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Abstract

In this report we have generated structurally propagation invariant laser beams carrying

non-integer orbital angular momentum (OAM) using Hermite-Laguerre-Gaussian (HLG)

modes. Secondly, calibration techniques have been discussed for beam positional mea-

surements of these laser beams with a quadrant detector (QD). We have demonstrated,

both analytically and experimentally, that the response of the quadrant detector is non-

linear and highly dependent on the orientation of the symmetry-axes of the non-integer

orbital angular momentum beam, as well as the, seperate, Hermite-Laguerre-Gaussian

mode orientation. This mode orientation is an indication of the orbital angular momen-

tum content of the laser beam. From these response profiles of each of the orientations

of the HLG mode we have calculated the calibration constant of and the location in the

beam intensity pattern for which the quadrant detector is most sensitive for measuring

beam displacement. This location, as confirmed by our experiment is typically not in

the beam center.
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Chapter 1

Introduction

Recently there has been a lot of interest in orbital angular momentum (OAM) laser

beams that operate in Laguerre-Gaussian (LG) modes. The Laguerre-Gaussian modes

have a doughnut shaped intensity pattern and carry orbital angular momentum due to

their helical wavefront shape[1, 2]. Everytime we make a round trip about the propaga-

tion axis we gain 2πl phase, with l the azimuthal mode index of the Laguerre-Gaussian

mode, which indicates an integer orbital angular momentum value of l~ per photon.

Great attention has been given to beams carrying integer orbital angular momentum

which is reflected by the range of research connected to these laser beams. From op-

tical tweezers[3, 4] to quantum communication[5, 6] and from stellar detection[7, 8] to

nanometer precision metrology on beam shifts[9].

We can also derive intermediate forms of Laguerre-Gaussian and Hermite-Gaussian (HG)

modes that retain many of the properties of these two families of Gaussian beams. These

modes are called Hermite-Laguerre-Gaussian (HLG) modes and in these intermediate

modes we can speak of non-integer orbital angular momentum[10, 11, 12]. Non-integer

orbital angular momentum means that when we rotate about the propagation axis we

will not gain a phase of 2π times an integer l, but 2π times a non-integer l. These

Hermite-Laguerre-Gaussian modes, due to their non-integer values of their orbital an-

gular momentum, potentially broaden the applicability of orbital angular momentum

beams. This is most insightful when we take the example of applying orbital angular

momentum beams for optical trapping. If we take a Laguerre-Gaussian mode with in-

teger orbital angular momentum l the trapped particle experiences a rotational force

1



Chapter 1. Introduction 2

proportional to l. With Hermite-Laguerre-Gaussian modes we can tune this l continu-

ously and therefore also tune the rotational force continuously.

There are various techniques for creating orbital angular momentum beams of which

we shall mention three widely used methods. The first is the so-called astigmatic π/2-

mode converter[13] which applies a Gouy phase difference between the components of

a Hermite-Gaussian mode to create a well defined Laguerre-Gaussian mode with an

integer orbital angular momentum. The second method is done with a spiral phase

plate[14, 15, 16] and the third method being computer generated holograms[3, 17].

Both the spiral phase plate and the computer generated holograms do not convert an

incoming Gaussian mode into pure Laguerre-Gaussian modes, but rather into a super-

position of Laguerre-Gaussian modes with different radial mode indices. Therefore, we

have chosen, and we will discuss this further in the report, the astigmatic mode con-

verter because it has the advantage that it creates propagationally invariant, and pure,

Laguerre-Gaussian modes, as compared to the other two methods. This method also

allows for tuning the mode converter such that it creates a Hermite-Laguerre-Gaussian

mode carrying non-integer orbital angular momentum[18].

Accurate beam positional measurement is crucial for many of the applications of beams

carrying non-integer orbital angular momentum. A popular and very sensitive device

for beam positional measurement is a quadrant detector (QD). A quadrant detector is

two by two array of photodiodes that measures the total intensity on each of the quad-

rants. Due to the finite number of pixels (only four!) used in a measurement with a

quadrant detector, a sufficient characterisation is required of the intensity pattern of

the beam that is to be measured. The quadrant detector response is non-trivial for

non-integer orbital angular momentum beams and many studies have been carried out

for the fundamental Gaussian mode[19, 20, 21] and recently for beams carrying inte-

ger orbital angular momentum[22]. In this report we will present a general calibration

technique for positional measurements of non-integer orbital angular momentum beams

with a quadrant detector.

The goal of this research is twofold. The first goal is to generate and characterize

the laser beams operating in Hermite-Laguerre-Gaussian modes carrying non-integer
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orbital angular momentum. The second goal is to characterize the quadrant detector

response to the non-integer orbital angular momentum beams. These characterizations

can then be used in calibrating the quadrant detector response to accurately measure

positional shifts for these type of beams.

The topic of generating and characterizing Hermite-Laguerre-Gaussian modes is adressed

in chapter two and the quadrant detector response along with the calibration technique

is adressed in chapter three. Each chapter is structured by the following paragraphs:

theory, method, experimental setup, results and discussion. Chapter four concludes the

report. The appendices give some additional information. Appendix A shows the Mat-

lab codes used to produce the simulations shown in the results. Appendix B is a paper,

that is partly based on the work of this thesis.



Chapter 2

Hermite-Laguerre-Gaussian Mode

Generation and Characterization

2.1 Theory of Higher Order Gaussian modes

2.1.1 Hermite-Gaussian and Laguerre-Gaussian modes

In the paraxial approximation the wave equation, governing the static electromagnetic

field distribution in the resonating laser cavity, takes the following form[23, 24]:

∂2

∂x2
u(x, y, z, ) +

∂2

∂y2
u(x, y, z, )− 2ik

∂

∂z
u(x, y, z, ) = 0 , (2.1)

where k = 2π/λ is the wavenumber and U(x, y, z) = u(x, y, z, ) exp (−ikz) the electric

field distribution. A solution to the paraxial wave equation, also called the fundamental

Gaussian mode, is readily found to be:

uG(x, y, z) =

√
2

π

1

w(z)
e
i(

−k(x2+y2)
2R(z)

+Ψ(z))
e

−(x2+y2)

w(z)2 . (2.2)

This solution represents a propagating wave in the z-direction with a Gaussian intensity

pattern. Its beam parameters are depicted in figure 2.1. It has curved wavefronts of

radius R(z) = (z2 + z2
R)/z and a beam radius, or spot size, w(z)2 = w2

0(1 + z2/z2
R). The

parameter zR = (πw2
0)/λ is the so called Rayleigh range, an indication for the distance

along the propagation axis from the waist to the place where the area of the cross section

4
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is doubled. This means that if we move along the z-axis from the waist with a distance

zR the beam waist increases by a factor of
√

2. Also the radius of curvature changes

from R = ∞ at z = 0 to R ≈ z for z � zR. The Gouy phase Ψ(z) = arctan (z/zR)

indicates the phase shift of π as the beam passes through its waist, in addition to the

normal change in phase as the beam propagates. We now seek a general Gaussian

Figure 2.1: Beam parameters of a Gaussian beam. This figure has been taken from
Ref. [25]

solution of the paraxial wave equation for an arbitrary amplitude distribution in a given

xy-plane. In Cartesian coordinates a complete and orthogonal set of solutions is given

by the Hermite-Gaussian (HG) modes, which can be expressed analytically:

uHGn,m(x, y, z) =
CHGnm

w(z)
e
i(

−k(x2+y2)
2R(z)

+(n+m+1)Ψ(z))
e

−(x2+y2)

w(z)2 Hn(
x
√

2

w(z)
)Hm(

y
√

2

w(z)
) , (2.3)

with n,m mode indices, CHGnm =
√

2/(πn!m!)2−
1
2

(n+m) a normalization constant and

Hn(x) Hermite polynomials. In cylindrical coordinates another complete and orthogonal

set of solutions is given by the Laguerre-Gaussian (LG) modes, which can be expressed

analytically:

uLGn,m(r, φ, z) =
CLGnm
w(z)

(−1)min(n,m)(
r
√

2

w(z)
)|n−m|e

i( −kr2
2R(z)

+(n+m+1)Ψ(z))

·e
−r2
w(z)2 e−i(n−m)φL

|n−m|
min(m,n)(

2r2

w2(z)
) , (2.4)

with n,m mode indices, another normalization constant CLGnm = min(m,n)
√

2/(πn!m!)

and Llp(x) generalized Laguerre polynomials. Note that we have written mode indices

n,m instead of the normal p, l mode-indices (these indices can be related with p =

min(m,n), l = n−m), which is useful in our following discussion of mode conversion. If

we neglect the z-dependent phase factors and take the spot size to be unity, at a given
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xy-plane the distribution of the electric field can be written as:

uHGn,m(x, y) = CHGnm e−(x2+y2)Hn(x
√

2)Hm(y
√

2) , (2.5)

uLGn,m(r, φ) = CLGnme
−r2

(−1)min(n,m)(r
√

2)|n−m|e−i(n−m)φL
|n−m|
min(n,m)(2r

2) . (2.6)

The first few orders of uHGn,m and uLGn,m modes are shown in figure 2.2 and are listed

analytically below:

uHG00 (x, y) =
√

2
π e
−(x2+y2) , uLG00 (r, φ) =

√
2
π e
−r2

,

uHG10 (x, y) =
√

8
π x e

−(x2+y2) , uLG10 (r, φ) = 4√
π

(r3 − r) e−r2
e−iφ ,

uHG01 (x, y) =
√

8
π y e

−(x2+y2) , uLG01 (r, φ) = 4√
π

(r3 − r) e−r2
eiφ ,

uHG11 (x, y) = 8√
π
xy e−(x2+y2) , uLG11 (r, φ) =

√
2
π (2r2 − 1) e−r

2
,

uHG20 (x, y) = 4x2−1√
π
e−(x2+y2) , uLG20 (r, φ) = 8r2

√
π

(r4 − 4r2 + 3 e−r
2
e−2iφ .

