation ∆ψ = 0.14 rad = 8◦. This illustrates why the transmission in Figure 6 varied
for the two different spots on the diffuser.

For diffuser 3 we also did this measurement. We found that ψ = 20◦ and ∆ψ is
negligible. We conclude that for diffuser 3 the birefringence plays a less important role
than in diffuser 1.
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Opening angle Birefringence
Long Short Orientation Angle Variation Orientation

Diffuser 1 0.54◦ 0.43◦ 88◦ 106◦ 8◦ 153◦

Diffuser 2 0.46◦ 0.41◦ 15◦ - - -
Diffuser 3 1.21◦ 1.06◦ 5◦ 20◦ 0◦ 95◦

Table 2: Summary of the properties of the various diffuser plates we used. The long
and short opening angle refer to the best estimations we can make of the opening angle
based on far field statistics. The orientations refers to the angle that the long scattering
axis makes in the rotator mount. In the birefringence columns the angle specifies how
birefringent the sample is, where 180◦ is a half-lambda-plate. The second column gives
the variation in this angle at different positions on the diffuser and the last column gives
the orientation of the fast axis in the rotator mount.
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5 Theory biphoton speckle

In this section we will outline the theory of biphoton speckle. The notation will be close
to that of the classical speckle. When we generate photon pairs using SPDC, one pho-
ton holds information about the other photon. The information about entanglement is
contained in the field [?]

A(x1,x2) =
〈
0|Ê(+)(x1)Ê

(+)(x2)|Ψ
〉

(19)

The field A is the expectation of the product of two electric fields operators at detector
positions x1 and x2 for the transition of a paired photon state Ψ to vacuum state 0. The
electric field operators are proportional to the creation and annihilation operators

Ê(+) ∼ â (20)
Ê(−) ∼ â†. (21)

Although the origin of the biphoton field A is purely quantum mechanical, in calculations
we can treat it as a classical quantity.6 The dimension of A is the dimension of a squared
electric field. Instead of directly measuring A we measure the coincidence counts Rcc.
A coincidence occurs when two photons enter two different detectors within the same
time frame. These coincidences are proportional |A|2. The relation between the two
photon field A and the coincidence counts Rcc are comparable to the relation between the
intensity I and the electric field E in the single photon case.

The biphoton field of the SPDC beam at the crystal center is [?]

ASPDC(x1,x2) = A0Ep

(
x1 + x2

2

)∫
sinc

[
λpL

8πn0

q2
−

]
exp

[
1

2
i (x1 − x2) · q−

]
dq−.

(22)
where x1 and x2 are the transverse position vectors for the two photons and the integration
element q− represents the difference in the far field wave vectors. The parameters that
define the field are the size of the crystalL, the frequency of the pump λp and the refractive
index in the crystal for the low energy wavelength n0. We can simplify this expression if
we approximate the sinc function with a Gaussian [?]

sinc[b q2
−] ≈ exp[−ab q2

−], (23)

6We may do so because the propagators of the biphoton field are equal to the propagators of classical
electrical fields.
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with a = 0.455. Using this approximation and filling in the field of the pump Ep we can
compute

ASPDC(x1,x2) = A0 exp

(
−(x1 + x2)

2

4w2
p

− (x1 − x2)
2

w2
−

)
. (24)

Here wp is the size of the pump spot and

w− =

√
2aλpL

πn0

(25)

is called the phase matching parameter, which can be interpreted as the distance between
the two photons of a photon pair.

Now we will introduce the dimensionality of the spatial entanglement. This dimen-
sionality is captured by the number of spatial modes and related to the coherence of the
beam on a single photon level. The incoherence will decrease the contrast of speckles in
the far field intensity. The intensity can be computed from the field A using

I(x) ∼
∫
A(x,x′)∗A(x,x′)dx′. (26)

We define the number of modes

Nm ≡
∫
Îp(x

′)dx′ ∫ ÎFF(θ
′)dθ′

λ2
p

, (27)

as the optical etendue of the setup where Ip is the intensity in the crystal and IFF is the
intensity in the far field of the crystal. The hat operator ·̂ scales the intensity function with
the peak intensity. For the SPDC beam the number of modes is

Nm =

(
wp

w−

)2

. (28)

It is a measure of the spatial coherence on the single photon level.
The diffuser is placed in the near field image of the crystal. Directly behind the

diffuser the field A picks up a random phase based on the random functions φ(x1) and
φ(x2) for both photons

Ad(x1,x2) = ASPDC(x1,x2) exp (iφ(x1) + iφ(x2)) . (29)
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Using a Fourier transform we can propagate this near field Ad to the far field and find
its dependence on the angles θ1 and θ2 in the far field [?]. Because the dependence on
two detector positions we have to integrate twice,

AFF(θ1,θ2) =

∫ ∫
Ad(x

′
1,x

′
2) exp

(
−2π(θ1 · x′

1 + θ2 · x′
2)

