
Solid State CQED
Quantum dots in microcavities

Bachelor Thesis

Evert van Nieuwenburg
Leiden University

Supervisors:
Cristian Bonato

Jan Gudat
Prof. Dirk Bouwmeester

July 14, 2010





Abstract

This thesis describes the properties of microcavities and quantum dots in a CQED ex-
periment. Different (measurement) techniques (most notably the voltage scans, spatial
scans and hole burning) are described, and are then used to demonstrate a procedure for
making the fundamental cavity mode polarization degenerate. Polarization degeneracy
is required for both practical reasons and for the eventual use in quantum computation
algorithms. Multiple other measurements such as voltage-induced birefringence, reflec-
tion peak nonlinearity and strain induced quantum dot spectral shifting are discussed,
as well as the characterization and calculations for the positioning sample. In the end,
the aim of the experiment is to implement solid state storage qubits through electron
spins, whilst data transfer and manipulation are done on photons that are spin-photon
entangled (through the photon’s polarization) with the qubits.
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Chapter 1
Introduction

The quantum information and quantum computation fields have been making rapid ad-
vancements over the past few decades. One of the milestones yet to be reached is the
implementation of a quantum computer. Theoretically, the quantum computer is able to
achieve an exponential speed-up in the time required to perform some computationally
expensive algorithms. An example is the factorization of prime numbers, which forms
the basis of many important encryption algorithms today. Having a quantum computer
to find the factorized prime numbers would render these encryptions useless. Some-
what ironically, a related field called quantum cryptography has provided a 100%
secure way of data transfer [17]. These methods have been implemented, and are even
commercially available. Apart from providing a very powerful computational speed-up,
the quantum computer is the natural extension to the computers that exist nowadays
(refered to simply as ‘classical’ computers). Since all the chips and circuits are getting
smaller (and cheaper), there will be a point at which the quantum regime is reached.
This regime might seem to be a hurdle to classical computers, but is essential for the
extraordinary features of a quantum computer, the two most important features being
superposition and entanglement.

Quantum computation as will be described in this thesis is in a sense a blend between
quantum optics and quantum information. Quantum optics is the branch of optics re-
volving around experiments in which the quantized nature of the electromagnetic field is
prominent. Quantum information, on the other hand, is the more theoretical equivalent
of information theory. One of the experiments in which the electromagnetic field has to
be described as being quantized is cavity quantum electrodynamics (CQED).

This thesis describes a CQED experiment involving electron spins trapped in quan-
tum dots, which are themselves embedded in a cavity. The underlying goal is that of
providing a physical way to construct a quantum computer, linking the project to the
quantum information field. The aim of this project was to characterize and perform
reflection measurements on polarization degenerate cavities. For this, control over the
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degeneracy of the cavities is needed, which was done using the hole burning technique.
Using polarization degenerate cavities, the final aim is to entangle the electron spins with
photon polarization, such that the spins can serve as solid state storage qubits whereas
the photons are a means of data transfer and manipulation.

1.1 Outline

This thesis has been written to be as useful as possible, in the hope that it might serve
as a reference to future students. Too much detail has been omitted where possible,
while still providing a complete summary. The following is a short overview of how this
thesis is organized.

• The rest of this chapter continues with a basic introduction on (quantum) com-
puters, since eventually implementing a quantum computer requires first an un-
derstanding of the building blocks. It describes the important quantum features
that make the quantum computer unique with respect to the classical computer.
The chapter continues with a general introduction to quantum dots and ends with
a discussion on CQED.

• Chapter 2 describes the experimental setup and the technical aspects of the
samples. The second part of Chapter 2 focuses on the measurement techniques
that toghether somewhat form a toolbox. The chapter ends with a brief description
of the hole burning technique which is used to make the (fundamental mode of the)
cavities polarization degenerate.

• Chapter 3 presents the results of several different measurements, and follows the
complete procedure on getting a cavity. All other results are presented here aswell,
including the voltage-induced birefringence (electro-optical effect, the Pockels ef-
fect) and strain induced quantum dot spectral shifting. It contains a short section
on the degradation of the samples, and the positioning samples are discussed.

• Chapter 4 concludes with a short overview of the obtained results, and more
importantly also gives a list of possible further (side-track) measurements to be
considered.

• Appendix A gives a short overview of an attempt at modematching.

• Appendix B lists the most important files that were used during this project,
either for the measurements themselves or for the analysis of the obtained data.

1.2 Information processing

A little introduction to the basics of information processing is needed at this point, to
justify the goal of the experiment. The following will be a short outline of the most
important aspects.
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1.2.1 Bits

Normal (classical) computers use a bit as the fundamental data object. The bit is an
entity that can have either of the values 0 or 1, and can hence be visualized as some
sort of an ‘on/off’ switch. At the lowest level all data on a computer is stored as large
collections of 0’s and 1’s (i.e. bits). Thus, using an entire array of such bits, any
kind of data can be stored (Figure 1.1 gives an example). Physically, such a bit can
be represented by transistors or magnetic strips. In the notation as is common in the
information processing field (and quantum theory in general), let us denote the current
state of the bit by the symbol |b〉. The states 0 and 1, in the same notation, are then
represented by |0〉 and |1〉. Thus, in mathematical form there are the following two
(mutually exclusive) situations for a classical bit:

|b〉 = |0〉 or |b〉 = |1〉

If the value of the bit at a specific moment is not known deterministically (this is usually
called a probabilistic bit), the state can be described by assigning a probability to the
different values as in

|b〉 = a|0〉+ b|1〉

in which a is the probability for the bit to be in the |0〉 state and b the probability for
the |1〉 state. Of course, the bit cannot be ‘state-less’, and so there is the condition that
the sum of a and b has to equal unity.

Figure 1.1: All computer data is stored in binary format. The eight-bit (byte) strings
each encode a character, which from top to bottom form the word Qubit.

Now consider a more general and much more interesting kind of bit, called a quantum
bit (qubit). The general state of the qubit (|qb〉) is a superposition of both the |0〉 and
|1〉 states

|qb〉 = α|0〉+ eiφβ|1〉 (1.1)

in which the exponential factor represents a phase difference between the two states,
the importance of which will be discussed below. Such a qubit state is conveniently
described using a Bloch sphere as shown in Figure 1.2. Each possible qubit state can
be visualized by a vector with its endpoint on the sphere. The coefficients α and β are
then represented by the angle θ through α = cos(θ/2) and β = sin(θ/2), and the angle
φ is the parameter for the relative phase difference.
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Figure 1.2: A Bloch sphere showing a single qubit state. All single qubit states can be
represented by vectors lying on the Bloch sphere, where φ represents the relative phase
between the |0〉 and |1〉 states.

If the two different states have a fixed phase relationship, the superposition is coherent.
For the next section, consider a coherent superposition state given by

|qb〉 = α|0〉+ β|1〉 (1.2)

This state resembles the probabilistic bit state, but it is very important to note the
distinction between a qubit and a probabilistic bit. In the case of the qubit, α and
β are not the probabilities for the qubit to be in the respective states. Rather, these
probabilities are given by |α|2 and |β|2 (satisfying |α|2 + |β|2 = 1), since these coefficients
are in general even comlex numbers. At first sight this would not seem to make any
difference, until multiple (qu)bits are being considered. If two states are added together,
apart from normalization the following situation arises:

|b1〉 = a|0〉+ b|1〉
|b2〉 = c|0〉+ d|1〉

|b1 + b2〉 = (a+ c)|0〉+ (b+ d)|1〉

The above shows that for this added state, the probabilty to measure |0〉 is just (a+ c)
(apart from normalization again, the probabilities add). Now if the above states were
qubit states the probability would not be simply (a+ c), but rather the absolute square
of this, giving an extra 2ac term in the probability. This is a quantum inteference effect,
which is an essential feature in quantum computation.

Another aspect to be considered is that it is not possible to predict the actual state
of a qubit at a general moment. Only when the qubit is measured and the outcome is
observed can it be said with certainty that the qubit is now in that measured state (after
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the measurement, the time evolution of the state is given by the Schrödinger equation).
This means that after the measurement the state of the qubit is no longer the general
superposition; the qubit state has now collapsed into the measured state, and only the
probability for the bit to collapse in either of the two states can be calculated beforehand.
This behaviour is sometimes described as the qubit being a 0 and a 1 simultaneously.
It ‘decides’ which of the values it becomes only when a measurement is made, but it is
fundamentally impossible to predict the outcome. This effect is exactly what is made use
of in quantum cryptography, since eavesdropping would hence destroy the superposition.
Because the qubit is in both states simultaneously, performing a calculation on the qubit
is also equivalent to performing the calculation on all possible states simultaneously.

The abovementioned interference effects only arise when the superposition is coherent,
and this is why the relative phase is of such importance. To give an example of an
interference effect, consider an electron spin in the state

1√
2

(| ↑x〉+ | ↓x〉)

Classically, this can be interpreted as the electron spin along the x-direction having a
50% chance of being directed towards the negative x-axis, and a 50% percent chance for
being directed in the positive x-axis direction. If the spin along the z-direction were to
be measured, classical theory would predict a 50% chance for up or down, irrespective of
whether the spin is oriented along the positive or negative x-axis. If this were a quantum
bit however, measuring the z-component of the spin would always result in spin up since
the given state is nothing but the spin up state representation in the x-basis. In the end,
this is the physical reason for why performing a computation on a single superposition
of qubit states is the same as performing the computation on all possible classical bit
states. To make this idea more clear, consider two classical bits for which there are four
possible states:

|b1, b2〉 = |00〉 or |b1, b2〉 = |01〉 or |b1, b2〉 = |10〉 or |b1, b2〉 = |11〉

all of which would have to be individually prepared. In contrast, all of these states can
be represented by a single coherent superposition of a two qubit system as

|qb1, qb2〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉

Continuing this until a computer of millions of bits is constructed, it is not hard to
see where the (exponential) speed-up in computational power comes from. Actually, a
quantum computer with only 64 bits is more powerful in such computations than any
classical computer (because this qubit would describe a superposition that can represent
264 ≈ 1.8× 1019 different classical bit states simultaneously).

Physical implementation

The biggest problem today with qubits is their physical representation. A qubit can
be represented by any so called two-level system. A two-level system is a system with
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two distinct states, to which we can arbitrarily assign the labels 0 and 1. Examples to
guide the mind are the two orthogonal polarization states of a photon, or the spin up
and spin down configurations of electron spins. Various approaches are being used by
different research groups. Two of the most represented approaches are trapped ions [3]
and electron spins [1]. Each of them has its own (dis)advantages. Briefly, trapped ions
are easier to manipulate and harder to scale, whereas the opposite is true for the electron
spins.

The experiments that are being done using trapped ions as qubits rely on the elec-
tronic state of the ion as a two-level system. For example, the hyperfine splitting of
the ions can be used to represent such a system. Although reading and preparing the
electronic states of ions is not the hardest part of the experiment, the difficulty arises in
trapping multiple ions and have them interact. This is in itself not a problem for a few
ions, but if one wishes to scale this system, more and more tricks (such as ’shuttling’
the ions from trap to trap [9]) are needed.