Important to note is that both their zero order modes reduce to the fundamental Gaus-

sian mode exp(−x2−y2) and that their intensities and phase distributions do not change

upon propagation. The HG modes are always a Gaussian exponential combined with

some polynomial in x and y of order n+m. The LG modes carry integer orbital angular

momentum (OAM) l = n−m as can be seen by the azimuthal dependent phase exponen-

tial exp(−i(n −m)φ). The phase increases linearly if we rotate about the propagation

axis to a total of 2πl in a full rotation, as illustrated in the third picture of figure 2.4.

(0,0)-mode (1,0)-mode (0,1)-mode (1,1)-mode (2,0)-mode

uHG

uLG

Figure 2.2: Example of the intensity distributions of the lower order HG and LG
(n,m)-modes. The intensity distributions of the HG and LG modes are rectangularly

and cylindrically symmetric respectively.

We can also relate the HG and LG modes analytically and therefore decompose the LG

modes into HG modes and vice versa. This has been shown in Ref. [10, 13] by using
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relations between the Laguerre and Hermite polynomials and in Ref. [11] by operator

algebra. Their results are denoted in the following expression for a decompostion of LG

modes into HG modes:

uLGn,m =
n+m∑

κ=0

iκb(n,m, κ)uHGN−κ,κ , (2.7)

with coefficients

b(n,m, κ) =

√
(n+m− κ)!κ!

2n+mn!m!
· 1

κ!

dκ

dtκ
[(1− t)n(1 + t)m]t=0 . (2.8)

The factor iκ indicates a π/2 phase difference between successive components of the

decomposition of a LG mode into a HG mode. Important to note is that, while it

is trivial that any HG mode with arbitrary principal axes can be projected onto, or

decomposed into, two HG modes with orthogonal principal axes, a diagonal HG mode

(i.e. HG modes whose principal axes are rotated by 45◦ with respect to the orthogonal

reference principal axes), can be decomposed into the exact same set as the LG mode,

but with the successive components in phase. This is seen in the resemblance between

equation (2.7) and the following equation:

uHGn,m(
x+ y√

2
,
x− y√

2
) =

n+m∑

κ=0

b(n,m, κ)uHGN−κ,κ . (2.9)

This gives us direct means to convert a HG mode into a LG mode by giving the projection

onto the y-axis of a diagonal mode a phase shift of π/2 compared to its projection onto

the x-axis, as will be discussed in the next paragraph.

2.1.2 Astigmatic Mode Converters

In order to convert a HG mode into a LG mode we need to introduce a difference in

the phase between the two orthogonal components of a diagonal HG mode. Such a

difference in phase between two orthogonal components can be achieved by the Gouy

phase, i.e. the phase a Gaussian beam gains when going through the beam waist. In

an astigmatic beam there is a difference between the Rayleigh ranges zRx and zRy of

the orthogonal components and thus also a difference between the components in the

total Gouy phase. If we introduce astigmatism in a confined region by means of two



Chapter 2. Hermite-Laguerre-Gaussian Mode Generation and Characterization 8

cylindrical lenses positioned a distance d apart, such that the two transverse radii of the

astigmatic beam are equal to the radius of curvature of the lens, there will be a total

phase difference ψ between the two components due to the Gouy phase. See also figure

2.3. For a pure conversion between HG and LG modes we set ψ = π/2. This is achieved

if the distance between the cylindrical lenses is:

d = f
√

2 , (2.10)

with f the focal length of the cylindrical lenses, and the input beam has a Rayleigh

range:

zR = f +
d

2
= (1 +

1

2

√
2)f . (2.11)

A diagonal HG mode traversing a π/2-mode converter receives a factor iκ between the

succesive components of equation (2.7) and is thus converted into a LG mode. If a LG

mode traverses through the same configuration the output is of course by symmetry a

conversion into a diagonal HG mode.

Figure 2.3: Modematched cylindrical lenses for ψ = π/2. The dashed lines indicate
the unfocused transverse direction and the solid lines indicate the focused transverse

direction. This figure is taken from Ref. [1]

2.1.3 Hermite-Laguerre-Gaussian modes

For a HG mode with principle axes rotated by an arbitrary angle α with respect to

the π/2-mode converter the output beam is neither in a LG nor in a HG mode but

can be described as an analytical interpolation between these modes. We call these

modes Hermite-Laguerre-Gaussian (HLG) modes. The HLG modes as a function of α
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are described analytically as1:

uHLGn,m (x, y|α) = CHLGnm e−(x2+y2)
n+m∑

κ=0

iκ cosn−κ α sinm−κ α

·P (n−κ,m−κ)
κ (− cos 2α)Hn+m−κ(

√
2x)Hκ(

√
2y) , (2.12)

where P
(β1,β2)
κ (x) are Jacobi polynomials and CHLGnm =

√
2/(πn!m!)2−

1
2

(n+m) another

normalization constant. Note that the notation used is the same as for the introduction

of Hermite-Laguerre-Gaussian modes in Ref. [10]. This result reduces to HG modes for

α = N · 90◦ and LG modes for α = 45◦ + N · 90◦, where N is an integer, as expected.

Intermediate HLG modes retain many of the features of HG and LG modes. Because

they are an analytical interpolation between HG and LG modes they remain structurally

propagational invariant, i.e. their phase and intensity distribution do not change upon

propagation. All modes have a Gaussian component exp(−x2−y2) and some polynomial

in x, y of degree m+ n. The first order HLG modes described analytically as:

uHLG0,0 (x, y|α) = e−x
2−y2

,

uHLG1,0 (x, y|α) = e−x
2−y2

2
√

2(x cosα+ iy sinα) , (2.13)

uHLG0,1 (x, y|α) = e−x
2−y2

2
√

2(x sinα− iy cosα) ,

uHLG1,1 (x, y|α) = e−x
2−y2

((4x2 + 4y2 − 2) sin 2α− 8ixy cos 2α) ,

uHLG2,0 (x, y|α) = e−x
2−y2

(8(x cosα+ iy sinα)2 − 2 cos 2α) .

It follows that for a fixed α the HLG modes also constitute a complete orthogonal set

of solutions for the paraxial wave equation. An important feature of the HLG modes is

that the OAM takes values of:

l = (n−m) sin(2α) , (2.14)

and that the phase shift is non-linear in the azimuthal direction. This can be visualized

by looking at the phase distributions of the first order HG mode (phase of 0 and π in

the respective lobes, with a phasestep between the lobes) and the first order LG mode

(linear in the azimuthal angle φ). Consider now a HLG mode with α = 15◦. The phase

profile still very much looks like a HG mode but the phase step has become vague and

1We take, as previously, w(z) = 1 and leave out the z-dependent phase terms
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thus non-linear in the azimuthal direction as shown in figure 2.4. As we increase α to

45◦ the phase step slowly fades to a constant phase shift.

(1, 0|0◦)-mode (1, 0|15◦)-mode (1, 0|45◦)-mode

π 0 --> π 0

π+ε

π-ε

-ε

ε

-->
1½π

π 0

½π

Figure 2.4: Slowly dissolving phase step when we change a HLG mode from a HG
mode to a LG mode. The distribution is intensity and the numbers indicate the phase.

2.2 Method

The goal of this part of the research is to generate and characterize the HLG modes

carrying non-integer OAM. The generation method will be, as described in the introduc-

tion, the conversion of HG modes using an astigmatic mode converter. The orientation

α of the HG mode will determine the mode orientation of the HLG mode. Our laser

produces HG modes up to order (n,m) = (6, 6), but we force our laser to operate in a

low order excited HG mode by inserting a thin wire perpendicular to the propagation

axis, and subsequently blocking out the higher order terms by also inserting an aperture

within the laser cavity. The wire forces the intensity to be zero at the position of the wire

and therefore the laser cavity will resonate in the chosen HG mode. We can rotate the

wire within the laser cavity and as such choose the orientation of our HG mode. Because

the axes of our astigmatic mode converter are fixed in our setup the symmetry axes of

the output HLG mode are also fixed; this highly simplifies the method for the quadrant

detector calibration discussed in chapter 3. Our setup to generate HLG modes is de-

picted in figure 2.5. We have characterized the HLG modes by measuring their intensity

profiles with a simple CCD device and by measuring their phase profiles by interfering a

reference beam with our HLG mode. Such an interference pattern for LG modes shows

the phase dislocation features as a pitchfork structure. For HG modes the interference

pattern shows separated shifted lines as a result of the phase step between the lobes.

In the case of HLG intermediate modes this pitchfork structure gradually dissolves into
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A

D

B

C

open cavity

He-Ne laser

α

HG
1,0

wire

HLG
1,0

π/2 - mode converter

mode matching

lens

collimating lens

y
x

Figure 2.5: Experimental setup of HLG beam generation. A HG (1,0)-mode is gener-
ated in the open laser cavity with a angular tunable wire. The beam is guided through
a mode matching lens, cylindrical lenses and a collimating lens to produce a HLG

(1,0)-mode. The axes of the cylindrical lenses are fixed.

the shifted lines if we gradually change from LG to HG modes. We will limit our ex-

perimental work to the HLG (1,0)- and (2,0)-modes and in our measurements we have

varied the angle α of the wire and thus the orientation of the HG mode between 0◦ and

90◦. These orientations contain all the various possibilities of HLG modes because of the

symmetrical properties of the HG modes. The only difference between a HG mode that

is rotated by an angle of 180◦ is that the phase difference between the lobes is reversed.