λ0

)
dx′

1dx
′
2. (30)

We can now compute the speckle statistics in the far field. Using the analogy with the
classical speckle we find that the second moment in coincidences7 can be rewritten as a
function of the first order statistics of the coincidences plus the second order statistics of
the A field.8 Using Gaussian statistics, we find that Γ(4) in the far field of the diffuser is

Γ(4)(θ1,θ2,θ
′
1,θ

′
2) = 〈Rcc(θ1,θ2)Rcc(θ

′
1,θ)′2〉D (31)

= 〈Rcc(θ1,θ2)〉D 〈Rcc(θ
′
1,θ

′
2)〉D + |〈A∗(θ1,θ2)A(θ′1,θ

′
2)〉D|

2
.

Here θ1 and θ2 are two-dimensional vectors with the angular position of detectors 1 and
2. The primed coordinates are also two-dimensional vectors for the positions of another
pair of detectors 1 and 2. It will be useful to introduce new coordinates that represent the
difference in position of the detector modes and their sum

θs ≡ θ1 + θ2 (32)
θd ≡ θ1 − θ2 (33)

Using these coordinates we can express the autocorrelation Γ(4) in terms of four functions
based on these sum and difference coordinates

Γ(4)(θ1,θ2,∆θ1,∆θ2) = |fshell(θs)gshell(θd)|2 ×
[
1 + |fspike(∆θs)gspike(∆θd)|2

]
(34)

The angles with a delta indicate the difference of a certain coordinate with its primed
counterpart. The sharpest angular dependence is present in the function

fspike(∆θs) = exp

(
−
(
πwp∆θs

λ0

)2
)
. (35)

This function has the same width as the spike function present in the classic photon
speckle autocorrelation. This implies that the biphoton speckles and the single photon

7We will write Γ(4) with a superscript 4 because it is the fourth moment in electrical fields.
8We use the complex Gaussian moment theorem [?]. This theorem is used to compute the second

moment in intensities Γ(2) in Section B of the appendix.
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speckles have the same size if we scan for speckles using one detector while keeping the
other detector fixed.

The second function in the spike is the function

gspike(∆θd) = exp

(
−
(
πw−∆θd

2λ0

)2
)
. (36)

It depends on the opening angle of the SPDC input. This function determines the size of
the structures when we scan in difference coordinates. It also determines over what angles
the biphoton speckle observed with detector 1 is displaced when detector 2 is displaced
and for what angle the speckle pattern in detector 1 starts changing.

The shell functions depend on the opening angle of the diffuser. These functions will
not have much influence on our measurement because we generally detect a very small
angle compared to the opening angle of the diffuser.
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6 Setup biphoton speckle

An overview of the setup for the biphoton experiment is given in Figure 8
Using a Krypton ion gas laser (Coherent Innova 300) we generate a pump beam with

λp = 413.1 nm. The power of the laser varies from experiment to experiment but is gen-
erally between 170 mW and 240 mW. We indicated the beam consisting predominantly
of the high energy blue photons with a blue line. After the blue photons are filtered out
we indicated the light consisting of red photon pairs with a red line.

We focus the pump beam on a 5 mm long periodically poled KTiOPO4 crystal (PP-
KTP) with lens A (f = 1000 mm). The size of the pump spot is wp = 170 µm. The
nonlinear optical process of spontaneous-parametric-downconversion (SPDC) converts
some of the blue pump photons into pairs of red photons. The wavelength of the outgoing
photons is λ0 = 826 nm. However the beam exiting the crystal is still dominated by the
blue photons. We place a GaP plate to filter out the blue photons. Now the beam is domi-
nated by pairs of infrared photons, indicated by a red line. The A field that describes the
structure of this beam is given by Equation (19) where the parameter w− = 18 µm (see
Equation (25)). We will refer to this as the SPDC beam.

We focus the SPDC beam onto the random phase plate using a telescope system. This
f − 2f − f system uses lenses B and C, both with f = 200 mm, to make an exact one-
to-one image of the near field of the crystal on the diffuser plate. Both lenses are placed
using the autocollimation method (see Section D). The incident A field on the diffuser
(Near Field 2) is equal to the near field at the crystal (Near Field 1). The diffuser plate
we will use is diffuser 3, with an opening angle of approximately 1◦. The openings angle
is large enough in relation to the area we will scan so that we do not have to take the
shell function from Equation (9) into consideration. Choosing a diffuser with a larger
openings angle will only reduce the reduce our intensity in the far field, complicating our
measurement. The diffuser is placed in a rotator mount and the orientation is chosen so
that the fast axis of the plate is parallel to the vertical axis, which is also the polarization
axis of the SPDC beam. The rough surface of the diffuser is placed toward the incident
SPDC beam.