The experiment for this thesis focusses on electron spins, which are trapped using quan-
tum dots (section 1.3). The fabrication of the quantum dots is under control, but it is
difficult to manipulate single electron spins. To increase the ease of interaction with the
electron spins, the quantum dots are themselves embedded in a semiconductor cavity. An
extra difficulty is that in contrast to the trapped ions, the electron spins are completely
surrounded by (nuclear) spins present in the environment, causing decoherence.

1.2.2 Algorithms

Supposing that a working array of quantum bits (i.e. a quantum computer) has been
constructed, it is now possible to perform various operations on the qubits. The al-
gorithms that use these operations are different from their classical counterparts, since
they have to be compatible with quantum theory [14]. Hence the development and op-
timization of quantum algorithms has turned into a separate field by itself. Well known
algorithms are for example Shor’s factorization algorithm (to factorize prime numbers,
as mentioned earlier) or Grover’s algorithm for searching databases (which provides a
quadratic speed-up rather than exponential). An important thing to note is that most
quantum algorithms are probabilistic, in the sense that they do not always provide the
correct answer. Simply repeating the algorithm increases this fidelity. An example of a
non-probabilistic (i.e. deterministic) quantum algorithm is the Deutsch-Jozsa algorithm
(with little practical use).

A very important aspect of quantum algorithms is that the operations that are per-
formed on the qubits have to be unitary, meaning that the operations do not project
or collapse the state of the qubit. This in turn means that measuring the state of the
system using these operations is not possible. In terms of the Bloch sphere, unitary
operations are those operations that leave the length of the state vector unaltered. The
action of unitary operation can therefore be visualized as a simple rotation of the state

6



vector, making sure that the result is still a vector on the Bloch sphere (and hence a
valid qubit state).

These operations are more easily performed on photons than on the electron spins di-
rectly. The two systems (electron spin and photon polarization) are therefore coupled
through entanglement (see section 1.4). This implementation is called hybrid, since two
different physical systems are being used. In short then, the aim is to use solid state
qubits (electron spins in quantum dots) for storage of information, and to use photons
to tranfer data and perform the manipulations on.

1.3 Quantum Dots

A quantum dot is sometimes called an artificial atom. The reason for this is that the
quantum dot, just like an atom, has a confining potential in three dimensions giving it
discrete energy levels. As a result it can confine electrons (and holes), giving it interesting
properties for a large variety of applications such as LEDs, solar cells and diode lasers.
As will be described in the following, the quantum dots also provide a way to implement
qubits. A nice explanation of quantum dots can be found in [24] and [15].

1.3.1 Growth

The growing of the quantum dots starts with a GaAs substrate. By depositing single
layers of InAs on top of this substrate, there is a formation of small islands of InAs. This
formation of islands occurs because of a slightly different value for the crystal lattice con-
stant of InAs as compared to GaAs. The first layer does not ‘fit’ on top of the substrate
perfectly, and experiences some strain. By adding more layers (until a critical thickness
is reached), the InAs starts lumping together to form the dots. This fabrication process
is called the Stranski-Krastanov growth method. Figure 1.3 shows an AFM image in
which the dots are clearly visible.

The typical dimension of the dots is about 25 nm in the plane (approximately circular),
and about 2 nm in the direction normal to the plane (which from now on shall be
the z-direction). The concentration of dots throughout the sample varies, and can be
controlled during growth. The concentration cannot be too high however, since the dots
would then start perturbing each other. The layer of quantum dots is then capped off
with another layer of GaAs to match the fundamental mode of the cavities. This layer
of material will be referred to as the active layer.

1.3.2 Band structure

The bandgap of the dots (InAs) is slightly smaller than the bulk (GaAs) in which they
are embedded. This gives the quantum dot a confining potential that is like a quantum
well in the z-direction and parabolic in both the x- and y-direction. Electrons and holes
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Figure 1.3: AFM image of uncapped layer of InAs quantum dots. The area of this image
is 1µm by 1µm. Courtesy Antonio Badolato. (Image taken from M. Rakher’s thesis
[22]).

that are excited at or near the dot can hence be trapped. A qualitative picture of the
local energy structure (in the z-direction) in the vicinity of a dot is shown in Figure 1.4.

Figure 1.4: Band structure of the z-direction near a quantum dot. The bandgap of the
quantum dot is smaller than that of the environment, and so provides an effective trap
for electrons and holes. Figure 1.6 provides some more detail.

The trapped electron spins can then be used as our qubit, since this spin has two possible
states and hence is a two-level system.

A bit more can be said on the bandstructure of the surrounding GaAs, following partially
the section on the physics of quantum dots as found in [24]. Detailed information on
quantum dots and specifically on semiconductor physics can for example be found in [28].
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The electrons in a solid experience a periodic potential due to the periodic lattice of the
material, affecting their movement. This periodicity is reflected in the wavefunction for
the electrons:

ψe(~r) = ei
~k·~ru(~r)

in which u(~r) is a function with the same periodicity as the lattice (i.e. u(~r+ ~R) = u(~r),
with ~R any lattice vector) and where ~k is the electron’s wave vector. In the case of
a slowly varying potential in a direct-gap semiconductor, the electron wavefunction is
often approximated as

ψe(~r) = f(~r)u(~r)

in which f(~r) can be seen as the enveloppe of the wavefunction, satisfying Schrödingers
(time-independent) equation with potential V (~r):[

− ~2

2m∗
∇2 + V (~r)

]
f(~r) = Ef(~r)

The m∗ appearing in the Hamiltonian is the effective mass of the electron. If the motion
is one dimensional, and the electron experiences a periodic potential with no a-periodic
perturbations, the effective mass can be calculated via

m∗ = ~2

[
∂2ε(k)
∂k2

]−1

(1.3)

in which ε(k) is the dispersion relation, giving the energy ε as a function of the wave
vector k. In general, the effective mass is different from the actual mass of the electron.
In the special case of free electrons (V (~r) = 0), the dispersion relation is quadratic in k.
This can easily be derived by noting that a free electron only has kinetic energy, and so
using the de Broglie relation (p = ~k) the Hamiltonian can be written as

H =
p2

2m
=

~2k2

2m

where m this time is the actual mass of the electron. The energy eigenvalues obtained
from this Hamiltonian are hence simply given by

ε =
~2k2

2m

which is exactly the needed dispersion relation. By subsititing this relation into equa-
tion 1.3 the effective mass of a free electron is found to be m∗ = m, which was to be
expected since the electrons motion is not affected by any potential.

Qualitatively then, from equation 1.3, the curvature in the plot of energy versus wave
vector is a measure for the mass of the particle. Figure 1.5 shows the energy diagram
for GaAs. Notice the different curvatures for the holes, which have hence been divided
into heavy holes (HH) and light holes (LH). Apart from a different effective mass, they
are different in spin as well.
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Figure 1.5: Band structure of GaAs. The energy depends quadratically on the wave-
vector k, while the prefactor is a measure for the effective mass of the particles. The
heavy holes (HH) and light holes (LH) have different spin, but are degenerate in energy
at k = 0. This degeneracy is lifted by size quantization and strain in the sample. The
spin-orbit (SO) band is neglected due to the large energy difference with the HH band.
Image taken from [28].

Due to the size quantization (and strain in the structure), the degeneracy between light
holes (±1

2 spin) and heavy holes (±3
2 spin) at k = 0 is lifted (not shown in the figure).

There is also a spin-orbit (SO) band visible in the figure, which will not be considered
in the rest of this thesis because it can be neglected due to a large energy difference.

The band structure of to the quantum dots as shown in Figure 1.4 gives rise to multiple
energy levels. This is analogous to the confining potential of an atom, giving it prop-
erties such as discrete energy levels. The lowest energy level of the dot (similar to an
S-type atomic orbital) can hold two electrons, and the lowest energy level for the holes
is able to hold two (heavy) holes (see Figure 1.6). It is the electron-hole pairs in which
the holes are heavy that are studied here.

1.3.3 Charged states

The quantum dot layer is placed on a PIN-diode like structure, allowing the quantum
dots to be in different charged states by applying a bias voltage. The effect of the bias
voltage is that the energy of the p-type region of the PIN-diode is lowered with respect to
the n-type region. Since the Fermi-level is unaffected, the quantum dot energy well drops
below the Fermi-level. Depending on the voltage, single electrons can hence occupy the
quantum dot levels. The state in which a single electron is occupying the quantum dot
(giving it a negative charge) is denoted X− and is called the trion state. The above is
shown in Figure 1.7.

Consider now a quantum dot in the singly charged trion state. The spin of this
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Figure 1.6: The energy levels of the quantum dot. The heavy holes and light holes have
different energies due to the strain and size quantization.

(a) No applied voltage (b) With applied voltage

Figure 1.7: The sample behaves like a PIN diode. (a) Without applying a voltage, the
p-type region is higher in energy than the n-type region. (b) With a voltage, the p-type
region can be energetically lowered with respect to the n-type region. This in turn charges
the dot, since its energy levels drop below the Fermi-level Ef . (Images taken from M.
Rakher’s thesis [22]).

electron is either up (↑) or down (↓). Depending on this spin, either of the following two
situations occurs when an electron-hole pair is created and trapped:

| ↑〉 → | ↑↓⇑〉

or
| ↓〉 → | ↑↓⇓〉

where ⇑ and ⇓ denote the heavy hole spin. In both of the cases, the two electrons in the
trion state form a singlet state. This means there is no spin-orbit interaction.
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1.3.4 Selection rules

The two abovementioned situations are bound to selection rules. The photons considered
here have no angular momentum and so only have spin (Sz = ±1). The two different
circular polarization states will from now on be labelled |L〉 for Sz = −1 and |R〉 for
Sz = +1. Conservation of total angular momentum means that a photon in the |L〉 state
can only create an electron-hole pair in which the electron has spin +1

2 and the hole −3
2 .

The same reasoning holds for the |R〉 photon. These optical selection rules for the
trion state are displayed in Figure 1.8.

Figure 1.8: The optical selection rules for the trion state. Angular momentum has to be
conserved, and so an |R〉 state photon (with Sz = +1) creates an electron (heavy) hole
pair in which the electron has spin −1

2 and the hole +3
2 . If there is already an electron

present with spin −1
2 , the |R〉 state photon is unable to create an electron-hole pair.

One other property of the trion state regarding selection rules, is that there is always
an electron available for the hole to recombine with. Therefore this state is also called
a bright state. On the other hand, the neutral state (a quantum dot with no extra
trapped electron) can have a dark state. This is possible since there is a possibility
for the electron to flip its spin when trapped (due to perturbations), after which the
electron and hole are no longer able to recombine. Notice also that the light that is
emitted by the quantum dots is hence circularly polarized, following the same selection
rules depending on the electron spin.