This translates to negative l-values if we create an HLG mode with α between 180◦ and

360◦. Furthermore, in the range we have chosen the HLG mode is identical to the HLG

mode in the range of 180◦ to 90◦.

2.3 Intensity characterization

2.3.1 Experimental Setup

A HeNe gain tube operating at a wavelength of λ = 632.8nm has been used through-

out the experiments. The setup described in this paragraph is also shown in figure

2.6. The gain tube is placed between two spherical mirrors with radius of curvature

R1 = 600mm and R2 = 750mm with a distance of d1 = 830mm between the mirrors.

These parameters give a calculated beam waist of w0 = 241µm. To force the gain tube

to operate at a single higher order HG mode we use an aperture in combination with
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a thin, 200µm diameter wire. We choose the location of the aperture at 360mm away

from mirror R2, such that we have control over blocking the higher order modes. We

choose the location of the wire at 160mm away from mirror R2, which determines the

required thickness of the wire. Our setup produces a beam in a HG mode with a total

power of approximately 1mW in the case of a (1,0)-mode and 0.6mW in the case of a

(2,0)-mode. Next in our setup is the mode converter, consisting of a mode matching lens

laser cavityf1f2f2

f3

R2 R1
M1

M2
M3

M4

wire aperture

beam pro�iler

470160

750140

450

130

200

80150

620

150

mode converter

Figure 2.6: Experimental setup of HLG beam generation, topview. The figure shows
the optical elements on the table as well as the distances between them in milimeters.
The laser cavity is between the spherical mirrors R1 and R2. M1 to M4 are dielectric
mirrors to guide the beam. From the laser cavity the beam is guided, by means of
mirrors M1 and M2, through the mode matching lens with focal length f1 and the
cylindrical lenses with focal length f2 as the mode converter. Further down the path is
the collimating lens with focal length f3 and finally at the end of the laser path is the

CCD device, to characterize the beam profile.

of focal length f1 = 400mm and two cylindrical lenses of focal length f2 = 100mm. The

cylindrical lenses introduce the Gouy phase shift between the x and y component, and

to obtain a π/2 Gouy phase shift, the position of the middle of these lenses with respect

to the mode matching lens is d3 = 750mm. The distances we have used for the mode

matching lens is d2 = 300mm with respect to the laser cavity, and the distances between

the two cylindrical lenses is according to equation (2.10) equal to: d4 = f2

√
2 = 140mm.

To obtain the desired collimated beam for further measurement we implement a col-

limating lens, with focal length f3 = 500mm at d5 = 600mm away from the cylindrical

lenses, producing a beam diameter of w2 = 545µm. The obtained Rayleigh range of the

collimated beam is: zR,2 = π
λw

2
2 = 1.5m.
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2.3.2 Results

We have measured the collimated HLG modes that are produced by the setup described

in the previous paragraph with an CCD device, in particular with the Spiricon beam

profiler, for the two lowest order excited HLG modes: the (1,0)-mode and the (2,0)-

mode. The rotation angle α of the wire has been varied between 0◦ and 90◦ with steps

of 15◦. The analytical expression (2.13) of the HLG modes furthermore provides sim-

ulations2 of the profile measurement. The results are displayed in figure 2.8. The four

rows correspond to the (1,0)-mode beam profile measurement, (1,0)-mode beam profile

simulation, the (2,0)-mode beam profile measurement and (2,0)-mode beam profile sim-

ulation, respectively.

∼ 0zR ∼ 1zR ∼ 2zR

Figure 2.7: Mode profiles at several Rayleigh distances zR, representing the near-

and far-field planes for the outgoing uHLG
1,0 (x, y|30◦) mode.

If we compare with figure 2.2 we see that for α = 0 we obtain a HG (1,0)-mode, for

α = 90◦ we obtain a HG (0,1)-mode and for α = 45◦ we obtain a LG (1,0)-mode. If

we increase α from 0◦ to 90◦ the intermediate modes gradually change from the HG

mode to the LG mode and back. The principal axes of the HLG mode remain fixed but

rotate by an angle of 90◦ if we pass through α = 45◦, this has as a consequence that

there are two possible orthogonal orientions of the HLG beams with the same l-values.

The generated beams are structurally stable on propagation as shown in figure 2.7 apart

from slight astigmatism due to imperfect alignment.

2For the Matlabcodes to create the simulations we refer to Appendix A.
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α = 0◦ α = 15◦ α = 30◦ α = 45◦ α = 60◦ α = 75◦ α = 90◦

l = 0 l = 0.5 l = 0.86 l = 1 l = 0.86 l = 0.5 l = 0

l = 0 l = 1 l = 1.73 l = 2 l = 1.73 l = 1 l = 0

Figure 2.8: Results of the beam profile generation. The seven columns correspond to
α = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, carrying OAM values of l = 0, 0.5, 0.86, 1, 0.86, 0.5, 0
for the (1,0)-mode and l = 0, 1, 1.73, 2, 1.73, 1, 0 for the (2,0)-mode. The four rows cor-
respond to the (1,0)-mode beam profile measurement, (1,0)-mode beam profile simula-
tion, the (2,0)-mode beam profile measurement and (2,0)-mode beam profile simulation,

respectively.

2.4 Phase characterization

2.4.1 Experimental Setup

To demonstrate that the phase distribution of our generated beams have the phase

distribution of a HLG mode, we interfere our produced beam with a reference beam

to obtain an indirect measurement of the phase profile. The setup is shown in figure

2.9. We have split the HG beam with the beam splitter S1, one arm passes through

the mode converter and the collimating lens and forms the beam in the HLG mode as

in the previous setup. The other arm functions as the reference beam and is created

by diverging the output HG mode by means of a diverging lens with a focal length

f4 = 200mm and by tuning the mirrors such that we create a reference beam with only

one of the lobes of the beam in HG mode. These two beams are combined by another

beam splitter to obtain the interference pattern. To match the intensity of the two
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beams, we insert a neutral density filter in the branch of the beam in HLG mode, such

that we can obtain a high contrast interference pattern.

f1f2f2

f3

f4
R2 R1

S1

S2

M1

M2
M3

M4
M5

M6

M7

M8

�ilter

wire aperture

M9

beam pro�iler

470

200

160

750140

70

80

180

740

450

130

650
530

500

240

1000

1420

200

80150

laser cavity

200

Figure 2.9: Experimental setup, viewed from the top, of the interferometer measure-
ment. Part of this setup is the same as in the setup for the intensity characterization.
Between M1 and M2 there is a beam splitter S1 that splits the beam into the reference
beam arm and into the HLG mode arm. The reference beam is further guided through
diverging lens with focal length f4 and to the second beam splitter S2 by means of the
mirrors M7 to M9. Between M4 and M5 is a filter to make the beam in HLG mode
weaker in intensity and matching the intensity of the reference beam. After M6 for the
one arm and M9 for the other is the second beam splitter S2 to recombine both beams
and at the end of the laser path is again the CCD device to characterize the created

interference pattern.

2.4.2 Results

The calculated phase profile, is shown in the third and sixth row of figure 2.10. We

can see in that figure that for the HG modes there is a phasestep of π between the

successive lobes and for LG modes there is a continous phase shift in the azimuthal

direction that amounts to a total of l = 2π(n − m). In the center of the LG mode

there is a vortex where the phase is undefined. The HLG modes have similar features.

In our interferometer setup we see a grating due to the tilted plane of the reference

wave with respect to the beam in HLG mode whWich causes a small phase shift in the

projection of the tilted plane onto the plane of the HLG mode. Additionally, a pitchfork

structure that branches out to |n−m| arms can be seen for a LG mode, due to the phase

dislocation in the center. For HG modes, the respective lobes are shifted by a phase of

π which can be seen as a shift in the grating lines. We have measured the interference

pattern for the two lowest excited HLG modes: the (1, 0|α)-mode and the (2, 0|α)-mode.
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The analytical description of the HLG modes as in equation (2.12), superimposed with

a planar beam under a certain tilt furthermore provide simulations3. The results are

displayed in figure 2.10.

α = 0◦ α = 15◦ α = 30◦ α = 45◦ α = 60◦ α = 75◦ α = 90◦

l = 0 l = 0.5 l = 0.86 l = 1 l = 0.86 l = 0.5 l = 0

l = 0 l = 1 l = 1.73 l = 2 l = 1.73 l = 1 l = 0

Figure 2.10: Results of the interferometer measurements. White and black
patches indicate a phase of 2π and 0. The seven columns correspond to α =
0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, carrying OAM values of l = 0, 0.5, 0.86, 1, 0.86, 0.5, 0 for
the (1,0)-mode and l = 0, 1, 1.73, 2, 1.73, 1, 0 for the (2,0)-mode. The six rows corre-
spond to the (1,0)-mode interference measurement, (1,0)-mode interference simulation,
(1,0)-mode phase profile simulation, (2,0)-mode interference measurement, (2,0)-mode

interference simulation and (2,0)-mode phase profile simulation, respectively.