Behind the diffuser, we use a f = 300 mm (and later a f = 250 mm) lens in an
f − f system to make an image of the far field of the diffuser (Far Field 2). The system
is aligned using the autocollimation method. Within the f − f system, behind lens C, we
place a beam splitter with a 50-50 distribution, to split the photon pair in two outgoing
directions. Please note that because of the beam splitter we lose half our coincidence
counts because there is only a 50% probability that the photons of a pair choose two
different paths through the beam splitter. Both photons of a pair have to enter another
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detector to be counted as a coincidence.
The far field image (Far Field 2) is monitored with two scannable detectors. Each de-

tector mode comprises of an object lens and a single mode fiber. The object lens (Geltech
f = 8 mm) is used to focus the incoming light into the fiber (with a mode field diameter
of MFD = 5.6 µm) Both detectors are mounted on two stages which can be precisely
moved in both transverse directions using actuators. In front of the object lenses of the
detector modes we placed two filters that transmit a range of only 5 nm at a bandwidth of
826 nm.

We verified that we had a focus on the fiber by coupling a laser to the other side of the
fiber and shooting back laser light through the detection mode. We tweaked each stage in
the z-direction so that the laser beam was focussed at the point where the far field of the
diffuser was projected. We used a chopper for this alignment procedure.

The size of the detector modes depends on the focal distance of lens D. For f =
300 mm the size of the detector mode in Far Field 2 is θD = 0.25 mrad. For f = 250 mm
we measured θD = 0.40 mrad. Based on a pump size of wp = 170 µm we expect speckles
with a size of θp = 1.5 mrad. The resolution for both systems is high enough to observe
speckles. We expect the system with the 250 mm lens to have more counts and yield a
better signal-to-noise ratio.

Both fibers are connected to single photon counters (SPCM-AQR). The generated
electric pulses are routed to a fast AND gate that serves as a coincidence circuit with
a specified gate time of τgate = 1.73 ns. The coincidences counts are integrated over
τint = 4 s for each position of the detectors to obtain the average coincidence count rate.

Accidental counts are not a manifestation of the biphoton field but just two uncorre-
lated photons that happen to enter the detector at the same time. The accidental count rate
is estimated by

Racc = Rs,1Rs,2τgate (37)

where Rs,1 and Rs,2 are the single photon count in detector 1 and detector 2. The raw co-
incidences are corrected with these accidentals to obtain the adjusted coincidence counts.
Correcting is important because the accidental count rate is about the same order as the
corrected coincidences.
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Figure 8: Schematic picture of the experimental setup for the biphoton speckle experi-
ment. A beam from the laser is focussed onto a PPKTP crystal (Near Field 1) using lens
A. Directly behind the crystal the remaining blue light is filtered out using a AR-coated
wafer of GaP. A one-on-one near field (Near Field 2) image of the crystal is made onto
a diffuser plate using lenses B and C. Behind the diffuser lens D makes a far field im-
age (Far Field 2) of the diffuser plate on the detector modes. Both detector modes are
separated by a beam splitter. The detector modes are composed of a fiber and an object
lens that focusses the light on the fiber. Both detectors are indicated by the dotted areas
denoted as Stage 1 and Stage 2. The fibers are connected to photon counters 1 and 2. The
beam with predominately blue light is given in blue and the beam which is predominately
composed of infrared photon pairs is colored red.
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7 Results biphoton speckle

Using the setup given in Figure 8 we generated biphoton speckle. The biphoton speckle
is a function of the positions of two detectors x1 and x2. In this section we will show
biphoton speckle where at a single photon level speckle is absent. Both detectors have
a x and y position which implies biphoton speckle depends on 4 coordinates. We will
consider three approaches to show the properties of the speckle. In the next section we
will discuss a fixed detector scan where one detector is kept fixed and the other detector
makes a scan in the x and y direction. The other sections describe approaches where the
detectors are moving parallel (and the difference in detector position is kept constant) and
where the detectors are moving antiparallel (where the average position of the detectors is
kept constant). In the last section we discuss preliminary results on the dimensionality of
entanglement of our SPDC beam. We truncated the light with an aperture to allow fewer
spatial modes and found that not only the biphoton structure changes and but also single
photon speckle reappears. At the end of the chapter the parameters of the biphoton field
estimated from the various speckle experiment are summarized in table 3.

7.1 Single fixed, single moving detector scan

For our first biphoton speckle picture we fixed the position of detector 2 and made a scan
in the x and y direction using detector 1. The results are depicted in Figure 9. Please note
that the depicted coincidence counts corrected for the accidental counts calculated from
Equation (37). Typical values for the accidental rates are 250 c/s for Figure 9 and 600 c/s
for Figures 10 to 12. The raw counts are a Poisson process and cannot be negative. Due
to statistical variations the adjusted counts can have negative values.