1.3.5 Photoluminescence

The recombination of the electron-hole pairs does not necessarily take place through the
quantum dots. It is actually even more unlikely to excite electron-hole pairs directly at
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the dot. Instead, most of the pairs are excited in the GaAs surrounding the dots. The
pairs then either migrate towards the dots and recombine there, or recombine outside
the dots. As long as the pump intensity is not too high (and by that is not creating
too many electron-hole pairs), the emission of the GaAs does not dominate over the
emission of the quantum dots. This emission by recombination of electron-hole pairs is
called photoluminescence, since they were excited using light. Figure 1.9 summarizes
the above.

(a) Excite electron-hole pair above bandgap

(b) GaAs recombination (c) Quantum dot recombination

Figure 1.9: (a) An electron-hole pair is excited by pumping with an above-bandgap laser
(blue). (b) If the electron-hole pair does not diffuse to a quantum dot, they recombine over
the GaAs bandgap (orange). (c) If the electron-hole pair gets trapped, they recombine
through the quantum dot (red). The light used and observed in the experiment does not
have the same wavelength as shown here.

1.4 CQED

Cavity quantum electrodynamics studies the interaction between a quantum system (e.g.
an atom) contained in a cavity and a single mode of the quantized electromagnetic field.
The cavity serves both to confine (and quantize) the field and to enhance the interaction
between the photons and the quantum system. The quantum system used here is a
quantum dot, which for the rest of this section will also be referred to as a dipole. The
quantum dot can be referred to as a dipole because the trapped electrons and holes are
spatially separated, giving the quantum dot a dipole moment.

Section 1.3 described the quantum dots, and showed that we can treat them as a two-
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level system. The interaction between the cavity and the two-level system are then
mathematically described by the Jaynes-Cummings model [12]. A representation of
the eigenstates of the quantized electromagnetic field is through the Fock states, also
called number states. In this representation the number of photons in the field mode
is known, and the mathematical notation for such a state with n photons is |n〉. The
Jaynes-Cummings model predicts that (in the ideal case) the two-level system and the
electromagnetic field inside the cavity undergo vacuum Rabi oscillations, in which the
electromagnetic field continuously exchanges a single photon with the two-level system
(which in turn continuously switches between its groundstate |0〉 and its excited state
|1〉). In other words, the emission of the dipole is reversible, unlike in the situation in
which the dipole would radatiate into free space. Symbollicaly, these Rabi oscillations
can be described by

|0〉|n〉 ↔ |1〉|n− 1〉

In practice however, the efficiency of these oscillations depends on the two-level system
and the cavity, as will be discussed in the next subsection. Even more important to take
into account is the interaction between the cavity-dipole system and the light used to
probe it.

1.4.1 Coupling regimes

The interaction between the cavity, quantum dot and the electromagnetic field is de-
scribed in any quantum optics book (for example, see [11]), and can be characterized by
three parameters (see also Figure 1.10):

• g: The dipole-field coupling

• κ: The cavity decay rate

• γ: The dipole decay rate

Based on the ratio’s of these parameters, either of two coupling regimes is possible.
These regimes are the strong and weak coupling regimes.

Strong coupling

In the strong coupling regime, g > κ and g > γ. This means for example that a photon
emitted by the quantum dot is likely to be re-absorbed again instead of escaping the
cavity. This is of course just what is described by the Rabi oscillations. Most of the
proposed quantum information processing algorithms make use of the strong coupling
regime, but it is difficult to reach strong coupling experimentally.

Weak coupling

The weak coupling regime is characterized by the parameter relation κ > g (this is
sometimes also called the “bad-cavity” regime). It is also assumed that the incoming
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Figure 1.10: Schematic of a cavity with quantum dot inside. The various interaction
parameters are denoted g, κ and γ. The represent the dipole-field coupling, cavity decay
rate and dipole decay rate respectively.

field for excitation is weak, in order to keep the quantum dots in the ground state
(on average). In the weak coupling regime the chance for an emitted photon to be re-
absorbed is small. This does not mean at all that there are no interesting effects, nor does
it mean that this regime is useless for quantum information processing [4]. The main
effect in the weak coupling regime is the modification of the spontaneous emission rate,
also called the Purcell effect [20]. The spontaneous emission rate depends linearly on
the density of states, as given by Fermi’s golden rule. The density of states increases
with decreasing cavity volume. This effect is contained in the abovementioned dipole-
cavity coupling factor g, given by

g =

√
e2f

3m0n2
effε0Veff

which shows indeed that decreasing the (effective) cavity volume Veff increases the cou-
pling factor. The other parameters are material properties, except for f , which is the
oscillator strength and is proportial to the square of the dipole moment of the quantum
dot.

Instead of the coupling factor g it is common to use another figure of merit, the Purcell
factor FP [20]. It is the ratio of the emission rate of an atom in a cavity to that of an
atom in free space. Introducing also the quality factor Q of a cavity1, the final form of
the Purcell factor can be stated as:

FP =
3

4π2

(
λ

n

)3 Q

Veff

Again the important aspect is the factor Q/Veff, giving the Purcell factor an inverse
dependence on the cavity volume. Another parameter describing the coupling efficiency

1The quality factor is a measure of the optical confinement and the loss-rate κ of the cavity (Q ∼ 1
κ

).
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is the Q appearing in the Purcell factor. Usually, the two coupling regimes are distin-
guished not by the values of g, κ and γ, but by either ‘high’ (for strong coupling) or
‘low’ (for weak coupling) Q values.

1.4.2 Dipole-induced reflection

The experiments described in the rest of this thesis are all in the weak coupling regime.
Upon probing the cavity with a weak field, there are two possible scenarios [27],[25].
Consider first the excitation of an atom in free space, as shown in Figure 1.11(a). Since
the atom emits radially in every direction, there is little interference between the excita-
tion laser and the atom’s emission. The effect is also observed if the atom is not coupled
to a cavity mode, and hence can be considered to be in free space. Now consider an
atom that is coupled to a cavity mode, as in Figure 1.11(b). The image shows a single
cavity mode and an atom, and assumes the system has a high Purcell factor FP such
that the atom is coupled to the cavity mode. This means ‘all’ of the emission of the
atom is in the cavity mode (there are of course some losses), and it is therefore obvious
that there is noticable interference between the probing light and the atom’s emission.

(a) Atom in free space, uncoupled (b) Atom coupled to a cavity mode

Figure 1.11: (a) An atom in free space (or an atom that does not emit into a cavity
mode) has little interference between its emission and the probing light. (b) If the atom
is in a cavity and the system has a high Purcell factor FP , most of the atom’s emission
is in the cavity mode. In this case, there is interference between the probing light and
the atom’s emission.

The above described two situations (i.e. coupled and uncoupled) have a clear effect
when looking at the system’s reflection as a function of frequency. Whether the atom
is coupled or uncoupled depends on the frequency of its emission and the resonance
frequency of the cavity. In the uncoupled case, the atom is not on resonance with the
cavity mode, and there are little or no interference effects. The reflection curve hence
only shows a reflection dip at the resonance frequency of the cavity (see Figure 1.12(a)
and the red (uncoupled) curve in Figure 1.13). In the coupled situation, the interference
between the probing light and the atom makes the cavity reflective (Figure 1.12(b) and
the blue (coupled) curve in Figure 1.13).

Entanglement

The dipole-induced reflection and the selection rules together allow for spin-photon en-
tanglement. If the spin is in a general superposition α| ↑〉+ β| ↓〉 inside the cavity, then
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(a) Quantum dot is off resonance (b) Quantum dot is on resonance

Figure 1.12: (a) If there is no quantum dot on resonance, the cavity transmits the light
at that frequency. (b) If there is a quantum dot on resonance, the interference between
the incoupled light and the light emitted by the quantum dot makes the cavity reflective.

Figure 1.13: The reflection curves for the coupled and uncoupled situations. If the dot
is coupled (on resonance) with the cavity, the light is absorbed and the cavity becomes
reflective. Without a dot on resonance, there is only a transmission dip. In a real
experiment, the reflection peak will not go up to 100% reflectivity due to losses in the
optical system. Because of the two spin states, the maximally achievable visibility is just
below 50% unless there is selective spin pumping. (Image taken from M. Rakher’s thesis
[22]).

by pumping with |R〉 polarized light the situation as shown in Figure 1.14 arises. The
polarized light in the |R〉 state is unable to act on the | ↓〉 spin, and so the cavity is
effectively transmissive in this situation. If the spin is in the | ↑〉 state however, the
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light gets absorbed and re-emitted. The re-emitted light has reversed direction and so
is perceived as polarized in the orthogonal |L〉 state. The global state of this system can
then be given by

|Ψ〉 = α|L ↑〉 − β|R ↓〉

The minus sign arises because of a phase shift due to reflection. This is an entangled
state, since this wavefunction cannot be decomposed into the product of the wavefunc-
tions of the spin and photon separately. If the polarization of the photon was now
measured to be |L〉, the spin state would instantly become | ↑〉 since this measurement
projects the state into |L ↑〉.

Figure 1.14: Creating an entangled state by pumping with |R〉 polarized light. The part
of the spin state on which the photon cannot act (selection rules) contributes to a trans-
missive part (with phase shift due to reflection), while the other part is represented by a
reflection as orthogonally polarized light.

1.4.3 Polarization degeneracy

Finally, one of the most important aspects to mention in this thesis is the need for polar-
ization degenerate cavities. By polarization degenerate cavities, it is from now on ment
to actually indicate a polarization degenerate fundamental mode (since the fundamen-
tal mode is the easiest to couple to). The fundamental mode of the cavity is initially
non-degenerate (due to fabrication, see section 2.2.1), it is actually split into two peaks
differing in frequency.

This splitting arises because of asymmetry and strain in the semiconductor material.
The effect is known as birefringence, and has as its fundamental cause a differce of re-
fractive indices of the material in two orthogonal directions. More details on this follow
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in section 2.3.4 on hole burning.

The importance in making the fundamental mode polarization degenerate lies in two
separate reasons:

• Since measuring the polarization of the emitted light is (through entanglement)
equivalent to measuring the spin state of the electron, this measurement would
project the spin into the measured state. In order for quantum algorithms to
work, this projection should not take place since it destroys the superposition.
Another way to put this, is by noting that the superposition states should be
indistinguishable. Since the quantum bit is (again, through entanglement) the two-
level polarization of the photon, it must not be possible to measure the polarization
in any other way. If the cavity is non-degenerate, the polarization can simply be
obtained via the frequency of the emitted light.

• The second reason is a more practical one. In the end one wishes to address the
electron spin qubits simultaneously (using a narrow bandwidth laser). This would
not be possible if the frequency splitting between the two states is larger than the
bandwidth.

The route to getting the cavity polarization degenerate, is by changing the strain
in the cavity. This can for example be done by applying pressure to the sides of the
sample [7]. The method that is used here, is by creating small defects in the cavity by
burning with an intense laser beam (see section 2.3.4 and [5]). Since the quantum dot
emission has a bandwidth of about 2GHz, the cavity is considered to be polarization
degenerate if the splitting in frequency is less than 2GHz, or (equivalently) less than
0.06nm in wavelength.
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Chapter 2
Experimental

This chapter describes the experimental setup, the samples and explains the measure-
ment techniques. The section on the measurement techniques can be regared as a ‘tool-
box’, with which the results as described in the next chapter are obtained.