3For the Matlabcodes to create the simulations we refer to Appendix A.
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2.5 Discussion

The results of the intensity characterization (section 2.3) are virtually identical to their

simulated counterparts, that are derived from the analytical solutions, apart from overall

scaling. This has been shown in figure 2.8. This is a good indication that our generated

beams are indeed HLG modes. Furthermore the results from the phase characterization

(section 2.4) also adds up to HLG modes. The pitchfork structure, indicating OAM,

is visible in the middle column and first and fourth row of figure 2.10. Although the

pitchfork is upside down, when compared to the simulations, the correct number of

branches of the pitchfork are visible. The pitchfork is upside down because the tilt of the

planar reference beam with respect to the beam in HLG mode, is orientated in a different

direction than the tilt in the simulations. If we look at the intermediate HLG-modes

the pitchfork structure gradually dissolves to a shift, as expected in the simulations.

By characterizing the intensity profile and characterizing the phase profile and verifying

these are identical to the profiles predicted by the simulations, we have concluded that

we have indeed generated the HLG modes that are described with equation (2.12). Not

only do these beams carry non-integer OAM, they are also propagationally stable (figure

2.7). In the generated beams the principle axes of the HLG modes remain fixed when

we vary the non-integer OAM, these axes thus also overlap with the quadrant detector

measurement axes, which greatly simplifies the general calibration technique, that will

be discussed in chapter 3. In our setup the OAM content of the beam in HLG mode can

be tuned continuously with the mode orientation angle α, in principle to an arbitrary

value l~ per photon. An interesting result is that we can create beams that carry the

same OAM l per photon but differ in both their phase and intensity distributions as

illustrated for the intensity in figure 2.11 for l = 1.

(1, 0|45◦) (2, 0|15◦) (2, 0|75◦) (3, 0|9.7◦) (3, 0|80.3◦)

Figure 2.11: Example of simulated intensity distributions of different HLG-modes
carrying the same OAM. (l = 1)



Chapter 3

Positional Measurements Using

Quadrant Detectors

3.1 Theory of Quadrant Qetector Response

3.1.1 Quadrant Detector Response

A quadrant detector (QD) is a beam positional measurement device consisting of four

photodiodes sorted in an 2x2 array. These four quadrants are equally spaced and are

seperated by significantly small gaps of typically less than 0.05% of the active area, as

illustrated in figure 3.1. Each of the photodiodes carry a signal current IA, IB, IC , ID,

which is an indication of the total intensity of the impinging beam on the quadrant.

The outputs Ix, Iy, IΣ of the QD are a sum of these signal currents:

Ix = IA − IB + IC − ID ,

Iy = IA + IB − IC − ID , (3.1)

IΣ = IA + IB + IC + ID .

18
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Analytically, we can write the normalized position-current relation for shifts in the x-

direction as:

Ix
IΣ

=
IA − IB + IC − ID
IA + IB + IC + ID

=

∫ x
−a+x

∫ a+y
−a+y |U(x, y)|2 dydx−

∫ a+x
x

∫ a+y
−a+y |U(x, y)|2 dydx

∫ a+x
−a+x

∫ a+y
−a+y |U(x, y)|2 dydx

,

(3.2)

where a2 is the total surface area of the quadrant detector and |U(x, y)|2 the intensity of

the impinging beam. The center of the beam is in the zero of the coordinate system and

the QD is at position (x,y). The integration limits and coordinate system are depicted in

Figure 3.1, part (B). The same relation can be found for the y-position by substituting

the index x with y. If we confine our beam to well within the quadrant detector this

generalizes to:

Ix
IΣ

=

∫ x
−∞

∫∞
−∞ |U(x, y)|2 dydx−

∫∞
x

∫∞
−∞ |U(x, y)|2 dydx

∫∞
−∞

∫∞
−∞ |U(x, y)|2 dydx

. (3.3)

A B

C D

(a)

A B

C D

x-axis

y
-a
x
is

-a+x a+x

-a+y

a+y

(b)

Figure 3.1: A QD detecting a LG beam profile. Part (A) sketches the detector
with quadrants A,B,C and D. Part (B) shows the reference frame of the integration

corresponding to the displaced QD of equation (3.2).

This is equal to the assumption that the intensity is zero outside the quadrant detector.

In solving this integral we take an example of a beam in HLG (1,0)-mode, mathematically

expressed in equation (2.13). Solutions for higher order modes can be readily found by
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the same method. The solution of the relevant integral is:

∫ b

a

∫ ∞

−∞

∣∣UHLG1,0 (x, y|α)
∣∣2 dydx =

∫ b

a

∫ ∞

−∞

∣∣∣2
√

2e−x
2−y2

(x cosα+ iy sinα)
∣∣∣
2
dydx

=

∫ b

a

∫ ∞

−∞
8e−2(x2+y2) (x2 cos2 α+ y2 sin2 α

)
dydx

=
[π

2
erf

(√
2x
)
−
√

2πxe−2x2
cos2 α

]b
a
. (3.4)

Combining equations (3.4) and (3.2) we find the following analytical expression for the

normalized position-current relation:

Ix
IΣ

= erf
(√

2x
)
−
√

8

π
xe−2x2

cos2 α . (3.5)

As expected this is a generally non-linear function in x and of α, the HLG mode orien-

tation. The function converges to 1 and −1 at x = ∞ and x = −∞ respectively. The

function is plotted in the next paragraph in Figure 3.2.

3.1.2 Rotation of symmetry axes

Generally, a HLG mode is not cylindrically symmetric. Although in chapter 2 we have

generated the HLG modes such that their symmetry axes remain fixed, it remains in-

teresting to investigate the QD response of arbitrarily orientated symmetry axes. If we

rotate the symmetry axes of the HLG mode by θ, which is equal to a change of variables

in the Cartesian coordinate system:


x
y


 =


cos θ − sin θ

sin θ cos θ




x
′

y′


 , (3.6)

the rotated analytical expression for the HLG mode becomes:

uHLG1,0 (x, y|α, θ) = 2
√

2e−x
2−y2

(cosα(x cos θ − y sin θ) + i sinα(x sin θ + y cos θ)) . (3.7)

Note that we have introduced two notations for two different angles of orientation. The

mode orientation α indicates the type of HLG mode, which determines the intensity

distribution and OAM value. The angle θ is the angle which the symmetry axes of
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the HLG mode make with respect to the x-axis. Using the method of the previous

paragraph we found the following normalized position-current relation for arbitrarily

orientated HLG modes:

Ix
IΣ

= erf
(√

2x
)
−
√

8

π
xe−2x2

χ(α, θ) , (3.8)

where χ(α, θ) = cos2 α cos2 θ + sin2 α sin2 θ. This parameter χ(α, θ) becomes equal to

1/2 when α is set to 45◦, which corresponds to the cylindrical symmetry of the LG

mode. Interestingly, χ(α, θ) also becomes equal to 1/2 when θ is set to 45◦, this is due

to the rectangular symmetry of the HLG mode. Of course, when θ is set to 0◦, equation

(3.8) reduces to equation (3.6). Figure 3.2 depicts equation (3.8) for a few settings of α

and θ.
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Figure 3.2: This figure plots equation (3.8) for a few settings of α and θ. Part (A)
and (B) show plots of θ = 0◦ and θ = 30◦ respectively, with α = 0◦, 30◦, 45◦, 90◦. Part

(C) shows plots of α = 0◦ and θ = 0◦, 30◦, 45◦.

3.1.3 Linearity and Calibration Constant

To measure a small displacement 4x� w with a quadrant detector, the signal obtained

from the quadrant detector has to be normalized to the slope of the position-current

relation. For there to be a well defined slope it is neccessary to measure in a nearly linear

region of the position-current relation. The highest precision for a beam positional mea-

surement will be attained in a region of constant slope (linear region), and the highest

sensitivity will be attained for the region with the highest slope. We call the slope of

the position-current relation at a point of constant slope the calibration constant K.

For the analytical solution of equation (3.8) there are no regions of constant slope,
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only a few isolated locations, where the second derivative of the position-current rela-

tion is zero, for which we have calculated the calibration constant. By means of the

zeroth order Taylor polynomial of the slope-function around its extreme values we can

we can find the maximum error in the calibration constants for displacements near the

isolated values of constant slope. This error is proportional to the second derivative of

the position-current relation. The first two derivatives of the position-current relation

are expressed analytically as:

(
Ix
IΣ

)′
(x) = 2

√
2

π
e−2x2

(1− (1− 4x2)χ(α, θ)) , (3.9)

(
Ix
IΣ

)′′
(x) = 8

√
2

π
e−2x2

(−x+ (3x− 4x3)χ(α, θ)) . (3.10)
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Figure 3.3: In this figure the calibration constant K is depicted as a function of χ
(blue and green), for the solutions where K is not in the beam center the normalized

location of K is also plotted (red).

The calibration constant K is now given by the extreme values of
(
Ix
IΣ

)′
. Note that K is

dimensionless if we normalize the x-values to the beamwaist. The error of K at locations

displaced from the position of K is given by the following Taylor approximation:

ζ(x) ≥
∣∣∣∣x
(
Ix
IΣ

)′′
(c)

∣∣∣∣ , (3.11)
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with c the location of calibration constant and x the positive, or negative, distance with

respect to c. The analytical solutions for the extreme values are:

x = 0 K =

√
8

π
(1− χ) , (3.12)

and for real values of
√

3− 1
χ , or χ ≥ 1

3 another set of solutions appear:

x = ±1

2

√
3− 1

χ
K = 4

√
2

π
e
− 1

2
(3− 1

χ
)
χ . (3.13)

These functions x(χ) and K(χ) have been plotted in figure 3.3. The calibration constant

K and its position is also listed for various settings of α and θ in table 3.1. Note that

for θ = 45◦ or α = 45◦ the response and, thus, the calibration constant is the same for

every mode orientation.

