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Abstract

We study the complex band structure of surface plasmons
traveling on a gold-semiconductor interface perforated with a
two-dimensional square array of holes. To excite the surface
plasmons, we use a pump spot with a top-hat profile. The

measured spectra contain Lorentzian resonances, which are fitted
and compared to a mathematical model. This model explained

most of our observations, but still leaves room for improvement.
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Chapter 1
Introduction

Surface plasmons (SPs) are electromagnetic waves combined with a sur-
face charge distribution, traveling on the interface between a metal and a
dielectric material, see figure 1.1a. The strength of their electric and mag-
netic fields decay exponentially over distance, with a decay length charac-
terized by the type of metal and dielectric medium (figure 1.1b).

(a) (b)

Figure 1.1: (a) The combined electromagnetic wave and surface charge character
of SPs on the interface of a metal and dielectric medium. At the interface, the
electric field E is pointing outwards in the z direction and the magnetic field H
in the y direction. (b) The strength of the electric (and magnetic) field decreases
exponentially over distance, characterized by the decay length determined by the
media involved. In general, the decay length δd of the dielectric medium is much
larger (of the order of half the wavelength of light involved) than the decay length
δm of the metal (which is determined by the skin depth). Both pictures are taken
from ref. [1].

We study the complex band structure SPs traveling on a a gold-semiconductor
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8 Introduction

interface perforated with a two-dimensional square array of holes. The un-
derstanding of so called plasmonic crystals helps us understand and control
the light flow through media by, for example, forming mirrors or wave-
guides[2]. The possibility to add optical gain has also led to lasing action
at nanoscales[3, 4], much smaller than possible with current lasers.

The structure of this thesis is as follows. In chapter 2 we will describe
the experimental setup and the top-hat profile of the pump bundle. In
chapter 3, we will develop some theory and briefly summarize the coupled-
mode model. In chapter 4 we will show our main measurements and fit
Lorentzian type peaks to them. We will compare these fits with the coup-
led-mode model. In chapter 5 we will show some notable things found
in other arrays, including some unexpected asymmetries. And finally, we
will have a concluding discussion in Chapter 6.

There are also two appendices: appendix A, which contains a detailed
description of the Python code developed to fit the Lorentzian resonances,
and appendix B, which contains our article currently under review entitled
Loss and scattering of surface plasmons on optically-pumped hole arrays. The ar-
ticle contains a more extended description the main results from chapter 4
and the coupled-mode model, as briefly mentioned in chapter 3.
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Chapter 2
Experimental setup
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Figure 2.1: (a) Geometry of our setup. The pump bundle creates electron hole
pairs in the InGaAs gain layer, which recombine radiatively and couple into SPs.
The SPs will radiate outwards to the external photon field through the dipoles
they induce at the holes. We measure the emitted spectra as a function of the
angle θ = (θx, θy). (b) Schematic view of the layered structure of the arrays. The
red line shows the strength of the magnetic field Hy of the SPs, which decreases
exponentially over distance from the interface. The SPs travel on the Au - InGaAs
interface. The Au - air interface is protected with a Chromium layer, to prevent
SPs from traveling here. The blue layers are the InP substrate and a thin InP
layer to prevent quencing of the excited carriers in the InGaAs to the gold. Both
pictures are taken from ref. [4].
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10 Experimental setup

2.1 Experimental geometry

Figure 2.1 shows the geometry of our sample. The sample is 50× 50 µm
and the SPs travel at the gold - semiconductor interface. The semiconduc-
tor acts as a gain layer, to amplify the traveling SPs. The gold layer has
a square lattice of subwavelength holes, with lattice spacing varying from
450 to 480 nm, in which magnetic dipoles are induced at the holes when
SP waves travel by. These dipoles in turn radiate outwards (to the air side
as well as the InGaAs). We measure the spectra of the emitted light on
the air side as a function of the outcoming angle θ = (θx, θy). The light is
captured with a 20×microscope objective with NA = 0.4.

2.2 Pump bundle (top-hat profile)

(a) (b)

Figure 2.2: (a) Cross-section of top-hat profile as specified by TOPAG. The height
of the side peaks is about 6% of the maximum and the central dip is 2%. The figure
is taken from the TOPAG manual. (b) 2D profile of the top-hat, as created using
the setup of figure 2.3. Here the height of the side peaks is 13% of the maximum
and the central dip is 6%, so it’s a bit less flat than the manual states. This is due
to the beam size on the hologram, which is apparently slightly bigger.

We used a 1064 nm laser as a pump to excite the gain layer. To distribute
the light more equally over the whole sample, we used a commercial holo-
gram (the TOPAG GTH-4-2.2) which turned our laser with a Gaussian pro-
file into a square top-hat profile, as depicted in figure 2.2. Figure 2.3 shows
the setup used to get a good top-hat focus on our sample. The focus had a
size of around 50× 50 µm, so it’s approximately as big as a sample.
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2.2 Pump bundle (top-hat profile) 11
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Figure 2.3: Schematic view of the setup used to convert a Gaussian laser beam
into a top-hat profile as in figure 2.2. Because the width of the bundle had to be
close to 6.5 mm, we placed a lens after the laser to have some more space. After
going through the hologram, the beam is focussed on the sample by the last two
lenses. All lengths are in mm.

2.2.1 Alignment

We encountered two challenges in aligning the setup in figure 2.3. The
first is making sure the beam on the hologram is indeed 6.5 mm big, which
had to be really precisely tuned. If the beam was too big, the center jump
in the flat-top profile would be too low, and if the beam was too small,
the outgoing beam would not be effected enough and it would still have a
Gaussian profile (see figure 2.4). A square engraved on the hologram glass
helped getting the right size of the beam.

(a) (b)

Figure 2.4: 2D profiles of the focus of beams that were (a) too small or (b) too
big on the hologram. If the beam is too small, the hologram doesn’t influence the
beam very much and it would still approximately be a Gaussian profile. If it is
too big, the central dip of the flat-top would be too low (here it is 20%).

The second challenge is the alignment of the last 200 mm lens, to illumi-
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12 Experimental setup

Figure 2.5: Cross sections of the beam profile slightly out of focus, the distance
from focus decreases from left to right. We see a peak coming up which turns into
a jump when in focus (figure 2.2a). The profile is approximately symmetric with
respect to the focal plane, so on both sides of the focus this pattern can be seen.
Again, the figures are taken from the hologram manual.

nate the sample in the focal plane. Out of focus (on both sides), the central
dip of the top-hat would change in a peak, see figure 2.5. This profile is
approximately symmetric with respect to the focal plane. So to make sure
we were in focus, we had to be exactly in between the peaks arising at both
sides of the focal plane.
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Chapter 3
Theory

Before describing our measurements, we want to take a brief theoretical
detour in order to understand SPs and their interaction with the metal
hole array. In this chapter, we will briefly discuss the coupled-mode model,
which is explained in more detail in appendix B.

3.1 Theory of SPs on a flat interface

SPs are electronic and optical solutions to the macroscopic Maxwell equa-
tions. Let εd and εm be the frequency-dependent dielectric functions of the
dielectric medium and metal respectively, which in general are complex
functions. From the continuity of the boundary conditions at the interface,
we can derive the dispersion relation

k̃SP =
ω

c

√
εdεm

εd + εm
(3.1)

for SPs on the interface[1]. Here, the real part of k̃SP denotes the magnitude
of the wave vector kSP and the imaginary part the loss or penetration depth
on the interface.