The SPDC light is very incoherent as there areNm ≈ 90 modes (Equation (27)). This
results in a low visibility of speckles in the single photon counts. The measured contrast
from Equation (16) is C = 0.08. The coincidence counts however show fully developed
speckle pattern with a measured contrast of C = 1.1. From the width of the spike in the
autocorrelation function we find that the average speckle has a width of θspike = 1.0 mrad.
Equation (35) relates the size of the speckle to the pump size. The implied pump size is
wp = λ0/π1.0 mrad = 263 µm. We attribute the difference between this value and the
actual pump size wp = 170 µm to the variations in speckle size. This is confirmed by
Table 3 which shows big variations in parameters implied from the speckle size.

Figure 10 shows an additional scan of detector 1, keeping detector 2 fixed on the
upper left. On the upper right is a scan at the same position of the diffuser when scanning
detector 2 keeping detector 1 fixed. Both speckle pattern look very much alike. The
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Figure 9: The coincidence counts for a 1◦ diffuser plate in a SPDC beam. The upper left figure
depicts the coincidence counts for different angles of detector 1. The upper right is an histogram
of these coincidence counts The middle row shows the autocorrelation with on the right hand side
a horizontal (blue) and vertical (red) profile. The lower row gives the single photon counts in
detector 1, with a horizontal (blue) and a vertical (red) profile.
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Figure 10: Coincidence counts for a scan with detector 1, keeping detector 2 fixed (upper left)
and a scan with detector 2 keeping detector 1 fixed (upper right). The lower row gives their cross
correlation, with a horizontal (blue) and a vertical (red) profile.
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speckle size in both pictures is 2.1 mrad corresponding to an implied pump size from
both pictures of wp = 125 µm. The correlation between these pictures, defined as

ρ ≡
〈Rcc,1Rcc,2〉XY√〈

R2
cc,1

〉
XY

√〈
R2

cc,2

〉
XY

, (38)

is 0.95. As expected there is no difference between the detectors and therefore they should
show an identical speckle picture. The resolution of the pictures given in Figure10 differs
from the initial biphoton speckle measurement in Figure9 as the 300 mm lens in the far
field imaging system is replaced with a 250 mm lens. This results in a great increase in
the signal-to-noise ratio.9

We find that if we move the one detector over a small angle (order of 1 mrad) the
biphoton speckle pattern recorded when scanning the other detector is displaced over the
same distance but shows approximately the same structure. If we move over larger angle
(10 mrad) we find that the speckle pattern will also change.10

7.2 Parallel moving detectors

The summed coordinate and difference coordinate of the two detectors are defined as
θs = θ1 + θ2 and θd = θ1 − θ2. A scan in the summed coordinate means that the
difference coordinate θd is kept constant and θs is moved. The physical interpretation is
that both scanners move parallel in the far field.

Figure 11 still shows an illustration of the effects of a summed coordinate scan. The
upper picture gives a fixed detector scan, which means θ1 varies and θ2 is constant. As
a result both θs and θd are variable. The middle picture gives a summed coordinate scan
where there is only a change in θs. The axis denote the displacement by single detectors
θ1 = θ2, not the summed coordinate. In comparison to the fixed detector biphoton speckle
it is possible to see smaller structures keeping the same displacements but displacing
both scanners. The speckle width in the original is 1.7 mrad. The summed coordinate
version has a speckle width of 1.0 mrad. Theoretically, we expect a factor 2 between
the original speckle width and the width in the summed coordinate speckle. However
only a single speckle picture has been measured. We believe that the width of the spike
in the autocorrelation can be very dependent on the presence of several large speckles.
Because the summed coordinate scan has more small speckles in the outer edges the

9For an explanation of this result please refer to Section 6.
10These results are not included.
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Figure 11: The upper image is a biphoton speckle picture using the position of detector
1 keeping detector 2 constant. The middle image is a biphoton speckle using summed
coordinates. Both detectors 1 and 2 are moved keeping their difference coordinate con-
stant. The scale in the second picture denotes the displacement of a single detector. The
lower picture is a summed coordinate scan at double resolution. The correlation defined
by Equation (38) between the upper biphoton speckle and this zoomed version is 0.78.
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Figure 12: Coincidence counts in a difference coordinates scan, with a horizontal (blue)
and a vertical (red) profile.

difference in width is larger than the expected factor. Our believe is confirmed by the
observation that the zoomed version of the middle picture of Figure 11, namely the bottom
picture, has a width of 1.7/2 = 0.85 mrad. This zoomed picture shows that there is
a strong resemblance between the original speckle and the zoomed speckle in summed
coordinates. The correlation coefficient between both pictures is ρ = 0.78. The strong
correlation between the summed coordinate scan and the zoomed fixed detector scan is a
great support for the theoretic results that the function fspike given in Equation (35) defines
the smallest structures visible in the biphoton speckle.