α
θ = 0◦ θ = 30◦ θ = 45◦

x K x K x K

0◦
0 0 0 0.3989 0 0.7979

0.7071 1.1741 0.6455 1.0403 0.5 0.9679

15◦
0 0.1069 0 0.4524 0 0.7979

0.6942 1.1355 0.6333 1.0253 0.5 0.9679

30◦
0 0.3989 0 0.5946 0 0.7979

0.6455 1.040 0.5916 0.9905 0.5 0.9679

45◦
0 0.7979 0 0.7979 0 0.7979

0.5 0.9679 0.5 0.9679 0.5 0.9679

60◦ 0 1.1968 0 0.9974
0 0.7979

0.5 0.9679

75◦ 0 1.4889 0 1.1434
0 0.7979

0.5 0.9679

90◦ 0 1.5958 0 1.1968
0 0.7979

0.5 0.9679

Table 3.1: The calibration constant calculated with equation (3.12) and (3.13) for
various settings of α and θ.

3.2 Method

As mentioned in the introduction, a full characterization of the beam profile is required

to calibrate the QD for beam positional measurement, this has been the work of chapter

2. The goal of this part of the research is to characterize the position-current relation and

to find the calibration constant and the linear area of the position-current relation (as
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described in the previous section) for the lowest order HLG (1,0)-mode. The generation

method for the beam in HLG mode is equal to the generation method in chapter 2. We

have measured the position-current relation of the HLG (1,0)-mode for various settings

of α, the mode orientation, and θ, the orientation of its symmetry axes, by placing the

QD on a piezo-controlled translation stage and shifting the platform in the x-direction.

The device used to shift the platform is the Newport ESP300[26], controlled by a custom-

made LabView program. The angle θ of the symmetry axes has been rotated, simply by

rotating the quadrant detector itself. These measurements give response profiles of the

beam in HLG mode, for which we can calculate the location and value of the calibration

constant.

3.3 Experimental setup

For the experiment we have used two different QDs with different size and gain char-

acteristics to compare and understand the effect of different size and gains of the QD

in measuring beam position. The Newport QD model 2901[27], has 16 different gain

settings listed in table 3.2 and an active area of 3x3 mm. The Newport QD model

2921[28], has only 5 different gain settings listed in table 3.3 and an active area of 10x10

mm. Both QD have three outputs, namely the X, Y and SUM output. For each different

gain settings, we obtain different output voltages, due to their different conversion gain

factor as listed in the tables. From now on we will refer to these QDs specifically as:

model 2901 and model 2921.

To characterize the QD response to the beam in HLG (1,0)-mode we shift the transla-

tion stage in the x-direction and measure the response of the X, Y and SUM outputs

of the QD with multimeters, respectively the Keithley 197, Fluke 175 and HP34401a

multimeters. The stage is shifted from −1mm to +1mm, with steps of 50µm, with

respect to the beam center, such that the beam with beam waist w0 = 545µm is well

confined within the left two quadrants and the right two quadrants at the endpoints of

the measurement. By using neutral density filters we have kept the power of the beam

such that the output of the QD was as near as possible to the upper limit of the SUM

output. In this manner we have measured the various combinations of gain settings,

α and θ to study the QD response profile of a beam in HLG (1,0)-mode. The setup
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Gainsetting Conversion Gain Conversion Gain Conversion Gain Conversion Gain
(X,Y output) (SUM output) (X,Y output) (SUM output)
(λ = 900nm) (λ = 900nm) (λ = 632.8nm) (λ = 632.8nm)

30µW (10′) 1000000V/W 100000V/W 800000V/W 80000V/W
30µW (10) 1000000V/W 100000V/W 800000V/W 80000V/W
30µW (3) 300000V/W 100000V/W 240000V/W 80000V/W
30µW (1) 100000V/W 100000V/W 80000V/W 80000V/W

300µW (10′) 100000V/W 10000V/W 80000V/W 8000V/W
300µW (10) 100000V/W 10000V/W 80000V/W 8000V/W
300µW (3) 30000V/W 10000V/W 24000V/W 8000V/W
300µW (1) 10000V/W 10000V/W 8000V/W 8000V/W
3mW (10′) 10000V/W 1000V/W 8000V/W 800V/W
3mW (10) 10000V/W 1000V/W 8000V/W 800V/W
3mW (3) 3000V/W 1000V/W 2400V/W 800V/W
3mW (1) 1000V/W 1000V/W 800V/W 800V/W

30mW (10′) 1000V/W 100V/W 800V/W 80V/W
30mW (10) 1000V/W 100V/W 800V/W 80V/W
30mW (3) 300V/W 100V/W 240V/W 80V/W
30mW (1) 100V/W 100V/W 80V/W 80V/W

Table 3.2: QD model 2901 gain settings. For this model there is a difference between
the X,Y and SUM output in the conversion gain factor. The responsivity at the oper-
ating wavelength is lower than the listed values in the manual[28] by a factor of 4

5 (this
factor is also taken from the manual).

Gainsetting Conversion Gain Conversion Gain Sum Range
(λ = 900nm) (λ = 632.8nm) (λ = 632.8nm)

50µW 100000V/W 66667V/W 0-3 V
150µW 33300V/W 20000V/W 0-3 V
500µW 10000V/W 6667V/W 0-3 V
1.5mW 3333V/W 2000V/W 0-3 V
5mW 1000V/W 667V/W 0-3 V

Table 3.3: QD model 2921 gain settings. For this model there is no difference between
the X,Y and SUM output. The responsivity at the operating wavelength is lower than
the listed values in the manual[28] by a factor of 2

3 (this factor is also taken from the
manual).

depicted in figure 3.4 is almost identical to the setup of the previous chapter in figure

2.6.

3.4 Results

3.4.1 Position-current relation

The measurements described in the previous section for the (1,0)-mode HLG beam

have been plotted, together with the simulations provided by the analytical solution of

equation (3.8) in figure 3.5 and in figure 3.6. The former compares the response for the
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mode converter
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Figure 3.4: Experimental setup of QD response measurement. The setup is identical
to the setup in Chapter 3.1, but instead of a CCD there is a QD place on a motion
controlled platform. Optionally, we use a neutral density filter to prevent saturation of

the detector.

two different QD and their gain settings, and the latter compares the QD response for

various settings of α and θ. There are three data plots that do not exactly follow the

simulation, due to the low intensity of the laserbeam and background room illumination.

These are the measurements of model 2901 at gain setting 30µW (1) and of model 2921

at gain setting 50µW and at gain setting 150µW .
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Figure 3.5: QD response results for a HLG (1,0)-mode. These figures show the

response intensity Ix
IΣ

plotted against the displacement normalized to the beam waist.
In this figure the two models and their gain settings are compared. The solid lines

represent simulations and the dots represent measurements in all figures.

The response is identical for either α = 0◦, θ = 30◦ and α = 30◦, θ = 0◦ which can be

seen in equation (3.8), and also when we compare the blue line in part (B) of figure 3.6
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Figure 3.6: QD response results of model 2901 on setting 300µW (3) for a HLG (1,0)-
mode. These figures show the response intensity Ix/IΣ plotted against the displacement
normalized to the beamwaist and comparing different settings of α and θ. The solid

lines represent simulations and the dots represent measurements in all figures.

with the green line in part (D) of the same figure. There is also only one simulation

possible for θ = 45◦, illustrated in part (C) of said figure, meaning that the response for

all mode orientations of the HLG (1,0)-mode are identical for θ = 45◦.

3.4.2 Calibration Constant

To recall: the calibration constant is the value of the slope of the position-current rela-

tion, at a position of constant slope. We have calculated the position and values of the

calibration constant for the HLG (1,0)-mode with equations (3.12) and (3.13). These

calculated values will serve as simulations. The calculated position will be taken as the

position of the measured calibration constant. The measured calibration constant will
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be determined (on its calculated position) by central differentiation of the measured

datapoints. The results are illustrated in figure 3.7 and summarized in figure 3.8.
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Figure 3.7: This figure plots equation (3.12) and (3.13) for a few settings of α and
θ. Part (A),(B) and (C) show plots of θ = 0◦, θ = 30◦ and θ = 45◦ respectively. Dots

indicate measured values and solid lines indicate calculations.

Each subfigure in figure 3.7 contains three datasets (dots) and simulations (solid lines),

and they plot the calibration constant against the mode orientation α. One dataset for

the centered location and two dataset for the two locations off the center. Note that

the simulation for θ = 45◦ predicts a constant calibration factor, which is not entirely

obtained in the measurement: The slope is nearly constant, but is lower than predicted.

Figure 3.8 summarizes all datasets into one figure, where the calibration constant is

plotted against the parameter χ(α, θ) from section 3.1.3. The line of datapoints visible

at χ = 0.5 is due to the measurement at θ = 45◦.
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Figure 3.8: In this figure the calibration constant K is depicted as a function of χ.
Dots indicate measured values and solid lines indicate calculations.
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3.5 Discussion

In this chapter we have presented a general quadrant detector calibration technique for

non-integer OAM beams in HLG modes. Starting from the analytical solutions of HLG

(1,0)-mode found in chapter 2 we have derived the position-current relation, the cali-

bration constant K and its location for this mode. These position-current relations and

values of K have been verified experimentally. The position-current relation is depen-

dent on the gain settings of the particular quadrant detector, the orientation θ of the

symmetry axis of the beam in HLG mode and the mode orientation α of the beam in

HLG mode.