3.2 The coupled-mode model

In ref. [5], a simple mathematical model for the SPs that exist on the metal-
dielectric interface of a square hole array was created. This model is ex-
tended in appendix B. We will give a brief summary of this model and use
it to formulate our expectations for our measurements.
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14 Theory

3.2.1 Brief summary of the model

The model approximates the SP-field on the interface by its first order
Fourier terms which correspond to traveling waves in the ±x and ±y di-
rection. It uses the dispersion relation (3.1) of SPs on a flat interface and
considers coupling to emitted photons with (in-plane) parallel momen-
tum k‖ ≈ ω/c(sin θxex + sin θyey) originating from SPs with momentum
kSP = k‖ + Gi[6], where Gi is a lattice vector of the hole array (again only
first order Fourier terms with |Gi| = 2π/a0 in the±x and±y direction are
used). At any point in time we can write the SP field |E〉 as a superposi-
tion of the four traveling waves and consider SP-to-SP scattering between
those four modes by a scattering matrix H. We then solve the differential
matrix equation

d
dt
|E〉 = −iH |E〉 (3.2)

to describe the interaction between different modes. Appendix B describes
what H looks like and how to solve this differential equation.

3.2.2 Expectations for θx = 0

For the restriction θx = 0, which we use in most of our results, we expect
four different θy-dependent eigenvalues, called bands. The inclusion of the
gain of the semiconductor, ohmic losses and losses to the external photon
field in our model results in Lorentzian resonances around these eigenfre-
quencies. Three of those bands are expected to radiate in the P-polarization,
with the electric field in the plane of incidence (the yz-plane), and one in
the S-polarization, perpendicular to the plane of incidence. Furthermore,
the S-polarized mode and one of the three P-polarized modes are expected
to be bright, which means they radiate near θy = 0, and the other two P-
polarized modes are expected to be dark, which mean they do not radiate
here. The distinction between bright and dark modes is related to the co-
sine and sine nature of the standing waves in the ±x and ±y direction.

In the next chapter, we will show simulations of the Lorentzian resonances
based on the coupled-mode model. We will compare these simulations to
our data. The model includes a couple of parameters: the right-angle scat-
tering rate κ, the backwards scattering γ, the gain of the InGaAs layer and
various loss channels. We use the same scattering rates as in ref. [5] and
the gain and loss channels are deduced from the spectral widths of the
Lorentzian fits to our data (see appendix B).
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Chapter 4
Main results

We studied the emitted optical spectra of arrays with different lattice spac-
ing a0, varying from a0 = 450 nm to 480 nm. In this chapter we will focus
on one array in particular, with a0 = 470 nm. This array is from a sample
created by Frerik van Beijnum, which has also been used in ref. [4, 5]. The
measurements done on this array are thoroughly discussed our article in
appendix B. We measured emitted light spectra at θx = 0 and scanned
over θy (figure 4.1a) from −0.3 to 0.3 radians (rad). Other measurements
and typical observations are shown in the next chapter.

4.1 Raw measurements

We measured the emitted light in the P- and S-polarization. The angle de-
pendent spectra can be displayed as a two dimensional intensity spectrum
I(θy, λ) in both polarizations, shown in figure 4.1b and 4.1c.

4.2 Lorentzian fits

The developed theory described in the previous chapter predicts Lorentz-
ian type resonances in ω (the frequency of the emitted light). The spectra
are measured as a function of the wavelength λ ∝ ω−1, but one can show
that for small widths (∆λ � λ0), the peaks in λ are also approximately
Lorentzian. Lorentzian peaks are of the form

I(λ) =
A
π

∆λ

(λ− λ0)2 + ∆λ2 (4.1)
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16 Main results
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Figure 4.1: (a) The experimental geometry, where the reduced set of arrows em-
phasize the fact that we are looking in the θx = 0 region and scanning over θy.
(b) , (c) False color plots of the emitted P- and S-polarized spectra respectively as
a function of the emission angle θy. The dashed line in the P-polarized plot indi-
cates the location of the cross-section showed in figure 4.2. In both polarizations
we observe a total of four bands, labeled A, B, C (P-pol) and S (S-pol), as indicated
in the figure.

and can thus be characterized by three parameters: the central wavelength
λ0, the spectral width (HWHM) ∆λ and the integrated intensitiy (area un-
der the curve) A = π Imax∆λ, where Imax = I(λ0). For every cross section
at a given θy we fit an incoherent sum of Lorentzians, as depicted in figure
4.2. Each fit yield three fit parameters per Lorentzian peak. For more de-
tails on the fit procedure and the Python code, head to appendix A.

We then combine all the fit results obtained at different values of θy. For
each of the four bands depicted in figure 4.1b and 4.1c, this results in
the angle dependency of the central wavelength, spectral width and in-
tegrated intensity of the fitted Lorentzian peaks. In addition to these up-
coming parameter plots, we will also show the simulations of these angle
dependenent parameters, as mentioned in chapter 3.
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4.2 Lorentzian fits 17
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Figure 4.2: Cross section of the P-polarized spectrum at θy = 0.13 rad, as indicated
by the dashed line in fig 4.1b. We fitted an incoherent sum of three Lorentzian
type resonances through the data as indicated by the red line. These fits returned
for each peak the central wavelength, spectral width and area under the curve.

4.2.1 Central wavelengths

Figure 4.3 shows the fitted central wavelengths of all four bands, together
with the simulations. By comparing the data to the simulations, we see
striking similarities. The biggest discrepancy are the kinks in the A and
S band at θ = ±0.06 rad and θ = ±0.17 rad, respectively, as indicated
by the arrows. Incidentally, these kinks lie exactly on a light line of the
semiconductor. This gives us a possible explanation, which we haven’t
incorporated in our model. We will give this explanation after showing
the angle dependency of the spectral widths, which also show unexpected
behavior at those points.

4.2.2 Spectral widths

Figure 4.4 shows our fitted and simulated spectral widths. The unit cho-
sen is the dimensionless unit ∆ω/ω0, which for small widths (∆λ � λ0)
is equal to ∆λ/λ0. We observe strange jumps in the S band at θy = ±0.17
rad, exactly the same value as the location of the kinks observed in figure
4.3. The explanation we have for this is the occurence of a second order
diffraction, which appears beyond the light lines of the semiconducter as
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18 Main results
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Figure 4.3: (a) The fitted central wavelengths of the Lorentzian resonances as
depicted in figure 4.1. The arrows indicate some strange kinks in the A and S
band. The dashed lines are light lines of the semiconductor mode. All the kinks
lie on these light lines. (b) Simulations of the central wavelength, based on the
model explained in chapter 3. The arrows indicate the places were the kinks
should be, but they do not appear.

indicated in figure 4.3 (see appendix B for more details). This extra loss-
channel results in a sudden jump in the spectral width, which is exactly
what we see. This phenomenon is called a Rayleigh anomaly[7]. In the A
band this jump is not very clear, because the losses are increasing quickly.
The problem here is that we are near the Fermi energy, where the gain
of the semiconductor becomes negative, and thus becomes a loss, which
makes it hard to see a clear jump. In chapter 5 we mention another array
that shows a much clearer jump in the A band. The jumps in the spectral
widths in turn affect the central wavelengths because they are related via
the Kramers-Kronig relations to the spectral widths[6, 8].

The simulations of the spectral widths do not match the measurements
very well. Near the center we see similarities in the shape of the A and B
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4.2 Lorentzian fits 19
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Figure 4.4: (a) , (b) Parameter plot of the spectral widths as fitted from the
Lorentzian resonances in figure 4.1, in the P- and S- polarization, respectively.
The arrows mark the locations of the kinks in figure 4.3a. (c) Simulations on the
spectral widths, based on the model explained in chapter 3, again with arrows on
the locations of the kinks in figure 4.3a.

band, but off center this is less accurate. Furthermore, our measurements
do not show the expected peak in the center of the C band as predicted by
our simulations.