2.1 Experimental Setup

The experimental setup can roughly be divided into three major parts. They are the
optical table including optical elements, the cryostat, lasers and detectors.

2.1.1 Optical table

Figure 2.1 shows a schematic view of the optical table. For doing photoluminescence
measurements (e.g. spectra, stark shift and spatial scans), mirror A is taken out and
the 780nm diode laser reaches the sample. The CCD (charge coupled device) is used
to image the cavities for rough alignment. When aligned, beamsplitter BS 2 is taken
out since the CCD is no longer needed. This doubles the power reaching the sample. In
order to burn holes mirror A is put back in, while beamsplitters BS 1 and BS 2 are
taken out (to prevent damage to other optics). Before the hole burning actually takes
place, BS 2 is still in (but with low laser power) to use the CCD for positioning the
burn-spot. Finally, to do reflection measurements, a tunable 938nm Velocity laser is
coupled in from the spectrometer path. By taking out mirror B, this laser reaches the
(avalanche) photodiodes after relfecting from the sample in the cryostat.

2.1.2 Cryostat

Figure 2.2 is a schematic view of the inside of the cryostat. On the bottom right is the
inlet for the helium flow. The helium flows through another tube (not shown in the
image) and then enters a set of coils designed to cool the system. The yellow dots are
the windings of these coils, as seen from the front. First, the helium enters the coils
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Figure 2.1: A schematic view of the optical table. With mirror A out and B in, the
780nm diode laser can be used to image the sample and do photoluminescence measure-
ments. To do hole burning, mirror A and B are put into place, but BS 1 and BS 2
are taken out in order to avoid damage to other optical components. Last but not least,
mirror B and BS 2 can be taken out to do reflection measurements. A tunable 938nm
Velocity laser is then sent in from the spectrometer path, and this laser reaches both
(avalanche) photodiodes after being reflected from the sample.

directly beneath the 4K pot, and then spirals outwards through the yellow coils (verti-
cally aligned dots) cooling the 60K pot. From there, the helium flows into the return
line. The 4K pot is connected to the sample holder and the attocubes. The sample
itself is on top of the sample holder, and usually reaches a temperature of about 5K.
The attocubes (which are just piezo-electric crystals) are three stacked cubes, designed
to move the sample in the x-, y- and z-directions. Also not shown in the image, is
another connection to the cryostat that is used for a vacuum pump. During operation,
the pressure inside the cryostat ranges from 5×10−8 to 4×10−7 mbar. The final crucial
part in the cryostat is the PI-stage, which is used to independently move the objective.

The attocubes are used to move the sample into focus and adress different cavities.
They hence provide rough alignment. Using the attocubes, an accuracy of about 10nm
(at 4K) is reachable. For higher accuracy it is also possible to move the objective instead
of the sample, using the PI-stage. The PI-stage reaches an accuracy of 0.3nm, and has
a range of 100µm in both the x and y directions.
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Figure 2.2: A schematic view of the cryostat. The liquid helium flows through the yellow
coils and first cools the 4K pot. The 4K pot is in contact with the attocubes and sample
holder, which hence also get cooled. The sample has a typical temperature of about 5K
during operation.

2.1.3 Lasers & Detectors

There are three different lasers that are used in this setup. One of them is a diode laser
used for photoluminescence and imaging of the cavities. It has a wavelength of 780nm,
which means it pumps above bandgap. The second laser is a green (532nm) Ti-Sapphire
Tsunami ring laser, which is used for burning holes and doing lifetime measurements.
It has an external pump laser, providing a maximum power output of 5W. For alignment
on hole burning however, the output is set to 200mW, and an additional OD4 filter is
inserted (attenuating by a factor 104). This means the power reaching the sample is in
the µW range. The actual hole burning is done at 500mW with no extra OD filters.
The Tsunami laser can also be made to operate in a 20ps pulse mode. This mode is
needed to do lifetime measurements on the quantum dots, to distinguish between the
various charged states (section 1.3.3). Finally, a tunable external cavity laser (Velocity)
centered around 938nm is used to do reflection measurements.
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Spectrometer

The spectrometer used is a Horiba Jobin Yvon high resolution spectrometer, with a
Horiba grating. The CCD camera together with the grating allow for a resolution of
0.016nm per pixel (equivalent to 5.5GHz per pixel). The spectrometer has a total range
of about 17nm (or 5.6THz), since the camera has 1024 pixels.

Photodiodes

The photodiodes (PD) are used for reflection measurements. Two photodiodes are used
for alignment and optimization of the relfection signal. One of them provides a ref-
erence signal to which the final signal is normalized. Once the reflection dip is seen
and optimized, the non-reference photodiode is replaced by a femtowatt receiver. This
photodiode is much more sensitive to lower powers, which is needed since the relfection
peak from the quantum dots is only visible at very low powers (see also section 3.6). For
even higher sensitivity, both the femtowatt reciever and the reference photodiode can be
replaced by avalanche photodiodes (APDs). These photodiodes are extremely sensitive
to light, since they have a bias voltage applied that is just on the threshold of the diode
breakdown voltage. The smallest intensity reaching the APD makes it cross the break-
down voltage, and the result is an avalanche of electrons. An internal circuit stops this
avalanche and prepares the APD for the next breakdown. The period of stopping and
preparing is called the dead-time of the APDs, and is on the order of nanoseconds.

2.2 Samples

The layout of the cavities on the sample is discussed in this section. A more detailed
description of the cavities themselves is provided first, starting with the cavity fabrica-
tion [18].

2.2.1 Cavities

The cavities serve to confine the light around the quantum dot, and impose boundary
conditions that enhance the quantized nature of the light. The spontaneous emission
rate of the quantum dots depends inversely on the cavity mode volume (see section
1.4.1), and hence by creating small cavities the emission can be greatly enhanced.

Fabrication

The cavities are the last step in the sample fabrication. Up to this point, the sample
consists of the active layer, sandwidched between Distributed Bragg Reflectors (DBRs).
The DBRs consist of alternating 1

4λ thick GaAs and Al0.9Ga0.1As layers, and effectively
form a Fabry-Perot-like mirror structure. Due to these DBR structures, there is already
confinement of the light field in the z-direction (which is taken to be perpendicular to the
active layer). To create confinement in the x, y-plane (i.e. the active layer) in which the
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dots are situated, a way to access this layer through the DBR mirrors is needed. To this
end, trenches are etched into the structure as is shown in Figure 2.3. It is important to
note that the whole procedure for fabrication of the sample is a “bottom-up” process:

• First the bottom DBR structure is grown, consisting of 32 alternating layers.

• On top of that is where the active layer is grown.

• Then the top DBR structure is grown, consisting of 23 alternating layer.

• Finally, the trenches are etched for the oxidized aperture (see below).

Figure 2.3: Image of a single cavity as seen from the top. The trenches are etched
through the upper DBR, the active layer and part of the lower DBR.

These trenches reach through the top DBR structure, and continue even a bit into
the lower DBR structure. Once etched, the trenches allow for growth of an aluminum
oxide aperture. The oxide grows inwards from the trenches, and the resulting aperture
leaves open an approximately circular central region (the active area) of about 2 to 3µm
in diameter. That this aperture is not perfectly circular is due to both asymmetries in
the placement/dimensions of the trenches, and the anisotropic growth-rate of the oxide
(this was done on purpose). Figure 2.4 shows the sideview of a cavity with oxidation
layer.
This means we now have a complete cavity with an active layer of quantum dots. Of
course, there are also electrical contacts in the sample which I have omitted to mention.
The exact details can be found in M. Rakher’s thesis [22]. Last but not least, there is a
need to mention the position of the cavities. The samples that were used for the largest
part during this project, had cavities that were arbitrarily positioned. That is to say,
they were not centered on a dot. This was simply because the concentration of dots is
high enough to make sure there is always at least one dot near the center. Section 3.9.1
discusses another approach for cavity placement.

Cavity modes and spectrum

Modes

The cavity with aperture now confines light in all three spatial dimensions. A simple
but accurate model then describes the cavity as a quantum well in the z-direction, and
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Figure 2.4: Slice-through of a cavity. The wedged oxidation layer is shown, together with
the active layer and the dots. Both of the DBR structures have also been indicated.

as a parabolic potential due to the aperture in both the x- and y-directions. The modes
of a parabolic potential are Hermite Gaussian modes1:

Ψnm(x, y) = Hn(x)Hm(y) e−(x2/ω2
x+y2/ω2

y) (2.1)

These modes have been experimentally verified [10] for the lower orders. Higher order
modes are expected to deviate (to Laguerre Gaussians) since the parabolic potential
flattens. Figure 2.5 shows a few of the modes.

Spectrum

The spectrum of the cavities follows the simple formula

λnm = λ00 − an− bm (2.2)

in which λ00 is the fundamental mode wavelength, and where a and b are parameters
related to the size of the modes in the x and y directions respectively. They can be used
to obtain information about the size of the fundamental mode, which is further discussed
in section 3.1. An example of a spectrum with indicated labels for n and m can be seen
in Figure 2.6.
The image shows the spectra taken with two orthogonal polarizations (black and red
curves). Notice that the λ00 peaks do not overlap, and so this cavity is not polarization
degenerate. The spectrum taken without any polarizers would be the sum of the two
curves.

1The actually observed pattern is of course the square of this function.
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(a) The fundamental mode, |Ψ00|2. (b) |Ψ10|2, 1 node in x-direction

(c) |Ψ01|2, 1 node in y-direction (d) |Ψ11|2, 1 node in both directions

Figure 2.5: Plots of a few of the modes predicted by equation 2.1, with ωx = ωy =
√

2.
The indices label the number of nodes, and in which direction they occur. Other higher
order modes are easily visualized in the same manner, although the observed modes start
deviating towards Laguerre Gaussians.

2.2.2 Complete sample

The sample does not consist of a single cavity, but rather has a 2D array (6×7) of cavities.
The individual cavities are indicated by their row and column indices. This means the
cavity in the lower left is R1C1 and the upper right would be R6C7. Although slightly
confusing, the two samples used for the measurements are indicated by C1 and C2
respectively. Both samples are mounted on the same chip carrier, but have separate
electrical connections (sharing the same ground). This means that voltages can only be
applied across the entire sample, and not across single cavities. Potentially, having too
large currents (on the order of 100–200µA) can cause degradation of the sample over
time (see section 3.8 on sample degradation).
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Figure 2.6: An example spectrum of a cavity. The modes are indicated with labels n and
m, refering to equation 2.2. The black and red curves are for two orthogonal polariza-
tions. Notice that for the fundamental mode the two polarizations do not overlap, and
so this cavity is not (yet) polarization degenerate (but very close to it).

2.3 Methods

Multiple different measurements can be done on the cavities to characterize their prop-
erties. After the characterization has taken place, suitable and/or promising cavities can
be chosen with which to continue. Continuing in this case means burning holes to get the
fundamental mode (FM) to be polarization degenerate. The three useful measurements
for characterizing discussed here are the spectrum of the cavity, a voltage scan and a
spatial scan.