Based on the fixed detector scan in the top of Figure 11 the expectations for the
parameter wp = λ0/π1.7 mrad = 154 µm. The summed coordinated scan in the middle
of Figure 11 gave an implied parameter of wp = λ0/2π1.0 mrad = 131 µm. The zoomed
version of the summed coordinate scan on the bottom of Figure 11 again yielded wp =
λ0/π1.7 mrad = 154 µm The measured value is wp = 170 µm. We think these values
implied by the speckles correspond to the measured pump width within the uncertainty
generated by the random speckle patterns.

7.3 Anti-parallel moving detectors

In this section we will investigate a scan with anti-parallel moving detectors. Detector 2
is programmed to scan exactly in the opposite direction of detector 1. Mathematically we
keep θs = θ1 + θ2 constant and vary θd = θ1 − θ2. In the near field the photon pairs are
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close to each other which means in the far field they should have exactly opposite posi-
tions. We thus expect to have a coincidence image with large structures. Mathematically
we can derive this from the fact that the function gspike of the difference coordinate (de-
fined in Equation (36)) is much broader than fspike of the summed coordinate (Equation
(35)).

Figure 12 depicts the results of a difference coordinates scan. We centered the scan
at a bright speckle. We find that in the difference coordinates scan we continue to look at
the same speckle over a large angle. The size of this angle depends on the opening an-
gle of the diffuser and the angle of the SPDC illumination. We estimated the spread
by fitting the autocorrelation function. We found a width of 8.0 mrad by 7.6 mrad.
Equation (36) relates the size of the speckle in difference coordinates to w−. Please
note our measurement consists of only a single speckle and therefore the results are
rather imprecise. If we disregard this remark and use the average angular spread we
obtain w− = 2λ0/2π7.8 mrad = 34 µm.11 This value is large as compared to the value
w− = 18 µm obtained from Equation (25), but comparable to values of 22 µm and 32 µm
found for the width (FWHM) of the fine structure in the biphoton field by H.D. Lorenzo
Pires.

7.4 Reduction of spatial modes

In our final experiment we used an aperture to spatially truncate the incoming SPDC
beam. The diameter of the aperture is da = 1.5 mm. The aperture is placed in Far Field 1
of Figure 8 and care is taken to center the aperture onto the beam. The aperture reduces
the number of the spatial modes in the SPDC light. The full far field angle of the aperture
is θa = da/f = 7.5 mrad, where f = 250 mm is the focal distance of lens C from Figure
8. The opening angle of the SPDC beam is θSPDC = λ0

πw−
= 14.6 mrad. The truncation is

expected to approximately reduce the number of modes by a factor (θa/θSPDC)2 = 0.26.
We scanned the difference coordinates and expect the structures to be smaller be-

cause the lesser modes disable the system to keep the speckle picture constant over a
large region of the difference coordinate. The results are given in Figure 13. Using a fit
of the spike of the autocorrelation (not shown) we now estimate that the structures are
2.1 mrad by 1.8 mrad. There is a large uncertainty in this estimate because the contrast
in the difference scan was not very high. Equation (36) relates the size of the speckle
in difference coordinates to w−. From the average width of the spike we estimate that

11The extra factor 2 in the denominator compared to Equation (36) represents that the width was esti-
mated in single detector coordinates while the formula is expressed in difference coordinates
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Figure 13: Behavior of the diffuser for spatially truncated SPDC light. On the left are
coincidence counts observed in a difference coordinates scan. On the right are the single
photon counts versus detector positions. Some intensity speckle can be observed.

w− = 2λ0/2π2.0 mrad = 131 µm.12 From Equation (27) and the measured size of the
pump spot wp the implied number of modes is only Nm = 1.6.

In the single photon counts there is now evidence of speckle. The contrast in the
biphoton speckle is C = 1.1. But when the SPDC light is truncated also the single
photon speckle is observed. The contrast defined by Equation (16) in the single photon
speckle is C = 0.46, which is high compared to the contrast C = 0.08 of the speckles
in non-truncated SPDC light. The width of the speckles is 2.4 mrad, large compared to
the average size of speckles we expect from the pump. However this result may be due to
statistical fluctuations in speckle size.

12The extra factor 2 in the denominator represents that the width was estimated in single detector coor-
dinates while the formula is expressed in difference coordinates
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Experiment Figure Parameter
wp ( µm) w− ( µm)

Direct measurement 170 18

Single fixed 1 9 (upper left) 263
Single fixed 2 10 (upper left) 125
Single fixed second detector 1 10 (upper right) 125
Single fixed 3 11 (top) 154
Parallel scan 11 (middle) 131
Parallel scan zoomed 11(bottom) 154
Anti parallel scan 12 (left hand side) 34

Table 3: Summary of the parameters wp and w− of the biphoton field estimated from the
various biphoton speckles and their directly measured values.
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8 Conclusion

We measured both classical intensity speckle and biphoton coincidence speckle. Our
classical measurements concerned the far field and near field for three diffusers. Diffuser
1 with an opening angle of 0.5◦, diffuser 2 also with an opening angle of 0.5◦ and diffuser
3 with an opening angle of 1◦.