4.2.3 Integrated intensities (areas)

Figure 4.5 shows the integrated intensities A. Our model in chapter 3 pre-
dicts two bright and two dark modes at the center, associated with the
sine or cosine type standing waves in the x and y direction. We indeed
observe this in figure 4.1, and figure 4.5 quantitatively confirms this. Also,
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Figure 4.5: (a) , (b) Parameter plots of the integrated intensities as fitted from the
Lorentzian resonances in figure 4.1. (c) Simulations of the integrated intensities,
based on the model explained in chapter 3.

the shapes of the B and C band approximately match those of the simu-
lations, although their relative intensities are off. Other than this, there is
little agreement with our simulations.
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Chapter 5
Results for other arrays

In this chapter we will discuss results obtained for other arrays. In general,
all the features presented in the preceding chapter, like the jumps in the
spectral widths and kinks in the central wavelengths, were observed in all
our measurements. There are a few special cases that we want to highlight.
We will show an array that shows a much clearer jump in the spectral
widths of the A band (again at θx = 0) than in figure 4.4, but also shows
a strange and unexpected bump near normal incidence (θx = θy = 0) in
the spectral widths of the S band. Also, we will highlight emission spectra
of arrays that violate some expected symmetries. All arrays analyzed in
this chapter are from a different sample than the array of chapter 4. This
sample was created by Vasco Tenner (labeled with RA2083-1-b).

5.1 Features in the spectral widths

In subsection 4.2.2 we discussed the expected jump in the A band which
was hard to see, due to the decreasing gain. We measured the inten-
sity spectra I(θy, λ) on an array from Vasco’s sample with lattice spacing
a0 = 480 nm, in which this jump can be seen clearly before the widths are
increasing. Figure 5.1 shows the parameter plots of the spectral widths in
the S- and P-polarization. The S band again showed a (slightly smaller)
jump. But in contrast to our earlier measurements in chapter 4, we see a
strange bump near normal incidence in the S band.
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22 Results for other arrays
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Figure 5.1: (a) Fitted spectral widths of the Lorentzian resonances emitted in the
P-polarization by an array with a0 = 480 nm from Vasco’s sample. The expected
jump in the A band can be seen much better than in the array by Frerik used in
chapter 4, because it is much further from the Fermi energy. (b) Fitted spectral
widths of the Lorentzian resonances emitted in the S-polarization by the same
array. This also shows the expected jump. However, near normal incidence, a
strange bump can also be seen. This feature has not been observed before and is
not yet understood.

5.1.1 More bumps

The measurements on this array belonged to a series of measurements on
different arrays from Vasco’s sample. In all the measurements the bump in
the spectral widths of the S band are observed, whereas earlier measure-
ments, which were taken from Frerik’s sample, do not show these bumps.
This suggests that the bumps are some sort of artefact of the sample itself
which perhaps occurred at the creation of the sample.

5.2 Asymmetric arrays

Due to the geometry of our array (figure 2.1), we are dealing with mirror
and rotational symmetries in our measurements. So far these symmetries
were conserved (for example the mirror symmetry θy → −θy is conserved
in all our previous measurements). However, measurements on some ar-
rays of Vasco’s sample showed the breaking of some expected symmetries.
We found unexpected asymmetries in the P- and S-polarized light at nor-
mal incidence and in the measured spectra of some 2D scans (in which we
scan over both θx and θy).
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5.2 Asymmetric arrays 23

5.2.1 Asymmetry in P- and S-polarization at normal inci-
dence
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Figure 5.2: (a) Central wavelength parameter plot of an array with a0 = 470 nm,
from Vasco’s sample. We observe an unexpected asymmetry at θy = 0 (b) Cross
section of both polarizations at θy = 0, which confirms the asymmetry observed
in the central wavelength plot. The red data is the P-polarized light and the blue
the S-polarized light, including fits matching their color.

If we look at light emitted at normal incidence, we expect the P- and S-
polarized light to be the same∗, due to the π/2 rotational symmetry of our
geometry. However, measurements on some arrays did show an asymme-
try between the two polarizations, see figure 5.2. There were some other
arrays where this phenomenon is also observed, again only on Vasco’s
sample. On one of those measurements we did a 2D scan to look for other
notable features, in which we encountered asymmetries in the xz- and yz-
plane.

∗Strictly speaking the P- and S-polarization can not be defined at normal incidence,
because there is no plane of incidence. But because we are scanning over θy, we define
the yz-plane as our plane of incidence, such that the P- and S-polarization can be clearly
defined.
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24 Results for other arrays

5.2.2 Asymmetric 2D scan
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Figure 5.3: Intersections at different wavelengths of the three-dimensional inten-
sity plot I(θx, θy, λ). Every intersection should have the mirror symmetries in the
xz- and yz-plane, but we observe a violation in this symmetry. As the dashed
lines of the last plot indicates, the mirror symmetries in both diagonal planes are
still conserved. The last two plots show a rhomb at the center with a small angle
of 86◦.

Again due to the geometry of our arrays, we expect our measurements
to have a mirror symmetry in the xz- and yz-plane. So we measured the
emission spectra with both θx and θy varying from -0.3 to 0.3 rad on the
same array used in subsection 5.2.1. This generates a three dimensional
intensity plot I(θx, θy, λ). Figure 5.3 depicts intersections of this intensity
plot at different values of λ. At every intersection we expect the xz and
yz mirror symmetry, but the intersections show that these are broken. The
profile seems a bit squashed to one diagonal and stretched to the other.
However, the mirror symmetries in both diagonal planes are conserved.
This suggests that the array has a rhomb-shaped lattice as depicted in fig-
ure 5.4. Earlier 2D scans on Frerik’s sample did show the expected mirror
symmetries in the xz- and yz-plane[4, 5].
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5.3 Connection between bumps and asymmetric samples? 25

86°

Figure 5.4: The rhomb-shaped lattice we expect the analysed array to have. A
rhomb does not have the xz- and yz-plane mirror symmetries, but only have the
mirror symmetries in both diagonal planes, which are still perpendicular to each
other. The rhombs observed in the last two plots of figure 5.3 both had a small
angle of 86◦, which suggests that the angle between the two lattice vectors of our
unit cell is also 86◦.

5.3 Connection between bumps and asymmetric
samples?

Incidentally, all three arrays that showed bumps in the spectral widths of
the S band as in figure 5.1b also had the same symmetry breaking as in
5.2. This suggests a connection between the two phenomena. We could
not confirm the mirror symmetry breaking of figure 5.3 on other arrays
of Vasco’s sample, because we didn’t make any 2D scans of this array. We
unfortunately do not have more measurements on this sample and also do
not have a proper explanation for the connection. Hence, the sample used
needs further investigation on these bumps and unexpected asymmetries.
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Chapter 6
Concluding discussion

In summary, we performed a detailed analysis on the complex band struc-
ture of SPs on square metal hole arrays. We excited the SPs with a top-
hat profile pump bundle, using a TOPAG hologram. We fitted incoherent
sums of Lorentzian resonances to our data using Python code. Using this,
we obtained the angle dependence of the central wavelengths, spectral
widths and integrated intensities of the bands. We compared these results
to a coupled-mode model.