2.3.1 FM Splitting from photoluminescence

The splitting of the fundamental mode can usually be obtained directly from the spec-
trum, since generally the initial splitting is large enough to be resolved. The initial split-
ting of the fundamental mode depends on the geometry and orientation of the trenches,
as well as on the resulting size of the oxide aperture. Decreasing the aperture opening
(letting the oxide grow in further) generally increases the splitting. A typical value for
the initial splitting of the cavities is around 30GHz. Such a splitting can usually be
reduced to values close to degeneracy by burning 4–6 holes.
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2.3.2 Voltage scan

The voltage scans provide a quick overview of the spectral position of the dots. The
measurement is based on two separate effects

• Charging of the dots by applying a bias voltage (see section 1.3.3).

• Quantum confined stark effect (QCSE), effectively tuning the dot emission fre-
quency by shifting the energy levels.

By obtaining a spectrum at various voltages, it is possible to track the frequency shifting
of the peaks with voltage. A nice way to graphically display this tuning is by creating a
2D plot of the spectrum intensity, with wavelength on the vertical axis and voltage on
the horizontal. Such a typical voltage scan is reproduced in Figure 2.7.

(a) Non Normalized voltage scan (b) Normalized voltage scan

Figure 2.7: Typical voltage scan. The curved lines are characteristic for quantum dots,
and should be parabolic. The more or less constant horizontal lines are the cavity modes
(the FM being at the bottom).

Notice that some of the peaks spectrally shift as a function of voltage, while others do
not. The lines that are more or less constant with voltage are the cavity modes. The
cavity modes do tune with voltage however (as is discussed in section 3.4), but the effect
is too small to be seen using the voltage scans. The quantum dot emission tunes with
voltage, and so the sloped curves are quantum dots. It is important to note here that
a low pumping power (microwatts) is required to see the dots. Higher pumping power
would overpump the dots and only show the photoluminescence of the cavity modes
(see section 1.3.5). The laser power is not varied to achieve this low power, but instead
neutral density filters are used to attenuate the excitation source.

The voltage scan images are a suitable tool for obtaining information about the spectral
position of the dots. Using them, selecting promising cavities based on dots (spectrally)
close to the fundamental mode is possible. Apart from that, the voltage scan takes only
a few minutes to complete, allowing for a quick characterization.
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Notice also that the same QCSE can be used to tune the dots into the fundamental
mode by applying a voltage. If the dots are (spectrally) too far away to be tuned into
the fundamental mode by applying a bias voltage, it is still possible to coarsly tune them
by using the hole burning technique (see section 3.5).

During the measurements it is a good idea to monitor the sample degradation, by
recording an IV-curve (see section 3.8). The voltage scans therefore also record the
IV-curve.

2.3.3 Spatial scan

One final important parameter is the spatial separation of the quantum dot and the fun-
damental mode center. The spatial scans provide the information about this distance.

For the spatial scans the PI-stage is used to move the objective across an area of about
10× 10µm or 15× 15µm, in steps of either 0.5µm or 0.25µm depending on the required
resolution. The time it takes for a spatial scan to finish is between half an hour and
three hours (depending, again, on the resolution as well as the scanned area).

At each position of the PI-stage, the sample is pumped above bandgap and the emission
is recorded (so it is the pump that is being scanned). A single mode fiber of 5µm core
diameter is used to send the laserlight into the optical setup. The setup has an effective
demagnification of 5×, and so the sample is scanned using a 1µm spot. At each position
of the PI-stage, it is recorded for each frequency wether or not there is emission at that
location. Once all the data is obtained, an array of images is made of which each image
represents the entire area at a single frequency. In other words, these images are made
by putting together the pixels at the same frequency.

Since we know from the stark shift scans at which frequencies the fundamental mode
and dot are, we can look at the images for these frequencies and locate their centers. An
example of a spatial scan image is given in Figure 2.8.
If the quantum dot is not on resonance with the fundamental mode they do not show
up on the same image. If however the dot is on resonance with the fundamental mode,
the image at the resonance frequency shows both the fundamental mode and the dot.
This is because it is the emission that is being recorded. To find the distance between
the dot and the mode, a script was written to fit Gaussian profiles through the images.
The centers of these Gaussian curves can then be used to compute the distance.

2.3.4 Hole burning

The hole burning technique is used to tune the polarization degeneracy of a cavity. Since
this degeneracy arises mainly because of strain in the material, inducing or releasing ex-
tra strain can be a way to tune the degeneracy. The underlying effect of the polarization
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Figure 2.8: An example spatial scan, showing the emission from the fundamental mode.
The image is 15 × 15µm. A similar image would be obtained for a quantum dot (at a
different frequency, and a smaller emission spot).

indegeneracy due to strain is birefringence. Birefringence is the phenomenon that the
different polarization directions of light in a material experience a different refractive
index. If, for example, a circularly polarized lightbeam enters a birefringent crystal, the
two components of the polarization will emerge at the other end having obtained a phase
differnce due to differing optical path lenghts. If this phase difference is just right, the
beam will now emerge as a linearly polarized lightbeam. This is in effect exactly the
principle of a quarter lambda wave plate.

If, instead of exiting the crystal at the other end, the beams are reflected like in a
cavity, (constructive) interference causes the two polarization modes to obtain a differ-
ent frequency. Denoting the two different refractive indices n1 and n2, the condition for
constructive interference (not including phase shifts) is:

2Ln1 = mλ (2.3)

stating that the path length (2Ln1) should be an integer multiple (m) of the wavelength
λ. The same condition holds for the polarization experiencing the refractive index n2.
For both polarizations L is the cavity length (having a fixed value), and since m is an
integer, the wavelength λ has to differ for different refractive indices.

By using an intense laser beam to create small defects on the cavity surface, it is possible
to tune this birefringent property. The intense laser beam causes thermal expansion at
the surface, which imposes a force (stress) on the sample. It is this stress that deformes
the lattice, resulting in strain. Finally, it is this (anisotropic) strain that causes bire-
fringence. A microscope image of a cavity on which holes were burnt is shown in Figure
2.9.
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Figure 2.9: A microscope image of a cavity on which holes have been burnt.

It is of course important at what position to burn these defects (and for which duration),
in order to decrease (instead of increase) the polarization splitting. A simple but quite
accurate model for the hole burning has been described in [5]. Using this model, different
computer simulations showed that the right tactic for getting cavities degenerate is by
continuously burning the holes at 45 degree angles with respect to each other and the
cavity center. Moreover, the two orthogonally polarized peaks do not respond identically
to the surface defects. At room temperature, one of the two peaks moves about 4 times
as much as the other depending on the location of the hole (also described in [5]).
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Chapter 3
Results & Discussion

The most important results and achievements are discussed in this chapter. After dis-
cussing the size of the fundamental mode and the characterization of a sample, a com-
plete example on how to obtain polarization degenerate cavities is presented. That
section relies on the previously described ‘toolbox’ of measurement techniques. Finally,
some separate but nontheless useful characterization measurements are presented and
discussed.

3.1 Fundamental mode waist

The width of the fundamental mode is of importance for the coupling efficiency. It sets
the scale for the distance from the mode center at which a quantum dot is still able to
couple to the fundamental mode.

As already stated in equation 2.2, the spectrum of the cavities follows the formula

λnm = λ00 − an− bm

By looking at the difference in wavelength between the fundamental mode λ00 and the
first two higher order modes λ10 and λ01, values for a and b can be obtained through1:

a = λ00 − λ10 and b = λ00 − λ01

Further theoretical analysis (see for example [10]) shows that

a =
2n0

π

(
h

l

)2 1
rx

and b =
2n0

π

(
h

l

)2 1
ry

λ00 = 2n0

(
h

l

)
−
(
a+ b

2

)
1Ideally, all of the modes would be polarization degenerate. Since this is not the case, values for a

and b are obtained for both polarizations separately, and the final result is an average over the two.
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Using the latter of these it is possible to find the ratio h/l, in which h is an effective
(spatial) separation between the electric field nodes in the z-direction, and l labels the
different modes in this direction. From the value of h/l and the values of a and b, the
values for rx and ry can be obtained. These parameters are related to ωx and ωy in
equation 2.1 for the cavity modes through

ωx,y =

√
λ rx,y

π

Finally, a measure for the size of the fundamental mode is the FWHM of the Gaussian
shape. Since the observed pattern is the square of the given equation (introducing a
factor 2 into the exponent), the final result is

FWHMx,y =
√

2 ln(2)ωx,y

The values for the width of the modes in both directions is on average in the range of
3–4 microns.

3.2 Sample characterization

The characterization of the sample is useful in selecting promising cavities to be used for
further experiments. The best cavities have a dot spectrally close to the fundamental
mode, and already have a small splitting. The first steps in characterization do not
involve spatial scans simply because they take 1–3 hours to complete (depending on the
resolution). This means that for each cavity the following two steps are taken:

1. Align on cavity, and obtain its spectrum. From this spectrum, the splitting can
be extracted using one or multiple fits. This procedure is described in some more
detail in section 3.3.1).

2. Perform a voltage scan, to see the spectral position of the dots.

Table 3.1 shows the initial splittings (in GHz) of sample C2. Some of the cavities were
not scanned since their fundamental mode was at too low a frequency (out of range for
the pump laser).

To point out that the splitting is not enough to characterize the cavities, Figure
3.1 shows the voltage scans for R5C2 and R4C6. R5C2 seems to be a good candidate
because of its splitting, whereas R4C6 has a larger than average splitting. The voltage
scans show however that R4C6 has a quantum dot nicely tuning into the fundamental
mode, and might therefore actually be the best choice. As a general remark, before
starting the voltage scans it was first checked if any dots were visible at all using the
spectrometer.
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C1 C2 C3 C4 C5 C6 C7
R1 41.86 36.38 23.43 20.73 25.67 – –
R2 31.40 23.90 18.24 18.41 29.70 – –
R3 19.67 13.51 14.59 15.60 34.53 – –
R4 11.80 12.31 18.77 18.99 30.80 39.82 50.72
R5 13.64 10.64 15.48 21.17 33.12 – 55.71
R6 10.24 16.43 16.63 31.61 28.96 – 58.19

Table 3.1: Table of initial splittings (in GHz) of sample C2. Some cavities were not
scanned because their fundamental mode wavelength was out of the Velocity tuning range
(which would exclude reflection measurements).

(a) R5C2 (b) R4C6

Figure 3.1: (a) Voltage scan for R5C2 (b) Voltage scan for R4C6. Even though R5C2
has the best value for the initial splitting, R4C6 is the more promising candidate.

3.3 Getting a cavity degenerate

This section describes all of the necessary steps to fully characterize a cavity (and hence
sample), and to make the fundamental mode polarization degenerate, using the methods
described in Chapter 2. It is assumed here that the 780nm (above bandgap) diode laser
is aligned on the cavity that is to be characterized. In the next few subsections, the
complete procedure and results will be discussed using cavity R2C5 (on sample C1) as
an example.