Using the average intensity in the far field and plots of the average autocorrelation we
found that none of the diffusers has a circular scattering distribution. All the diffusers are
anisotropic scatterers with an elliptical distribution in the far field.

We found that diffuser 1 is strongly birefringent. There is also a large variation in this
birefringence angle. We found that the orientation of the fast and slow axis are constant
over the surface of the diffuser. Diffuser 3 also exhibits birefringence but to a lesser
degree. There is no measurable variation in this angle. Also for this diffuser the fast and
slow axis are constant over the diffuser.

For the quantum experiment we illuminated diffuser 3 with (a near field image of)
entangled photon pairs generated in spontaneous parametric downcoversion (SPDC). We
scanned one detector, keeping the other detector fixed to find the first biphoton speckle.
We found that if we scanned using the other detector, keeping the first detector fixed, we
obtained nearly the same speckle pattern. The size of the individual speckles depends on
the width of the crystal image on the diffuser.

We linked the first and second detector to make their displacements parallel. Thus
we scanned keeping the distance between the detectors constant and measured a speckle
pattern that was identical to the speckle pattern measured with one fixed scanner at a
double resolution.

Another approach was a scan where the detectors are moving antiparallel. This way
the average position of the detectors was kept constant. This speckle pattern contained
very large structures. The width of these structures was related to average distance be-
tween the photons of an entangled pair.

Reducing the dimensionality of the entanglement results in reappearance of the clas-
sical speckle. It also changes the size of the structures in the scan with antiparallel moving
detectors. This is because there are too few spatial SPDC modes available in relation to
the scattering channels based on the diffuser and pump size.
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9 Further research

Biphoton speckles are a fascinating subject and offer lots of opportunities for further
research. We will mention four.

First we think it is interesting to take a closer look at the dependence on the number
of modes of the SPDC beam and the number of scattering channels of the diffuser.

We can also think of alternative ways to generate biphoton speckles. For can for in-
stance illuminate the diffuser plate with the far field of the SPDC beam. The photon pairs
we offer now have a very different spatial correlation structure. It would be interesting to
see the effects on the biphoton speckle.

A third interesting subject for further research is the information that biphoton speckle
contain about the scattering medium. Are biphoton speckle more informative than the
classical speckle? Is it possible to tell the difference between a random phase plate and a
bulky scattering medium by looking at their biphoton speckle patterns?

The fourth suggestion is based on the discrepancies between theoretical and measured
values of parameters in our research. In the analysis of our results on biphoton speckle we
found large variation in the measured speckle width between the different experiments.
We tentatively attribute these fluctuations to statistical variations in the speckle pattern that
results from the small number of speckles. It would be interesting to test this proposition
using numerical simulation.
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A Intensity distributions

We define Ψi the complex amplitudes at i = 1..N positions. Now we define Ψ = (Ψ1 −
〈Ψ1〉,Ψ2 − 〈Ψ2〉, ...ΨN − 〈ΨN〉). The probability to find a certain configuration Ψ is

P (Ψ) =
1

πN detC
exp

(
−Ψ∗TC−1Ψ

)
(39)

WhereC = 〈Ψ∗TΨ〉, now usingN = 1 and the fact that in one dimension 〈Ψ∗TΨ〉 = 〈I〉
gives

P (Ψ) =
1

π〈I〉
exp

(
−|Ψ1 − 〈Ψ1〉|2

〈I〉

)
(40)

Now we rewrite this complex Gaussian to a real Gaussian distribution using the polar co-
ordinates Ψ = Aeiφ, whereA and φ are real numbers. The Jacobian of this transformation
is

J =

∣∣∣∣∣ ∂Re(Ψ)
∂A

∂Im(Ψ)
∂A

∂Re(Ψ)
∂φ

∂Im(Ψ)
∂φ

∣∣∣∣∣ = | cos(φ)iA cos(φ)− i sin(φ)(−A sin(φ))| = |iA| = A (41)

Now

P (A, φ) = P (Ψ)|J | = A

π〈I〉
exp

(
−A2

〈I〉

)
(42)

Integrating over φ

P (A) =

∫ 2π

0

A

π〈I〉
exp

(
−A2

〈I〉

)
dφ =

2A

〈I〉
exp

(
−A2

〈I〉

)
(43)

Substituting I = A2 yields the final result

P (I) = P (A)
∂A

∂I
= P (A)

1

2A
=

1

〈I〉
exp

(
−I
〈I〉

)
(44)

This is the Rayleigh distribution which is generally true for intensities that are the result
of a random process.
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B Derivation of Gaussian Schell model

This appendix aims to derive the results for the correlation and average intensity functions,
from the most fundamental assumptions in the Gaussian Schell model. For notational ease
we will not explicitly write the factors in front of the exponentials.