We analysed two different samples, one created by Frerik van Beijnum and
one by Vasco Tenner. The results obtained for Frerik’s sample matches our
theory reasonably well at some places, but has it’s shortcomings at other
points. Kinks in the central wavelengths and sudden jumps in the spec-
tral widths were observed, wich we both attribute to a Rayleigh anomaly.
Vasco’s sample gave similar results, but also showed unexpected bumps
in the spectral widths of the S band. some unexpected asymmetries. After
investigating the asymmetries, we hypothesize that the hole array is not
square but rhomb-like with a small angle of 86◦.

We like to conclude with two suggestions for future research. In order
to gain a better understanding of the SPs, the coupled model has to be
improved to account for the discrepancies observed. Also, Vasco’s sample
needs further investigation in the bumps and asymmetries, and a possible
connection between them. This includes SEM (Scanning Electron Micro-
scope) pictures of the arrays, to investigate their geometry.
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Appendix A
Python code on the Lorentzian
fitting

In this appendix, we will describe the Python code used to fit the Lor-
entzian peaks to our data as depicted in figure 4.2. We created a class
lorfit with different members to fit data and to plot data, fits or fitted
parameters.

A.1 Code walkthrough

The main function used is scipy.optimize.curve_fit, which used a
non-linear least squares algorithm to fit a function f, with variable param-
eters, to two-dimensional data. The strategy is to go through every slice
of θy (associated with a index number N in our code) and fit an incoherent
sum of Lorentzian peaks as defined in equation (4.1). However, in order
to know how many peaks we have to fit, we first have to count them in
the data.

A.1.1 Counting number of Lorentzian peaks

The class member lorfit.findpeaks counts the number of peaks in a
given dataset. This function is defined as:

def findpeaks(self,N):
peaks = np.array(find_peaks_cwt(self.data[N], np.
array([10])))
if peaks.shape[0] != 0:
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32 Python code on the Lorentzian fitting

peaks = np.sort(peaks[(self.data[N,peaks]>self.
thresh)])
return peaks

The function returned the coordinates of the maxima of the peaks. We
used the function scipy.signal.find_peaks_cwt, which locates loc-
al maxima in a given dataset. At low Signal-to-Noise Ratio (SNR), many
incorrect peaks were found in the noise. For this reason a threshold is
inserted (lorfit.thresh), below which the found peaks are ignored.

A.1.2 Defining the fit function

We defined sums of Lorentzian peaks as:

def lor_0(x):
return np.zeros(x.shape)

def lor(x, x0,gamma,A):
return (A/np.pi)*(gamma)/((x - x0)**2 + (gamma)**2)

def lor_2(x, x1,gamma1,A1,x2,gamma2,A2):
return lor(x, x1,gamma1,A1) + lor(x, x2,gamma2,A2)

def lor_3(x, x1,gamma1,A1,x2,gamma2,A2,x3,gamma3,A3):
return lor(x, x1,gamma1,A1) + lor(x, x2,gamma2,A2) +
lor(x, x3,gamma3,A3)

L = [lor_0,lor,lor_2,lor_3]

So for a given number of peaks no_peaks ≤ 3 is L[no_peaks] defined
as an incoherent sum of no_peaks Lorentzian peaks. A function L[no
_peaks] thus has 3×no_peaks parameters.

A.1.3 Fitting the Lorentzian peaks

When the number of peaks is determined, the fitting of the Lorentzian res-
onances can begin. An optional argument of the function curve_fit is
p0, an array with the initial guesses of the parameters of the input func-
tion f. Because we already located the maxima, we used this information
for p0.

- For the central wavelengths λ0 we used the x-coordinate of the found
maxima xmax.
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- ∆λ had a default value of 5 nm but could be altered by the user (via
lorfit.init_width).

- And finally we estimated the area A to be πymax∆λ with ymax the y-
coordinate of the found peak. The area is chosen such that the maximum
of the initial guess coincides with the found maximum (xmax, ymax) by
the function lorfit.findpeaks.

The process explained is done with the code below, the first bit of the code
of the class member lorfit.fit.

def fit(self,N):
y = self.data[N,:]
x = self.pixels

peaks = self.findpeaks(N)
no_peaks = peaks.shape[0]
if no_peaks > 3:

no_peaks = 3 #Max of 3 Lorentzian peaks
init_param_px = np.zeros(no_peaks*3)
for i in range(no_peaks):
init_param_px[3*i] = peaks[i]

init_param_px[3*i+1] = self.init_width
init_param_px[3*i+2] = np.pi*y[peaks[i]]*self.

init_width

if no_peaks != 0:
try:

param_px = curve_fit(L[no_peaks],x,y,p0=
init_param_px,maxfev=int(1e4))[0]
except RuntimeError:

print RuntimeError, ’N =’, N
param_px = np.zeros(3*no_peaks)

for i in range(3 - no_peaks):
param_px = np.append(param_px,np.zeros(3))

else:
param_px = np.zeros(9)

param_px = np.sqrt(param_px**2)

Figure A.1 graphically summarizes the explained procedure of finding the
best fit to the Lorentzian resonances.
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Figure A.1: Fit example on the dataset used in chapter 4 at θy = −0.12 radian.
Our code first counts the number of peaks, indicated by the red dots, which are
above the threshold of 0.2·104 as indicated by the black dashed line. The blue
dashed line then shows the initial guess, based on the initial parameters chosen
as explained in subsection A.1.3. The code varies the parameters of this initial
curve to match the data and then returns the fit parameters. The red solid line
shows the final fit.

A.2 Quality of the fits

Overall the fits on the data were very good. We wrote an interactive pro-
gram in iPython notebook to scan through the fits, in this way we could
easily see which fits were off. Figure A.2 is an example of a fit gone wrong.
When fits went wrong, we would simply delete the fitted parameters out
of the parameter plots.

We experienced different places were fits would go wrong. If a peak was
found at relatively low SNR, it was very hard to find the correct fit. This
peak could easily be omitted by raising the threshold. When peaks be-
came too sharp and the data was dominated by another peak (which is
the case in figure A.2), the fits also tended to go wrong. And finally, at the
edge of our range we also experienced bad fits. This is mainly because we
are at the edge of the bandgap or Fermi level, where the Lorentzian peaks
sometimes are a bit misshaped. Also, the SNR is often very low at these
points.

All of these problems almost always resulted in higher widths than ex-
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Figure A.2: (a) Fit example of a 470 nm array (not the one of our main results)
at θy = −0.23 rad, which went wrong. We observe a sharp peak from the B band
which is dominated by a big peak from the A band. This is the reason why the fit
went wrong. This and other similar fits are deleted by hand. The fitted width of
the peak is much larger than our data shows. (b) Spectral widths parameter plot
of the same array. Near θy = −0.23 rad the fitted spectral widths of the B band
were found to increse suddenly, which triggered us to take a look at the fits.

pected. For this reason we used the plot of the fitted spectral widths as an
indication of how good our fits were. If the spectral widths would increase
suddenly, we would check the quality of the fits. Most of the time the fits
were indeed bad, but not always. The spectral widths of the A band in
figure 4.4 also suddenly increased near the edge, but the fits were actually
still very accurate.
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Appendix B
Loss and scattering of surface
plasmons on optically-pumped
hole arrays