3.3.1 Spectrum

Once the laser is aligned, the spectrometer shows the mode spectrum of the cavity. The
spectrum for R2C5 looks like as shown in Figure 3.2. If the splitting is larger than the
resolution of the spectrometer (0.01664nm), two split peaks can easily be distinguished
on the fundamental mode. A note to be made is that the spectrometer spectra are
plotted versus pixel numbers. These pixel numbers are related to the wavelength λ in
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nm via (obtained using a calibration lamp):

λ = λsnm− 0.01664 · pixel (3.1)

where λs is the wavelength at which the spectrometer is centered.

Figure 3.2: The cavity spectrum of R2C5. The fundamental mode (highest wavelength)
has a splitting larger than the resolution of the spectrometer, and can therefore be seen as
‘split’. For a polarization degenerate cavity, the splitting is no longer observable on the
spectrometer. Because of overpumping, the quantum dots are not visible in this spectrum.

For a quantitative splitting value however, the spectrum should be saved and fitted.
To slightly make the fitting more easy, it is also possible to insert a polarizer and half-
lambda plate in front of the spectrometer, so that it is possible to ‘select’ either of the
peaks and save them separately. Using for example Origin or Maple, a Lorentzian can
be fit to the data and the peak separation can be extracted. The initial splitting of this
cavity, obtained from the fits shown in Figure 3.3, is 0.038 nm (or 12.56 GHz).

3.3.2 Voltage scans & Hole burning

Since the cavity is not polarization degenerate, the hole burning technique can be used
to decrease the splitting. It is also important to find out if there are any potentially
good quantum dots in the vicinity (spectrally) of the fundamental mode. To obtain
information about the latter, a stark shift can be used. The stark shift scan of R2C5
before burning any holes is shown in Figure 3.4.
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(a) Left Peak (b) Right Peak

Figure 3.3: Lorentzian fits of the two peaks of the fundamental mode. The separate peaks
were obtained using a polarizer and half-lambda plate in the output collection. The left
peak is shown in (a), and the right peak is shown in (b). The value of the splitting is the
(absolute) difference of the centers of the peaks, and equals 0.038 nm in this case.

Figure 3.4: The stark shift scan of R2C5 before burning holes. The splitting of the fun-
damental mode is easily visible, and there are potential dots tuning into the fundamental
mode.

The next step is to burn holes to get the cavity polarization degenerate. The results
for the first few holes are summarized in Figure 3.5.

The cavity splitting is at this point no longer distinguishable using the stark shift
(or spectrometer). To obtain the actual splitting, reflection measurements have to be
used (see section 3.3.3). Notice also that the absolute wavelength of the fundamental
mode has shifted. More strikingly is that it is obvious that the quantum dot emission
gets redshifted, and that the effect of hole burning is larger on the dots than on the
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(a) 1 hole (b) 2 holes

(c) 3 holes (d) 4 holes

(e) 5 holes (f) 6 holes

Figure 3.5: The results of the first few holes burnt on R2C5. The splitting of the fun-
damental mode decreases to a point where it is no longer visible using the spectrometer
(and hence not on the stark shifts). The splitting has to be obtained from reflection mea-
surements. It is not only the cavity modes that are affected by the hole burning. It is
clearly visible that the quantum dot emission also shifts to higher wavelengths.

modes. This can either be a problem or be very helpful. The fact that the quantum dot
emission shifts might be used in a controlled way to tune quantum dots into resonance
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with the fundamental mode by burning holes. This would mean that holes have to be
burned isotropically, in such a way that the splitting of the fundamental mode is not
changed. Because the effect on the dots is larger, the dots effectively move with respect
to the modes. Inducing strain isotropically has been tried, and the result is summarized
in Figure 3.6.

(a) 9 Holes (b) 10 Holes

(c) 11 Holes (d) 12 Holes

Figure 3.6: The results of isotropically burning holes on R2C5. The splitting of the
fundamental mode is unchanged, while the quantum dots cleary shift in wavelength. This
effect can be used to control the quantum dot emission frequency. The voltage range has
been adjusted w.r.t. Figure 3.5.

This shifting of the quantum dot emission is further discussed in section 3.5. It is
necessary to clarify the isotropic strain. As discussed in section 2.3.4, burning holes
moves the separate peaks by different amounts based on the location of the hole. By
burning two successive holes at orthogonal positions, a net movement of the peaks is
achieved without changing the peak separation. This is what is meant by isotropic strain.

3.3.3 Reflection Measurements

At this point, R2C5 is seems to be a degenerate cavity with a quantum dot tuned into
resonance at about 1.13 V. This is the perfect situation for reflection measurements,
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which provide data about the actual splitting of the fundamental mode as well. The
reflection dips of the two peaks are shown in Figure 3.7.

Figure 3.7: The two reflection dips of R2C5. Their separation is about 5 GHz, which
is equivalent to about 0.009 nm. In other words, this splitting is no longer visible on
the spectrometer (which is what the starkshift shows). On the other hand, the cavity is
not yet sufficiently degenerate (∼ 2GHz). The frequency axis is with respect to the laser
frequency (which is unimportant for the value of the splitting). The spikes on the left
hand side are laser artifacts.

Since a good enhancement of the dot emission with respect to the cavity mode is
observed (see Figure 3.6(d)), a good reflection peak is also expected. The actual peak,
however, is shown in Figure 3.8.

As can be seen, the peak height is very small. A possible explanation might be the
spatial position (discussed in the next section) of the dot with respect to the fundamen-
tal mode. The larger the distance between the quantum dot and the fundamental mode,
the smaller the coupling.

The record degeneracy achieved through hole burning is 0.2GHz, starting with a cavity
that had an initial 50GHz splitting (see Figure 3.9). To reach this degeneracy, 27 holes
were burnt (the average number of holes needed has been reduced to 4–5 holes).
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Figure 3.8: Reflection measurement on degenerate cavity R2C5 with quantum dot tuning
into resonance. The peak height is (very) small, which might be explained by the fact
that the dot is spatially not nicely centered on the fundamental mode center.

(a) Initial splitting of 50GHz (b) Record degeneracy of 0.2GHz

Figure 3.9: (a) The initial splitting of the cavity was roughly 50GHz. (b) By burning 27
holes on the cavity, the degeneracy was reduced to a record value of 0.2GHz.

3.3.4 Spatial Scan

A spatial scan has been performed on this cavity to find the position of the dot and
of the fundamental mode. The distance between them can then be extracted from this
data. From the last stark shift (Figure 3.6(d)) it is known at what wavelength the
fundamental mode and dot are visible. It can also be seen that at about 1.15V the
dot is out of the fundamental mode, while both should still be visible. The scan was
performed at a slightly higher voltage (1.204V), since at this voltage the result was
even more clear. The scan should show the fundamental mode and the dot at their
corresponding frequencies. These images are shown in Figure 3.10.
The extracted distance between the quantum dot and the fundamental mode is 4.3µm,
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(a) Quantum dot (b) Fundamental mode

Figure 3.10: The results of the spatial scan at 1.204 V on R2C5. This voltage is not
present in the starkshift image, but the position of the fundamental mode and dot can
still be seen on the spectrometer. Part (a) shows the quantum dot, and (b) shows the
fundamental mode (the quantum dot is still visible, since it is still coupled to the funda-
mental mode). The distance between the dot and fundamental mode is 4.3µm, probably
explaining the low reflection peak.

and was obtained by fitting Gaussian curves through both images. This procedure works
as follows:

• If possible, the indices of the pixel with the highest intensity are taken from the
image. In the above two images, this is clearly possible for the quantum dot. For
the fundamental mode, a different wavelenth than shown was used in which the
relative intensity of the fundamental mode was higher than the quantum dot.

• A Gaussian curve is fit through bot the column and row indicated by the indices
of the pixel. The centers of these fits can then be used to compute the distance
between the dot and the fundamental mode. Denoting the coordinates of the
dot and fundamental mode by (xqd, yqd) and (xfm, yfm) respectively, the spatial
separation D is simply found by using the pythagorean theorem:

D =
√

(xqd − xfm)2 + (yqd − yfm)2

By taking a characteristic fundamental mode width w of about 3µm, the Gaussian shape
of the mode makes it such that at the abovementioned distance d of 4.3µm the coupling
efficiency g is on the order of 10 percent of the maximum g0:

g(d) = g0e
d2/w2 ⇒ g(4.3)/g0 = e4.32/32 ≈ 0.13

If the quantum dot would have been within a 1µm radius, the coulping would be closer
to 75%.
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3.4 Voltage-tuning of the cavity modes

The reflection measurements provide us with quantitave data about the voltage depen-
dence of the cavity modes. In general the effect of changing the birefringence by applying
an electric field is either called the Pockels effect or the Kerr effect, depending on wether
the effect is linearly or quadratically proportional to the applied field respectively. The
voltage-tuning in this experiment was observed to be in the linear regime. The frequen-
cies of the two orthogonally polarized peaks of the fundamental mode have been tracked,
and are observed move with about 5 GHz and 3 GHz per volt. This result is shown in
Figure 3.11. It can be seen that the effect is not the same for different polarizations,
which is due to a differing effect of the electric field on the refractive indices.

(a) Frequencies (wrt laser) of individual peaks (b) The frequency difference (i.e. splitting)

Figure 3.11: (a) Shifting of the two fundamental mode peaks by applying a voltage.
The peaks move differently due to anisotropic interactions of the semiconductor atoms
(birefringence). (b) The splitting of the two peaks as a function of voltage. The splitting
is just the difference in frequency of the peaks.

3.5 Strain-induced quantum dot spectral shifting

The shifting of the dots has been analyzed for multiple cavities. In all cases, the shifting
seems to have a preference in the direction towards higher wavelengths. This conclusion
is made based on the graph shown in Figure 3.12. Multiple of such graphs have been
made, all with the same results.

There is no solid understanding of this preference for redshifting. This effect is known
also in literature [6], [13], [19]. A model is expected to be developed in the near future.

3.6 Reflection peak nonlinearity

The height of the peak in the dip is predicted to decrease nonlinearly with increasing
pump-power [2], [21]. The effect has already been seen in another experiment [8]. The
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Figure 3.12: Tracking of the shifting of the dot emission. The numbers label the holes.
Clearly, there is a tendency for the emission wavelength to redshift. Two holes (numbers
6 and 7) apparently blueshifted the emission, while hole 8 caused a redshift again. There
is as of yet no theory for the direction of the shift.

reason for the nonlinearity is because of saturation of the quantum dot at very low
intensities (on the order of 1 photon per lifetime). Intuitively, this can be visualized by
considering a few photons heading towards the cavity. The first photon gets absorbed
and raises the system into the excited state. For as long as the system remains excited
(i.e. the systems lifetime), any other photon is unable to act since there is no state to
be excited. Hence for all the other photons, the cavity is effectively transparent. This
mechanism is graphically shown in Figure 3.13.