Deviations from analytical solutions of the position-current relation can be a result

of: (i) Background light in the case of a very high gain setting as can be seen for the

highest gain settings in figure 3.5. The position-current relation takes the following form

in such case: Ix/(IΣ + c) where c is the background illumination. (ii) Misalignments of

orientations α and θ as can be seen very well in part (C) of figure 3.6. This misalign-

ment error is enlarged by the calculation of the calibration constant for θ = 45◦. In

part (C) of figure 3.7 the slope is too low due to the misalignment. Apart from these

small problems the position-current relation and the calibration constant are the same

analytically and experimentally, verifying our method.

An important feature of the position-current relation is its general non-linearity, for that

reason the calibration constant K is not constant for all locations of the non-isotropic

beam. We have sought and found the ideal locations in the beam for which the calibra-

tion constant is high and the position-current relation nearly linear. This location was

found to be off center for χ ≤ 1/3, with values as in table 3.1. A consequence of this is

that the quadrant detector is most sensitive for these beams at locations off the center

of the beam.



Chapter 4

Conclusion

We have generated non-integer orbital angular momentum beams in Hermite-Laguerre-

Gaussian modes by using astigmatic mode converters. The generated beams have fixed

symmetry axes and are propagationally invariant. Furthermore, our method allows for

continuous tuning of the orbital angular momentum value. The correspondence with

analytical Hermite-Laguerre-Gaussian modes in intensity and phase has been experi-

mentally verified. Thus, we have provided a general method to generate non-integer

orbital angular momentum beams in Hermite-Laguerre-Gaussian modes, with the same

order as the input Hermite-Gaussian modes.

The quadrant detector response of our generated Hermite-Laguerre-Gaussian modes

has been investigated both analytically and experimentally. A general calibration tech-

nique has been described and demonstrated for the first order excited Hermite-Laguerre-

Gaussian mode. The influence of the gain settings and of the rotation of the symmetry

axes of the Hermite-Laguerre-Gaussian modes has also been investigated. To conclude:

Both the Hermite-Laguerre-Gaussian mode orientation and orientation of the symmetry

axes of the Hermite-Laguerre-Gaussian mode play an important role in the quadrant de-

tector response. Furthermore, the anisotropic nature of the Hermite-Laguerre-Gaussian

has as a result that the quadrant detector is generally not the most sensitive in the

center of the beam. The results of both the generation technique and quadrant detector

calibration can be extended to higher order Hermite-Laguerre-Gaussian modes carrying

(higher) non-integer orbital angular momentum.
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Appendix A

Matlab Simulation Codes

A.1 HG mode simulation

The following code to simulate HG modes, with (n,m) = (8, 5), produces the result

shown in figure A.1 if we plot the absolute values of the uHG.

Figure A.1:

%% Some general quantities

b_0 = (pi/lambda)*w_0^2; %Rayleigh range

k = 2*pi/lambda; %Wavenumber

w = sqrt(2*k*b_0); %Beamwaist

N = n+m;

% Hermite polynomial creator (Rodriguez formula)

function [H] = Hermite(n,y)

H = zeros(size(y));

if (n > -1)

syms x;
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Her = (-1)^n * exp(x^2)*diff(exp(-x^2),x,n);

Her = simplify(Her);

H = polyval(sym2poly(Her),y);

end

end

function [u_HG] = HG_mode(n,m,x,y,w_0,lambda)

%creating HG_mode

C_HG = sqrt(2/(pi*factorial(m)*factorial(n)))*2^(-N/2);

C2_HG = (1/w)*exp(-(x.^2+y.^2)/w^2);

[HGn] = Hermite(n,x*(sqrt(2)/w));

[HGm] = Hermite(m,y*(sqrt(2)/w));

u_HG = C_HG.*C2_HG.*HGn.*HGm;

end

A.2 LG mode simulation

The following code to simulate LG modes, with (n,m) = (8, 5), produces the result

shown in figure A.2 if we plot the absolute values of the uLG.

Figure A.2:

% Laguerre polynomial creator (Rodriguez formula)

function [L] = Laguerre(p,l,y)

L = zeros(size(y));

if (p > 0)

syms x;

Lag = (x^(-l)*exp(x))/factorial(p) * diff(exp(-x)*x^(p+l),x,p);

Lag = simplify(Lag);

L = polyval(sym2poly(Lag),y);

elseif (p == 0)

L = ones(size(y));

end

end
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% LG mode creator

function [u_LG] = LG_mode(n,m,r,w_0,lambda)

%derived quantities

l = abs(n-m);

p = min(n,m);

% creating LG_mode

C_LG = sqrt(2/(pi*factorial(m)*factorial(n)))*factorial(p);

C2_LG = (1/w)*exp(-r.^2/w^2);

C3_LG = (-1)^p*(sqrt(2).*r/w).^(l);

[LGpl] = Laguerre(p,l,2.*r.^2/(w^2));

u_LG = C_LG.*C2_LG.*C3_LG.*LGpl;

end

A.3 HLG mode simulation

The following code to simulate HLG modes, with (n,m) = (8, 5), α = 15 degrees, pro-

duces the result shown in figure A.3 if we plot the absolute values of the uHLG.

Figure A.3:

function P_j = Jacobi2(n,alpha,beta,x)

if(n<0)

P_j = 0;

else

m = 0:n;

c = exp(gammaln(n+alpha+1)+gammaln(n+beta+1)-gammaln(m+1)

- gammaln(n-m+1)-gammaln(n+alpha-m+1)-gammaln(beta+m+1));

P_j = 2^(-n)*sum(c.*(x-1).^(n-m).*(x+1).^m);

end

function [u_HLG]= HLG_mode(m,n,x,y,w_0,lambda,alpha)

if (alpha == 0) alpha = 0.00001; end %alpha = 0 doesn’t work

%derived quantities

alpharad= alpha * pi/180; %Astigmatic angle
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alpharot= -cos(2*alpharad);

kappa=[0:1:N]; %Jacobian polynomial orde

% creating HLG mode

HLG = zeros(size(x));

for i = 1:length(kappa);

mu = m-kappa(i);

nu = n-kappa(i);

P_k = Jacobi2(kappa(i),mu,nu,alpharot);

HGx = Hermite(N-kappa(i),sqrt(2).*x/w);

HGy = Hermite(kappa(i),sqrt(2).*y/w);

fac = (1j)^(kappa(i))*(cos(alpharad))^(mu)*(sin(alpharad))^(nu);

HLG = HLG + fac.*P_k.*HGx.*HGy;

end

C_HLG = sqrt(1/(pi*factorial(m)*factorial(n))*2^(1-N));

C2_HLG =(1/w)*exp(-(x.^2+y.^2)/w^2);

u_HLG = C_HLG.*C2_HLG.*HLG;

end

A.4 plane wave simulation

The following code simulates the planar wave in the interferometer setup:

function [u_plane]= plane_mode(x,y,w_0,lambda,tiltx,tilty,u_HLG,del_int)

tiltx_rad = tiltx*pi/180; %Tilt compared to u_HLG

tilty_rad = tilty*pi/180;

% creating tilted plane mode

amp = del_int*max(max(abs(u_HLG))); %Scale with u_HLG

u_plane = amp*exp(1j*(x*sin(tiltx_rad)+y*sin(tilty_rad)));

end
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1. Introduction

Light carrying orbital angular momentum (OAM) is characterized by a helical wave-
front shape and a doughnut-like intensity profile with a darkcenter (vortex). In a single
round trip about the propagation axis, the phase of an OAM beam increases linearly
and gains the value of 2πN, with N an integer value that is equivalent to the OAM
content of such a beam. After the first investigation of the astigmatic transformation
of Hermite-Gaussian (HG) modes into Laguerre-Gaussian (LG) modes [1], it was the-
oretically proven that LG laser modes carry a well defined OAMwhich is equivalent
to the azimuthal mode indexℓ of the LG modes [2]. Since then, the generation of LG
modes has opened up a broad range of applications, includingoptical trapping with
OAM beam structures [3, 4], quantum communication at higherdimensional entangle-
ment using OAM beams [5, 6], OAM beam for high sensitivity Raman spectroscopy
in molecule detection [7], stellar detection using OAM beam[8, 9], and nanometer
precision metrology by using the effect of OAM on beam shifts[10].

Recently, there is a growing interest in addressingnon-integer values of OAM that
potentially broadens the OAM beams applications. This willbe the topic of our paper.
We present the technique to generate non-integer OAM beams and discuss the differ-
ence between our technique and the existing ones. Subsequently, we treat the position
measurement of such a beam that is an inherent part of many applications using OAM
beams.

During the first decade after the initial realization of an OAM beam, many differ-
ent integer OAM beam generation techniques have been introduced. The first demon-
stration used the so-called ‘π/2-mode converter’, which belongs to a family of astig-
matic mode converters that applies the appropriate Gouy phase to create well defined
mode indices of LG beams carrying integer OAM [11]. This was soon followed by the
demonstration of a spiral phase plate (SPP) operating at optical wavelength [12] and
at milimeter range [13] for creating helical-wavefront to directly transform Gaussian
beam to OAM beams. At the same time, computer-generated holograms with pitch-
fork structures were applied using a spatial light modulator (SLM) to convert Gaussian
beams into LG beams [3, 14]. Different from the astigmatic mode converter, both SPP
and SLM are not pure mode converters. They convert a fundamental Gaussian mode
into a superposition of LG modes that contain the same azimuthal mode indexℓ but dif-
ferent radial mode indexp. Although the OAM content of such a beam is well defined,
the spatial field distribution evolves during propagation.This mode impurity problem
holds also when employing q plates [15] that convert spin-to-orbital angular momen-
tum in an anisotropic and inhomogeneous media to create helical waves. Mitigating the
radial mode impurity to obtain a more robust beam profile during propagation when us-
ing SLM and SPP has then been the focus of several studies [16,17, 18, 19, 20].