We performed a detailed study on the a0 = 470 nm array from Frerik’s
sample, as used in chapter 4. Also, the model used in ref. [5] has been
expanded to the coupled-mode model as mentioned in chapter 3. These
two subjects are highlighted in our article currently under review at the
Journal of Optics, entitled ”Loss and scattering of surface plasmons on
optically-pumped hole arrays”. The version as submitted in june 2014 is
included in this appendix.
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Abstract.
We study surface plasmons on 2-dimensional square arrays of sub-wavelength holes in a gold

film deposited on an optically-excited semiconductor. We observe four resonances of which we
measure the central frequencies, the spectral widths, and the relative intensities. The spectral
widths allow us to quantify various loss processes, including ohmic loss, optical absorption/gain
and radiative scattering loss. We distinguish between two bright/radiative modes and two
dark/non-radiative modes. Prominent kinks in the plasmon dispersion relation are attributed
to Rayleigh anomalies, associated with light lines in the semiconductor. We are able to model
most of these observations, but challenges remain.
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2 Loss and scattering of surface plasmons on optically-pumped hole arrays

1. Introduction

Surface plasmons (SPs) are combined optical and electronic solutions to Maxwell equations. Such
surface plasmons can be localized on nano particles, or they can be traveling along an extended
interface. One remarkable property of SPs is the strong confinement normal to the interface, with
exponentially decaying fields in both media. The associated decay length is typically sub-wavelength
and depends on the dielectric constant of the materials. Several applications benefit from the strong
confinement of the field. This confinement can be used to enhance the light-matter interaction, for
example in molecular sensors [1, 2]. The strong confinement can also be used to guide SP and
build plasmonic circuits, including beam splitters [3] and phase manipulators [4]. Furthermore,
meta-materials often consist of sub-wavelength metal structures. The plasmon modes living on
these structures are responsible for many of their extraordinary properties, such as the ability to
create negative refractive index materials [5, 6] and primitive cloaking devices [7].

The limiting factor in many SP-based system is the SP loss, which can be divided in (ohmic)
absorption loss and scattering loss. Even SPs traveling on smooth Ag or Au interfaces are typically
absorbed after 2-100 µm [8] for wavelengths between 0.5 and 1.5 µm. Gain can be introduced to
overcome this limitation and several demonstrations of full loss compensation have been shown,
using a semiconductor [9] or dye [10] as gain material. SP-lasing action is possible when full
loss compensation is combined with optical feedback. Different feedback mechanisms have been
demonstrated in several structures [11], including metal-coated nano-pillars [12], gold nano-spheres
[13], and metal hole arrays [14].

In this article, we study metal hole arrays with gain below their lasing threshold. The dispersion
relation of plasmonic bands in a metal hole arrays with gain have been observed before [15], but
until now, no detailed study of the spectral widths of these bands existed. We present the first
systematic study of the central frequency, the spectral width, and the intensity of these bands. The
observed widths allow us to quantify the effective ohmic loss as well as the scattering loss rate. We
describe the observed complex band structure with a coupled-mode model that includes only four
SP modes.
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2. Methods

2.1. Sample
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Figure 1. a) Sketch of setup, with an optical pump through the substrate and fluorescence
through the hole array. b) Spectrum of p-polarized light emitted at (θx = 0, θy = 0.10) rad. The
fit (red curve) is based on a sum of Lorentzian resonances. The half widths of three peaks are
indicated in the graph. The grey line shows the direct fluorescence light, measured in absence of
the gold layer.

The semiconductor-gold samples that we studied are identical to the ones described in refs [14, 15].
Their layer structures, depicted in Fig. 5, comprise a 100 nm thick gold film on a 105 nm thick
InxGa1−xAs semiconductor layer that is lattice matched (x ' 0.53) to a 300 µm thick, double
polished, InP substrate. A 15-20 nm thick SiNx/InP spacer-layer between the InxGa1−xAs and
the gold prevents quenching of the optically excited semiconductor. A 20 nm thick chromium
layer on top of the gold damps the SP resonance on the gold-air interface, leaving only the gold-
semiconductor resonances. The gold layer is perforated with holes with a diameter of 180 nm. The
holes are arranged in a 50x50 µm square grid with a spacing a0 = 470 nm between the holes.

2.2. Experimental geometry

Fig. 1a shows the experimental geometry. We optically excited the InGaAs active/gain layer
through the InP substrate with a cw pump laser with a wavelength of 1064 nm. The incident power
(120 mW) was below the laser threshold of the device at a temperature of 120 K. The pump spot
on the sample had a square shape with a size of 45 µm, created by passing a Gaussian laser beam
through a hologram. This pump beam excites electron-hole pairs in the active layer. When these
hot carriers recombine radiatively, their energy is converted into photons or surface plasmons living
on the interface between the gold and the InGaAs semiconductor layer. The grey curve in Fig. 1b
shows the measured spectrum of this radiative recombination for a part of the sample without gold.

The collection part of our setup was the same as in [14, 15]. The fluorescence light was
collected in the far field at the air/vacuum side of the sample as a function of angle (θx, θy). More
precisely, the light was collected using a 20x microscope objective with a numerical aperture of 0.4.
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Sequentially the array structure was magnified 20x by a lens with a 20 cm focal length. Finally,
the far field of the sample was reached in the back-focal plane of a lens (focal length 5 cm), where
the fluorescence light was collected on a spectrometer using a single mode optical fiber (w ≈ 10µm
@λ = 1500 nm). This fiber was scanned in the far field by a 2-dimensional translation stage. In
this article we keep the fiber at θx = 0 and scan the fiber only in the θy direction, from θy = −0.44
rad to θy = 0.44 rad in 110 steps, but we limit all figures to the most relevant part −0.3 ≤ θy ≤ 0.3.
The angle θy is related to the in-plane momenta in the y-direction (Γ-M) by k‖ = ω/c sin θy [15].
A thin film polarizer was used to discriminate between vertical (p=TM) and horizontal (s=TE)
polarized light.

Figure 1b shows a typical p-polarized emission spectrum, obtained at an angle θy = 0.10. This
spectrum contains three peaks, labeled by A, B and C. A curve consisting of (the incoherent sum
of) three Lorentzians fits the data very well. We repeated these measurements at other angles θy
and for both polarizations, where similar high quality fits yielded the position, the spectral width
(half height half maximum, HWHM), and the area of each of the three peaks. The observed angle
dependence of the frequencies, spectral widths, and areas of these resonances are discussed below.

3. Measured data
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Figure 2. False color plots of the measured fluorescence intensity I(θy , λ) of a) p-polarization
and b) s-polarization. The y-axis depicts energy, in units of vacuum wavelength of the collected
photons. The white dashed line in a) at θy = 0.10 indicates the cross section shown in Fig. 1. c)
The central frequencies of the bands deduced from the measurements. The dashed lines show the
light line of the semiconductor, corresponding to the Rayleigh anomaly. The arrows mark clear
kinks in the dispersion relation.
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Figure 3. Fitted linewidths of the a) p-polarized b) s-polarized bands. The angles for the
observed kinks in the A and S band are marked by the arrows.

Measurements of the p- and s-polarization are shown in Fig. 2a and b. In Fig. 2a three p-polarized
resonances are visible, labeled with A, B and C. Fig. 2b shows one intense s-polarized resonance,
labeled S.

3.1. Measurement of resonant frequencies

Figure 2c shows the resonance frequencies of all bands. The central frequency of the s-polarized
S band is remarkably constant up till θ = ±0.17 and then increases mildly towards larger θ. The
p-polarized A, B, and C bands are more dispersive. At large angle |θ| > 0.1 the A and C band
show the approximately linear dispersion expected for traveling-wave SPs, but at smaller angles
these bands exhibit an avoided crossing, again with a remarkably flat segment in the A band. This
crossing is modified by the presence of the (intermediate) B band, which inherits a much stronger
dispersion for small angles [15].

Sharp kinks in the A and S band at θ = ±0.06 and θ = ±0.17, respectively, are marked with
arrows in Fig. 2c. The A and S band are more flat between the kinks. The B and C band do not
show kinks.