Increasing the power of the pumping laser, more photons see an effectively empty
cavity. Since we are in effect are temporaly averaging using the photodiodes, the result is
that the average peak height decreases (becomes more transparent). This effect has been
measured by pumping the sample with different OD filters, instead of direcly varying
the laser power. The power then follows the relation

P = P0 × 10−OD

in which P0 is the output power of the laser, which can be measured simply using a
powermeter (750µW in this case). By varying the OD filters, different powers are send
onto the sample. In principle then, any power P ≤ P0 can be obtained for a given P0

by changing the OD value. In practice however, a limited set of OD filters is available.
The available OD values in this case were x, x.3 and x.5, in which x is either 6, 7, 8 or
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(a) A photon excites the system (b) The system is now saturated

Figure 3.13: (a) A photon gets absorbed excites the system. (b) The system is now
saturated, since other photons reaching the system can not excite it anymore. Hence
for as long as the system remains in the excited state (lifetime), the cavity is effectively
transparent.

9. In order to get different powers (for more data points), the laser output power P0 was
altered to 430µW once. For this new laser power P ′0, the same range of OD filters was
used again. The effective OD at the previous P0 can then be recalculated via

OD = log
(
P0

P ′0

)
+ OD’

The height of the peaks is extracted by fitting the reflection measurement data. The
function to fit the reflection dip and peak is given by (see [2])

R(ω) =
∣∣∣∣1− κ(γ − i(ω − ωQD))

(γ − i(ω − ωQD))(κ− i(ω − ωC)) + g2

∣∣∣∣2 (3.2)

where the parameters κ, γ and g are as discussed in section 1.4 and where ωQD and ωC
are the resonance frequencies of the quantum dot and cavity respectively. Since there is
no spin-pumping in this case, the fits were made by averaging over a coupled (g 6= 0)
and non-coupled (g = 0) case:

Fit =
R(ω, g 6= 0) +R(ω, g = 0)

2
+ offset

The heights of the peaks are then taken with respect to the offset, which represents the
value at which the reflection dip would have been without a dot on resonance. Examples
of relfection peaks and fits are shown below in Figure 3.14.

To compare with the theory, Figure 3.15 shows the peak height as a function of
power. It also shows the fit of the function as found in [2], restated here as

V (P ) =
V0

(1 + P/Pc)2

in which V (P ) is the visibility as a function of power P , and Pc is the so called critial
power at which the visibility is reduced to 25%.

44



(a) 7.5pW

(b) 75pW (c) 375pW

Figure 3.14: The data and fits of the reflection peaks at various powers (using different
OD filters) (a) Reflection peak at OD8 ∼ 7.5pW. (b) Reflection peak at OD7 ∼ 75pW.
(c) Reflection peak at OD6.3 ∼ 375pW.

The values obtained are V0 = 0.134 and Pc = 271pW. A power of 271pW corresponds
to about 1.27 × 109 photons per second reaching the cavity. Since the lifetime of the
cavities is about 100–200 picoseconds, this means an average of about one fifth to a
quarter of a photon reaches the cavity per cavity lifetime. This observation matches the
theoretically exact value of one quarter photon per lifetime.

3.7 Polarization measurements on reflection peak

By inserting a polarizer in the collection path, the different polarizations can be analyzed.
Since the two reflection dips are orthogonally polarized, they can be observed separately.
A fit of the reflection dip center for different polarizer angles is shown in Figure 3.16.
The peak-to-peak separation of the graph is equivalent to the frequency splitting (0.126
GHz) between the two peaks. This splitting is surely in the degenerate range.
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Figure 3.15: The power dependence of the peak height. The fit is to compare with the
theoretical predictions of [2]. The critial power parameter Pc extracted from the fit is
271pW.

3.8 Degradation

It was found that the samples are degrading over time. The are several possible reasons
or triggers for this degradation. The most obvious are the hole burning and the effects
of applying voltages and currents to the sample. Effects caused by cooling down and
warming up on a daily basis also have to be taken into account.

3.8.1 IV-Curves

As already mentioned, the sample should behave essentialy like a PIN diode as far as
its electrical properties go. The IV-curve for a properly working sample hence looks like
the one shown in Figure 3.17. These IV-curves were measured during the Stark Shift
scans.

Figure 3.18 shows the IV-curves taken at the end of a given day (after burning the
eigth hole), and the IV-curve taken first thing next morning before burning holes. As is
obvious, the two curves look completely different. Even more imporant though, is that
on this next day the sample no longer has a diode-like IV-curve, indicating degradation.
It is not known what caused this sudden degradation.

• Hole-burning seems an obvious candidate for causing degradation. The first 5 holes
were burnt at half the power (125 mW) as compared to holes 6–8, and the sample
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Figure 3.16: Reflection dip center as a function of polarizer angle. The splitting (0.126
GHz) of the two peaks can easily be extracted as the peak-to-peak difference. This cavity
is evidently in the degenerate range.

Figure 3.17: The IV-curve as it should look for a correctly functioning sample.

did not show any degradation the next day. The duration for all of the hole burns
was roughly 20 seconds.

• Applying a voltage across the sample causes a current through it. This current
heats the sample, which might be causing the degradation.
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Figure 3.18: The IV-curve for the eigth hole (yesterday) still looks like a normal diode.
The IV-curve for the eigth hole on the next day has shifted considerably up in current.
This is a sign of degradation, for which there is no solid explanation yet.

Both of the above explanations have in common that they heat the sample, which
could be the fundamental reason for the degradation. They do not in themselves explain
the ‘suddenness’ of this degradation from one to the next day. It is important to also
take into account the warming-up and cooling-down of the sample from day to day,
which can possibly explain the suddenness.

3.8.2 Memory effect

Another effect is seen when monitoring the IV-curves, which has been named a memory
effect. By turning on and off the pump laser, carriers are created or not, respectively.
It was expected however, that when the pump laser is off, the created carriers would
recombine so that when the laser was turned on again, the current in the sample had
been reset. This was not the case, as Figure 3.19 shows. A possible explanation is that
charges are being trapped or stored, much like as if there was a capacitor present.

3.9 Positioning samples

Since the samples degraded, new samples have to be fabricated. These degraded samples
had a high concentration of quantum dots, with a randomly positioned matrix of cavities.
Because of the high quantum dot concentration, there was a high chance for most of
the cavities to have a dot positioned nicely in the center. For the new samples to be
fabricated, a raw sample was available with only quantum dots and no cavities (i.e. only
the DBR structures and active layer). Instead of cavities, the sample has several markers
(boxes), which serve as a reference point for positioning the cavities. By scanning the
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Figure 3.19: IV-curve showing the memory effect. Upon turning on the pump laser after
it has been off for a while, the current value continues from where it ways. This indicates
that charge is somehow being stored, as in a capacitor.

boxes spatially for dots and noting their positions with respect to a specified corner of
the markers, the cavities can be accurately positioned such that they have a dot in the
center. Of course, for such scans the stability is an important factor (and is described
below in section 3.9.2).

3.9.1 Positioning

This subsection describes the procedure for locating a dot and finding its coordinates
relative to the markers. Similar positioning has already been done for photonic crys-
tals [26]. In a sense, it is the opposite of the characterisation scans done before. The
procedure starts by doing a 10× 10µm2 spatial scan, combined with a “cross” scan. A
cross scan acquires the same data as a spatial scan, but instead of scanning a square
area it scans two orthogonal lines each 100µm (total PI-stage range). Since the boxes
are about 60× 60µm2, the cross scan data should show the markers (via abscence of the
photoluminescence signal). A cross scan is done once before and once after the spatial
scan, to obtain information about the stability.

By first plotting the cross scans the same way as is done for the voltage scans, the
markers are clearly visible (see Figure 3.20). From these images it is easy to select those
spectra at which the markers are most clearly visible (in this case around pixel number
300). This spectrum can then be taken separately, and the exact positions of the markers
can be extracted by fitting the dips.

The first thing to note is that the difference in marker positions is more than 60µm,
meaning that the PI-stage movement axes are not aligned along the box markers. On
the assumption that the angle between the markers and the PI-stage axis is smaller
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(a) Cross scan voltage plot

(b) Fit along horizontal line at pixel 300

Figure 3.20: (a) Plot of a cross scan, clearly showing the position of the markers (absence
of the photoluminescence signal). At pixel number 300 the spectrum should clearly show
a dip at the marker positions (there are of course more frequencies at which the dip is
visible, but contrast increases fit accuracy). (b) Fit of the marker dips, this data shows
the spectrum along pixel number 300.

than 45 degrees2, a little algebra is necessary to find the exact angle. Once this angle is
obtained, the positions of the quantum dots can be accurately stated with respect to a
chosen origin.

2This is not the full assumption. More precisely stated, the assumption is made that the axes of the
PI-stage cross opposite sides of the box marker. If the origin of the PI-stage axes were exactly in the
box center, this would be equivalent to a rotation of less than 45 degrees. The previous statement works
also for a displaced origin, although the exact maximum angle of course also depends on this position.
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Mathematically, the two different frames (the markers and the PI-stage axes) are
related through a translation and a rotation. Consider the situation shown schematically
in Figure 3.21.

Figure 3.21: Schematic of the situation in the positioning spatial scans. The black lines
form the markers (the box), whereas the blue lines denote the orientation of the PI-stage
axis. As can be seen, in general the two frames are related through a translation and a
rotation. The coordinates of the quantum dots are given with respect to the upper left
corner, with x and y increase towards the right and bottom respectively.

Since the boxes are (i.e. should be) 60 × 60µm2, the following condition should be
satisfied:

(a+ b) cosα = 60

from which

α = arccos
(

60
a+ b

)
The parameters a and b are the distances extracted from the cross scans, and so this
provides a way to find α. The average value found for α is 37.4± 0.2 degrees.

Before rough alignment (by eye) of the scanning spot on the center of a box, the PI-
stage coordinates are set to (50, 50) (these coordinates are just for reference). Using the
spatial scans, the position of several of the brighest dots are noted and a voltage scan
is performed at these respective position. The voltage scans can then be compared to
select the dot around which the cavity should be positioned.
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To calculate the position of the quantum dot with respect to the box markers, its posi-
tion with respect to the PI-stage axis (from the spatial scans) is noted. The coordinates
of the quantum dot with respect to the marker are then found by taking the coordinates
of the PI-stage axes origin, and adding the rotated position of the dot with respect to
the same PI-stage axes.(

xdot

ydot

)
box

=
(
xorigin

yorigin

)
+
(

cosα − sinα
sinα cosα

)(
xdot

ydot

)
PI

(3.3)

where (
xorigin

yorigin

)
=
(
a cosα
b cosα

)
and

(
xdot

ydot

)
PI

=
(
xdot,PI − 50µm
ydot,PI − 50µm

)
(3.4)

are the coordinates of the PI-stage w.r.t. the box markers and the coordinates of the dot
w.r.t. the PI-stage origin respectively. The calculated positions for the selected dots,
including also voltage scans at those positions, are summarized in the accompanying
positions.pdf file.