In the field ofnon-integer OAM beam generation, only a handful of studies have
been carried on. One of the initial ideas was to use off-axis illumination of an SPP;
equivalently, one may use a non-integer 2π phase step SPP [5]. These techniques, how-
ever, yield non-integer OAM beams with neitherℓ nor p mode purity [21]. A more
structurally stable non-integer OAM beam has been demonstrated recently, by using
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an SLM when applying a synthesis of a finite number of LG modes with carefully
chosen Gouy phases [22]. It was, however, demonstrated onlyfor half-integer OAM
values. Another proposition is by exploiting the internal conical diffraction where a
circularly polarized beam with a fundamental Gaussian modeis converted into a non-
integer OAM beam with a Bessel mode, having only a limited OAMvalue range of
|ℓ| ≤ 1 [23].

Our paper focuses on two issues. The first concerns with the generation of beams car-
rying arbitrary non-integer OAM values that is structurally stable during propagation.
This can be achieved by employing the concept of generally astigmatic mode convert-
ers, as was initially introduced in Ref. [24]. Later on, it was theoretically demonstrated
that the output of a general astigmatic transformation is the intermediate beam between
HG and LG beams, known as Hermite-Laguerre-Gaussian (HLG) beams [25, 26, 27].
Since such a HLG mode is an analytic interpolation between a HG mode and a LG
mode, it is structurally propagation invariant. Moreover,this HLG beam carries non-
integer OAM.

The second issue concerns with the positional detection of generated HLG modes for
applications of non-integer OAM beams, e.g. in precision metrology, optical tweezing
or scanning near-field optical microscopy. Popular device to measure beam position is
a quadrant detector, made of 2 by 2 array of photodiodes that are equally spaced and
produce four electronic signals that are proportional to the beam position. The sensi-
tivity of the position measurement using a quadrant detector is limited within a small
spatial range, where the detector response to the shift of the beam is linear. This holds
even for the position detection of a typical fundamental Gaussian beam. The non-linear
response of a quadrant detector has been addressed and improved, but only for funda-
mental Gaussian beams [28, 29]. Recently, we have also investigated the response and
correspondingly the calibration of a quadrant detector forLG modes carryinginteger
OAM beams [30]. In this paper, we are going to discuss the use of a quadrant detector
for beam positional detectionnon-integer OAM beams based upon HLG modes.

We start our paper by presenting the design of a mode converter which transforms a
HG mode of arbitrarily high order to a HLG mode [25]. We demonstrate that the out-
put beam is structurally propagation invariant, and characterize the non-integer OAM
value using an interferometer set-up. Different from the previous designs [24, 25], our
experimental set-up generates HLG beam with fixed symmetry axes when varying the
non-integer OAM; these axes thus also overlap with the quadrant detector measure-
ment axes. This proves to be very beneficial when detecting the beam position of HLG
modes as shown in the second part of the paper. Further, we derive an analytical expres-
sion of a quadrant detector response towards general astigmatic modes and introduce a
calibration procedure required for detecting the positional shifts of non-integer OAM
beams.
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Fig. 1. Our experimental set-up to generate HLG modes as non-integer OAM
beams, equipped with a quadrant detector for measuring the beam positional
shifts, discussed in Section 3.

2. Generation of structurally propagation invariant light carrying non-integer
OAM

2.1. Experimental set-up

A conventionalπ/2 astigmatic mode converter [11] transforms a pure HG mode into a
pure LG mode by passing an incoming HG beam through a pair of identical cylindrical
lenses with focal lengthsf , separated at a distanced = f

√
2, as illustrated in Figure 1.

A mode matching lens is normally used to tailor the beam waistof the outgoing laser
mode into the desired beam waist in between the cylindrical lens. A well definedinteger
OAM is achieved when the symmetry axes of the HG beam are oriented at an angle
α = 45o with respect to the symmetry axes of the cylindrical lenses [11]. This can be
done using an open laser cavity that is forced to operate at a high order HG mode by
insertion of a thin metal wire, oriented atα = 45o.

Belonging to the family of astigmatically transformed HG beams, HLG beams can
be created by tuning the beam parameterα , i.e. the angle between the symmetry axes of
cylindrical lenses and the symmetry axes of the input HG beam[27]. The non-integer
OAM value of HLG beam isℓ= (n−m)sin2α , with n andm the mode index of high
order HG beams [25, 26]. Another way to generate HLG beams is to tailor the required
Gouy phase by simultaneously tuning the separation distance of the cylindrical lenses
d and the position of the cylindrical lenses pair with respectto the mode matching
lens [31]. However, for aligning purposes, the approach of varyingα is more attractive
when tuning the non-integer OAM value.

A general astigmatic mode converter transforms a HG mode of arbitrarily high order
to a HLG mode. In essence, a pure mode transformation projects an incoming HG mode
into two orthogonal axes of the astigmatic mode converter. The outgoing HLG beam is
a superposition of the projected mode with the additional Gouy phase. In Figure 2, we
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Fig. 2. An incoming HG0,1 mode at varying orientation angleα projected onto
the orthogonal symmetry axes of the cylindrical lenses of a ‘π/2-mode converter’.
The symmetry axes of the outgoing HLG modes are always aligned to the projec-
tion axes. The outgoing HLG modes experience Gouy phaseϕ = 2α.

show the projection of an incoming HG01 mode with varying orientation angleα on
a ‘π/2-mode converter’. The Gouy phaseϕ experienced by the projected mode after
traversing the cylindrical lenses is 2α . Note that the symmetry axes of the outgoing
HLG beam are always aligned to the projection axes of the cylindrical lenses.

In this paper, we demonstrate the non-integer OAM beam generation using a HeNe
gain tube (Spectra Physics 120S) operating at a wavelengthλ = 632.8 nm, situated
at the centre of an open two-mirror cavity allowing for a generation of up to the third
order of the HG mode family (i.e. HG3,3). The laser is forced to operate in a single
higher order HG mode by insertion of a 18µm diameter copper wire normal to and
rotatable with respect to the axis of the laser cavity. The strength and location of a mode
matching lens and a pair of cylindrical lenses are chosen such that they create integer
OAM beams when the wire is orientated atα = 45o. By rotating the wire about the
optical axis, we tune the parameterα to generate the HLG modes. This is different from
the two previous techniques; where two Dove prisms and two cylindrical lenses are
rotated to flip the HG mode before being converted into HLG modes [24], or whereα is
tuned by rotating the cylindrical lenses [25]. By rotating the metal wire inside the open
laser cavity in Figure 1, our technique generates HLG modes with a fixed symmetry
axes for any arbitrary non-integer OAM value. Therefore, the profile mode axes are
always aligned to the quadrant detector measurement axes which greatly simplifies the
quadrant detector operation.
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2.2. Characterization of non-integer OAM beams

Figure 3 shows the resulting generated HLG beams as a function of varying orienta-
tion angleα . The open laser cavity is forced to operate at the first higherorder HG
mode, i.e HG0,1. The first two rows display the measured intensity profiles of(a) the
incoming HG0,1 and (b) the outgoing HLG0,1|[α :0o,90o] beams at the far-field after the
collimating lens. Our generated HLG beam profiles match withthe calculation shown
in Figure 3(c). In the calculated images, we have used a colormap to indicate the phase
profile of the generated HLG modes. For outgoing HLG profiles being the analytic
interpolation between a HG mode and a LG mode, we observe a more flat wavefront
inside the high intensity areas (note the even color tone). Inside the dark intensity ar-
eas, the phase value increases non-linearly along the azimuthal direction. The phase
singularity of zero-OAM beams atα = N ×90o forms a line (most left and most right
images of Figure 3(c)), whereas for integer OAM beams atα = (2N+1)×45o it forms
a vortex (the center image of Figure 3(c)), withN an integer number. Apart from the
overall scaling and slight astigmatism due to imperfect alignment, the generated HLG
beams are structurally stable during propagation, as shownin Figure 4.

(a)

(b)

(c)

α = 0o α = 15o α = 30o α = 45o α = 60o α = 75o α = 90o

2π0

Fig. 3. [Color online] (a) Measured intensity profiles of theimpinging HG0,1 mode
as a function of the orientation angleα with respect to the symmetry axes of
the ‘π/2-mode converter’; the white lines correspond to the wire orientation in
the open laser cavity of Figure 1. (b) Measured far-field intensity profiles after
the collimating lens of the outgoing Hermite-Laguerre-Gauss (HLG) modes. (c)
Calculated intensity profiles to compare with the measurement results in (b). The
color map in the calculated intensity profiles (c) corresponds to the HLG phase
profile that gradually increases from 0 to 2π .

To characterize the OAM content of the generated HLG beams, we look at the in-
terference patterns between the outgoing HLG beam and a reference beam that comes
out of the laser cavity. A typical interference pattern of aninteger OAM beam shows
phase dislocation features, i.e. a pitchfork that branchesout into ℓ number of lines at
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Fig. 4. Mode profiles at several Rayleigh distancezR, representing the near- and
far-field planes for the outgoing HLG0,1|[α :60o] mode.

the dark centre of the beam, which is also the case for the centre image of Figure 5.
In the case of beams with non-integer OAM values, the branching gradually dissolves
into separated shifted lines as shown by the measurement result (a) and confirmed by
the calculation (b).