3.2. Measurement of linewidth

Figure 3 shows the observed linewidths of the four SP bands. The C and S band have a linewidth
of ∆ω/ω ' 0.0045 near θ = 0, while the A and B band have a smaller linewidth of ∆ω/ω ' 0.001.
The C band is the only band with a linewidth that does not depend on angle. The linewidth of
the S band is almost constant, except from the sudden increase at θ = ±0.17, marked with arrows
in Fig. 3b. The linewidth of the B band is M shaped, with a minimum at θ = 0. The linewidth of
the A band also has a minimum at θ = 0, but its linewidth increases rapidly towards larger angles.
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Figure 4. Integrated intensity of a) p-polarized and b) s-polarized bands. Note the large area
of the bright C and S mode and the small area of the dark A and B mode, in particular at θ = 0.

3.3. Measurement of intensity/area

Figure 4 shows the integrated intensity A = πImax∆λ of each resonance emitted on the air/vacuum
side, where Imax is the maximal intensity of the band and ∆λ� λ is its spectral width (HWHM).
The C and S band have a large area, whereas the A and B band are much fainter. The C and
S band are brightest at θy = 0, whereas the A and B band have almost no light at θy = 0 and
acquire intensity only at θy 6= 0. We call the C and S mode bright/radiative and the A and B mode
dark/non-radiative [15].

3.4. Measurement on different sample

We repeated these measurements and analysis on different metal hole arrays on the same wafer,
with different hole sizes and spacings (a0 = 450...470 nm). All arrays show similar results. To be
more precise: (i) the resonance frequency of the S band had kinks again, (ii) the spectral width of
the two bright modes C and S was larger than that of the two dark modes A and B. The spectral
width of the S band suddenly increased between θy = 0.1 and 0.25, and the spectral width of the
B band was M-shaped, (iii) the C and S bands were bright, while the A and B bands were dark
at θy = 0. There were also differences, one of them was in the width of the A band, which was
constant at small angles, but increased towards larger angles. The onset of this increase is at the
same angle as the kink in the resonance frequency of the A band.

4. Discussion

We analyzed all our data with a model based on four coupled surface plasmon modes. This model,
which is discussed in the Appendix, extends the work of [15]. It includes the SP-to-SP scattering
that dominantly determines the SP dispersion relation [15]. As an extension it also includes SP
losses due to SP-to-photon scattering, ohmic losses, and optical gain. These loss/gain channels
determine the spectral widths of the resonances. We describe these losses as imaginary rates in the
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Figure 5. Loss channels of SP. The reduced ohmic loss, denoted by the loss rate γR, is spatial
uniform and includes the effective optical gain. The radiative loss, denotes by the loss rate γrad,
occurs only at the holes and originates from scattering of SPs to photons. Under some conditions,
the SP-to-photon scattering is distributed over three diffraction orders: 1st order diffraction into
the air, and 1st and 2nd order diffraction into the semiconductor. We only observe the emission
into air and analyze it as a function of frequency and emission angle.

coupled mode model and thus obtain a complex band structure.
Our model contains the following parameters: SP-to-SP coupling is parameterized by scattering

rates γ and κ, which refer to back-scattering and right-angle-scattering, respectively [15]. SP-to-
photon coupling occurs at a radiative loss rate γrad. Finally, the ohmic loss and optical gain are
combined into a reduced ohmic loss rate γR = γr − g(ω), where the ohmic loss rate γr includes
surface-roughness related effects. Note that the optical gain g(ω) is frequency dependent and
determined by the parabolic electronic bands of the semiconductor and their Fermi-Dirac type
spectral filling. This bandfilling is also visible in the spontaneous emission spectrum of the bare
sample depicted in Fig. 1b.

The various contributions to the loss rate are depicted in Fig. 5. The radiative loss originates
from scattering of surface plasmons to photons in air and to photons in the semiconductor. In the
semiconductor a second scattering channel opens up at sufficiently large angle θ. This so called
Rayleigh anomaly is expected to lead to an increase in the radiative loss [16]. This second scattering
channel is denoted as photon 2nd in Fig. 5, where the other channels are denoted as photon 1st.

4.1. Analysis of resonance frequencies

The position of the resonance frequencies can be described reasonably well by the coupled mode
model, as explained in the Appendix. This model predicts three p-polarized bands - in the form
of two hyperbolic bands A and C and one V shaped band B - and a single weakly hyperbolic
s-polarized band S [15].

Our measured dispersion curves can be well fitted with amplitude scattering rates γ/ω0 =
+0.012 and κ/ω0 = ±0.004 (see Appendix). These values are comparable to values found in ref.
[15], where SP dispersion curves measured for nine similar arrays could be well fitted with rates
γ/ω0 = +0.013 to +0.017 and κ/ω0 = ±0.005 to ±0.011.

Our relatively simple model does not predict the kinks and flat region of the A and S band.
We attribute these effects to the so-called Rayleigh anomaly depicted in Fig. 5, which results in
additional losses at large angles and might even affect the SP dispersion via a Kramer-Krönig-type
relation. The dashed light lines in Fig. 2c correspond to the Rayleigh anomaly for a substrate index
n ' 3.12, which is close to the value of n = 3.10 of the InP wafer.
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4.2. Analysis of linewidths

The coupled mode theory described in the Appendix explains most of the features that we observe.
For instance, it explains why the SPs in the C and S band are more lossy than the SPs in the A
and B band. The former are radiative and scatter efficiently to photons, whereas the latter are
non-radiative and do not scatter to photons at small angles [17]. At θ = 0 the spectral width of the
radiative modes γC,S = 2γrad + γR is set by the radiative and reduced ohmic losses, whereas the
spectral width of the dark modes γA,B = γR is only determined by the reduced ohmic losses. The
experimental results presented in Fig. 3 correspond to γR/ω ≤ 0.001 and 2γrad/ω ' 0.004. The
coupled mode model also predicts the M shape of the B band with the smallest width at θ = 0 (see
Appendix). The Rayleigh anomaly explains why the SP loss in the S-band increases suddenly at
the arrows.

Which loss rates and refractive index do we expect theoretically? For surface plasmons on a
smooth metal-semiconductor interface we have

neff + ini =

√
ε1ε2
ε1 + ε2

(1)

Insertion of ε2 = −116 + 11.1i for gold at λ ≈ 1.5 µm and ε1 = 11.6 (n1 = 3.407) for
transparent InGaAs, yields neff + ini ≈ 3.588 + 0.019i. Inclusion of the absorption loss/gain via
ε1 = 11.6± 0.65i, yields neff + ini ≈ 3.587 + 0.130i and neff + ini ≈ 3.591− 0.093i, respectively.
As the experiment is performed on a thin layer of InGaAs only, we need to include the influence
of the InP substrate, such that the actual SP index will lie between the quoted numbers and the
value neff + ini ≈ 3.235 + 0.013i calculated for SPs on a gold-InP interface (ε1 ≈ 9.61 as n1 ≈ 3.10
for InP).

The expression γr/ω = ni/neff yields an expected ohmic loss rate of γr/ω ≈ 0.005 for
transparent InGaAs. Because the observed reduced ohmic loss rate γR/ω = 0.001 is considerably
lower than the loss rate of transparent InGaAs, the InGaAs layer has a clear gain component.