The equations are worked out only for the coordinate x rather than x, y. The gen-
eralization to two dimensions is fairly straightforward using the vector notation used in
chapter 2. Assume that the pump beam falls in perpendicular to a phase plate.

We assume that the incoming beam has a Gaussian profile. That is the complex
electric field at position x (perpendicular to the direction of the beam) has magnitude

E in(x) = e
− x2

w2
p . (45)

The diffuser will add a random phase φ(x), dependent on the transverse position x, to the
incident field. Neglecting the average thickness of the plate, the outgoing electric field is

Eout(x) = E in(x)e
iφ(x). (46)

The far field is given by the Fourier transform of the near field:

Ẽout(q) =

∫
eiqxEout(x)dx. (47)

Its average autocorrelation function in the far field is defined by

Γ(1)(q1, q2) =
〈
Ẽout(q1)Ẽ

∗
out(q2)

〉
=

∫
ei(q1x1−q2x2)e

−x2
1+x2

2
w2

p
〈
ei(φ(x1)−φ(x2))

〉
dx1dx2

where 〈·〉 is an ensemble mean over al the possible positions of the diffuser. Now
we assume that the φ(x) has a Gaussian distribution for any value of x. Then also
∆φ(x1, x2) = φ(x1)− φ(x2) has a Gaussian distribution and it holds that

〈exp [i∆φ(x1, x2)]〉 = exp

[〈
−1

2
(∆φ(x1, x2))

2

〉]
. (48)
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Because for a Gaussian distribution for ∆φ with width ∆φ0

〈exp(i∆φ)〉 =

∫ ∞

−∞
exp(i∆φ) exp

(
−∆φ2

∆φ2
0

)
d∆φ (49)

=

∫ ∞

−∞
exp

(
−∆φ2

0

4

)
exp

(
−(∆φ2 − i/2∆φ2

0)

∆φ2
0

)
d∆φ (50)

= exp

(
−∆φ2

0

4

)
(51)

〈
(∆φ2)

〉
=

∫ ∞

−∞
(∆φ2) exp

(
−∆φ2

∆φ2
0

)
d∆φ (52)

= exp

(
−∆φ2

0

4

)
(53)

If the Gaussian assumption does not hold the equation is only true up to the first two terms
of the Taylor expansion.

〈exp [i∆φ(x1, x2)]〉 = 1− 1

2

〈
(∆φ(x1, x2, ζ))

2〉+

1

24

〈
[∆φ(x1, x2)]

4〉+ ...

exp

[〈
−1

2
(∆φ(x1, x2))

2

〉]
= 1− 1

2

〈
(∆φ(x1, x2))

2〉+

1

8

〈
(∆φ(x1, x2))

2〉2 + ...

Using 〈∆φ(x1, x2)
2〉 = (x1 − x2)

2/2w1 we can simplify the expression for the autocor-
relation. This is a crucial assumption in the Gaussian Schell model. We substitute the x1

and x2 variables for their sum and difference.

u1 = x1 + x2

u2 = x1 − x2

The equation for the unscaled autocorrelation becomes

Γ(1)(q1, q2) =
〈
Ẽout(q1)Ẽ

∗
out(q2)

〉
=

∫
e

i
2
(u1(q1−q2)+u2(q1+q2))e

−u2
1+u2

2
2w2

p e
u2
2

2w2
1 du1du2
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This can be factored and computed

Γ(1)(q1, q2) = exp

(
−
w2

p

2
(q1 − q2)

2

)
exp

(
− 1

2
(
w−2

p + w−2
1

) (q1 + q2)
2

)
(54)

The average intensity in the far field is equal to the autocorrelation of this field at q1 =
q2 = q. Filling this in yields〈

Ĩ(q)
〉

= exp
(
−2
(
w−2

p + w−2
1

)−1
q2
)

(55)

The autocorrelation of the electric field is the autocorrelation scaled with the intensity.
We can approximate the geometric mean of two intensities with the intensity in the point
between. This approximation will be correct if there is not too much change in the in-
tensity between two points. Now we find that the autocorrelation solely depends on the
difference between q1 and q2

g(1)(q1, q2) =
Γ(1)(q1, q2)√〈
Ĩ(q1)

〉√〈
Ĩ(q2)

〉
≈ Γ(1)(q1, q2)〈

Ĩ( q1+q2

2
)
〉

= exp

(
−
w2

p

2
(q1 − q2)

2

)

Now we are ready to compute the autocorrelation in intensities Γ(2)(q1, q2) =
〈
Ĩ(q1)Ĩ(q2)

〉
.