3.9.2 Stability

As already mentioned, a cross scan was made before and after the spatial scans to obtain
information on the repeatability and stability of the scan. The average fluctuations in
these scans was found to be about 0.3 micrometer, which is accurate enough for cavity
placement. Another verification for the stability of the scans was done via repeating
a spatial scan at the same position. One of the two spatial scans has some artifacts
however, as can be seen in Figure 3.22. There are multiple ‘jumps’ in the middle region
of the scan, complicating the comparison of the two scans. Only dots in the upper and
lower half have been selected, since these were the largest jump-free regions. The result
is summarized in Figure 3.23. It can be concluded from this image that the top and
bottom halves are not aligned; there is no solid explanation for these jumps. The average
displacement between the scans is again on the order of 0.3 micrometers.
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Figure 3.22: The jump in spatial scan are clearly visible. Multiple jumps can be seen
in this image; it is unsure what caused these jumps. The top and bottom half are not
aligned.

Figure 3.23: The repeatability of the positioning scans. The black and red spots represent
the positions of the cross scans before and after the spatial scans respectively. There are
no data points in the middle section because of the jump in the spatial scans. The average
displacement is on the order of 0.3 micrometer, which should be accurate enough.
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Chapter 4
Conclusion & Outlook

This thesis described the properties of microcavity quantum dot samples. A full proce-
dure was given for getting a cavity degenerate by using the hole burning technique, in
combination with other measurements such as voltage scans and spatial scans. Voltage
tuning of the birefringence has been measured, and hole burning was observed to affect
the emission of the quantum dots. It was found that the samples are degrading, but it
is not yet sure what the cause of this degradation is. Obvious possibilities are the hole
burning and the voltages and currents the sample has to endure.

Further suggestions on experiments that can still be carried out or repeated are for
example

• From the bias voltage at which a dot is observed in the voltage scans, it is to some
extent predictable whether the dot is in a neutral or a singly charged state. To ver-
ify the charged state exclusively, lifetime measurements can be performed. These
are probably already being done by the time of finishing this thesis. The different
charged states have different decay rates, which is observable using lifetime mea-
surements. These measurements also provide a value for the Purcell enhancement.
The Purcell enhancement can be obtained differently, as stated in [16], but first
tries using this method failed.

• Concerning the setup itself, there is a possibility for expansion. A promising ex-
pansion would be the option for indpendent scanning. This means that it would
be possible to independently position the imaging spot for photoluminescence, and
the Tsunami spot for hole burning. In this way, the effect of hole burning on the
cavity spectrum can be tracked in real time.

• To better understand the tendency for quantum dots to shift towards the higher
wavelengths upon hole burning, a systematic study should be done. Although the
effect has been observed multiple times by burning holes on the surface, the holes
were never purposely burnt inside the trenches. Burning inside the trenches was
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never necessary to obtain degenerate cavities, and is actually more dangerous than
burning on the surface since it is closer to the active layer. Another study could
be the dependence of this shifting on the burning power (and time).

• A more systematic study can be performed on the position of the holes to be
burned. Although experience seems to be an important factor in getting cavities
degenerate, a more detailed understanding would also help explain other effects
such as the redshifting of the dots and the danger for degradation of the sample.

• Some cavities looked very promising, in the sense that they had a dot close to the
FM center, and also tuned into the FM. Still, the reflection measurements did not
show an all too surprisingly high peak, or sometimes even no peak at all. This
might be due to dark states (if the dot was in the neutral charged state), or maybe
even an effect of spin pumping.

• The measurements on the nonlinearity of the reflection peak could be repeated,
with increased accuracy in the measuring of the power reaching the sample. Even
though it is probably a coincidence the data showed two ‘bumps’ in the curve, the
same behaviour was ironically also somewhat present in another paper [8].

• The voltage at which the dots emit was observed to shift as a function of power.
Specifically, by increasing the power, the voltage dropped. This is most probably
happening because higher pump power excites more carriers, and so at a lower
voltage the probability for trapping excitons is already high enough.

• Another study can be done on the power needed for hole burning. Low powers did
not seem to affect the degeneracy too much, but the quantum dots did respond.
It is possible also that if a hole is burned with lower power, but on the same
position, the sample gets damaged since the combined effect of two holes at the
same position might be larger than one hole for a longer period.
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Appendix A
Mode matching

Important note: These calculations were performed before a complete re-alignment was
done. The insertion of the lens did not produce any visible change, indicating that the
setup was actually mode-matched. This means that most likely an error has been made
in the analysis.

In order to achieve maximum visibility of the reflection peak, the modes of the in-
coupling and outcoupling beams should be matched. Ideally, this means that the beams
are exactly equal (in curvature and width) at every position. Using ray transfer matrices
(ABCD matrices), beam properties can be calculated at any given point. The beams are
described through a q-parameter [23], which is a complex valued parameter describing
both the width w and curvature R of the beam as a function of distance (along the
direction of travel, taken to be the z-axis)

1
q(z)

=
1

R(z)
+ i

λ

πw(z)2

If the q-parameters of the incoupling and outcoupling beams are known, the ABCD
matrices can be used to find a configuration for one or multiple lenses which match the
two beams. Figure A.1 shows a simplified sketch of the situation, and indicates the
incoupling and outcoupling beams. The numbers shown in the image refer to positions
at which CCD images were made, which will be discussed below.

Beam waist

To find the q-parameters of the beams, both the curvature and the width have to be
known. In the following it is assumed that the beams are plane waves at the focus, so
that at that specific position we can neglect the 1/R(z) term. To find the waists of
the beams as a function of z, several images of the beam were taken using the CCD
camera (Figure A.2 shows images of the outcoupling beam). By position the camera at
different distances along the beam, information about the waist and its divergence can
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Figure A.1: Schematic of the mode-match situation. The incoupling beam goes from fiber
to the sample, and the outcoupling beam goes from sample to fiber. The 243cm distance
indicated includes the path travelled into the cryostat to reach the sample.

be extracted by fitting a Gaussian profile through the image. Both the incoupling beam
(laser) and the outcoupled beam (the fundamental mode of the cavity) have a Gaussian
profile. The waist w of a Gaussian beam along its propagation direction z is given by

w(z) = w0

√
1 +

(
λz

πw0

)2

(A.1)

where w0 is the waist at the focus (taken to be at z = 0). Far away from the focus
(i.e. for large values of z), the divergence of the beam is characterized by its divergence
angle θ. From this divergence angle, the waist of the beam at the focus can be obtained
through

w0 =
λ

πθ
(A.2)

If the distances at which the CCD images were taken are indeed in this limit, then by
rewriting equation A.1 to

z =
πw2

0

λ

√
w2

w2
0

− 1 (A.3)

and substituting the values should provide a numerical check.
The two images shown in Figure A.2 have waists of 1.04mm and 1.21mm respectively,

and were taken about 20cm apart. Hence the divergence angle θ is

θ = arctan
(

1.21mm− 1.04mm
200mm

)
≈ 0.05 degrees

The emission from the dots is centered (on average) around 930nm, and so by using
equation A.2 and the value for θ:

w0 =
930nm
π · 0.05

≈ 0.35mm
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(a) Image at 8.5cm, position 1 (b) Image at 17cm, position 2

Figure A.2: Images of the outcoupling beam, taken using the CCD camera. By fitting a
Gaussian profile these images the waist of the beams can be extracted. The CCD images
have pixels representing 7.5 × 7.5µm areas. The waists of the beams are found to be
1.04mm for (a) and 1.21mm for (b).

To validate that we are indeed in the range which can be considered ‘far from focus’,
subsitution of this result in equation A.3 results in the distances to the focus as seen
from the two positions at which the images were taken

z1 = 1.1745m and z2 = 1.3752m

The distance between these two points is about 20.1cm, showing that we are indeed
correct in the assumption. Repeating the same procedure for the incoupling side, we
find a waist w0 of 0.22mm, and a separation of 20.2cm.

Since the q-parameters for the outcoupling beam is now known, its waist at the po-
sition of the fiber can be determined. The length of the optical path from sample to
fiber was measured to be 243cm, and the lens used to couple into the fiber has an 8mm
focal length. Using ABCD matrices (consisting of a free space propagation part and a
lens), the beamwaist at the fiber entrance is found to be 6.7µm. The single mode fiber
has a core diameter of 5µm, meaning that we are roughly losing one order of magnitude
(since (2 · 6.7/5)2 ≈ 16%) in light intensity.

By inserting one or multiple lenses, the beam waist can be corrected to match the
fiber diameter. A first try has been given on mode matching using a single lens. Since
we are limited by the space on the optical table, the easiest way to do the mode matching
is by calculating the required focal length of the lens for a given position. This can be
done again using ABCD matrices. A 60cm focal length at at distance of 1.55m from the
sample was calculated to be necessary; the fine-tuning of the exact position can then be
done empirically. Little or no effect was seen by inserting the lens.
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Appendix B
Additional file listing

This appendix lists the most important assets/files used in analyzing and obtaining data.
Folders and subfolders for the locations of these files have not been included.

B.1 Matlab scripts

The following Matlab scrips were written and used:

• QDStarkShift.m for reading and processing the voltage scans.

• Fit2D.m for fitting intensity profiles through 2D images for distance extraction.

• FitPeak.m for fitting and processing the reflection scans.

• Matrix3DPlot.m for processing the spatial scan data

• Cross Scan Positioning.m for fitting the marker dips.

• Polarization Separation.m for fitting two reflection dips and extracting their
separation.

• HermitePolynomial.m for numerical evaluation of the first three Hermite polyno-
mial functions.

• CavityModes.m for plotting the first few cavity modes.

• FMW.m for calculating the fundamental mode waist.

B.2 Python

Python was extensively used for writing measurement programs. A few of the most used
files are listed here.
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• SpatialScan.py for performing spatial scans.

• StarkShiftScan.py for doing a voltage scan.

• RealTimeAlignment.py for real-time reflection spectroscopy.

• LaserScan.py for scanning the reflection as a function of voltage.

• positioningScan.py like the spatial scan file, but used for the positioning scans.

• APDScan.py was used for scanning the reflection with the APDs.

B.3 Maple files

Some Maple 13 files were used to do calculations on the mode matching

• RayTracing.mw

• BeamWaist.mw

• ModeMatchSingleLens.mw

• ModeMatchTwoLenses.mw

B.4 Origin

Origin was also extensively used to gather all data in separate tables, and to do easy fits
(more complicated or extensive fits were done using Matlab scripts). Some of the most
important Origin projects are listed here.

• DotShifting.opj for tracking the spectral shifting of the dots by hole burning.

• Power.opj for the nonlinearity measurements.

• Movement of Positioning Scan.opj to quantify the positioning scan stability.

• PolScan.opj for analyzing the polarization scans.

• VoltageBirefringence.opj was made to quantify the voltage birefringence.

B.5 Summaries

During the project several short summaries were written. Some of them have been
rewritten and used in this thesis, while some others provide the full data of which only
part (or just the conclusion) were taken into account in this document.

• Positioning.pdf contains the calculated positions and voltage scans for the se-
lected dots on the positiong sample.
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• R2C5.pdf complete summary of R2C5 cavity, including degeneracy procedure.

• FMW.pdf summarizes the fundamental mode waist data.

• Summary.odt was the first summary, containing data on the intensity and dot
distance.

• StarkEffectSummary.odt about the first few voltage scans.
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