In ref. [9], Van Beijnum et al. determined the loss rate of the radiative SP mode around
θ = 0, using Fano fits of measured transmission spectra. Their analysis yielded a half-width
(HWHM) around λ = 1492 nm of 24 nm at low pump power and 4 nm at high pump power. The
corresponding loss rates are γs/ω = 0.016 and 0.0027, respectively. The loss rate of the unpumped
system is considerably larger than the loss rates observed here, while the loss rate of the pumped
system is somewhat smaller. For comparison, we expect a reduced ohmic loss rate of γR/ω ≈ 0.036
for the most absorptive case of unpumped bulk InGaAs.

4.3. Analysis of areas

The first thing to note in Fig. 3b is the distinction between the bright C and S and the dark
bands A and B. This observation is easily understood from the theoretical observation that the
bright bands have field maxima at the holes, whereas the dark bands have field minima at the holes
around θ = 0. The field we are referring to is the parallel magnetic field, which is the field that
scatters SPs to photons [15].

We also note that the area of the B band has the expected M-shape. The area of A and C
band, however, do not behave as expected but rather decreases at high angles θ. We attribute this
decrease to the spectral shape of the fluorescent light of the optically-pumped gain layer, which
is the light-source in our experiment. This spectral shape is shown in Fig. 1b. This spontaneous
emission is only emitted at frequencies above the bandgap of the semiconductor, but below the
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filling of the electronic band of the semiconductor. At high angles θ the resonance frequencies of
the A and C band are located at the edge of the fluorescence spectrum and hence less light couples
into these bands.

5. Conclusion

We studied the complex dispersion relation of surface plasmons on a square metal hole array. We
observed the frequencies, linewidths and areas of the four resonances and found remarkable features,
which can be attributed to a Rayleigh anomaly. Furthermore, we made a distinction between bright
(radiative) and dark (non-radiative) modes. From the linewidth we deduced scattering rates for the
photon and ohmic losses. The SP-to-photon scattering losses are approximately three times higher
then the other losses SP in the system.

In order to gain more understanding of the measured complex SP dispersion relation, we
developed a coupled mode model that only includes four modes. This model predicts several
observed features, but some features are not yet fully understood. Numerical simulations could
provide some insight in the remaining questions. More important, we need to increase the
complexity of the model by adding the three physical phenomena, that are mentioned at the end of
the Appendix: (i) the frequency dependence of spontaneous emission and gain, (ii) the frequency
dependence of all scattering rates, and (iii) the occurrence of a Rayleigh anomaly at large angles.
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Appendix A. Appendix for ’Loss, gain and scattering ...’ article

Appendix A.1. SP field in traveling-wave basis

In this appendix we describe a simple coupled-mode model for the surface plasmons (SP) that exist
at the metal-dielectric interface of a square hole array. This model is an extension of an earlier
model described in ref. [15]. It is based on the notion that photons emitted with parallel momentum
k‖ ≡ (kx, ky) only couple to traveling-wave SPs with (in-plane) momenta kSP = k‖+Gi, where Gi is
a lattice vector of the hole array. Our model only considers the four dominant Fourier components
(modes), with magnitude |Gi| ≡ G = (2π/a0) pointing in either of the four lattice directions
{ex, e−x, ey, e−y}, and neglects higher-order Fourier components of the SP. These components are
not resonant and hardly excited. The non-resonant contributions from all Fourier components are
included in a change in the effective refractive index neff , which is different from the effective index
of SPs on a smooth interface.

In this article, we only consider emission at θx = 0 and write the parallel momentum
ky = (ω/c) sin θy at emission angles θy � 1. We express the associated out-of-plane components of
the SP field at position r ≡ (x, y) as

E(r, t) =
[
Ex(t)uxe

iGx + E−x(t)u−xe
−iGx + Ey(t)uye

iGy + E−y(t)u−ye
−iGy

]
eik‖y, (A.1)

where {Ex, E−x, Ey, E−y} are the modal amplitudes of the four traveling waves. The Eigenvectors
ui, which describe the four associated optical polarizations, are chosen to be rotationally-imaged
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copies of each other. When the four modal amplitudes in Eq. (A.1) are combined into a single
vector |E〉, the time evolution of this SP field can be expressed as d|E〉/dt = −iH|E〉, where
H is a 4 × 4 matrix. If scattering is neglected, H reduces to a diagonal matrix with elements
{ω+x, ω−x, ω+y, ω−y}. At θx = 0 and θy ≡ θ, the dispersion relation ω = |k‖|c/neff for
traveling-wave SPs on a metal-dielectric interface yields ω±y(θ) ≈ (G ± k‖)c/neff ≈ ω0 ± c1θ,
and ωx(θ) = ω−x(θ) ≈ ω0 + c2θ

2, with ω0 ≡ (2π/a0)c/neff , c1 ≡ ω0/neff , and c2 ≡ ω0/(2n
2
eff ),

where neff is the SP effective index.
Reference [15] also described the SP-to-SP scattering processes. This scattering was divided

into three fundamental processes: forward scattering under 0◦ (at a rate γ0), right-angle scattering
under ±90◦ (at a rate κ), and backwards scattering under 180◦ (at a rate γ). Inclusion of these
scattering processes into the d|E〉/dt = −iH|E〉 matrix description yields the result presented in
ref. [15]:

H =




ω0 + c2θ
2 γ κ κ

γ ω0 + c2θ
2 κ κ

κ κ ω0 + c1θ γ
κ κ γ ω0 − c1θ


 (A.2)

The scattering rates γ and κ are assumed to be real-valued, such that the associated coupling is
conservative (= energy conserving) and the matrix H is Hermitian. The reference frequency is
again ω0 = (2π/a0)c/neff , but neff now contains a small contribution from forward scattering at
a rate γ0.

Appendix A.2. SP field in standing-wave basis

Next, we transform the evolution matrix H from the traveling-wave to the standing-wave basis.
For this purpose, we combine the waves traveling in the ±x direction into two standing waves
with out-of-plane E⊥(r) = Ecx(r) ∝ cosGx · exp ikyy and Esx(r) ∝ sinGx · exp ikyy, where the
labels cx and sx denote a cosine- or sine-pattern in the x direction. Likewise, we combine the
±y traveling waves into two standing waves with out-of-plane E-fields Ecy(r) ∝ cosGy · exp ikyy
and Esy(r) ∝ sinGy · exp ikyy. The transition from the {+x,−x,+y,−y} traveling-wave basis to
the {i sin {Gx} , cosGx, i sinGy, cosGy, } or {sx, cx, sy, cy} standing-wave basis transforms the H
matrix into

H =




ω0 + c2θ
2 − γ 0 0 0

0 ω0 + c2θ
2 + γ 0 2κ

0 0 ω0 − γ δ
0 2κ δ ω0 + γ


 , (A.3)

where δ ≡ −c1θ = −(ω0/neff )θ.
Note how the 4× 4 matrix separates in an uncoupled element, associated with the sx standing

wave, and a 3×3 matrix. This separation results from the mirror symmetry in the xz-plane (θx = 0).
The Esx(r) ∝ sinGx · exp ikyy field is the only standing wave that is odd under mirror inversion,
while the other three standing waves are even. The former couples only to s-polarized emission,
which has an odd symmetry, while the latter three mix and couple to p-polarized emission, which
also has an even symmetry. Also note how the coupling rate κ, associated with SP-SP scattering
under 90◦, only couples the cosGx and cosGy waves, which have intensity maxima at the holes,
while the detuning δ only couples the cy and sy standing waves.
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Appendix A.3. Losses and gain