From the complex Gaussian moment theorem we find that

g(2) = 1 +
∣∣g(1)

∣∣2 (56)
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Now Γ(2) depends straightforwardly on g(2)

Γ(2)(q1, q2) =
〈
Ĩ(q1)

〉〈
Ĩ(q2)

〉
g(2)

=
〈
Ĩ(q1)

〉〈
Ĩ(q2)

〉1 +

∣∣∣∣∣∣∣∣
Γ(1)(q1, q2)√〈
Ĩ(q1)

〉√〈
Ĩ(q2)

〉
∣∣∣∣∣∣∣∣
2

= exp
(
−2
(
w−2

p + w−2
1

)−1 (
q2
1 + q2

2

))
+

+ exp

(
−
w2

p

2
(q1 − q2)

2

)
exp

(
− 1

2
(
w−2

p + w−2
1

) (q1 + q2)
2

)

= exp

(
− (q1 − q2)

2 − (q1 + q2)
2(

w−2
p + w−2

1

) )[
1 + exp

(
−
(

1 +
w2

p

w2
1

)
(q1 − q2)

2

)]
When the width of the beam is large compared to the structures on the diffuser plate,
wp >> w1 then the formula can be simplified to

Γ(2)(q1, q2) = exp
(
−w2

1 (q1 + q2)
2) [exp

(
−w2

1 (q1 − q2)
2)+ exp

(
−w2

p (q1 − q2)
2)]
(57)

The information in the function is contained by wp and w1 and we loose little by integrat-
ing out the dependence on q1 + q2.

Γ(2)(∆q) =

∫ ∞

−∞
Γ(2)(q1, q2)d(q1 + q2)

= exp
(
−w2

1 (∆q)2)+ exp
(
−w2

p (∆q)2)
Rewriting the equation in ∆q to ∆θ using

∆q =
λ∆q

2π
(58)

yields equation (9) in chapter 2.
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C Computation of the correlation function

The function we like to compute is Γ(2)(q1, q2) =
〈
Ĩ(q1)Ĩ(q2)

〉
. In practice we work

in two dimensions, so evaluating this function directly would have four components
qx1, qx2, qy1, qy2 so computing the covariance in computationally infeasible.

The first simplification we make is to only look at the difference coordinates ∆q.
Second we compute the covariances from single pictures using

Γ̂(2)(∆q) =

∫ ∞

−∞
I(q′ + ∆q/2)I∗(q′ −∆q/2)dq′ (59)

We compute this integral using the following Fourier relations

Γ̂(2)(∆q) =

∫ ∞

−∞
I(q′ + ∆q/2)I∗(q′ −∆q/2)dq′

=

∫ ∞

−∞

∫ ∞

−∞
I(q′ + u)I∗(q′ − u)δ(u−∆q/2)dq′du

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I(q′ + u)I∗(q′ − u)eik(u−∆q/2)dq′dudk

=
1

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
I(x)I∗(y)eik(x−y−∆q)/2dxdydk

=

∫ ∞

−∞
e−ik′∆q

∫ ∞

−∞
eik′x′I(x)dx

∫ ∞

−∞
I∗(y)e−ik′ydydk′

=

∫ ∞

−∞
e−ik′∆q

∣∣∣∣∫ ∞

−∞
eik′x′I(x′)dx

∣∣∣∣2 dk′
The final formula yields a method to compute the autocorrelation function from an

intensity distribution:

1. Compute the Fourier transform of the (two dimensional) intensity distribution.

2. Take the squared absolute value of the (possible complex) Fourier components.

3. Fourier transform the results back to the intensity domain.
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D Optical alignment techniques

D.1 Autocollimation

The first technique used to place objects in the focus of a lens is the autocollimation
method. The object that will be placed in the focus later is replaced with an autocolli-
mation plate. The back of the plate is lit with a normal lamp, the image of the plate is
converged by the lens onto a mirror and then reflected back onto the lens and finally back
onto the backside of autocollimation plate (see Figure 14). The position of the autocolli-
mation plate and the lens can be changed until there is a sharp image on the plate. Then
the distance between the lens and the plate is exactly equal to the focal distance of the
lens. Now we can replace the plate with the object that we want in the focus of the lens.

D.2 USAF plate focussing

If we have the possibility to take pictures of objects that we want in the focus of a lens
system, we can first replace the object with a USAF plate. This plate is especially suited
to make a sharp image. If the image is optimally sharp the USAF plate is in the focus of
the lens and can be replaced with the object.
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Figure 14: Schematic picture of the autocollimation procedure. The autocollimation plate
is a diffuse plate with a periodic structure of holes of which an image can be made. This
is the object in the system of a lens and a mirror. The upper picture shows that this setup
resembles a telescope with two equal lenses. The lower picture shows a perfect image of
the structure will be shown if the distance between the lens and how the plate is exactly
equal to the focal distance of the lens. The distance between the lens and the mirror is not
relevant.
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