The perfect match between our measurement results and calculation, for both the
intensity and the interference profiles, demonstrates thatnon-integer OAM values do
indeed depend on the orientation angle of the incoming HG beam, expressed asℓ =
(n−m)sin2α [25, 26]. There are two consequences of this relation when generating
HLG beams using our set-up. First, the sign ofℓ changes each timeα crosses the value
of N × 90o. Secondly, the HLG mode profile rotates by 90o each timeα crosses the
value of(2N + 1)× 45o with N an integer number. Take the example of Figure 3(b)-
(c), where we have tuned the angle 0o ≤ α ≤ 90o to obtain 0≤ ℓ ≤ 1. Although all
the HLG modes shown have positive values ofℓ, the mode profiles forα ≤ 45o are
rotated 90o with respect to the profiles forα ≥ 45o. Therefore, for an identicalℓ or
OAM values, there are two possible orthogonal orientationsof the HLG beams. The
orthogonal orientation of HLG beams also greatly simplifiesthe calibration procedure
when measuring the beam position using a quadrant detector,as will be discussed in
the next section.

(a)

(b)

α = 0o α = 15o α = 30o α = 45o α = 60o α = 75o α = 90o

Fig. 5. The (a) measured and (b) calculated interference patterns showing the
phase singularity of the HLG beams. The black color corresponds to zero inten-
sity and zero phase, whereas the white color corresponds to maximal intensity and
phaseφ = 2π .
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3. Quadrant detector response to HLG beam displacement

In this section we deal with the response of a quadrant detector as a beam positional
detector of HLG beams. A quadrant detector is a 2x2 array of individual p-n junction
photodiodes, separated by a small gap of typically less than0.05% of the active area, as
depicted in the inset of Figure 1. The photodiodes provide the photocurrentsIA , IB, IC
andID which are generated when an optical beam strikes the active area. Its position-
current relation can be written as:

Ix

IΣ
=

IA + ID − (IB+ IC)
IA + ID + IB+ IC

=

∫ x
0

∫ ∞
0 |U(x,y)|2 dydx∫ ∞

0

∫ ∞
0 |U(x,y)|2 dydx

, (1a)

Iy

IΣ
=

IA + IB− (IC+ ID)
IA + IB+ IC+ ID

=

∫ y
0

∫ ∞
0 |U(x,y)|2 dxdy∫ ∞

0

∫ ∞
0 |U(x,y)|2 dydx

, (1b)

for shifts along thex− andy−axis, respectively, with|U(x,y)|2 the intensity of the im-
pinging beam. To obtain the nominal beam displacement, the quadrant detector signal
Ix,y/IΣ has to be normalized to the slope of this relationship curve,i.e. the calibration
constantK.

Typically, positional beam measurements using a quadrant detector involve a funda-
mental Gaussian mode profile that is cylindrically symmetric, i.e. having an isotropic
profile in the cylindrical coordinate system. In that case, the quadrant detector response
is most sensitive around the beam center for a small displacement ∆x ≪ w, and the
calibration constantK is derived around the beam center where the slope of positional-
current relationship is linear. Previously, the quadrant detector calibration constant for
LG beams as a function ofℓ has also been derived for small displacements around
the beam center [30], which is valid since LG beams have also isotropic intensity pro-
files. For the case of HLG beams, however, one can immediatelysees from Figure 3
that the intensity profile is not cylindrically symmetric. In other words, HLG beams
carrying non-integer OAM have anisotropic profiles. As willbe discussed in the next
paragraphs, there are two things to note when operating a quadrant detector for position
measurement of anisotropic beams such as HLG beams.

First, the orientation of the HLG beam profile influences the quadrant detector re-
sponse. Due to the rectangular geometry of a quadrant detector, it is most natural to
align the symmetry axes of the beam with respect to the quadrant detector displacement
axes, as in the case of Figure 3. When these axes are aligned, the quadrant detector cal-
ibration constantK for the displacement along thex−axis of HLGn,m|α mode is also
valid for the displacement along they−axis of HLGm,n|α mode.

Second, operating a quadrant detector around the HLG beam center to detect small
displacement∆x ≪ w will not always give the most sensitive position measurement.
This is due to the fact that for some cases, the profile cross section |U(x,y)|2 of the HLG
modes along the axis of displacement, has near zero values across one displacement
axis. As an example, let us observe HLG modes forα > 45o in Figure 3 (b). The
low intensity values at the beam centre across they-axis is certainly the least sensitive
area to measure beam displacement along thex−axis. Interchangeably, the quadrant
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detector is least sensitive for beam displacement along they−axis around the centre
area of HLG modes forα < 45o. Therefore, it is important to find the region where the
quadrant detector can operate with the highest sensitivity.

3.1. Analytical solutions of quadrant detector calibration

Now, we derive the analytical expression for the position-current relationship of a quad-
rant detector for HLG beams carrying non-integer OAM when both of the symme-
try axes overlap. This expression can be easily extended foran arbitrarily high order
HLGn,m|α mode. For didactic purposes, we take the example of a radial mode index
p = 0 and an azimuthal mode indexℓ= 1 (i.e. HLG0,1|α ), and investigate the quadrant
response for the beam displacement along thex−axis. By applying the distribution
function of HLG0,1|α given in Ref. [25] into Equation (1a), we can write thex-axis
displacement relationship normalized to the beam radiusw for HLG0,1|α to be

Ix

IΣ
=−2

√
2x√

πw
exp

[
−2

( x
w

)2
]

cos2(α)+erf
(√

2
x
w

)
. (2)

Note that due to the symmetry axes, the same expression is found for the beam dis-
placement of HLG1,0|α mode along the y-axis, substituting the indexx with y.

We present the 1-D cross section profile in Figure 6 (a) to helpvisualizing the gen-
eral intensity distribution of HLG0,1|α beams. The position-current relationship curves
in Figure 6 (b) reveal that there are different linear regions with a constant slope (cal-
ibration constantK) for different values ofα . The linear region shifts to a higherx/w
value forα > 45o, coinciding with the peak intensity cross section along thedisplace-
ment axis, at aroundx/w = 0.7. Forα < 45o the beam cross-section along thex-axis
resembles that of a Gaussian profile and the range of linearity is around the beam center.

To confirm our analytical expression, we measure the quadrant detector response for
HLG0,1|α modes, where we have used a quadrant detector from NewFocus model 2921
with an active area of 10mm×10mm. Figure 6 (b) shows the the match between our
data (open circles and dots) and the analytical solution (solid and dashed lines). It is im-
portant to realize that there exists two values ofα for each HLGn,m|α mode that give the
sameℓ values but with orthogonally oriented spatial distribution. These orthogonally
oriented modes have different calibration constantsK, as plotted in Figure 7.

To use a quadrant detector for displacement measurement of non-integer OAM
beams having anisotropic profile distributions, such as HLGbeams, one must pay atten-
tion to the linear range of the position-current relations,i.e. at the peak of the intensity
cross section along the axis of displacement. Since the orientation of our generated
HLG beam are aligned with the symmetry axes of a quadrant detector, we can easily
obtain the linear range and the calibration constantK. This calibration procedure is
particularly relevant for potential applications using HLG modes as non-integer OAM
beams: in beam shifts measurements, high precision metrology, optical manipulation
using tweezers or scanning near-field optical microscopy.
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Fig. 6. (a) The cross section of the HLG0,1|α mode profile along thex-axis. (b) The
corresponding response of a quadrant detector for beam displacement along the
x−axis. Lines (both solid and dashed) and data points correspond to the analytical
solution and experimental data, respectively.
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Fig. 7. The calibration constantK as a function of non-integer OAMℓ is derived
analytically for HLG0,1 modes with varyingα. The white lines on the top row
images illustrate thex-positions at whichK is derived for severalα values.
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4. Conclusion

In this paper, we demonstrate a technique to generate HLG modes as non-integer OAM
beams that are structurally propagation invariant and having a fixed symmetry axes
for arbitrary non-integer OAM values. The experimentally demonstrated HLG beams
agree with the calculation, both for the intensity profile distribution and the phase fea-
tures measured with interferometric set-up.

Unlike an integer OAM beam, the phase of a HLG mode increases non-linearly along
the azimuthal axis. Note that any integer OAM beam can be created from an arbitrarily
higher order HLG mode having the appropriate orientation angleα . For example,ℓ= 1
can be constructed from HLG0,2|[α :15o], which actually produces a phase distribution
that is different from that of a LG0,1 mode. In applications such as OAM beams shifts
or optical manipulation using OAM beams, noticeable differences will occur when
addressing an integer OAM value by using either LG modes or HLG modes.

For many applications using OAM beams, it is of high interestto measure accurately
the beam position. Down to nanometer precision of beam displacement is typically
measured using a quadrant detector. Different from previous techniques, the symme-
try axes of our generated non-integer OAM beams arealways aligned to the axes of
quadrant detectors; which simplifies the operation and calibration of the detector.

We have derived the analytical expression and demonstrate experimentally the re-
sponse of a quadrant detector towards the generated HLG beams. The obtained cali-
bration constantK of a quadrant detector for HLG beams agrees with Ref. [30] only at
integerℓ, where the beam profile is isotropic or cylindrically symmetric. The assump-
tion that a quadrant detector is most sensitive at the beam center does not always hold
for general astigmatic modes, i.e. HLG modes, that has an anisotropic beam profiles.

In conclusion, we have shown that both theℓ values and the HLG mode orienta-
tion play a role in the quadrant detector response. Furthermore, the anisotropic nature
of HLG beams creates different regions having linear response of a quadrant detector
when measuring beam positional shift. The beam positional measurement is most sen-
sitive around the peak of the HLG mode profile. Our result can easily be extended to
arbitrarily higher order HLG beams as solutions of light carrying higher order non-
integer OAM.
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