Next, we include losses and gain in our model. First of all, we include ohmic losses at an ohmic
damping rate γr = (ni/neff )ω, where ni and neff are the imaginary and real part of the SP

effective index neff + ini =
√
ε1ε2/(ε1 + ε2) at the interface between medium 1 and 2. Second, we

include optical gain at a gain rate g0 per second. As both ohmic loss and optical gain are distributed
approximately uniformly, they can be combined into an effective ohmic loss rate γR ≡ γr−g0 and are
easily incorporated in our matrix description by replacing the evolution matrix −iH → −iH − γR.
Finally, we include radiative losses through scattering from SPs to photons, either in the air or in
the semiconductor. This radiative loss rate γrad = γair + γsemi is equal for all traveling waves,
but mode selective for the standing waves. As radiative scattering only occurs at the holes and
as the SP-to-photon coupling proceeds dominantly via the in-plane magnetic field (at θ � 1), we
expect that only the standing waves with a sinusoidal E⊥- pattern couple radiatively, at a decay
rate 2γrad, while the cosine-type modes don’t couple. By combining the above loss and gain rate
into our matrix description we arrive at our final expression

H =




ω̃sx 0 0 0
0 ω̃cx 0 2κ
0 0 ω̃sy δ
0 2κ δ ω̃cy


 , (A.4)

where ω̃i = ωi + iγi are four complex frequencies, with real parts ωsx = ω0 + c2θ
2 − γ ,

ωcx = ω0 + c2θ
2 +γ , ωsy = ω0−γ , and ωcy = ω0 +γ , and imaginary parts γsx = γsy = γR + 2γrad

and γcx = γcy = γR.

Appendix A.4. Spontaneous emission spectra

The fluorescence spectrum of the optically-pumped systems can be calculated in two steps, once
the evolution matrix of the SP-field is known. In the first step, the spontaneous emission into the
surface plasmon manifold is calculated from the expression

d

dt
|E(t)〉 = −iH|E(t)〉+ |S (t)〉 ⇒ |E (ω)〉 = −i(H − ω)−1|S (ω)〉 ,

where the 4-element vector |S〉 describes the original spontaneous emission, divided over the four
standing-wave SP modes, and |E〉 describes the generated SP field. The multiplication by (H−ω)−1

describes how the original emission source is modified by the gain and loss in the system into the
resulting SP field, which therefore peaks around optical frequencies ω close to the complex poles
of the matrix H. In the first step of the calculation, we assume that the original emission at each
optical frequency is equally distributed over the four standing waves and that the four emitted
fields are uncorrelated. This assumption is the Fourier equivalent of the statement that the original
emission at different spatial positions is homogeneous, isotropic, and uncorrelated. In the second
(and final) step, the generated surface plasmons are scattered into photons and detected. The sx
standing SP wave scatters into s-polarized photons and only the sy standing SP wave is assumed
to scatter into p-polarized photons.

The emission in the (odd) s-polarized mode is easily calculated. As only one of the four SP
standing waves is odd, the SP field follows from the scalar relation E (ω) = iS (ω) /(ω − ω̃sx) and
its absolute square

Is−polarization (ω) ∝ Is (ω)

(ω − ωsx)
2

+ γ2sx
, (A.5)
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Figure A1. Numerical results for four SP bands (A, B, C, and S) obtained from a simple
coupled-mode model: a) central frequency (= dispersion relation), b) linewidth, and c) spectral
area. The arrows indicate the angle at which a Rayleigh anomaly is observed in the experiment.

where Is (ω)↔ |S (ω) |2. We recognize the standard Lorentzian form, with its resonance frequency
ωsx ≡ ω0 + cδ2 − γ and its (HWHM) half-width γsx ≡ γR + 2γrad. The excited sx mode
emits efficiently from SP-to-photon, as this Esx(r) ∝ sinGx · exp ikyy mode has a magnetic field
Hsx(r) ∝ cosGx · exp ikyyey with anti-nodes at the holes.

A calculation of the (even) p-polarized emission is more complicated, as this emission originates
from three coupled SP modes. After some straightforward mathematics, which involves the inversion
of a 3× 3 matrix and a projection onto the sy mode, which is the only one of the three mode that
couples to photons, we obtain

Ip−polarization (ω) ∝
3∑

i=1

Is (ω) |〈sy|ui〉|2
(ω − ωi)

2
+ γ2i

, (A.6)

where 〈ui| are the three left eigenvectors of the 3× 3 lower-right submatrix H̃ of H, ω̃i ≡ ωi + iγi
are the associated eigenvalues, such that 〈ui|H̃ = ω̃i〈ui|, and |sy〉 denotes the field of the sy mode.
The explicit solution of this problem reads

Ip−polarization (ω) ∝ | (ω̃cy − ω) (ω̃cx − ω)− 4κ2|2 + δ2
[
|ω̃cx − ω|2 + 4κ2

]

| (ω̃sy − ω) [(ω̃cy − ω) (ω̃cx − ω)− 4κ2]− δ2 (ω̃cx − ω) |2 Is (ω) , (A.7)

At δ = 0 and κ = 0, we recover the expected result Ip−polarization (ω) = Is−polarization (ω) ∝
Is (ω) /|ω̃sy − ω|2.

The above expressions for the emitted spectrum contain subtleties that might go unnoticed in
their present form, as they are related to the frequency dependence of some of its parameters. The
spontaneous emission spectrum Is(ω) and the associated stimulated emission or optical gain g(ω)
will for instance depend on frequency. Although their spectral dependence is relatively smooth and
broad in semiconductors, it is something that should be included in a more complete model. Even
the SP-to-SP scattering rates γ and κ and the SP-to-photon scattering rate γrad are expected show
a strong wavelength dependence, with Rayleigh-type scattering rates scaling as ωn with n ≥ 6,
depending on the type of scattering [18]. A third and final point to include in a more complete
model is the sudden increase in radiative loss at the appearance of a new diffraction order (Rayleigh
anomaly).



REFERENCES 13

Appendix A.5. Comparison to measurement

In this section we present a prediction of our model. Figure A1 shows the theoretical dispersion
relation, linewidth and the area of the four SP bands for the experimentally observed angles. These
theortical curves are calculated with the experimentally observed parameters, namely: γ/ω = 0.012,
κ/ω = 0.004, γrad/ω = 0.002, γR = 0.001.

Figure A1(a) shows a theoretical calculation of the central frequencies of the four SP bands.
The model predicts one s-polarized band, the S band, with a weakly hyperbolic shape. Furthermore,
the model predicts three p-polarized bands: two hyperbolic bands, the A and C band, and a V
shaped B band. Note that the S and C band are degenerate at θ = 0. The angles at which there
are kinks in the experimental dispersion relation are indicated by the arrows in Fig. A1a.

Figure A1(b) shows the theoretical linewidths of the four bands. The model predicts two broad
modes, the bright C and S band, and two narrow modes, the dark A and B band. The width of the
C and S band are both equal to 2γrad + γR at θ = 0. The width of the S band is constant, whereas
the width of the C band decreases somewhat towards larger angles. This decrease is not observed
in our measurement. The linewidths of the dark A and B band is small, in particular at θ = 0
where they are both equal to γR. At larger angles, the linewidth of the A band gradually increases,
whereas the angle dependence of the linewidth of the B band is M shaped. These generally shapes
are observed experimentally, but the linewidth of the A band at large angles exceeds the width of
the C band in our experiment.

Figure A1(c) shows the theoretical spectral area of the four bands. Around θ = 0, we again
distinguish the bright C and S band form the dark A and B band, which acquire intensity only
at θ 6= 0. Apart from these generic features, there is no clear match between the theoretically
calculated and experimentally measured spectral areas. The main reason for this mismatch is the
frequency dependence of the spontaneous emission, which in our simple model was assumed to be
frequency independent (see main text).
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